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ON SOME SPECTRAL PROPERTIES OF OPERATORS GENERATED
BY QUASI-DIFFERENTIAL MULTI-INTERVAL SYSTEMS ∗

MAKSIM SOKOLOV†

Abstract. We construct the common and the ordered spectral representation for operators,
generated as direct sums of self-adjoint extensions of quasi-differential minimal operators on a multi-
interval set (self-adjoint vector-operators), acting in a Hilbert space. The structure of the ordered
representation is investigated for the case of differential coordinate operators. Results, connected
with other spectral properties of such vector-operators, such as the introduction of the identity
resolution and the spectral multiplicity have also been obtained.

Vector-operators have been mainly studied by W.N. Everitt, L. Markus and A. Zettl. Being a
natural continuation of Everitt-Markus-Zettl theory, the presented results reveal the internal struc-
ture of self-adjoint differential vector-operators and are essential for the further study of their spectral
properties.

1. Preliminaries.

1.1. Problem overview. In 1985, F. Gesztesy and W. Kirsch published their
work [1], where they considered an example of a Schrödinger operator generated by
the Hamiltonian

(1) H = − d2

dx2
+
(
s2 − 1

4

)
1

cos2 x
, s > 0.

Since the potential of (1) has a countable number of singularities on R which spoil
the local integrability, they constructed operators Ti, generated by (1) in the spaces

L2
(
−π

2
+ iπ,

π

2
+ iπ

)
, i ∈ Z,

and then considered the direct sum operator ⊕i∈ZTi in the space

⊕i∈ZL
2
(
−π

2
+ iπ,

π

2
+ iπ

)
.

The work [1] stimulated other researchers to generalize the problem. In [2],
W.N. Everitt and the coauthors considered quasi-differential direct sum operators,
generated by a countable multi-interval system, with intervals being subsets of one
copy of the real line. In 1992, W.N. Everitt and A. Zettl [3] studied direct sums
of minimal and maximal operators generated by arbitrary formally self-adjoint ex-
pressions in Hilbert spaces considered on arbitrary intervals (maximal and minimal
vector-operators). Later in 2000, vector-operators were also considered in complete
locally convex spaces by R.R. Ashurov and W.N. Everitt [4], which was a natural
generalization of their work [5]. Since 1992, quasi-differential vector-operators have
mostly been investigated in connection with their non-spectral theory, such as the
introduction of minimal and maximal vector-operators and their relationship (it was
shown that the adjoint of a minimal vector-operator is maximal in a Hilbert space
[3], and the analogous result with the modification for Frechet spaces was obtained in
[4]). A lot of work has been carried out by W.N. Everitt and L. Markus in order to
develop the theory of self-adjoint extensions for vector-operators with the employment
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of symplectic geometry. In connection with this, see their recent memoirs [6] and [7].
Another group of scientists studied differential operators on graphs. In some cases,
such theory has a close connection with that developed by W.N. Everitt, L. Markus
and A. Zettl since certain boundary conditions may lead to the consideration of a
differential operator on a graph as a direct sum operator. Some most modern results
in connection with the spectral theory of differential operators on graphs belong to
R. Carlson [8, 9] and P. Kurasov, F. Stenberg [10].

The theory of operators generated by multi-interval systems finds its applications
in many problems of quantum mechanics, theory of semiconductors and theoretical
computer science; good bibliographical references for these subjects may be found in
[7].

Since the theory of quasi-differential vector-operators in a Hilbert space is quite
young and the most recent studies have concerned mostly problems connected with
their common theory, small attention was given to its spectral aspects. Some results,
describing the position of spectra of vector-operators were presented in 1985 in [1]
and the most recent results belong to Sobhy El-Sayed Ibrahim [11, 12]. Some spectral
properties of self-adjoint vector-operators were presented by M.S. Sokolov in [13] and
R.R. Ashurov, M.S. Sokolov in [14, 15]. Nevertheless, a rigorous structural spectral
theory for such operators has not been developed yet. The present work is designed to
make essential steps in this direction. It completely covers abstract results, briefly de-
scribed in [13, 14] with some modifications. It also presents the new results, describing
the structure of the ordered spectral representation and eigenfunction expansions.

1.2. Quasi-differential operators and vector-operators. Basic concepts of
quasi-differential operators are described in [3, 6]. A good reference for operators with
real coefficients is the book of M.A. Naimark [16].

Let us have a number n ∈ N, n � 2, and an arbitrary interval I ⊆ R. Let Zn(I)
be a set of Shin-Zettl matrices. These are matrices A = {ars}, ars : I → C of the
order n× n, such that for almost all x ∈ I:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i) ars ∈ Lloc(I), r, s = 1, n;

(ii) ar,r+1(x) �= 0, r = 1, n− 1;

(iii) ars = 0, s = r + 2, n; r = 1, n− 2.

Consider a function f : I → C; its quasi-derivatives relatively to a Shin-Zettl
matrix A are defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(i) f
[0]
A := f ;

(ii) f
[r]
A := 1

ar,r+1

[
d
dxf

[r−1]
A −∑r

s=1 arsf
[s−1]
A

]
, r = 1, n− 1;

(iii) f
[n]
A := d

dxf
[n−1]
A −∑n

s=1 ansf
[s−1]
A .

Let us introduce a linear manifold D(A) ⊂ ACloc(I):

DA(I) := {f : I → C| f [r−1]
A ∈ ACloc(I) (r = 1, n)}.

It is possible to see, that f ∈ DA(I) implies f [n]
A ∈ Lloc(I), and it is possible to prove

that DA(I) is dense in Lloc(I).
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Relative to a matrix A ∈ Zn(I), we have the quasi-differential expression MA[f ] =
inf

[n]
A , f ∈ DA(I).
The matrix A+ ∈ Zn(I) designates the Lagrange adjoint matrix to A if A+ :=

−L−1
n A∗Ln, where A∗ is the adjoint matrix, and Ln = {lrs} is the (n × n)-matrix,

defined as:

lr,n+1−r =
{

(−1)r−1, r = 1, n;
0, for other r, s.

Using this notation we suppose that in this work we deal only with Lagrange
symmetric (formally self-adjoint) expressions, that is MA+ [f ] = MA[f ] = τ(f), where
τ is an alternative denotation for a Lagrange symmetric expression.

