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Abstract. Non blow-up of the 3D incompressible Euler Equations is proven for a class of three-
dimensional initial data characterized by uniformly large vorticity in bounded cylindrical domains.
There are no conditional assumptions on the properties of solutions at later times, nor are the global
solutions close to some 2D manifold. The approach of proving regularity is based on investigation
of fast singular oscillating limits and nonlinear averaging methods in the context of almost periodic
functions. We establish the global regularity of the 3D limit resonant Euler equations without any
restriction on the size of 3D initial data. After establishing strong convergence to the limit resonant
equations, we bootstrap this into the regularity on arbitrary large time intervals of the solutions of
3D Euler Equations with weakly aligned uniformly large vorticity at t = 0.
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1. Introduction and main results. Non blow-up of the 3D incompressible
Euler Equations is proven for a class of three-dimensional initial data characterized
by uniformly large vorticity in bounded cylindrical domains. There are no condi-
tional assumptions on the properties of solutions at later times, nor are the global
solutions close to some 2D manifold. It is well known that fully three-dimensional
initial conditions with uniformly large vorticity excite fast Poincaré vorticity waves
[3], [5]. Since individual Poincaré wave modes are related to the eigenfunctions of
the curl operator, they are exact time-dependent solutions of the full nonlinear 3D
Euler equations. Of course, their linear superposition does not preserve this property.
In this article we prove regularity on arbitrary long time intervals for fully 3D ini-
tial data which are superposition of ‘slow’ barotropic fields (two-dimensional velocity
fields with three components) and an infinite countable spectrum of ‘fast’ Poincaré
waves; this is achieved with a detailed mathematical analysis of multiscale phenomena
which arise in the fully nonlinear interactions between 3D waves and the mean flow
(barotropic fields). The techniques involve detailed investigations of fast singular oscil-
lating limits, building on the earlier pioneering work on nonlinear averaging methods
by Bogoliubov and Mitropolskii [10] and Bensoussan, Lions and Papanicolaou [8].

We study initial value problem for the three-dimensional Euler equations with
initial data characterized by uniformly large vorticity:

∂tV + (V · ∇)V = −∇p, ∇ ·V = 0, (1.1)

V(t, y)|t=0 = V(0) = Ṽ0(y) +
Ω

2
e3 × y (1.2)

where y = (y1, y2, y3), V(t, y) = (V1, V2, V3) is the velocity field and p is the pressure.
In Eqs. (1.1) e3 denotes the vertical unit vector and Ω is a constant parameter. The
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field Ṽ0(y) depends on three variables y1, y2 and y3. Since curl(Ω
2 e3 × y) = Ωe3, the

vorticity vector at initial time t = 0 is

curlV(0, y) = curlṼ0(y) + Ωe3, (1.3)

and the initial vorticity has a large component weakly aligned along e3, when Ω >> 1.
These are fully three-dimensional large initial data with large initial 3D vortex stretch-
ing.

Eqs. (1.1) are studied in cylindrical domains

C = {(y1, y2, y3) ∈ R3 : 0 < y3 < 2π/α, y2
1 + y2

2 < R2} (1.4)

where α and R are positive real numbers. If h is the height of the cylinder, α = 2π/h.
Let

Γ = {(y1, y2, y3) ∈ R3 : 0 < y3 < 2π/α, y2
1 + y2

2 = R2}. (1.5)

Without loss of generality, we can assume that R = 1. Eqs. (1.1) are considered with
periodic boundary conditions in y3

V(y1, y2, y3) = V(y1, y2, y3 + 2π/α) (1.6)

and vanishing normal component of velocity on Γ

V · N = Ṽ · N = 0 on Γ; (1.7)

where N is the normal vector to Γ. From the invariance of 3D Euler equations
under the symmetry y3 → −y3, V1 → V1, V2 → V2, V3 → −V3, all results in this
paper extend to cylindrical domains bounded by two horizontal plates. Then the
boundary conditions in the vertical direction are zero flux on the vertical boundaries
(zero vertical velocity on the plates). One only needs to restrict vector fields to be
even in y3 for V1, V2 and odd in y3 for V3, and double the cylindrical domain to
−h ≤ y3 ≤ +h.

We choose Ṽ0(y) in L2(C). We introduce Ṽ(t, y) such that

V(t, y) = Ṽ(t, y) +
Ω

2
e3 × y, curlV(t, y) = curlṼ(t, y) + Ωe3. (1.8)

For the vorticity field ω = curlV Eqs. (1.1) become

∂

∂t
ω + V · ∇ω = ω · ∇V, (1.9)

ω(0, y) = curlṼ0(y) + Ωe3, (1.10)

and the initial condition induces large initial vortex stretching.
We present a simple case of results obtained in our joint work with C. Bardos

and F. Golse [6] , where the initial value problem is solved in more general functional
spaces. We establish regularity for arbitrarily large finite times for the 3D Euler
solutions for Ω large, but finite. Our solutions are not close in any sense to those
of the 2D or “quasi 2D” Euler and they are characterized by fast oscillations in
the e3 direction, together with a large vortex stretching term ω(t, y) · ∇V(t, y) =
ω1

∂V1

∂y1
+ ω2

∂V2

∂y2
+ ω3

∂V3

∂y3
, t ≥ 0 with leading component Ω ∂

∂y3
V3(t, y) >> 1. There are
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no assumptions on oscillations in y1, y2 for our solutions (nor for the initial condition
Ṽ0(y)).

Our approach is entirely based on fast singular oscillating limits of Eqs. (1.9)-
(1.10), nonlinear averaging and cancellation of oscillations in the nonlinear interactions
for the vorticity field for large Ω. This has been developed in [3], [4], [5] and [27] for
the cases of periodic lattice domains and the infinite space R3. Through the canonical
transformation (1.17)-(1.18) in both the field V(t, y) and the space coordinate y =
(y1, y2, y3) for every Ω (not necessary large) we map every solution V(t, y) of Eqs. (1.1)
one-to-one to a solution U(t, x), x = (x1, x2, x3) of

∂tU + (U · ∇x)U + Ωe3 × U = −∇x(p − Ω2

4
|xh|2), ∇x ·U = 0, (1.11)

U(t, x)|t=0 = U(0, x) = Ṽ0(x), (1.12)

where x = y at t = 0 and xh = (x1, x2). For Ω >> 1 the nearly singular initial
value problem (1.1)-(1.2) (that is with large initial vorticity and vortex stretching)
is mapped into the problem (1.11)-(1.12) with the nearly singular Coriolis operator
term restricted to solenoidal fields:

1

ǫ
e3 × U, ∇ · U = 0, ǫ = 1/Ω << 1. (1.13)

As detailed in Section 2, the linear part of Eq. (1.11) is the Poincaré-Sobolev nonlocal
wave equations ([2], [14], [28], [32]):

∂tΦ + Ωe3 × Φ = −∇π, ∇ ·Φ = 0. (1.14)

Interactions between the Poincaré waves generated by the quadratic nonlinearity in
Eq. (1.11) are ruled by resonance conditions and a small divisor problem in the limit
Ω → ∞. With nonlinear averaging methods in the context of Banach space valued
almost periodic functions we obtain fully 3D limit resonant Euler equations. We
establish the global regularity of the latter without any restriction on the size of 3D
initial data and bootstrap this into the global regularity of Eqs. (1.11)-(1.12) for Ω
large but finite. Then by the canonical transformation (1.17)-(1.18) of the field V

(which is an isometry on curl-based generalizations of Sobolev spaces) we establish
the long-time regularity of Eqs. (1.1)-(1.2) for large finite Ω, on arbitrarily finite large
time intervals.

Our results crucially use the algebra of the curl operator with boundary condi-
tions, for the fast singular oscillating limits of ω̃ = curlU(t, x):

∂tω̃ + U · ∇ω̃ = ω̃ · ∇U + Ω
∂

∂x3
U. (1.15)

For this we rely on deep properties of curl−1, extending the early pioneering results
of O.A. Ladyzhenskaya, V.A. Solonnikov and co-workers which were obtained in the
context of Maxwell’s equations and magneto-hydrodynamics ([21], [24], [12], [13],
[33]). There are three foremost issues with the analysis of (1.1)-(1.2), (1.11)-(1.15) for
large parameter Ω. First, the nature of their fast singular oscillating limit equations
as Ω → +∞ and the global regularity of their solutions (3D resonant limit Euler
equations). Second, the strong convergence of solutions of (1.11)-(1.12) to those of
the limit equations; and, finally, bootstrapping from analysis of the first two questions
the long-time regularity of solutions of (1.1)-(1.2) for Ω large but finite.
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We now detail the canonical transformation between the original vector field
V(t, y) and the vector field U(t, x). Let J be the matrix such that Ja = e3 × a

for any vector field a. Then

J =





0 −1 0
1 0 0
0 0 0



 , Υ(t) ≡ eΩJt/2 =





cos(Ωt
2 ) − sin(Ωt

2 ) 0
sin(Ωt

2 ) cos(Ωt
2 ) 0

0 0 1



 . (1.16)

For any fixed parameter Ω (not necessary large) we introduce the following fun-
damental transformation:

V(t, y) = e+ΩJt/2U(t, e−ΩJt/2y) +
Ω

2
Jy, x = e−ΩJt/2y. (1.17)

The transformation (1.17) is invertible:

U(t, x) = e−ΩJt/2V(t, e+ΩJt/2x) − Ω

2
Jx, y = e+ΩJt/2x. (1.18)

The transformations (1.17)-(1.18) establish one-to-one correspondence between
solenoidal vector fields V(t, y) and U(t, x). We note that for t = 0 x = y and
therefore Ṽ0(y) = Ṽ0(x). Let x = (xh, x3) where xh = (x1, x2), |xh|2 = x2

1 + x2
2 and

similarly for y. We have:

Lemma 1.1. The following identities hold for the vector fields V(t, y) and U(t, x)
and pressure p:

1. ∇y ·V(t, y) = ∇x ·U(t, x).
2. ∇yp = Υ(t)∇xp.
3. curlyV(t, y) = Υ(t)curlxU(t, x) + Ωe3, curl2yV(t, y) = Υ(t)curl2xU(t, x).