For a quasi-differential expression MA[f ], the Lagrange formula is known ([α, β] ⊆
I - an arbitrary compact subinterval of I):

(2)
∫ β

α

{g(x)MA[f ](x) − f(x)MA+ [g(x)]} dx = [f, g]A(β) − [f, g]A(α),

where f ∈ DA, g ∈ DA+ , [f, g]A(β) and [f, g]A(α) may be derived from:

[f, g]A(x) = in
n∑

i=1

(−1)i−1f
[i−1]
A (x)g[n−i]

A+ (x), x ∈ I.

Let ω > 0 be a weight function from Lloc(I), ω : I → R; the Hilbert space
L2(I : ω) is formed as usual.

We define maximal and minimal operators as follows:

Definition 1.1. Operators Tmax and Tmin are called respectively maximal
and minimal operators if they are generated by τ(f) on the domains D(Tmax) and
D(Tmin):

D(Tmax) = {f : I → C| f ∈ DA(I); ω−1τ(f) ∈ L2(I : ω)},

Tmaxf = ω−1τ(f), (f ∈ D(Tmax));

D(Tmin) = {f | f ∈ D(Tmax); [f, g]A(b) − [f, g]A(a) = 0 (g ∈ D(Tmax))},

Tminf = ω−1τ(f), (f ∈ D(Tmin)),

where [f, g]A(b) and [f, g]A(a) are the limits (which necessarily exist) of the bilin-
ear forms from (2), that is limβ→b[f, g]A(β) = [f, g]A(b) and limα→a[f, g]A(α) =
[f, g]A(a).

The following general theorem is known for the operators Tmax and Tmin :

Theorem 1.2. For the operators Tmax and Tmin and their domains the following
facts are valid :
(a) D(Tmin) ⊆ D(Tmax). Domains D(Tmin) and D(Tmax) are dense in L2(I : ω);
(b) The operator Tmin is closed and symmetric, the operator Tmax is closed in
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L2(I : ω);
(c) T ∗

min = Tmax and T ∗
max = Tmin.

All self-adjoint extensions of Tmin appear to be the contractions of Tmax.
Let Ω be a finite or a countable set of indices. On Ω, we have an Everitt-Markus-

Zettl multi-interval quasi-differential system {Ii, τi;ωi}i∈Ω. This EMZ system gen-
erates a family of the weighted Hilbert spaces {L2(Ii : ωi) = L2

i }i∈Ω and families
of minimal {Tmin,i}i∈Ω and maximal {Tmax,i}i∈Ω operators. Consider a respective
family {Ti}i∈Ω of self-adjoint extensions.

We introduce the system Hilbert space L2 = ⊕i∈ΩL
2
i consisting of vectors f =

⊕i∈Ωfi, such that fi ∈ L2
i and

‖f‖2 =
∑
i∈Ω

‖fi‖2
i =

∑
i∈Ω

∫
Ii

|fi|2ωi dx <∞,

where ‖ · ‖2
i are the norms in L2

i . In the space L2 consider the operator T : D(T ) ⊆
L2 → L2, defined on the domain

D(T ) =

{
f ∈ ⊕i∈ΩD(Ti) ⊆ L2 :

∑
i∈Ω

‖Tifi‖2
i <∞

}

by T f = ⊕i∈ΩTifi.

Definition 1.3. The operator T = ⊕i∈ΩTi is called a differential vector-operator
generated by the self-adjoint extensions Ti on an EMZ system, or simply a vector-
operator. If Ω is infinite, the vector-operator T is called infinite. The operators
Ti are called coordinate operators. For Ω′ ⊂ Ω, the operator ⊕k∈Ω′Tk is called a
sub-vector-operator of the vector-operator ⊕i∈ΩTi.

The following abstract preliminaries may be found, for instance, in books [17, 18].
Fix i ∈ Ω. For each Ti there exists a unique resolution of the identity Ei

λ and a
unitary operator Ui, making the isometrically isomorphic mapping of the Hilbert space
L2

i onto the space L2(Mi, µi), where the operator Ti is represented as a multiplication
operator. Below, we remind the structure of the mapping Ui.

We call φ ∈ L2
i a cyclic vector if for each z ∈ L2

i there exists a Borel function
f , such that z = f(Ti)φ. Generally, there is no a cyclic vector in L2

i but there is a
collection {φk} of them in L2

i , such that L2
i = ⊕kL2

i (φ
k), where L2

i (φ
k) are Ti-invariant

subspaces in L2
i generated by the cyclic vectors φk. That is

L2
i (φ

k) = {f(Ti)φk},
for a varying Borel function f , such that φk ∈ D(f(Ti)). There exist unitary operators

Uk : L2
i (φ

k) → L2(R, µk),

where µk(∆) = ‖Ei(∆)φk‖2
i for any Borel set ∆. In L2(R, µk), the operator Ti has

the form of multiplication by λ, i.e.(
UkTi|L2

i (φk)U
k−1

z
)

(λ) = λz(λ).

Then the operator

Ui = ⊕kUk : ⊕kL2
i (φ

k) → ⊕kL2(R, µk)
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makes the spectral representation of the space L2
i onto the space L2(Mi, µi), where Mi

is a union of nonintersecting copies of the real line (a sliced union) and µi =
∑

k µ
k.

That is (UiTiU
−1
i z)(λ) = f(λ)z(λ), where z ∈ U [D(Ti)] and f is a Borel function

defined almost everywhere according to the measure µi.
A vector φ ∈ L2

i is called maximal relative to the operator Ti, if each measure
(Ei(·)x, x)i, x ∈ L2

i , is absolutely continuous relative to the measure (Ei(·)φ, φ)i.
For each Hilbert space L2

i , there exist a unique (up to unitary equivalence) decom-
position L2

i = ⊕kL
2
i (ϕ

k
i ), where ϕ1

i is maximal in L2
i relative to Ti, and a decreasing

set of multiplicity sets ei
k, where ei

1 is the whole line, such that ⊕kL
2
i (ϕ

k
i ) is equiv-

alent with ⊕kL
2(ei

k, µi), where the measure of the ordered representation is defined
as µi(·) = (Ei(·)ϕ1

i , ϕ
1
i )i. A spectral representation of Ti in ⊕kL

2(ei
k, µi) is called the

ordered representation and it is unique, up to a unitary equivalence. Two operators
are called equivalent, if they create the same ordered representation of their spaces.

2. The spectral representation for the vector-operator T . In this section
we show, how the common spectral representation of the vector-operator T depends
on the common spectral representations of the given operators Ti. For this purpose,
we first prove some auxiliary results.

Definition 2.1. For i ∈ Ω, we introduce a sliced union of sets Mi (see also
preliminaries) as a set M , containing all Mi on different copies of ∪i∈ΩMi. The sets
Mi do not intersect in M , but they can superpose, i.e. two sets Mi and Mj superpose,
if their projections in the set ∪i∈ΩMi intersect.