4. D
DtV(t, y) = Υ(t)

(

D
DtU(t, x) + ΩJU − Ω2

2 xh

)

where D
Dt are the correspond-

ing Lagrangian derivatives, JU = e3 × U.

Lemma 1.1 establishes that the transformation (1.17)-(1.18) is canonical for (1.1)-
(1.2). From the property 1 of Lemma 1.1 it follows that ∇x · U(t, x) = 0 since
∇y · V(t, y) = 0. Now using 2-4 in the above Lemma 1.1 and the fact that Υ(t) is
unitary we can express each term in (1.1) in x and t variables to obtain the equations
for U(t, x) (1.11)-(1.15). Under the transformation (1.17)-(1.18) Eqs. (1.1)-(1.2) turn
into Euler system (1.11)-(1.12) with an additional Coriolis term Ωe3×U and modified
initial data and pressure. The systems Eqs. (1.1)-(1.2) and (1.11)-(1.12) are equiv-
alent for every Ω (not necessary large) and the pair of transformations (1.17)-(1.18)
establishes one-to-one correspondence between their fully three-dimensional solutions.
The canonical transformation (1.17)-(1.18) preserves the boundary conditions (1.7)
which are transformed into

U ·N = 0, on Γ. (1.19)

Using elementary identities (U · ∇)U = curlU×U +∇( |U|2

2 ) on divergence free
vector fields, Eqs. (1.11) can be rewritten in the form

∂tU + (curlU + Ωe3) × U = −∇(p − Ω2

4
|xh|2 +

|U|2
2

), (1.20)

∇ ·U = 0, U(t, x)|t=0 = U(0) = Ṽ0(x). (1.21)



NON BLOW-UP OF 3D EULER EQUATIONS FOR A CLASS OF INITIAL DATA 609

For large Ω the initial value condition (1.2) can be interpreted as weak alignment
of the initial vorticity at t = 0; in the distributional sense, for every test function
φ(y) ∈ C∞

0 (R3) we have:

| < curlV(0, y)/Ω − e3, φ(y) > | = | < V(0, y)/Ω − 1

2
e3 × y, curlφ(y) > |(1.22)

=
1

Ω
| < U(0, x), curlφ(x) > |,

with Ω ≥ Ω1 (Ω1 is defined in Theorem 1.2, Ω1 >> 1).
The fast singular oscillating limits of Eqs. (1.20)-(1.21) are investigated as Ω →

+∞, after further transformation of Eqs. (1.20)-(1.21) with the Poincaré propagator.
The latter is the unitary group solution E(−Ωt)Φ(0) = Φ(t) in L2(C) (E(0) = Id is
the identity) to the linear Poincaré wave problem ([28], [14], [32]):

∂tΦ + ΩJΦ = −∇π, ∇ ·Φ = 0, (1.23)

or, equivalently,

∂tΦ + ΩPJPΦ = 0 (1.24)

where P is the Leray projection on divergence free vector fields; the solutions
E(−Ωt)Φ(0) are called Poincaré waves. Eqs. (1.23) give rise to a unitary group of
transformations E(−Ωt) on a space of square-integrable divergence-free vector fields
L2(C). The spectrum of the generator of the group of motions, that is the spectrum
of the skew-hermitian zero order pseudo-differential operator PJP is [−i, i]. In the
case of cylindrical domains considered in this paper the eigenvalues (point spectrum)
of the operator PJP are dense in [−i, i]. The operator PJP has norm one. Since
PJP is bounded on L2(C), the solutions to (1.24) with initial condition Φ(0) is given
by

Φ(t) = E(−Ωt)Φ(0) =

+∞
∑

j=0

(−Ωt)j

j!
(−PJP)j Φ(0). (1.25)

Applying to Eqs. (1.11)-(1.12) (equivalently, Eqs. (1.20)-(1.21)) the Leray projec-
tion P onto divergence free vector fields, we obtain for U = P U

∂tU + ΩPJPU = B(U,U), (1.26)

U|t=0 = U(0) = Ṽ0

where

B(U,U) = −P(U · ∇U) = P(U × curlU). (1.27)

The proofs of regularity rely on the analysis of the dispersion relations for Poincaré
waves [28], [14] (solutions to Eqs. (1.23)-(1.24)). The resonance condition for the
interactions generated by the Euler quadratic nonlinearity in the limit Ω → +∞
takes the form (see [3] and Sections 2, 3 below):

± k3
√

β(k1,k2,k3)2

α2 + k2
3

± m3
√

β(m1,m2,m3)2

α2 + m2
3

± n3
√

β(n1,n2,n3)2

α2 + n2
3

= 0 (1.28)
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with the convolution conditions n3 = k3 + m3, n2 = k2 + m2. Here m = (m1, m2, m3)

are three-dimensional wave vectors. The integers m1, m2 and m3 are for the radial,
azimuthal and axial directions, respectively. Similarly, for k and n. Eqs. (1.28) are
trivially satisfied for k3 = m3 = n3 = 0 which correspond to pure two-dimensional
interactions (dependence on x1, x2 and no dependence on x3 in physical space). The
nonlinear interactions with k3m3n3 = 0, k2

3 + m2
3 + n2

3 6= 0 correspond to two-wave
resonances and the interactions with k3m3n3 6= 0 correspond to strict three-wave
resonances. The quantities β are related to zeros of certain expressions involving
Bessel functions (see Eq. (2.30)).

We outline the structure of the fast oscillating limit equations obtained from
Eqs. (1.26) in the limit Ω → +∞:

∂tw = B̃(w,w), (1.29)

w|t=0 = w(0) = U(0) = Ṽ0.

Details are given in Sections 2 and 3.
We denote the orthogonal decomposition w = w + w⊥ where w(t, x1, x2) is the

barotropic projection (vertical averaging),

w(t, x1, x2) =
1

2πα

∫ 2π/α

0

w(t, x1, x2, x3)dx3 (1.30)

and the orthogonal field w⊥(t, x1, x2, x3) verifies w⊥ = 0. Then

w = w + w⊥. (1.31)

Eqs. (1.29) conserve both energy and helicity. These equations are genuinely three-
dimensional since they include all 3D modes but with wave-number interactions re-
stricted in B̃(w,w). We have (see below in Sections 2 and 3)

B̃(w,w) = B̃(w,w) (1.32)

implying

B̃(w,w) = BIII(w
⊥,w⊥) + BII(w,w⊥) + B2D(w,w) (1.33)

where B2D corresponds to pure 2D interactions (k3 = m3 = n3 = 0), BII is the
‘catalytic’ operator (k3 = 0, m3n3 6= 0 or m3 = 0, k3n3 6= 0). The above implies
k3m3n3 6= 0 for interactions given by BIII. Such interactions are called strict 3-wave
interactions.

Since B̃(w,w)= B̃(w,w) the solutions w(t, x1, x2, x3) = (w1, w2, w3) of the limit
equations (1.29) split into an equation for w(t, x1, x2) which decouples and an equa-
tion for w⊥(t, x1, x2, x3) with its coefficients depending on w. The field w(t, x1, x2)
satisfies the 2D-3C Euler equations (three components and dependence on two vari-
ables x1, x2). Specifically,

∂tw + (w · ∇)w = −∇hq, ∇h · w = 0 (1.34)

w|t=0 = w(0) = U(0)

where ∇h denotes the gradient in horizontal variables x1, x2. The component
w⊥(t, x1, x2, x3) (orthogonal to w, that is with zero vertical average) satisfies limit
equations

∂tw
⊥ = BII(w,w⊥) + BIII(w

⊥,w⊥) (1.35)

w⊥|t=0 = w⊥(0) = U⊥(0) = U(0) − U(0).
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For w(t, x1, x2) we have the usual conservation laws and global existence theorems
for 2D Euler ([35], [36]).

For the generic case of no strict 3 wave resonances BIII = 0. In this case we have
global regularity of the limit resonant equations and long time regularity of the 3D
Euler equations (1.11)-(1.12) for Ω large. The set of parameters α where BIII = 0 has
full Lebesgue measure. In such cases, global regularity of the limit resonant equations
and long time regularity of the 3D Euler equations (1.11)-(1.12) is proven using the
new 3D conservation laws for BII (see Section 3) and the convergence Theorem 4.6
in section 4. More precisely, BIII 6= 0 for a countable discrete set of parameters α.
We now state our main existence theorem. For the cylinder, denote by h the height
and R the radius. We denote by Hs

σ(C) the usual Sobolev spaces of solenoidal vector
fields in the cylinder C, s ≥ 0.

Theorem 1.2. Consider the initial value problem for the 3D Euler equations
(1.1)-(1.2) with curlV(0, y) = Ωe3 + curl Ṽ0(y) and Ṽ0(y) ∈ Hs

σ(C), s ≥ 4. Let
curlj Ṽ0(y) · N = 0 on Γ, 0 ≤ j ≤ s. Let ||Ṽ0||Hs

σ(C) ≤ Ms. Let h/R /∈ K∗

where K∗ is a countable discrete set. Let Tm > 0 fixed, arbitrary large. Then there
exists Ω1(h/R, Ms, Tm) such that for every fixed Ω ≥ Ω1 there exists a unique regular
solution of Eqs. (1.1)-(1.2) for 0 ≤ t < Tm:

||Ṽ(t, y)||
Hs

σ(C) ≤ M̃s(h/R, Ms, Tm). (1.36)

Moreover, curlj V(t, y) · N = 0 on Γ, 0 ≤ j ≤ s. For Ms fixed, Tm → +∞ as
1/Ω1 → 0. Alternatively, we can take arbitrary large but bounded sets of initial data:
Ms → +∞ if 1/Ω1 → 0, Tm fixed.

The above theorem establishes a class of genuinely 3D solutions of Euler equations
which are regular on long time intervals even though the initial vorticity and the vortex
stretching term are large.