Separate arguments show, that the following auxiliary proposition is true.

Proposition 2.2. Let us have a set of measures µi, i ∈ Ω, defined on noninter-
secting supports. If ∑

i∈Ω

∫ ∞

−∞
f(λ) dµi(λ) <∞,

for any Borel function f(λ), then the following equality is true:∑
i∈Ω

∫ ∞

−∞
f(λ) dµi(λ) =

∫ ∞

−∞
f(λ) d

∑
i∈Ω

µi(λ).

Lemma 2.3. The identity resolution {Eλ} of the vector-operator T equals to the
direct sum of the coordinate identity resolutions {Ei

λ}, that is:

{Eλ} = ⊕i∈Ω{Ei
λ}

Proof. A vector x belongs to D(T ) if and only if

‖Tx‖2 =
∑
i∈Ω

‖Tixi‖2
i =

∑
i∈Ω

∫ ∞

−∞
λ2 d‖Ei

λxi‖2
i <∞.

Then, using Proposition 2.2 we find out that:∑
i∈Ω

∫ ∞

−∞
λ2 d‖Ei

λxi‖2
i =

∫ ∞

−∞
λ2 d

∑
i∈Ω

‖Ei
λxi‖2

i .
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This means, that x ∈ D(T ), if and only if∫ ∞

−∞
λ2 d

∑
i∈Ω

‖Ei
λxi‖2

i <∞

and

‖Tx‖2 =
∫ ∞

−∞
λ2 d

∑
i∈Ω

‖Ei
λxi‖2

i .

Using the uniqueness property of an identity resolution, the last two equations show
that ⊕i∈Ω{Ei

λ} is the identity resolution of the vector-operator T . That is, according
to our notations {Eλ} = ⊕i∈Ω{Ei

λ}. The lemma is proved.

Lemma 2.4. For any Borel function f and any vector x ∈ D(f(T )), the following
equality holds: f(T )x = [⊕i∈Ωf(Ti)]x.

Proof. Let x ∈ D(f(T )). Then, paying attention to Proposition 2.2 and Lemma
2.3, for any y ∈ L2, we obtain:

(f(T )x,y) =
∫ ∞

−∞
f(λ) d(Eλx,y) =

∫ ∞

−∞
f(λ) d

∑
i∈Ω

(Ei
λxi, yi)i =

=
∑
i∈Ω

∫ ∞

−∞
f(λ) d(Ei

λxi, yi)i =
∑
i∈Ω

(f(Ti)xi, yi)i = ([⊕i∈Ωf(T )]x,y).

Since y is arbitrary, we have f(T )x = [⊕i∈Ωf(Ti)]x. This completes the proof of the
lemma.

For zi ∈ L2
i , i ∈ Ω, define zi = {0, ..., 0, zi, 0, ..., 0} ∈ L2, where zi is on the i-th

place.
For each i ∈ Ω, let ε(Ti) denote the subspectrum of the operator Ti, i.e. the set

where the spectral measures of Ti are concentrated. Note, that ε(Ti) = σ(Ti). For
instance, the subspectrum of an operator having the complete system of eigenfunc-
tions with eigenvalues being the rational numbers of [0, 1] equals to Q ∩ [0, 1]; the
subspectrum of an operator having the continuous spectrum [0,1] is assumed to equal
to (0,1) without loss of generality.

Consider a projecting mapping P : M → ∪i∈ΩMi (see Definition 2.1), such that
P (ε(Ti)) = ε(Ti).

Definition 2.5. Let Ω = ∪K
k=1Ak, Ak ∩As = ∅ for k �= s and

Ak = {s ∈ Ω : ∀s, l ∈ Ak, s �= l, P (ε(Ts)) ∩ P (ε(Tl)) = Bsl,

where ‖Et(Bsl)ϕt‖2
t = 0 for any cyclic ϕt ∈ L2

t , t = s, l}.

From all such divisions of Ω we choose and fix the one, which contains the minimal
number of Ak. In case all the coordinate spectra σ(Ti) are simple, we define the
number Λ = min{K} as the spectral index of the vector-operator T .

Theorem 2.6. Let each Ti have a cyclic vector ai in L2
i . Then the vector-operator

T has Λ cyclic vectors {ak}Λ
k=1, having the form ak =

∑
i∈Ak

ai.
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Proof. First we consider the case of two coordinate operators. Let s, l ∈ Ω.
Then, in order to obtain one cyclic vector in L2

s ⊕L2
l having the form as ⊕ al, for any

x = xs ⊕ xl ∈ L2
s ⊕ L2

l we have to find a Borel function f , such that

x = f(Ts ⊕ Tl)[as ⊕ al].

From Lemma 2.4 it follows that

x = [f(Ts) ⊕ f(Tl)][as ⊕ al].

On the other hand we must obtain each space L2
p (p = s, l) by closing the set

{fp(Tp)ap}, letting fp vary over all the Borel functions such that ap ∈ D(fp(Tp)).
If s, l ∈ Ak, then supposing that f = fp on P (ε(Tp)), we obtain the required function
f , since any functions in the isomorphic space L2 are considered equal on the set of
measure zero. Hence, it is clear that for all i ∈ Ak, we may build a single cyclic vector
of the form

ak = ⊕i∈Ak
ai =

∑
i∈Ak

ai,

using the process described above, each time operating with a pair of operators.
We recall, that we have the minimal number of Ak. Consider the Hilbert space

(3) [⊕i∈Ak
L2

i ] ⊕ [⊕j∈Aq
L2

j ], k �= q.

We know, that then

[∪i∈Ak
P (ε(Ti))] ∩ [∪j∈Aq

P (ε(Tj))] = Bkq

has a non-zero spectral measure. From the reasonings described in the beginning of
this proof we see, that for joining the cyclic vectors ak = ⊕i∈Ak

ai and aq = ⊕j∈Aq
aj

into the one

ak + aq =
∑
i∈Ak

ai +
∑
j∈Aq

aj,

we would have to derive the Hilbert space (3) by closing the set

{fk(⊕i∈Ak
Ti)ak} ⊕ {fq(⊕j∈Aq

Tj)aq},
with varying the Borel functions fk and fq, which coincide on Bkq. This is not
possible, since the set of such functions is not dense in the isomorphic space L2 (the
isomorphism is understood as in the spectral representation of the space (3)). Hence,
we have obtained Λ cyclic vectors

ak =
∑
i∈Ak

ai ∈ L2, k = 1,Λ

and have proved the theorem.