2. Poincare-Sobolev equations in cylindrical domains. In this section we
consider the eigenvalue problem for the Poincaré-Sobolev equations in the cylinder C

([2], [28], [14], [32]):

∂tΦ + ΩPJPΦ = 0, ∇ ·Φ = 0, (2.1)

The operator PJP is skew-symmetric with respect to the L2 inner product. From
the fundamental identity

curlPJP = − ∂

∂x3
P, (2.2)

the Poincaré problem is equivalent to the nonlocal wave operator (the Poincaré-
Sobolev equation), [32] and [2]:

∂2

∂t2
curl2Φ − Ω2 ∂2

∂x2
3

PΦ = 0; (2.3)

its properties have been extensively investigated by the school of Sobolev (see refer-
ences in [2], [20], [29]) for various domain geometries.

Theorem 2.1. ([20]). PJP is a bounded skew-adjoint zero-order nonlocal oper-
ator with a dense spectrum on [−i, +i].
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This spectrum can be purely continuous on [−i, +i] in the case of resonant do-
mains which are ergodically filled by the characteristics of Eqs. (2.3) ([2]). The situa-
tion is simpler in periodic domains T3, where PJP does commute with the curl oper-
ator, hence with curl2α = (−∆)α on solenoidal fields, and E(−Ωt) = exp(−ΩPJPt)
preserves all Sobolev norms ([3], [4]).

In the cylindrical domains with boundary conditions ((1.7), (1.19)), the structure
of PJP and E(−Ωt) is much more complex, as curl does not commute with the
operator PJP (but does commute with P), whereas the operators ∇ and −∆ do not
commute with P. The Helmholtz projection U → PU is such that (i) divPU = 0
and (ii) PU · N = 0 on Γ. The Weyl-Helmholtz decomposition theorem for L2(D)
where D is a bounded domain, now involves harmonic distributions:

Theorem 2.2. Every vector field U ∈ L2(D) admits a unique decomposition:

U = PU + ∇πH + ∇π0, (2.4)

where ∇πH and ∇π0 ∈ L2(D) and

∆π0 = divU, π0 = 0 on ∂D (2.5)

∆πH = 0,
∂πH

∂N
= (U −∇π0) ·N on ∂D, in H−1/2(∂D). (2.6)

Note that the set of harmonic distributions such that ∂πH

∂N = 0 on ∂D, reduces to {0},
hence the uniqueness of PU.

To construct the eigenfunctions and eigenvalues of PJP and E(−Ωt), we need
to invert curl in the Poincaré-Sobolev equation (2.3) subject to the boundary condi-
tion (1.19). This is where the potential theoretical result on curl inversion by O.A.
Ladyzhenskaya and V. A. Solonnikov are needed in an essential way ([21], [12], [13],
[24]). V.A. Solonnikov in [33] has further demonstrated that in bounded geometries
the curl operator is an overdetermined elliptic system on solenoidal fields and does not
admit any simple maximal self-adjoint extension. Nevertheless, two different potential
theoretic inverses can be constructed for curl with different domains and ranges.

Recall the lemma for integration by parts for the curl operator

Lemma 2.3. For U, V ∈ H1(D)
∫

D

curlU ·Vdx =

∫

D

U · curlVdx +

∫

∂D

(N × U ·V)dS, (2.7)

where the determinant in the boundary integral is taken in the sense N×U and N×V

∈ H1/2(∂D), and U, V ∈ H1/2(∂D) ([12], [17]).

Lemma 2.4. ([24]). For U,V ∈ J0∩J1 and such that curlU ·N = curlV ·N = 0
on ∂D, the operator curl is symmetric:

∫

D

curlU · V dx =

∫

D

U · curlV dx. (2.8)

To briefly review the results in [21], [24], [12], [13] we introduce the notations of
Ladyzhenskaya, where D is a bounded domain with boundary ∂D:

J = Clos{U ∈ C∞(D̄), divU = 0} in || · ||L2
,J ≡ H0

σ; (2.9)

J1 = {U ∈ H1(D), divU = 0} ≡ H1
σ(D); (2.10)

J0 = Clos{U ∈ C∞(D̄), divU = 0,U ·N = 0 on ∂D} in || · ||L2
(2.11)

J0
1,τ = Clos{U ∈ C∞(D̄), divU = 0,U × N = 0 on ∂D} in || · ||H1(D). (2.12)
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Theorem 2.5. J0
1,τ (D) is dense in J(D).

Theorem 2.6. For every V ∈ J0(D), there exists a unique Ψ ∈ J0
1,τ (D) such

that V = curlΨ and for some C1, C2 > 0:

C1||V||L2
≤ ||Ψ||H1 ≤ C2||V||L2

. (2.13)

Theorem 2.7. For every W ∈ J(D) there exists a unique Φ ∈ J0(D) ∩ H1(D)
such that W = curlΦ and for some C3, C4 > 0:

C3||W||L2
≤ ||Φ||H1 ≤ C4||W||L2

. (2.14)

Theorem 2.6 implies the existence of a bounded operator curl−1 with domain
J0, range J0

1,τ ; and similarly Theorem 2.7 defines curl−1 with domain J, range J0 ∩
H1. Note that Theorem 2.7 implies the Poincaré inequality ||Φ||L2

≤ C4||W||L2
.

Theorem 2.7 has been rederived by C. Bardos (see discussion in [17]) using non-
potential theoretic methods of K. Friedrichs [18].

Theorem 2.8. ([24], [2]). When restricted to the domain:

D(curl) = curl−1J0, (2.15)

where the vector potential curl−1 is taken as in Theorem 2.7, the operator curl is
self-adjoint, invertible and with a compact inverse in J0.

Proof. Theorem 2.8 is a straightforward corollary of Theorem 2.7, with the remark
that J0 is a closed subspace of J. D(curl) is a closed proper subspace of J1 ∩ J0. In
fact,

J0 ∩ J1 = curl−1J0
⊕

curl−1(∇πH), (2.16)

where curl−1 is again taken in the sense of Theorem 2.7. As curl−1J0 ⊂ H1
σ ∩ J0,

curl−1 is a compact operator on J0. To verify that curl as restricted in (2.15) is
self-adjoint, consider (2.7) with U, V in D(curl) and ΨU , ΨV in J0

1,τ such that
ΨU = curl−1(curlU), ΨV = curl−1(curlV), the vector potential curl−1 is now taken
in the sense of Theorem 2.6. Then ΨU = U + ∇πH(U), ΨV = U + ∇πH(V), where
πH(U), πH(V) are harmonic functions. Now

∫

D

curlU ·V dx =

∫

D

curlU · ΨV dx =

∫

D

curlΨU · ΨV dx (2.17)

and, similarly,
∫

D

U · curlV dx =

∫

D

ΨU · curlΨV dx. (2.18)

Then (2.7) becomes

∫

D

curlU ·Vdx =

∫

D

U · curlVdx +

∫

∂D

(N × ΨU · ΨV )dS, (2.19)

and the boundary integral on the right hand side is clearly null, as ΨU · ΨV are in
J0

1,τ .
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Theorem 2.8 has been rediscovered several times, from unawareness of [24] and
[13]. Note that whereas the eigenfunctions of curl are complete in J0, they are not

complete in J0 ∩ J1, only in D(curl) ⊂ H1(D).
We now explicit the common eigenfunctions to PJP and curl in the cylinder. In

cylindrical coordinates (r, φ, z) we have Φ = (Φr, Φφ, Φz) and Eqs. (2.1) take the form

∂tΦr − ΩΦφ = −∂p

∂r
, ∂tΦφ + ΩΦr = −1

r

∂p

∂φ
, ∂tΦz = −∂p

∂z
, (2.20)

1

r

∂

∂r
(rΦr) +

1

r

∂Φφ

∂φ
+

∂Φz

∂z
= 0. (2.21)

The vector field Φ is 2π/α periodic in z and it satisfies Φr|r=R = 0 on Γ.
Applying curl operator to Eqs. (1.23) and using divergence free condition, we

obtain

∂tcurlΦ = Ω∂zΦ. (2.22)

From Eqs. (2.22) we obtain Poincaré-Sobolev equations

∂2

∂t2
(curl2Φ) − Ω2 ∂2

∂z2
(Φ) = 0. (2.23)

Eqs. (2.23) is a system of equations for three components of Φ. For the vertical
component Φz we have the following scalar equation

∂2

∂t2
∆Φz + Ω2 ∂2

∂z2
Φz = 0. (2.24)

We look for normal modes in the form

ei(Ωσt+m2φ+m3αz)Φ̂(r). (2.25)

Recall that without loss of generality R = 1. Eqs. (2.24) imply

d2

dr2
Φ̂z +

1

r

d

dr
Φ̂z + (β2 − m2

2

r2
)Φ̂z = 0 (2.26)

where

β2 = m2
3α

2(
1

σ2
− 1) or equivalently σ2 =

m2
3α

2

β2 + m2
3α

2
. (2.27)

From the boundary condition Φr|r=1 = 0 and Eqs. (2.20) we obtain

d

dr
Φ̂z +

m2

σr
Φ̂z = 0 at r= 1. (2.28)

Eqs. (2.26), (2.28) is a Sturm-Liouville eigenvalue problem.
From Eqs. (2.26) we have

Φ̂z(r) = Jm2
(βr), (2.29)

where Jm2
(·), m2 = 0, 1, 2, ..., are Bessel functions of the first kind; therefore,

Eqs. (2.28) imply

βJ ′
m2

(β) ± m2Jm2
(β)

√

β2

m2
3α

2
+ 1 = 0. (2.30)
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For fixed integers m2 (azimuthal wavenumber) and m3 (vertical direction) we solve
Eqs. (2.30) to obtain βm1

(m2, m3); m1 = 1, 2, 3, .... Eqs. (2.30) have infinitely many
solutions. Then Eqs. (2.27) imply

σ(m1, m2, m3) = ± m3
√

β(m1,m2,m3)2

α2 + m2
3

. (2.31)

Clearly, iσ(m1, m2, m3) are eigenvalues of the skew-hermitian operator PJP. The
corresponding eigenvector functions Φm1m2m3

= (Φr, Φφ, Φz) form a complete set in
J0. They are independent of Ω and are explicitly expressed in terms of Bessel functions
(for example, see Eq. (2.29) for the radial component Φr). From Eqs. (2.22) and (2.27)
it follows that the eigenfunctions Φm1m2m3

with m3 6= 0 satisfy

curlΦm1m2m3
= ±

√

β(m1, m2, m3)2 + α2m2
3 Φm1m2m3

= ±λm1m2m3
Φm1m2m3

(2.32)

= ± m3α

σm1m2m3

Φm1m2m3
where σ2

m1m2m3
=

m2
3α

2

β2
m1m2m3

+ m2
3α

2
.

and

(curlΦ) ·N|Γ = 0. (2.33)

More precisely, from curlPJPU = − ∂
∂zU (for every solenoidal field U), Φm1m2m3

satisfies

curlΦm1m2m3
= −m̌3

σ
Φm1m2m3

, (2.34)

curlΦm1m2m3
= −sign(m3σ)λm1m2m3

Φm1m2m3
,

where the curl operator is complex valued on the Fourier wavenumbers m2, m3 and
real valued with respect to the radial variable r.

The divergence free eigenvector functions Φm1m2m3
= (Φr, Φφ, Φz) are

Φr,m1m2m3
= ei(m2φ+m3αz) iσ

m3α(1 − σ2)
(σβJ ′

m2
(βr) +

m2

r
Jm2

(βr)),

Φφ,m1m2m3
= ei(m2φ+m3αz) −σ

m3α(1 − σ2)
(βJ ′

m2
(βr) +

σm2

r
Jm2

(βr)), (2.35)

Φz,m1m2m3
= ei(m2φ+m3αz)Jm2

(βr).

The eigenspace corresponding to the zero eigenvalue consists of all divergence free
vector fields independent of the vertical coordinate z (σ = 0 if m3 = 0 in Eqs. (2.31)).

These eigenfunctions are vested with several symmetries, one of them especially
useful for the proof of the ‘operator splitting’ Theorem 3.2, cf. Eqs. (1.34)-(1.35). If

m2 → −m2, m3 → −m3, σ → −σ, (2.36)

then:

β(m1,−m2,−m3) = β(m1, m2, m3), (2.37)

with the same indexation m1, and:

Φ∗(m1, m2, m3) = Φ(m1,−m2,−m3). (2.38)
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Moreover, these two eigenfunctions correspond to the same eigenvalue of curl. Here
∗ denotes complex conjugation. Eqs. (2.36)-(2.38) are easily inferred from (2.28),
(2.30), (2.31), (2.32), (2.35) and the above explicit formulas for Φm1m2m3

.
We can easily obtain asymptotic expressions of eigenvalues for large β. We recall

that we have for Bessel functions

J ′
l (ξ) =

l

ξ
Jl(ξ) − Jl+1(ξ), (2.39)

Jl+1(ξ) =
2l

ξ
Jl(ξ) − Jl−1(ξ), (2.40)

Jl−1(ξ) − Jl+1(ξ) = 2J ′
l(ξ) (2.41)

Jl(ξ) ∼
√

2

πξ
cos(ξ − π

4
− lπ

2
) as ξ → +∞. (2.42)

From Eqs. (2.30), (2.39)-(2.41) we obtain

Jm2+1(β)

Jm2
(β)

=
m2

β
(1 ±

√

β2

m2
3α

2
+ 1). (2.43)

Then from Eqs. (2.43) using asymptotic expression for Bessel functions for large β we
have

tan(β − π

4
− m2π

2
) ≈ ± m2

m3α
. (2.44)

For fixed m2, m3 and α Eqs. (2.44) has infinitely many solutions βm1
(m2, m3, α),

m1 = 1, 2, ....
In summary, with ň3 = αn3 = 2πn3/h denoting the vertical Fourier wave number

along x3, we have established that:

Proposition 2.9.

(i) On [−i, 0)∪(0, +i] the spectrum of PJP consists of a dense, but countable set
of eigenvalues ±iσn, with finite dimensional eigenspaces for each eigenvalue.

(ii) Every eigenvector of PJP is an eigenvector of curl and vice-versa, with eigen-

values ±iσn and ±λn mapped into each other by σ2
n =

ň2

3

λ2
n
.

(iii) kerPJP =
{U ∈ J(C) : U ≡ U(x1, x2) = (U1(x1, x2), U2(x1, x2), U3(x1, x2))}.

(iv) On (kerPJP)⊥, E(−Ωt) = exp(−PJPΩt) is diagonalized in the curl-
eigenvector functions basis, with eigenvalues exp(±iΩσnt) = exp(±iΩ ň3

λn
t)

Completeness of the eigenfunctions of PJP follows from that of the curl eigen-
functions in J0, Eq. (2.11), and every real valued solenoidal field U⊥ satisfying the

boundary conditions (1.7), (1.19) and such that U
⊥

= 0, can be expanded as:

U⊥ =
∑

n1>0,n2≥0,n3>0

(U⊥
n1,n2,n3

Φn1,n2,n3
+ U⊥

n1,−n2,−n3
Φn1,−n2,−n3

), (2.45)

where (U⊥
n1n2n3

)∗ = U⊥
n1,−n2,−n3

, and n1 designates the indexing of βn1
(n2, n3, α) for

solutions of (2.30), n2, n3 the usual azimuthal and vertical wavenumbers. In the next
sections, we use the short hand notation U⊥

n = U⊥
n1n2n3

, Φn = Φn1n2n3
and for con-

cision’s sake, −n = (n1,−n2,−n3), U⊥
−n = U⊥

n1−n2−n3
, Φ−n = Φn1−n2−n3

, with the
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understanding that any convolution operator acts only on the Fourier wavenumbers
n2, n3; for example:

(U × V)n =
∑

m1,m2,m3:m2+k2=n2;k1,k2,k3:m3+k3=n3

(Φk × Φm, Φn)UkVm, (2.46)

for both U and V in (kerPJP)⊥.

Remark 2.10. We note that

V(t, y) =
Ω

2
e3 × y + exp(

Ω

2
Jt)Φn(exp(−Ω

2
Jt)y) exp(±i

ň3

|λn|
Ωt), (2.47)

where Φn are curl eigenfunctions and λn the corresponding eigenvalues, are exact
solutions of the full 3D nonlinear Euler equations. It follows from the fact that the
second component in (2.47) is an Arnold-Beltrami-Childress (ABC) flow since Φn is a
curl eigenfunction; such 3D flows are characterized by colinear velocity and vorticity
fields at every point in space and time ([2]), ([15]).

3. The structure and regularity of fast singular oscillating limit equa-

tions.

3.1. Fast singular oscillating limit equations. We introduce van der Pol
transformation by setting in Eqs. (1.11)-(1.20)

U(t) = E(−Ωt)u(t) (3.1)

where u(t) is the “slow envelope” variable also denoted in this paper by Poincaré
variable. We note that E(−Ωt) = exp(−ΩPJPt) reduces to the identity operator on
any barotropic (vertically averaged) field implying

U = E(−Ωt)u = u. (3.2)

Since E(Ωt)|t=0 = Id

U|t=0 = u|t=0. (3.3)

Eqs. (1.26) written in u variables have the form ([3])

∂tu = B(Ωt,u,u),

B(Ωt,u,u) = E(Ωt)B(E(−Ωt)u,E(−Ωt)u) (3.4)

where B is given by Eqs. (1.27). We decompose

B(Ωt,u,u) = B̃(u,u) + Bosc(Ωt,u,u). (3.5)

Here Bosc(Ωt,u,u) contains all Ωt- dependent terms (that is non-resonant) and
B̃(u,u) contains all resonant (that is Ωt- independent) terms.

The fast singular oscillating limit equations ([3], [4]) are obtained from (3.4) for
‘slow’ Poincaré variables w by dropping Bosc(Ωt,u,u) in (3.5):

∂tw = B̃(w,w), (3.6)

w|t=0 = w(0) = U(0) = Ṽ0. (3.7)
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Here the operator B̃ is defined by (see Lemma 3.1 and section 4 for a rigorous state-
ment)

B̃(v(t),v(t)) = lim
Ω→+∞

1

T

∫ T

0

B(Ωs,v(t),v(t))ds = lim
T→+∞

1

T

∫ T

0

B(Ωs,v(t),v(t))ds

where arguments v are s-independent functions; limits are taken in the sense of almost
periodic functions in s with values in Banach spaces AP (R; C0([0, T ];Hs

ν)) [9], [16];
see Section 4 for a detailed review and discussion.

The limit resonant operator B̃ inherits properties of the operator B:

Lemma 3.1. ([4]): Let (u,v,w) ∈ H1 × H1 × H1. Then

(B̃(u,v),w) = lim
Ω→∞

1

T

∫ T

0

(B(Ωs,u,v),w)ds (3.8)

= lim
T→∞

1

T

∫ T

0

(B(Ωs,u,v),w)ds; (3.9)

in particular, for solenoidal fields u, v and w:

(B̃(u,v),w) = −(B̃(u,w),v). (3.10)

From now on we shall restrict the initial data (1.12), (1.21), (1.29), (3.3), (3.7)
to the closed (proper) subspace of J0 ∩ Hs

σ, s ≥ 3, s integer, defined by (with the
potential vector curl−1 as in Theorem 2.7):

Hs
ν(C) = J0 ∩ Hs

σ ∩ curl−s (J0). (3.11)

We will similarly restrict solutions of Eqs. (1.1)-(1.2) to the space Hs
ν(C) (see

Theorem 4.5).