Corollary 2.7. Let each Ti have a single cyclic vector. Then
1. Λ = 1 if and only if the coordinate operators Ti, i ∈ Ω, have almost everywhere
(relatively to the spectral measure) pairwise non-superposing subspectra.
2. a) card(Ω) < ℵ0. Λ = card(Ω), if and only if all the coordinate operators Ti
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have pairwise superposing subspectra; b) card(Ω) = ℵ0. Λ = ∞, if and only if T
has an infinite sub-vector-operator, the coordinate operators of which have pairwise
superposing subspectra.

Proof. The proof directly follows from the reasonings of the proof of Theorem
2.6.

In the next section we will rigorously show what the spectral multiplicity of a
vector-operator is. Nevertheless, this notation is intuitively clear. Running ahead, let
us present here an example, which will show the difference between the spectral index
and the spectral multiplicity of the vector-operator T .

Example 1. We have a three-interval EMZ system {Ii, τi}3
i=1 (a kinetic energy,

a mirror kinetic energy, an impulse):

I1 = [0,+∞), τ1 = −
(
d

dt

)2

,

D(T1) = {f ∈ D(Tmax,1) : f(0) + kf ′(0) = 0,−∞ < k � ∞};

I2 = [0,+∞), τ2 =
(
d

dt

)2

,

D(T2) = {f ∈ D(Tmax,2) : f(0) + sf ′(0) = 0,−∞ < s � ∞};

I3 = [0, 1], τ3 =
1
i

d

dt
, D(T3) = {f ∈ D(Tmax,3) : f(0) = eiαf(1), α ∈ [0, 2π]}.

If k, s ∈ (−∞, 0] ∪ {+∞} then

ε(T1) = (0,+∞), ε(T2) = (−∞, 0), ε(T3) =
∞⋃

n=−∞
(2πn− α).

For this system we have: {1, 2, 3} = ∪2
k=1Ak and A1 = {1, 2}, A2 = {3}. Thus, here

the spectral index does not coincide with the spectral multiplicity (which equals to
1) and equals to 2.

The case 0 < k, s < +∞ leads to the following

ε(T1) =
{
− 1
k2

}
∪ (0,+∞), ε(T2) = (−∞, 0) ∪

{
1
s2

}
, ε(T3) =

∞⋃
n=−∞

(2πn− α).

If

α �∈
[ ∞⋃

n=−∞

(
2πn+

1
k2

)]⋃ [ ∞⋃
n=−∞

(
2πn− 1

s2

)]
,

we have A1 = {1}, A2 = {2}, A3 = {3}. That is Λ = 3 but ⊕3
i=1Ti has a simple

spectrum.

Example 2. Let us have a vector-operator ⊕3
i=1Ti with

ε(T1) =
⋃

n∈Z,n�0

πn, ε(T2) =
⋃

n∈Z,n�0

πn, ε(T3) =
⋃

n∈Z,n �=0

πn.
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Spectral index equals to 3 but spectral multiplicity equals to 2.

Definition 2.8. A vector-operator T = ⊕i∈ΩTi with simple coordinate spectra
σ(Ti) is called distorted if its spectral index does not equal its spectral multiplicity.

Note that in the above example 1, it is possible to unite the cyclic vectors into
one just taking their direct sum (as it is shown in the proof of Theorem 2.6). But
nevertheless, it is convenient to consider such operators as distorted satisfying Defini-
tion 2.8. The distorted vector-operator from Example 2 is ’completely’ distorted and
it is not possible to unite the coordinate cyclic vectors into a cyclic direct sum.

With some loss of technical value but more clearly for applications, Theorem 2.6
may be reformulated as

Corollary 2.9. Let each Ti have a simple spectrum. Then undistorted vector-
operator T has Λ-multiple spectrum.

Let us pass to the general case when each operator Ti has mi cyclic vectors. There
exists a decomposition

T = ⊕i∈ΩTi = ⊕i∈Ω ⊕mi

k=i T
k
i = ⊕sTs,

where each Ts has a single cyclic vector. For the vector-operator T decomposed as
above, we apply Theorem 2.6 and find the spectral index Λ. It is clear, that in this
case for the spectral index there exists the estimate

(4) Λ � max{mi}.

As it has been stated in the preliminaries, for each operator Ti there exists the unitary
operator Ui, such that Ui : L2

i → L2(Mi, µi). Hence

⊕i∈ΩUi : ⊕i∈ΩL
2
i → ⊕i∈ΩL

2(Mi, µi).

Or, in the general case (i.e. when there are Ti with more then one cyclic vector),

⊕i∈ΩUi : ⊕i∈Ω ⊕mi

k=1 L
2
i,k → ⊕i∈Ω ⊕mi

k=1 L
2(R, µk

i ).

From Theorem 2.6 it follows that there exists a unitary operator

(5) V : ⊕i∈Ω ⊕mi

k=1 L
2(R, µk

i ) = ⊕sL
2(R, µs) → ⊕Λ

q=1L
2

⎛⎝R,
∑
j∈Aq

µj

⎞⎠ .

This means that for any vector-operator T there exists the unitary operator V ⊕i∈ΩUi,
which represents the space L2 on the space L2(N,µ):

V ⊕i∈Ω Ui : L2 → L2(N,µ),

where N is the sliced union of Λ copies of R and

µ =
Λ∑

q=1

∑
j∈Aq

µj ,

according to the symbols in (5). We finally obtain
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Theorem 2.10. Let the vector-operator T = ⊕i∈ΩTi be undistorted and let
the unitary operator V be defined as in (5). If unitary operators Ui give spectral
representations of the Hilbert spaces L2

i on the spaces L2(Mi, µi), then the unitary
operator

W = V ⊕i∈Ω Ui

gives a spectral representation of the space L2 on the space L2(N,µ).

Directly from the definition of a distorted vector-operator, it follows that only for
undistorted vector-operators, the transform V does reduce the quantity of cyclic vec-
tors to the minimal possible. Note, that distorted differential vector-operators appear
to be frequent objects if vector-operators are considered on a set of closed bounded
intervals, and on the other hand quite rare, if coordinate operators have continuous
spectra. For them Theorem 2.10 is not efficient and needs to be strengthened. Such
strengthening is the construction of an ordered representation for arbitrary (distorted
or not) differential vector-operators, the process which seems to be essential for further
development of spectral theory of vector-operators.