Remark 3.1. v ∈ Hs
ν is equivalent to v ∈ J0 ∩ Hs

σ and curlj v ∈ J0, 0 ≤ j ≤ s.
The complement of Hs

ν in Hs
σ includes functions such as curl−j (∇πH), 1 ≤ j ≤ s and

is not dense even in H1
σ. The case of more general initial conditions and functional

spaces for Eqs. (1.1)-(1.2) will be treated in [6].
We can explicit the limit resonant operator B̃ with the help of the eigenfunctions

Φn = Φn1n2n3
of curl and PJP, which form a basis in the space Hs

ν ; expand

u =
∑

n

unΦn = u +
∑

n

u⊥
n Φn, (3.12)

and for every f in J0,

E(Ωt)f = f +
∑

n

exp(iΩσnt)f⊥
n Φn. (3.13)

From the diagonalization of E(−Ωt) and curl operator:

∂tu =
∑

k,m:k3,m3 6=0

B(u + u⊥
k exp(−iσkΩt)Φk,u + u⊥

m exp(−iσmΩt)Φm)+ (3.14)X
n:n3 6=0

X
k,m:k3,m3 6=0

(B(u + u
⊥
k exp(−iσkΩt)Φk,u + u

⊥
m exp(−iσmΩt)Φm), Φn) exp(iσnΩt)Φn,
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where k, m, n now index the eigenvalues and eigenfunctions of curl and PJP.
The resonant nonlinear interactions of Poincaré waves with B(U,U) are present

when the Poincaré frequencies satisfy the relation ±σk ± σm ± σn = 0, k3 + m3 = n3,
with the resonant set K now defined in terms of vertical wavenumbers k3, m3, n3 and
eigenvalues ±λk, ±λm, ±λn of curl:

K = {± k3

λk
± m3

λm
± n3

λn
= 0, n3 = k3 + m3, n2 = k2 + m2}. (3.15)

Since the eigenvalues of curl are countable, so are the Dl(k, m, n) = ±σk ± σm ± σn,
where k, m, n are now indexing the eigenfunctions and eigenvalues of PJP (and curl).
This fully justifies the existence of a mean in the sense of almost periodic functions
in the space AP (R; C0([0, T ];Hs

ν)) for:

B̃(v(t),v(t)) = lim
T→+∞

1

T

∫ T

0

E(Ωs)B(E(−Ωs)v(t),E(−Ωs)v(t))ds, (3.16)

since the frequency spectrum of E(Ωs) is countable, following the countability of
Dl(k, m, n).

Recall that w designates the projection of any w onto the nullspace of PJP,
cf. Proposition 2.9, and w⊥ its projection onto the orthogonal complement of that
nullspace (Eqs.(1.30)-(1.31)). We can further explicit the component B̃(w,w)⊥ of the
limit resonant operator B̃(w,w):

B̃(w,w)⊥ = BII(w,w⊥) + BIII(w
⊥,w⊥), (3.17)

where BII involves only strict two-wave resonances and BIII strict three-wave reso-
nances; let:

w⊥ =
∑

m1m2m3

w⊥
m1m2m3

Φm1m2m3
(r, φ, z); (3.18)

then

BII(w,w⊥)n =
∑

m,m3=n3,βm=βn

[(curlw× w⊥
mΦm, Φn) + (w⊥

mcurlΦm × w, Φn)], (3.19)

using the complex form of the curl eigenfunctions Φm1,m2,m3
≡ Φm in Eqs.(2.29)-

(2.31), with βm ≡ βm1m2m3
. Furthermore,

BIII(w
⊥,w⊥)n =

∑

k,m,n∈K∗

(curlΦk × Φm, Φn)w⊥
k w⊥

m; (3.20)

here K∗ ⊂ K designates the subset of strict 3-waves resonances, K∗ ⊂ {k, m, n ∈
K : k3m3n3 6= 0}. In these formulas, we have explicitly used that the curl operator
commutes with the projection operator onto the nullspace of PJP:

curlu = curlu, curlu⊥ = (curlu)⊥, curlu = curlu + curlu⊥. (3.21)

These properties are important in proving that the nonlinear operator B̃ commutes
with vertical averaging. We have

Theorem 3.2. The operator B̃ commutes with vertical averaging. More precisely,

B̃(w,w) = B̃(w,w) = B2D(w,w) = −P(w · ∇w). (3.22)
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Proof. Let w = w + w⊥ where the orthogonal field w⊥ verifies w⊥ = 0. Clearly,

B̃(w,w) = B̃(w,w) + B̃(w⊥,w⊥) (3.23)

since w⊥ = 0. Thus, the theorem will be proven if we show that

B̃(w⊥,w⊥) = 0. (3.24)

The proof actually uses skew-symmetry properties of the 2-waves resonant oper-

ator BII, a corollary from the general skew-symmetry of B̃ is Lemma 3.1. Let H
1

σ be
the restriction of the Hilbert space H1

σ to ker(PJP)

H1
σ = H

1

σ + (H1
σ)⊥. (3.25)

Let u be any element in H
1

σ, w⊥ any element in (H1
σ)⊥. To prove that B̃(w⊥,w⊥) =

0, it suffices to show that

(B̃(w⊥,w⊥),u) = 0, (3.26)

for any u, w⊥. Now with ( , ) denoting the complex inner product in L2, using
k3 = −m3, ±k3/λk ± m3/λm = 0, |λk| = |λm|, hence βk = βm, we obtain:

(B̃(w⊥,w⊥),u) =
∑

k,m,k3+m3=0,βk=βm

(wkcurlΦk × wmΦm,u) =

∑

k,n,k3=n3,βk=βn

(wkcurlΦk × w−nΦ−n,u) =

−
∑

k,m,k3=n3,βk=βn

(wkcurlΦk × u, wnΦn), (3.27)

where we set m = −n, note that β−n = βn, and use wn = (w−n)∗, Φn = (Φ−n)∗, ∗
denoting complex conjugate. Here the short hand notation −n has been introduced
at the end of Section 2. It then suffices to prove that the last term is identically
null for every u; this term actually involves a component of BII(w,w⊥). Apply the
skew-symmetry Lemma 3.1 to u ≡ u, u⊥ = 0, v ≡ v⊥, w ≡ w⊥, v = w = 0, to
obtain:

(BII(u,v⊥),w⊥) + (BIII(v
⊥,v⊥),w⊥) =

−(BII(u,w⊥),v⊥) − (BIII(v
⊥,w⊥),v⊥). (3.28)

Set v⊥ = w⊥ in the above. From the expression for BIII(w
⊥,w⊥) in (3.20)

and the skew-symmetry of the triple vector product, it can easily be proven that
BIII(w

⊥,w⊥),w⊥)) = 0 for every w⊥ in (H1
σ)⊥. Now, from the representation of BII

in (3.19):

(BII(u,w⊥),w⊥) =
∑

m,n,m3=n3,βm=βn

(curlu × wmΦm, wnΦn) +

∑

k,n,k3=n3,βk=βn

(wkcurlΦk × u, wnΦn). (3.29)
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We now show that the first term on the right hand side of the previous equation is
null:

∑

m,n,m3=n3,βm=βn

(curlu× wmΦm, wnΦn) =

−
∑

m,n,m3=n3,βm=βn

(curlu × w∗
nΦ∗

n, w∗
mΦ∗

m) =

−
∑

m,n,m3=n3,βm=βn

(curlu × w−nΦ−n, w−mΦ−m), (3.30)

and relabeling −n = m, −m = n (with the short hand notations introduced at the
end of Section 2), using β−m = βm, β−n = βn,

= −
∑

m,n,m3=n3,βm=βn

(curlu× wmΦm, wnΦn) = 0. (3.31)

Since BII(u,w⊥),w⊥) = 0, it now follows from (3.29)

∑

k,n,k3=n3,βk=βn

(wkcurlΦk × u, wnΦn) = 0, (3.32)

for every w⊥ in (H1
σ)⊥. From (3.27) we conclude that

(B̃(w⊥,w⊥),u) = 0, (3.33)

for every u and every w⊥, and B̃(w⊥,w⊥) = 0 for every w⊥.

The above proof only uses the intrinsic algebraic properties of the resonant
operators B̃(w,w), B̃(w,w)⊥ and avoids using the specific formulas for the complex
eigenfunctions Φn, including distinguishing between the eigenvalues ±λm1m2m3

.

3.2. Strict 3-wave resonances. In this section we show that for all values of
α, except a countable set, the resonant sets lie in {k3m3n3 = 0}. This is generic case
of no strict 3-wave resonances.

In the case of strict 3-wave resonances we have k3m3n3 6= 0 and the resonant
equations become

± 1
√

β2

k1
(k2,k3α)

k2
3
α2 + 1

± 1
√

β2
m1

(m2,m3α)

m2
3
α2 + 1

± 1
√

β2
n1

(n2,n3α)

n2
3
α2 + 1

= 0. (3.34)

We also have convolutions in the azimuthal φ and the axial z directions implying
n3 = k3 + m3, n2 = k2 + m2. We recall that for every pair of integers k2 and k3 the
quantities βk1

(k2, k3α) are found from the equation

βJk2

′(β) ± k2Jk2
(β)

√

β2
k1

(k2, k3α)

k2
3α

2
+ 1 = 0. (3.35)

For every pair of integers k2 and k3, Eqs. (3.35) have a countable number of solu-
tions denoted by β(k1, k2, k3α); k1 = 1, 2, 3.... Similarly, for β(m1, m2, m3α) and
β(n1, n2, n3α).
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Eqs. (3.34) can be written in the form

± 1√
X

± 1√
Y

± 1√
Z

= 0 (3.36)

where

β2(k1, k2, k3α)

k2
3α

2
+ 1 = X ↔

(

βJk2

′(β)

k2Jk2
(β)

)2

= X, (3.37)

with similar expressions for Y and Z.
Substituting Eqs. (3.35) in Eqs. (3.34) we obtain

± k2Jk2
(β(k1, k2, k3α))

β(k1, k2, k3α)Jk2

′(β(k1, k2, k3α))
± m2Jm2

(β(m1, m2, m3α))

β(m1, m2, m3α)Jm2

′(β(m1, m2, m3α))

± n2Jn2
(β(n1, n2, n3α))

β(n1, n2, n3α)Jn2

′(β(n1, n2, n3α))
= 0. (3.38)

In Eqs. (3.38) k2, m2, n2, k3, m3, n3 ∈ Z and k1, m1, n1 = 1, 2, 3, .... Also,
n2 = k2 +m2 and n3 = k3 +m3. In fact, we can think of Eqs. (3.38) as a countable set
of nonlinear equations for α. Clearly, for every fixed kj , mj, nj Eq. (3.38) has at most
a countable number of solutions α. Thus, we have a countable number of equations
and each equation has at most a countable number of solutions α. Therefore, the
set of parameters α’s for which strict 3-wave resonances can occur is countable and
discrete.