3. The ordered spectral representation for the vector-operator T .
Theorem 3.1. If θi and {ei

n}mi
n=1 are measures and multiplicity sets of ordered

representations for coordinate operators Ti, i ∈ Ω, then there exist processes Pr1 and
Pr2, such that the measure

θ = Pr1({θi}i∈Ω)

is the measure of an ordered representation and the sets

sn = Pr2
({ei

k}i∈Ω; k=1,mi

)
are the canonical multiplicity sets of the ordered representation of the operator T .
Thus, the unitary representation of the space L2 on the space ⊕nL

2(sn, θ) is the
ordered representation and it is unique up to unitary equivalence.

Proof. We divide the proof into units for convenience. Units (A) and (B) repre-
sent the process, which we call ’the process of division on subspectra’.

(A) Let ai be maximal vectors relative to the operators Ti in L2
i . We want to find

a maximal vector relative to the vector-operator T . We know, that the vector ⊕i∈Ωai

does not give a single measure, if a set P (ε(Ti)) ∩ P (ε(Tj)) has a non-zero spectral
measure for i �= j. Consider restrictions Ti|L2

i (ai) = T ′
i . Since all the operators T ′

i

have single cyclic vectors ai, we can divide Ω into Ak, k = 1,Λ (see Definition 2.5)
and apply Theorem 2.6 for the operator ⊕i∈ΩT

′
i . Thus, we have derived Λ vectors

ak = ⊕j∈Ak
aj , which are maximal in the respective spaces L2(ak) = ⊕j∈Ak

L2
j (aj).

Indeed, this is obvious for the case card(Ak) < ℵ0. For the infinite case, if arbitrary
y = ⊕j∈Ak

yj ∈ L2(ak) and if

(6)
(
[⊕j∈Ak

Ej ](·)ak,ak
)

=
∑

j∈Ak

(
Ej(·)aj , aj

)
j

= 0,

then from the maximality of the vectors aj for all j ∈ Ak, and since P (ε(T ′
j))∩P (ε(T ′

k))
has zero spectral measures for j �= k, we obtain∑

j∈Ak

(
Ej(·)yj , yj

)
j

=
(
[⊕j∈Ak

Ej ](·)y,y) = 0,
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which follows from the convergence to zero of the series with the positive maximal
elements (6). Thus, in particular, we have constructed a maximal vector in L2 for the
case Λ = 1.

(B) Let now 1 < Λ < ∞. Define T k = ⊕j∈Ak
T ′

j . For any two operators T k and
T s, k �= s, let us introduce the sets εk,s = P (ε(T k)) ∩ P (ε(T s)) and εk = P (ε(T k)) \
εk,s. There exist unitary representations Uk : L2(ak) → L2(R, µak) (see formula (5)
supposing there Λ = 1). Consider measures µk and µk,s, defined as

µk,s(e) = µak(e ∩ εk,s) and µk(e) = µak(e ∩ εk),

for any measurable set e. For any operator T k (with respect to T s), measures µk and
µk,s are mutually singular and µk + µk,s = µak ; therefore

L2(R, µak) = L2(R, µk) ⊕ L2(R, µk,s).

This means that (according to our designations):

Uk−1
: L2(R, µak) −→ L2(ak

k) ⊕ L2(ak
k,s)

and ak = ak
k ⊕ ak

k,s, where ak
k and ak

k,s form the measures µk and µk,s respectively.
Define also as max{w,ψ} the vector, which is maximal of the two vectors in the
brackets (Note, that this designation is valid only for vectors, considered on the same
set. In order not to complicate the investigation we assume here that any two vectors
are comparable in this sense. In order to achieve this, it is enough to decompose each
coordinate operator Ti into the direct sum T pp

i ⊕ T cont
i , where the operators have

respectively pure point and continuous spectra. Then after redesignation we obtain
the equivalent vector-operator to the initial vector-operator ⊕Ti).

Consider first two operators T 1 and T 2. It is clear, that the vector

a1⊕2 = a1
1 ⊕ a2

2 ⊕ max
{
a1

1,2,a
2
2,1

}
is maximal in L2(a1) ⊕ L2(a2). Note, that a1

1 and a2
2 and they both may equal zero.

The maximal vector in L2(a1) ⊕ L2(a2) ⊕ L2(a3) will have the form:

a1⊕2⊕3 = a1⊕2
1⊕2 ⊕ a3

3 ⊕ max
{
a1⊕2

1⊕2,3,a
3
3,1⊕2

}
.

Continuing this process, we obtain a maximal vector in the main space L2:

(7) a1⊕···⊕Λ = a1⊕···⊕Λ−1
1⊕···⊕Λ−1 ⊕ aΛ

Λ ⊕ max
{
a1⊕···⊕Λ−1

1⊕···⊕Λ−1,Λ,a
Λ
Λ,1⊕···⊕Λ−1

}
.

Formula 7 may be simplified, if we divide the measures µak into continuous and
pure point components, that is µak = µcont

ak + µpp
ak . Then ak = ak,cont ⊕ ak,pp. Rela-

tively to any operator T s, k �= s, we have

ak,cont = ak,cont
k ⊕ ak,cont

k,s and ak,pp = ak,pp
k ⊕ ak,pp

k,s .

Now we can repeat the process described above in (B), separately for the continuous
and the pure point parts. Since measures with the same null set may be considered
equivalent, we have

max{wcont, ψcont} = eitherwcont orψcont,
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max{wpp, ψpp} = eitherwpp orψpp,

for any two vectors w and ψ. Thus we obtain

a1⊕···⊕Λ,cont = a1,cont ⊕
[
⊕Λ

j=2a
j,cont
j

]
.

Similarly,

a1⊕···⊕Λ,pp = a1,pp ⊕
[
⊕Λ

j=2a
j,pp
j

]
.

Since max{wcont, ψpp} = ψpp, we finally derive

a1⊕···⊕Λ = a1⊕···⊕Λ,pp ⊕ a1⊕···⊕Λ,cont
1⊕···⊕Λ .