Proposition 3.3. The set K∗ of parameters α’s for which strict 3-wave reso-
nances can occur is countable and discrete.

3.3. Regularity of fast singular oscillating limit equations. In the generic
case of no strict 3-wave resonances BIII = 0 and the limit Euler equations (1.35)
become

∂tw
⊥ = BII(w(t),w⊥), w⊥|t=0 = w⊥(0) = U⊥(0) = U(0) − U(0). (3.39)

where w(t) satisfies 2D Euler equations with vertically averaged initial data w|t = 0

= w(0) = U(0). Eqs. (3.39) for w⊥(t) are solved with periodic boundary conditions
in the third coordinate and w⊥ ·N|Γ = 0. We also have curlw⊥ ·N|Γ = 0.

Eqs, (3.39) possess new 3D conservation laws:

Theorem 3.4. Let w(t) be a solution of 2D-3C Euler Eqs. (1.34). Then for
every w⊥(t) solution of Eqs. (3.39) with initial data w⊥(0) we have:

||∂3w
⊥(t)||2 = ||∂3w

⊥(0)||2, (3.40)

where ∂3 denotes the partial derivative with respect to x3.

Proof. Applying ∂3 to Eqs. (3.39) and using skew-symmetry property

(BII(w, ∂3w
⊥), ∂3w

⊥) = 0

we obtain

d

dt
||∂3w

⊥||2 = 0. (3.41)
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Moreover, for the initial data and solutions in the function space Hs
ν , we have further

conservation laws:

Theorem 3.5. Let w⊥(t) be solutions of the limit equations (3.39) in the space
Hs

ν defined in (3.11). We have, for 0 ≤ j ≤ s, j even:

||curlj w⊥(t)||2 = ||curlj w⊥(0)||2. (3.42)

Proof. Proceed as in the proof of Theorem 3.2, but with k3 = n3 (and m3 = 0) or
with m3 = n3 (and k3 = 0), together with λ2

k = λ2
n, β2

k = β2
n (resp. λ2

m = λ2
n, β2

m =
β2

n). We have

(curljBII(u,w⊥), curljw⊥) =
∑

m,n,m3=n3,βm=βn

(curlu× w⊥
mΦm, λ2j

n w⊥
n Φn) +

∑

k,n,k3=n3,βk=βn

(w⊥
k curlΦk × u, λ2j

n w⊥
n Φn). (3.43)

Consider the second term on the right hand side of (3.43):

∑

k,n,k3=n3,βk=βn

(w⊥
k curlΦk × u, λ2j

n w⊥
n Φn) =

−
∑

k,n,k3+n3=0,βk=βn

(w⊥
k curlΦk × λ2j

n w⊥
n Φn,u) =

−
∑

k,n,k3+n3=0,βk=βn

(w⊥
k curlcurljΦk × w⊥

n curljΦn,u) =

−(B̃(curljw⊥, curljw⊥),u) = 0; (3.44)

where we have relabeled n → −n, w⊥
−n → w⊥

n , Φ−n → Φn, and used in an essential

way λj
k = λj

n for j- even). From the operator splitting theorem 3.2 follows the nullity
of the last term above. The nullity of the first term on the right hand side of (3.43)
is proven in a similar manner.

Note that expansion along the eigenfunctions of curl and PJP requires their
completeness at least in H1

ν , cf. Remark 3.1.
Note that 2D-3C Euler equations only admit conservation of energy and enstro-

phy. The above conservation laws (3.40)-(3.42) ensure global regularity of the limit
Euler equations (3.39).

Theorem 3.6. Let h/R /∈ K∗. Let ||w(0)||Hs
ν
≤ Ms, s ≥ 1. Let T1 > 0 fixed,

arbitrary large. Then there exists a unique regular solution w(t) of the limit resonant
3D Euler equations (3.6)-(3.7), for 0 ≤ t ≤ T1:

||w(t)||Hs
ν
≤ M̃s(h/R, Ms, T1). (3.45)

4. Long time regularity for finite large Ω. Two major obstacles in extending
the fast singular oscillating limit methods developed in [3]-[5] from the periodic lattice
case to the cylinder (as well as other axisymmetric domains) are that: (i) PJP is
not skew-symmetric with respect to the inner product of classical Sobolev spaces
Hs

σ(C), s ≥ 1; (ii) E(Ωt) is not an isometry in these spaces (∇ does not commute
with PJP and E(Ωt)). Item (i) implies that a priori estimates of Eqs. (1.11)-(1.12) in
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Sobolev spaces are 1/ǫ = Ω dependent; and (ii) that estimates for u(t, x), the Poincaré
slow variable (van der Pol transformation of U(t, x), Eq.(3.1)) are not invariant for
the physical variable U(t, x). That invariance was used in an essential way in the
convergence proofs of [3]-[5] (periodic case). The resolution of the above requires the
introduction of Hilbert spaces with the metric based on the operator curl-norms, with
norms equivalent to that of Hs

σ(C), s integer, s ≥ 1.
As before (cf. Eq. 3.11), we restrict ourselves to initial data and solutions in the

spaces (s ≥ 3):

Hs
ν(C) = J0 ∩ Hs

σ ∩ curl−s(J0), (4.1)

such that v ∈ Hs
ν implies curlj v · N = 0 on Γ, 0 ≤ j ≤ s More general functional

spaces dense in H1
σ will be treated in [6].

Lemma 4.1. Let v ∈ Hs
ν , s ≥ 1. Then there exist constants C1, C2 > 0 such that:

C1||v||Hs
σ
≤ ||v||Hs

ν
≤ C2||v||Hs

σ
, (4.2)

where

||v||2
Hs

ν
= ||curlsv||2L2

. (4.3)

Proof. Iterated applications of Theorem 2.7 and 2.8, we have equivalence of the
“curl-norms” with the usual Sobolev space norms.
From now on, we designate by ||v||s the curl-norm of v defined in Eq. 4.3, and by
< u,v >s the corresponding inner product of u,v in Hs

ν . We have the:

Lemma 4.2. Let u,v ∈ Hs
ν , s ≥ 0; then we have skew-symmetry in the curl-

norms:

< PJPu,v >s= − < u,PJPv >s (4.4)

and

< PJPu,u >s= 0. (4.5)

Proof. Obvious for s = 0; we outline the case s = 1:

(curlPJPu, curlv)L2
=

(

−∂u

∂z
, curlv

)

L2

=

(

u, curl
∂v

∂z

)

L2

=

(

curlu,
∂v

∂z

)

L2

= −(curlu, curlPJPv)L2
,

since both u,v, ∂u

∂z , ∂v

∂z satisfies the conditions of Lemma 2.4. The cases s > 1 follows
a similar proof.

The all important Lemmas 4.1, 4.2 allow for local estimates of solutions to the
3D Euler equations (1.11)-(1.12) which are 1/ǫ = Ω independent.

Corollary 4.3. The Poincaré-Sobolev unitary operator E(Ωt) is an isometry
on the curl spaces Hs

ν , s ≥ 0; in particular,

||U||s = ||u||s, (4.6)



NON BLOW-UP OF 3D EULER EQUATIONS FOR A CLASS OF INITIAL DATA 625

where U(t) = E(−Ωt)u(t).

Corollary 4.4. For every U, every V in the curl spaces Hs
ν , we have

||B(U,V)||s ≤ ||U||s||V||s+1, s ≥ 2;

|(B(U,V),V)s| ≤ ||U||s||V||2s, s ≥ 3;

|(B(U,V),V)2 | ≤ ||U||3||V||22, (4.7)

and the same estimates hold for B(Ωt,u,v), B̃(u,v).

Proof. These are exactly Kato’s estimates in classical Sobolev spaces [19]. The
estimates in the curl spaces Hs

ν immediately follow from Lemma 4.1 and Corollary
4.3.

To establish long time regularity of the 3D Euler equations Eqs. (1.20)-(1.21)
on 0 ≤ t ≤ TM , TM fixed, arbitrary large, we first establish convergence in Hs

ν (as
Ω → ∞) of the solution to that of the limit resonant equations (1.34)-(3.39) on the
interval [0, Ts], where Ts is some local time of existence of (1.20)-(1.21). We only
consider the case of “catalytic resonances”, h/R /∈ K∗. With the help of the long time
existence of solutions to the limit resonant equations on [0, TM ], cf. Theorem 3.6,
we extend local regularity on [0, Ts] to long-time regularity on [0, TM ] by partitioning
[0, TM ] into subintervals of length Ts and bootstrapping estimates.

Theorem 4.5. Let U(0) ∈ Hβ
ν , β ≥ 3 and ||U(0)||β ≤ M0β, where the β-norm is

the curl-norm (4.3). Then:
(i) there exists Tβ > 0 such that there exists a unique regular solution of the 3D

Euler equations on 0 ≤ t ≤ Tβ which satisfies

||U(t)||2β ≤ M2
β , 0 ≤ t ≤ Tβ; (4.8)

moreover Mβ, Tβ do not depend on Ω, but only on M0β, h/R.
(ii) For every α such that β ≥ α ≥ 3, there exists a constant C(β) such that

||U(t)||2β ≤
(

||U(0)||2β
)

exp

((

C(β)

∫ Tβ

0

||V(τ)||α dτ

)

+ Tβ

)

, (4.9)

where α can be fixed independently of β.

Proof. (i) is proven by a straightforward adaptation of the proof of Kato [19] in
R3 to the cylinder C, replacing the usual Sobolev spaces by the spaces Hβ

ν . Kato’s
method is a vanishing viscosity limit via local existence for the Navier-Stokes equa-
tions (the latter via fixed-point construction, not a Galerkin approximation). That
estimates are uniform in Ω stems from Lemma 4.1 and 4.2. (ii) can then be derived ex-
actly as in Theorem 4.1 of [3], replacing Fourier methods by curl eigenvector function
expansions.