Let Λ = ∞. We obtain a1⊕···⊕Λ as a vector which satisfies the following equality:

(8)
∥∥[⊕i∈ΩE

i(·)]a1⊕···⊕Λ
∥∥2

= lim
L→∞

∥∥[⊕L
j=1E

j(·)]a1⊕···⊕L
∥∥2
,

since the limit on the right side exists. Indeed limL→∞
∥∥[⊕L

j=1E
j(·)]a1⊕···⊕L

∥∥2 can

be rewritten as
∑∞

j=1

∥∥Ej(·) âj

∥∥2

j
, where âj are the restricted aj . Noticing that

∞∑
j=1

∥∥Ej(·) âj

∥∥2

j
�

∞∑
j=1

∥∥Ei(·) aj

∥∥2

j
<∞,

we prove the convergence (without loss of generality, the vectors ai can be always
chosen such, that

∑∞
i=1 ‖ai‖2

i <∞).
(C) The next step is to build the measure of the ordered representation for the

vector-operator. From Lemma 2.3 and the reasonings above, it follows that such a
measure will be

θ(·) =
(
[⊕i∈ΩE

i(·)]a1⊕···⊕Λ,a1⊕···⊕Λ
)
.

Thus we have constructed the process Pr1.
(D) The final step is to construct the canonical multiplicity sets sn of the vector-

operator; s1 is the whole line; s2 must contain all the spectrum the multiplicity
of which exceeds or equals to 2. For this purpose, we are primarily to unite all
ei
2. But, nevertheless, ∪ie

i
2 will not include all the sets of multiplicity � 2, since

we know that if P (ei
1 \ ei

2) ∩ P (ej
1 \ ej

2) has a non-zero spectral measure, all the
intersections of this sort will represent the multiplicity 2 and should be included
into s2 (since then it is not possible to construct a single cyclic vector). That is
s2 =

(∪iP (ei
2)
) ∪ (∪ ∩ (P (ei

1\ei
2)
)
. Using this idea and the fact that an infinite

intersection of measurable sets is a measurable set, by induction we may finally build
sn:

(9) sn =

[⋃
i

P (ei
n)

]⋃⎡⎣ ⋃
∑

mi�n

⋂
P
(
ei
mi

\ei
mi+1

)⎤⎦ .
We have constructed the process Pr2.
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The constructed measure and the multiplicity sets induce the ordered represen-
tation. It is known that such a representation is unique up to unitary equivalence.

Let us return to the example 2. For the distorted vector-operator T1 ⊕ T2 ⊕ T3,
two spectral measures will be constructed on vectors a1⊕2⊕3 and

min{a1
1,2, a

2
2,1} ⊕ min{a2

2,3, a
3
3,2} ⊕ min{a3

3,1, a
1
1,3},

where the sense of the minimums is clear.
Here the term ’distorted vector-operator’ is clearly explained by the form of its

cyclic vectors. The multiplicity set e2 will be

[P (ε(T1)) ∩ P (ε(T2))] ∪ [P (ε(T1)) ∩ P (ε(T3))] ∪ [P (ε(T2)) ∩ P (ε(T3))].

Using the obtained spectral representation we can construct equivalence classes
in families of self-adjoint operators:

Definition 3.2. Two families of self-adjoint extensions {Ti}N
i=1 and {Sj}L

j=1 are
called equivalent, if respective vector-operators ⊕N

i=1Ti and ⊕L
j=1Sj are equivalent.

Note, that if two families {Ti}N
i=1 and {Sj}L

j=1 are equivalent, it is not necessarily
the case that N = L and Ti is equivalent with Si.

4. The structure of the ordered spectral representation. Up to now, we
have not used the structure of the coordinate operators as differential operators. In
this section we make precise the ordered representation obtained in the previous sec-
tion.

Let I =
∨

i∈Ω Ii denote the sliced union of intervals Ii. Similarly, Ik =
∨

j∈Ak
Ij .

If xi are variables on Ii, then ∨xi will designate a variable either on I or Ik depending
on the context. This notation shows, that a vector-function

z = {z1(x1), . . . , zn(xn), . . . }
on I or Ik may be written as z(∨xi). In particular, we may also write z(∨xi) instead
of z = ⊕i∈Ωzi.

Let us introduce the space ⊕i∈ΩL
∞(In

i ). Here, z(∨xi) ∈ ⊕i∈ΩL
∞(In

i ) means that

sup
i∈Ω

{
ess sup

xi∈In
i

|zi(xi)χIn
i
(xi)|

}
<∞,

where for each i, families {In
i }∞n=1 represent compact subintervals of Ii, such that

∪∞
n=1I

n
i = Ii and χ is the characteristic function. In [4, Lemma 2.1], it was shown

that ⊕i∈ΩL
∞(In

i ) = (⊕i∈ΩL
1(In

i ))∗, where the space of Lebesgue-integrable vector-
functions ⊕i∈ΩL

1(In
i ) is defined analogously to L2.

We also need to introduce a symbolic integral
∫∨

Ji
f(∨xi) d(∨xi) defined by:∫

∨
Ji

f(∨xi) d(∨xi) = ⊕i

∫
Ji

fi(xi) dxi,

where f(∨xi) is understood to be measurable relatively to d(∨xi), if and only if fi(xi)
are measurable relatively to Lebesgue measures dxi. Then∫

∨
Ji

f(∨xi) d(∨xi) <∞
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if and only if supi

∫
Ji
fi(xi) dxi <∞.

The main result of the current work is to prove the following theorem:

Theorem 4.1. Let T be a self-adjoint vector-operator, generated by an EMZ
system {Ii, τi}i∈Ω. Let U be an ordered representation of the space L2 = ⊕i∈ΩL

2(Ii)
relative to T with the measure θ and the multiplicity sets sk, k = 1,m. Then there
exist kernels Θk(∨xi, λ), measurable relative to d(∨xi) × θ, such that Θk(∨xi, λ) = 0
for λ ∈ R \ sk and (⊕i∈Ωτi − λ)Θk(∨xi, λ) = 0 for each fixed λ. Moreover,

(10)
∫

∆

|Θk(∨xi, λ)|2 dθ(λ) ∈ ⊕i∈ΩL
∞(In

i ) ∀n ∈ N.

(11) (Uw)k(λ) = lim
n→∞

∫
In

w(∨xi)Θk(∨xi, λ) d(∨xi), w ∈ L2,

where the limit exists in L2(sk, θ). The kernels {Θk(∨xi, λ)}n
k=1, n � m, are linearly

independent as vector-functions of the first variable almost everywhere relatively to
the measure θ on sn.

Proof. Fix i. If θi and {ei
p}mi

p=1 are respectively the measure and the multiplicity
sets of an ordered representation for Ti, then there exists the decomposition L2

i =
⊕mi

p=1L
2(ei

p, θi), which implies Ti = ⊕mi
p=1T

p
i and L2(ei

p, θi) are T p
i -invariant. For

vector-operator (⊕i∈Ω ⊕mi
p=1 T

p
i ) → redesignate → ⊕sTs, s = {i, p} ∈ Ω1, we may

write Ω1 = ∪Λ
k=1Ak.