We now proceed to estimate the error between solutions u(t) of Eqs. (3.4)-(3.5)
with finite large Ω

∂tu = B(Ωt,u,u), (4.10)

B(Ωt,u,u) = E(Ωt)B(E(−Ωt)u,E(−Ωt)u) = B̃(u,u) + Bosc(Ωt,u,u) (4.11)

and solutions w(t) of the limit resonant 3D Navier-Stokes equations

∂tw = B̃(w,w), (4.12)

w|t=0 = w(0) = U(0) = u(0). (4.13)
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Let

r(t) = u(t) − w(t), r(0) = 0. (4.14)

Recall that E(Ωt) is an isometry on the curl spaces Hs
ν spaces. Therefore, estimates

for norms of r(t) yield estimates for the norms of the error

R(t) = E(−Ωt)(u(t) − w(t)) = U(t) − E(−Ωt)w(t). (4.15)

The equation for the error r(t) is

r(t) =

∫ t

0

(

B̃(u, r) + B̃(r,w) + Bosc(Ωs,u(s),u(s))
)

ds, (4.16)

where

Bosc(Ωt,u(t),u(t)) = E(Ωt)B(E(−Ωt)u(t),E(−Ωt)u(t)) − B2D(u,u) − B̃(u,u)⊥.

(4.17)

Note that the expansion of Bosc along eigenfunctions of curl is exactly the expansion
in the right hand side of (3.14), with (B2D(u,u) + B̃(u,u)⊥) removed. We have

Theorem 4.6. Assume that the regular solution U(t) of Eq. (1.11), (1.20) with
initial condition ||U(0)||s ≤ Ms0 exists on 0 ≤ t ≤ Ts, for some Ts (not necessary
small), with ||U(t)||s ≤ M̃s(Ms0, Ts, h/R). Then under conditions α ≥ 2, s − α ≥ 2
we have

||r(t)||α ≤ δ(Ω), ∀t ∈ [0, Ts], (4.18)

where δ(Ω) → 0 as Ω → +∞; Ts is independent from Ω; δ(Ω) depends on Ms0, Ts,
α, s, and h/R.

Recall that PJP is skew-symmetric under inner product in the curl-norm spaces,
therefore, local small time existence for (3.4)-(3.5) is independent of Ω.

To prove this convergence result we notice that the first two terms inside the
integral on the right hand side of (4.16) are linear in r and we only need to show that
the contribution of Bosc can be made arbitrary small as ǫ = 1/Ω → 0. From (4.17)
and (3.14) note that Bosc(τ/ǫ,u(t),u(t)) is an almost periodic function of τ with
values in C0([0, Ts];H

α
ν ) since the set Dl(k, m, n) = ±σk ± σm ± σn is countable.

To prove Theorem 4.6, we will need the nontrivial Theorem 4.12 for Banach space
valued almost periodic functions. We recall some basic facts for such functions [9],
[16]:

Definition 4.7. Let F ∈ C0(R; X) where X is a Banach space. F is said to
be almost periodic if and only if, given an ǫ > 0, there exists a length L(ǫ) such that
each interval of R of length L contains an almost-period p associated to ǫ:

supτ∈R||F (t + p) − F (t)||τ ≤ ǫ. (4.19)

We denote by AP (R, X) the set of all such functions. For R- valued almost
periodic functions the mean exists:

Proposition 4.8. For any almost periodic function F with values in the Banach
space X there exists the mean value

M{F} = limT→+∞
1

T

∫ T0+T

T0

F (τ)dτ ∈ X ; (4.20)
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this limit is independent of T0, and the convergence is uniform in T0.

To every F (τ) ∈ AP (R, X) is associated a unique formal Fourier series:

F (τ) ∼
+∞
∑

k=1

Ak exp(iωkτ), Ak ∈ X, (4.21)

where the set of frequencies {ωk} is a countable set Iω. This stems from

Proposition 4.9. Let F (τ) ∈ AP (X). Then the quantity A(ω) =
M{F (τ) exp(−iωτ)} is different from the null element of X only for a set at most
countable values of ω, ωk ∈ Iω.

In (4.21) we define Ak = A(ωk) for those values of ω for which A(ω) 6= 0. Every
F (τ) ∈ AP (X) can be uniformly approximated by trigonometric polynomials.

Proposition 4.10. Let F (τ) ∈ AP (X), with the formal Fourier series (4.21).
Then there exists a sequence of trigonometric polynomials,

Πm(τ) =

N(m)
∑

k=1

rk,mAk exp(iωkt), N = N(m), (4.22)

which converges uniformly to F on the whole real line in the strong topology of X.
The numbers rk,m are rational, depend on ωk and m, but not on Ak. Moreover,
0 ≤ rk,m ≤ 1 and:

limm→+∞rk,m = 1. (4.23)

The polynomials Πm(τ) are called the Bochner-Fejer polynomials of the function
F (τ). Vice-versa, the property of uniform approximation by a sequence of trigono-
metric polynomials with a countable set of frequencies ensures that the corresponding
F (τ) ∈ AP (X).

We specifically consider functions in AP (X) where X = C0([0, T ]; Hs
ν), for some

T > 0.

Theorem 4.11. Let α ≥ 2, β ≥ α + 1, U(t) is defined in Theo-
rem 4.4, 0 ≤ t ≤ Tβ. Let U(t) = E(−Ωt)u(t). Then B(Ωτ,u(t),u(t))=
E(Ωτ)B(E(−Ωτ)u(t),E(−Ωτ)u(t)) is an almost periodic function in τ , with values
in C0([0, Tβ];Hα

ν ).

Proof. From the isometry properties of E(Ωτ) on the spaces Hs
ν , and the estimate

for the bilinear term, we have

||B(Ωτ,u(t),u(t))||Hα
ν
≤ const||U||Hα

ν
||U||Hα

ν +1, (4.24)

for every τ ∈ R, 0 ≤ t ≤ Tβ. Almost periodicity follows from the countability
of the set of frequencies ± k3

λk
± m3

λm
± n3

λn
= ±σk ± σm ± σn, where exp(±iσkΩτ)

are eigenvalues of E(±Ωτ)k, and the countability of the eigenvalues ±λk of the curl
operator; the sufficient condition for a function to belong to AP (X) is that it is
uniformly approximated by a sequence of trigonometric polynomials with a countable
set of frequencies.

To prove the error estimate Theorem 4.6 we need in a crucial way the following
general result for almost periodic functions, for which we could not find a proof in the
literature.
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Theorem 4.12. Let F (t, τ) ∈ AP (R; C0([0, T0];E)) be almost periodic functions
of the variable τ , with values in C0([0, T0];E), t ∈ [0, T0], E is a Hilbert space. Let

F (t, τ) ∼
∑

j∈J

Fj(t) exp(iωjτ), (4.25)

in the sense of Banach space valued almost periodic functions in τ , Fj(t) ∈
C0([0, T0];E), over the (countable) set J of frequencies. If

supτ∈Rsup0≤t≤T0
||F (t, τ)||E ≤ Mf , and if |ωj| ≥ η > 0 on J (4.26)

and if F (t, τ) is uniformly Lipschitz in t

||F (t2, τ) − F (t1, τ)||E ≤ LF |t2 − t1|, (4.27)

the latter uniformly on [0, T0] and uniformly in τ ∈ R, then:

E − limǫ→0

∫ T

0

F (t, t/ǫ)dt = 0; (4.28)

and the limit also converges uniformly on 0 ≤ T ≤ T0.

Proof of Theorem 4.12. Let F (t, τ) ∼ ∑N(m)
k=1 Ak(t) exp(iωkτ/ǫ), where Ak(t) ∈

C0([0, T0]; E) and

Ak(t) = limT→+∞
1

T

∫ T

0

F (t, τ) exp(−iωkτ)dτ, (4.29)

in the topology of C0([0, T0]; E). From the above, and the hypothesis of the theorem,
we easily deduce

sup0≤t≤T0
||Ak(t)||E ≤ Mf ,

||Ak(t2) − Ak(t1)||E ≤ Lf |t2 − t1|, ∀t1, t2 ∈ [0, T0]. (4.30)

Given some η∗, consider the Bochner-Fejer polynomial Πm uniformly approximating
F (t, τ) with the error η∗ in the topology of C0([0, T0]; E):

Πm(t, τ) =

N(m)
∑

k=1

rkmAk(t) exp(iωkτ),

supτ∈Rsup0≤t≤T0
||F (t, τ) − Pm(t, τ)||E ≤ η∗, (4.31)

in the above, set:

ak(t) = rkmAk(t), (4.32)

and since 0 ≤ rkm ≤ 1, clearly

sup0≤t≤T0
||ak(t)||E ≤ Mf ,

||ak(t2) − ak(t1)||E ≤ Lf |t2 − t1|, ∀t1, t2 ∈ [0, T0]. (4.33)

We now proceed to estimate
∫ T

0 F (t, t/ǫ)dt; replacing τ by t/ǫ on Πm(t, τ), we have:

||
∫ T

0

F (t, t/ǫ)dt||E ≤ ||
∫ T

0

Πm(t, t/ǫ)dt||E + η∗T. (4.34)
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We proceed to estimate the integral of Πm(t, t/ǫ):

∫ T

0

Πm(t, t/ǫ)dt =

N(m)
∑

k=1

∫ T

0

ak(t) exp(iωkt/ǫ)dt =

−
N
∑

k=1

∫ T

0

ak(t) exp(iωk(t +
ǫπ

ωk
)/ǫ)dt =

1

2

N
∑

k=1

(

∫ T

0

ak(t) exp(iωkt/ǫ)dt −
∫ T+ ǫπ

ωk

ǫπ
ωk

ak(t − ǫπ

ωk
) exp(iωkt/ǫ)dt) =

1

2

N
∑

k=1

(

∫ T

ǫπ
ωk

(ak(t) − ak(t − ǫπ

ωk
)) exp(iωkt/ǫ)dt +

∫ ǫπ
ωk

0

ak(t) exp(iωkt/ǫ)dt +

∫ T+ ǫπ
ωk

T

ak(t − ǫπ

ωk
) exp(iωkt)dt, (4.35)

where in the last equation, we use the hypothesis 1
|ωk|

≤ 1
η on the set J of frequencies,

to choose ǫ small enough to ensure ǫπ
|ωk|

<< 1. Using uniform bounds and uniform

Lipschitzianity of the ak(t), we obtain:

||
∫ T

0

Πm(t, t/ǫ)dt||E ≤ N(m)

2
(

ǫπ

|ωk|
LfT + 2

ǫπ

|ωk|
Mf ) ≤ N(m)

2

ǫπ

η
T (Lf + 2Mf/T ),

(4.36)

and

||
∫ T

0

F (t, t/ǫ)dt||E ≤ N(m)

2

ǫπ

η
T (Lf + 2Mf/T ) + η∗T. (4.37)

Given any δ, we first choose η∗ such that η∗T0 < δ/3, which fixes m and N(m). Then

given T0, η, N(m), choose ǫ such that ǫπ
η

N(m)
2 T0Lf ≤ δ

3 , and ǫπ
η N(m)Mf ≤ δ

3 .