Let us separate the proof into units for convenience.
(A) For each Tj , j ∈ Ak ⊂ Ω1 and k = 1,Λ, there exists a single cyclic vector

aj ∈ L2
j and [18, XII.3, Lemma 9 and XIII.5, Theorem 1(I)] a function Wj(xj , λ)

defined on Ij × ej (note, that for a fixed i ∈ Ω, Ij = Ii for all p = 1,mi) and
measurable relatively to dxj × µaj

, such that Wj(xj , λ) = 0, λ ∈ R \ ej and for any
bounded ∆ ⊂ ej : ∫

∆

|Wj(xj , λ)|2 dµaj
(λ) ∈ L∞(In

j ), n ∈ N.

Also

(12)
(
Ej(∆)Fj(Tj)aj

)
(xj) =

∫
∆

Wj(xj , λ)Fj(λ) dµaj
(λ),

for any Fj ∈ L2(ej , µaj
). On Ik =

∨
j∈Ak

Ij , we construct the vector-function

W k(∨xj , λ) = {W1(x1, λ), . . . ,Wn(xn, λ), . . . },
which is obviously measurable relative to d(∨xj)×

∑
µaj

. SinceWj(·, λ) ∈ L2(∆, µaj
),

then substituting Wj(·, λ) = Wj(λ) in (12) in place of Fj , we obtain(
Ej(∆)Wj(Tj)aj

)
(xj) =

∫
∆

|Wj(xj , λ)|2 dµaj
(λ).

Remembering, that P (ε(Ts))∩P (ε(Tj)) has zero measure, for s �= j and s, j ∈ Ak, we
obtain ([⊕j∈Ak

Ej
]
(∆)W k(⊕j∈Ak

Tj)ak
)

(∨xj) =
∫

∆

|W k(∨xj , λ)|2 dµak(λ),
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where ak = ⊕j∈Ak
aj .

Since elements fj from D(Tj) are continuous and thus essentially bounded on In
i

for any n ∈ N, ⊕j∈Ak
fj ∈ ⊕j∈Ak

D(Tj) implies that

Range
[⊕j∈Ak

Ej
]
(∆) ⊆ ⊕j∈Ak

D(Tj) ⊂ ⊕j∈Ak
L∞(In

j )

and hence, we obtain

(13)
∫

∆

|W k(∨xj , λ)|2 dµak ∈ ⊕j∈Ak
L∞(In

j ) ∀n ∈ N.

In [18, XIII.5, Theorem 1(I)] it was shown that if we have ordered representations Ui

of L2
i relative to the operators Ti, i ∈ Ω, the following formula is valid for j ∈ Ω1:

(Ujwj)(λ) = lim
n→∞

∫
In

j

w(xj)Wj(xj , λ) dxj , wj ∈ L2
j ,

where the limit exists in L2(ej , µaj
). Taking direct sums in both sides of the last

equality, for each system of compact subintervals we obtain

(Uk ⊕j∈Ak
wn

j )(λ) = ⊕j∈Ak

∫
In

j

wj(xj)Wj(xj , λ) dxj , wn
j = wjχIn

j
.

From (13), it follows that for any bounded Borel set ∆ ∈ ej and Ik,n =
∨

j∈Ak
In
j ,∫

Ik,n

∫
∆

|W k(∨xj , λ)|2 dµak d(∨xj) <∞

and since wk = ⊕j∈Ak
wj(xj) is assumed to belong to ⊕j∈Ak

L2
j , we may write:

(Ukwk,n)(λ) =
∫

Ik,n

wk(∨xj)W k(∨xj , λ) d(∨xj).

Taking the limit in the both sides and defining wk = ⊕j limn→∞ wn
j we obtain the

formula

(14) (Ukwk)(λ) = lim
n→∞

∫
Ik,n

wk(∨xj)W k(∨xj , λ) d(∨xj), wk ∈ ⊕j∈Ak
L2

j .

Note, that since for all p = 1,mi there exists the equality (τi − λ)W p
i = 0 (see [18,

XIII.5, Theorem 1]), it is obvious that (⊕j∈Ak
τj − λ)W k = 0, where τj = τi for a

fixed i and all p = 1,mi. If P (ε(Ti)) ∩ P (ε(Tj)) has zero spectral measures for all
i, j ∈ Ω, then Ak : Ω1 = ∪Λ1

k=1Ak may be constructed such that Ak contains of indices
{i, k}, i ∈ Ω, k = 1,maxi{mi}.

(B) Consider the set of indices Ω2 = {j ∈ Ω1 : j = {i, 1}, i ∈ Ω}. Construct
Ak : Ω2 = ∪Λ2

k=1Ak. Apply the reasonings used in (A), considering everywhere Ω2

instead of Ω1. Hence, for each Ak and we find a vector-function W k
1 (∨xj , λ) which is

the solution of the equation (⊕j∈Ak
τj −λ)y = 0. Consider W k

1 and W s
1 for s �= k. For

ak there exists the decomposition ak = ak
k ⊕ak

k,s (see the proof of Theorem 3.1). This
fact induces the decomposition for W k

1 : W k
1 = W k

1,k ⊕W k
1,k,s. It is clear that being

the restrictions of W k
1 , the vector-functions W k

1,k and W k
1,k,s are also the solutions
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of the equation (⊕j∈Ak
τj − λ)y = 0. They, along with ak

k and ak
k,s define unitary

transformations Uk
k and Uk

k,s by formula (14), such that:

Uk
k : L2(ak

k) → L2(R, µk) and Uk
k,s : L2(ak

k,s) → L2(R, µk,s)

(see the definitions in the proof of Theorem 3.1). This implies, that the decomposition
W k = W k

1,k ⊕W k
1,k,s is correct.

Define as max{W k
1,k,s,W

s
1,s,k} the vector-function, which corresponds to the vec-

tor max{ak
k,s,a

s
s,k}, respectively min{W k

1,k,s,W
s
1,s,k} as the vector-function which cor-

responds to that ak
k,s or as

s,k, which is not maximal of the two.
(C) Without loss of generality, suppose that k = 1 and s = 2. From the reasonings

presented in Unit (A) of this proof, it follows that

Θ1⊕2
1 = W 1

1,1 ⊕W 2
1,2 ⊕ max

{
W 1

1,1,2,W
2
1,2,1

}
is correctly constructed vector-function satisfying the statement of the theorem for
the case T = [⊕j∈A1Tj ]⊕ [⊕q∈A2Tq]. Apply the above described process to Θ1⊕2

1 and
W 3

1 to obtain the correctly constructed vector-function:

Θ1⊕2⊕3
1 = Θ1⊕2

1,1⊕2 ⊕W 3
1,3 ⊕ max

{
Θ1⊕2

1,1⊕2,3,W
3
1,3,1⊕2

}
.