Proof of Theorem 4.6. The Hα
ν -norm of r(t) satisfies:

1

2
||r(T )||2α =

∫ t

0

(

(B̃(u, r), r)α + (B̃(r,w), r)α + (Bosc(t/ǫ,u(t),u(t)), r(t))α

)

dt.

(4.38)

From Corollary 4.4., with α ≥ 2:

|(B̃(u, r), r)α| ≤ ||u||α||r||2α for α ≥ 3,

≤ ||u||3||r||22 for α = 2;

|(B̃(r,w), r)α| ≤ ||w||α+1||r||2α for α ≥ 2, (4.39)

and since s is chosen s ≥ α + 2, ||u||α ≤ M̃s, ||w||α+1 ≤ M̃s, 0 ≤ t ≤ Ts.
To apply Theorem 4.12 to Bosc(Ωt,u(t),u(t)) one needs |ωj | = |σk±σm±σn| > η

uniformly in k, m, n, For this, define πRu (similarly πRw) the projection of u onto
the curl eigenvector functions with |λk|, |λm|, |λn| ≤ R, with:

||u− πRu||Hα
ν
≤ M̃sR

α−s, s > α. (4.40)
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Then |±σk ±σm ±σn| > η(R) for πRu in Eq. (4.17), which controls the small divisor
estimate ([1]). Precisely, 1/|Dl(k, m, n)| ≤ 1/η(R), for k, m, n not in the set K, where
K is the resonance set defined in (3.15), whenever |λk|, |λm|, |λn| ≤ R.

Bosc(Ωt,u(t),u(t)) is decomposed as

Bosc(Ωt,u,u) = πRBosc(Ωt, πRu, πRu) + πRBosc(Ωt,u, (I − πR)u) +(4.41)

πRBosc(Ωt, (I − πR)u,u) + (I − πR)Bosc(Ωt,u,u).

The contributions of the last three terms on the right hand side of (4.41) to the time
integral of Bosc in (4.38) are estimated with the help of (4.40) and Corollary 4.4:

|(πRBosc(Ωt,u, (I − πR)u), r)α| ≤ ||u||αM̃sR
α+1−s||r||α ≤ 2M̃3

sR
α+1−s, (4.42)

|(πRBosc(Ωt, (I − πR)u,u), r)α| ≤ ||u||α+1M̃sR
α−s||r||α ≤ 2M̃3

sR
α−s, (4.43)

|((I − πR)Bosc(Ωt,u,u), r)α)| ≤ ||u||α||u||α+1||r||sRα−s ≤ 2M̃3
sR

α−s, (4.44)

where we estimate ||r||α ≤ ||u||α + ||w||α ≤ 2M̃s.
Finally apply Theorem 4.12 to the integral

∫ T

0

(πRBosc(t/ǫ, πRu(t), πRu(t)), r)αdt, with E = C0([0, T ];R), and ǫ = 1/Ω. (4.45)

Let F (t, t/ǫ) defined as the α-inner product within (4.45). The only technical
point left to verify is the uniform Lipschitzianity of F (t, t/ǫ). This is easily established
via the Lipschitz properties of u(t), r(t) = u(t) − w(t) on 0 ≤ t ≤ Ts:

||u(t2) − u(t1)||α ≤ M̃2
s|t2 − t1|, for s ≥ α + 1,

||r(t2) − r(t1)||α ≤ 2M̃2
s|t2 − t1|, for s ≥ α + 1,

||u(t2) − u(t1)||α+1 ≤ M̃2
s|t2 − t1|, provided s ≥ α + 2, (4.46)

and

|F (t2, τ/ǫ) − F (t1, τ/ǫ)| ≤ LF |t2 − t1|, (4.47)

where LF ≤ 5M̃4
s|t2 − t1|, uniformly in τ . To complete the proof, we first choose R

large enough so that 2M̃3
s(R

α+1−s +2Rα−s) is small enough. Once R fixed, we choose

Ω = 1/ǫ large enough so that the integral |
∫ T

0 F (t, t/ǫ)dt| is small enough. Conclusion
follows from a straightforward Gronwall’s lemma applied to

||r||2α ≤
∫ T

0

4M̃s||r(t)||2αdt + γ(M̃s, Ω), (4.48)

where γ(M̃s, Ω) → 0 as Ω → +∞.
In Theorem 4.6 u(t) converges strongly to w(t). The original U(t) also converges

strongly to E(−Ωt)w(t). But U(t) has no strong limit in Hs
ν as Ω → ∞, hence the

singular nature of the fast oscillating limit.
From the global regularity Theorem 3.6 for the 3D resonant Euler equations and

Theorems 4.5-4.6 we bootstrap long-time regularity for Eqs.(1.11)-(1.12) for Ω large
but finite.
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Proof of Theorem 1.2. We complete in some detail the proof of Theorem 1.2, as
the bootstrapping arguments are rather different from the usual classical procedure
for Navier-Stokes equations [23]. Let Tm fixed, arbitrary large. Let ||Ṽ0(y)||s =
||U0(x)||s ≤ Ms0, s ≥ 4. From Theorem 3.6, with ||w(0)||α = ||U0||α ≤ Mα0 ≤ Ms0,
for some fixed α ≥ 3, s − α ≥ 1, there exists M̃α such that:

||w(t)||α ≤ M̃α(Ms0, TM , h/R) on 0 ≤ t ≤ Tm, (4.49)

for the solution of the resonant 3D Euler equations. We need the:

Corollary 4.13. Let ||U(t1)||α ≤ Rα at some t1 ≥ 0, α ≥ 3, Rα > 0 given.
Then there exists Tα(Rα, h/R) such that

||U(t)||α ≤ 4Rα on [t1, t1 + Tα]; (4.50)

moreover if U(t1) ∈ Hs
ν for some s > α:

||U(t)||2s ≤ ||U(t1)||2s exp

{(

C(s)

(

sup
t1≤t≤t1+Tα

||U||α
)

+ 1

)

(t − t1)

}

≤ ||U(t1)||2s exp{(4C(s)Rα + 1)(t − t1)} on [t1, t1 + Tα]. (4.51)

Proof. First, apply Theorem 4.5 with α = β to derive Eqs. (4.50). Then apply
(ii) in Theorem 4.5 with β = s.

We now choose, with M̃α given by Eqs. (4.49):

Rα = 3M̃α, (4.52)

hence Tα = Tα(Ms0, Tm, α, h/R). Let Qα = 4C(s)Rα + 1. We define:

M̃2
s = M2

s0 expQα(Tm + Tα), (4.53)

and we shall demonstrate that:

||U(t)||2s ≤ M̃2
s on 0 ≤ t ≤ Tm, (4.54)

by choosing Ω large enough to make the error δ(Ω) (in Theorem 4.6) uniformly small
on the sequence of intervals [0, Tα], [Tα, 2Tα], ..., [nTα, (n + 1)Tα], where nTα ≤ Tm <
(n + 1)Tα. We apply Theorem 4.6 on the global interval [0, Tm], assuming a priori
the estimate (4.54) (which will be shown self-consistent under bootstrapping); we
choose such large Ω that δ(Ω) is so small and the assertion of Theorem 4.6 holds with
Ts ≡ Tm, and for Ω ≥ Ω1, the constant δ(Ω) satisfies:

δ(Ω) ≤ Rα/2 for Ω ≥ Ω1(M̃s, Tm, α, s, h/R); (4.55)

equivalently, Ω1 depends only on Ms0, Tm, α, s, h/R. Hence, for 0 ≤ t ≤ Tm:

||U(t)||α ≤ ||U(t) − E(−Ωt)w(t)||α + ||w(t)||α ≤ Rα/2 + Rα/3 ≤ Rα. (4.56)

We now apply Corollary 4.13 on [0, Tα], with the choice of Rα in Eqs. (4.52):

||U(Tα)||2s ≤ M2
s0 exp(QαTα). (4.57)

From the uniform estimate (4.56) for ||U(t)||α, valid at t = Tα, we apply again
Corollary 4.13 on [Tα, 2Tα]:

||U(t)||2s ≤ M2
s0 exp(QαTα) exp(QαTα); (4.58)
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and repeating the argument on the interval [kTα, (k + 1)Tα], k ≤ n:

||U(t)||2s ≤ M2
s0 exp(kQαTα) exp(QαTα), (4.59)

since ||U(kTα)||α ≤ Rα. Completing the bootstrapping, the maximal estimate for
||U(t)||2s occurs on [nTα, Tm]:

||U(t)||2s ≤ M2
s0 exp(nQαTα) exp(Qα(Tm − nTα))

≤ M̃2
s ,

which corroborates the self-consistency of the choice ||U(t)||s ≤ M̃s in the application
of Theorem 4.6 for a uniform δ(Ω). The proof of Theorem 1.2 is then completed
with the canonical transformation (1.17)-(1.18) between V(t, y) and U(t, x) and its
isometry properties.

The case h/R ∈ K∗ includes the quadratic resonant operator BIII(w
⊥,w⊥) in

Eqs. (1.35). We have not found new conservation laws for the latter besides energy and
helicity. A most interesting issue is the possibility of singularity and blow-up for the
full resonant Euler equations (1.35). Partial results in the periodic lattice geometry are
derived in [5], where (1.35) is demonstrated to be equivalent to a countable sequence
of uncoupled finite dimension dynamical systems, in the generic case.
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