Continuing this process, we finally obtain:

Θ1(∨xi, λ) = Θ1⊕···⊕Λ2
1 =

= Θ1⊕···⊕Λ2−1
1,1⊕···⊕Λ2−1 ⊕WΛ2

1,Λ2
⊕ max

{
Θ1⊕···⊕Λ2−1

1,1⊕···⊕Λ2−1,Λ2
,WΛ2

1,Λ2,1⊕···⊕Λ2−1

}
,

where in the case of Λ2 = ∞, Θ1⊕···⊕Λ2
1 is the function which satisfies (analogously to

(8)):

(15)
(

[⊕i∈ΩE
i(∆)]

∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ),

∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ)

)
=

= lim
L→∞

(
[⊕L

j=1E
j(∆)]

∫
∆

Θ1⊕···⊕L
1 dθL(λ),

∫
∆

Θ1⊕···⊕L
1 dθL(λ)

)
,

for any bounded Borel set ∆, where θL(·) =
(
[⊕L

j=1E
j(·)]a1⊕···⊕L,a1⊕···⊕L

)
is the

measure of the ordered representation of the space ⊕L
j=1L

2
j . The limit on the right

side exists since for any bounded Borel ∆:(
[⊕L

j=1E
j(∆)]

∫
∆

Θ1⊕···⊕L
1 dθL(λ),

∫
∆

Θ1⊕···⊕L
1 dθL(λ)

)
=

=
(
[⊕L

j=1E
j(∆)]a1⊕···⊕L,a1⊕···⊕L

)
�
(
[⊕∞

i=1E
i(∆)] ⊕∞

i=1 ai,⊕∞
i=1ai

)
<∞,

for all L ∈ N (Lemma 2.3). Despite seeming weak, such convergence is quite natural.
Indeed, (15) implies that the cyclic subspace

L2

(∫
∆

Θ1⊕···⊕L
1 dθL(λ)

)
is ε-close with the cyclic subspace

L2

(∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ)

)
,
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when L is sufficiently big. That is, in the topology of L2 for any Borel set ∆,

f(T )
∫

∆

Θ1⊕···⊕L
1 dθL(λ) → f(T )

∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ),

for any Borel f as L→ ∞. This means that∫
∆

Θ1⊕···⊕L
1 dθL(λ) →

∫
∆

Θ1⊕···⊕Λ2
1 dθ(λ), as L→ ∞.

(D) Define Ω3 = {j ∈ Ω1 : j = {i, 2}, i ∈ Ω}. Construct Ak : Ω3 = ∪Λ3
k=1Ak.

Apply processes (B) and (C) of this proof, substituting everywhere Ω3 instead of
Ω2. We obtain a vector-function Θ1⊕···⊕Λ3

2 , which is defined on the set ∪iP (ei
2). But,

as we know (see (9)), the set s2 also includes the sets where there are non-empty
superpositions of ε(Ti). Therefore, designating

Θ1
2 = Θ1⊕···⊕Λ3

2 , Θ2
2 = min{W 1

1,1,2,W
2
1,2,1}, . . . ,

ΘΛ2+1
2 = min

{
Θ1⊕···⊕Λ2−1

1,1⊕···⊕Λ2−1,Λ2
,WΛ2

1,Λ2,1⊕···⊕Λ2−1

}
,

we may again use the process (C) to build the vector-function Θ2(∨xi, λ) defined on
s2 and Θ2(∨xi, λ) = 0 for λ ∈ R \ s2. Using processes (B), (C), (D) and formula
(9), we finally obtain Θm(∨xi, λ).

(E) The above presented constructions show, that all vector-functions Θk(∨xi, λ),
k = 1,m are the solutions of the equation (⊕i∈Ωτi − λ)y = 0, moreover they equal
zero on R \ sk and satisfy formulas (10) and (11).

The last thing is to prove the linear independence. In order to make the reasonings
more transparent, we prove the linear independence for the special case of two vector-
functions

Θ1 = W 1
1,1 ⊕W 2

1,2 ⊕ max
{
W 1

1,1,2,W
2
1,2,1

}
and

Θ2 = min
{
W 1

1,1,2,W
2
1,2,1

}
.

Without loss of generality suppose that max
{
W 1

1,1,2,W
2
1,2,1

}
= W 1

1,1,2. It is clear that

αΘ1 + βΘ2 =

= α
({W 1

1,1, 0, 0, 0} + {0, 0,W 2
1,2, 0} + {0,W 1

1,1,2, 0, 0}
)

+ β{0, 0, 0,W 2
1,2,1} =

= {αW 1
1,1, αW

1
1,1,2, αW

2
1,2, βW

2
1,2,1} = 0

implies α = β = 0. The linear independence in the general case is proved using the
same ideas. Thus, the linear independence is proved and this finishes the proof of the
theorem.

Note, that the given proof introduces the general method of constructing eigen-
functions for a vector-operator. For theoretical purposes, the form of the obtained
eigenfunctions could be simplified by totally ordering the set {T j}Λ2

j=1. This is achieved
by saying that T k � T s if max{W k

1,k,s,W
s
1,s,k} = W k

1,k,s. At that, T k � T s if and
only if T k � T s and T s � T k. According to this, we build ⊕Λ2

j=1T
j , where T j � T j+1,
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j = 1,Λ2 − 1 if Λ2 � 2. The obtained vector-operator is obviously equivalent to the
initial vector-operator (comprising unordered operators).

As an important corollary of Theorem 4.1 we obtain
Theorem 4.2 (Eigenfunction expansions). For any w ∈ L2, there exists a

decomposition

w =
m∑

k=1

lim
n→∞

∫ +n

−n

(Uw)k(λ)Θk(∨xi, λ) dθ(λ).

Proof. From the process of building Θk in the previous proof and, in particular
(4), it follows that(

E(∆)F (T )ak
)
(∨xi) =

∫
∆

Θk(∨xi, λ)F (λ) dµak
(λ).

Substituting here F = (Uw)k, we obtain∫ n

−n

Θk(∨xi, λ)(Uw)k(λ) dµak
(λ) = E[−n, n]F (T )ak → F (T )ak = Uk−1

F = wk.

Now the statement of the theorem becomes clear, since w = ⊕m
k=1wk.
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