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Correction: The Verlinde formulas as fixed point
formulas

A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARD

Due to a publisher error, the correct version of sections 5.4, 5.5, and 5.6
was not printed. The correct version is included here,

5. Verlinde formula.
5.4. The fixed point sets.

The fixed point sets for the action on the holonomy manifold are symplectic
tori:

Proposition 5.1. The fized point set for the action of (ty,,...,tx.) on
M(2p) = G2Hr=1) s empty unless \j = ... = A\, =: A, and

M(E;‘l)(tA“"’tA) — F .= TQ(h—Q—T—l)‘

Proof. Since M (X}) is obtained from a direct product of h 4 — 1 copies of
M (E%) by passing to diagonal actions for some of the G-factors, it suffices
to prove Proposition 5.1 for $3. By (28), an element (a,b) € M (33) is fixed
by (tx,,tz,) if and only if

(31) t/\l = Ad, t)\2, t)‘2 = Adbt)\l.

Both ty, and t), belong to the exponential of the alcove exp(2(). Since each
conjugacy class meet exp(2() only once, (31) holds if and only if A\; = Ag. O

Notice that the fixed point set is independent of A; in fact, F' is fixed by
the full diagonal torus T' C G".
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5.5. Evaluation of the fixed point contributions.

Let ¥ = X} and p = (p1,...,4r) with p; € A7. By Theorem 4.3, the
Spin -index is given by the formula

(32) xM(X)u) = F 2 X (E3) - X () [T () P X (v, 82)"

AEA;

# k+c

Here we abbreviated (ty,...,t)) to ¢y, viewing T' as diagonally embedded
into G". For the calculation of the fixed point contribution

N 1
A(F)e2rEr)
Xy ta) = Cr(t) r Dr(vr,ty)

note first of all that

~

(33) AF)=1

since F' is a torus. Furthermore, since the normal bundle vg is T-
equivariantly isomorphic to (g /t)2(h+r—1)

(34) Dr(vp,ty) = J(t)‘)Q(thrfl) — (_1)(h+r71)#iﬁ|J(t)‘)|2(h+r71)'

, we have

It remains to work out the integral [, exp(3ci(Lr)) and to calculate the

phase factor (g (ty)2.

Proposition 5.2. The integral of exp(ici(Lr)) over F equals HTppe) T

Proof. The line bundle £ = L(X)? ® K ! is LG"-equivariant at levels
2(k +¢),...,2(k + ¢). Since M(X) carries up to isomorphism a unique
line bundle at every level [29, 3.12], it follows that £ is the pre-quantum line
bundle for the symplectic structure defined by Bg(x.). Hence Lp is a pre-
quantum line bundle for the corresponding symplectic structure on F', and
[ exp(3c1(LF)) is the symplectic volume Volg, ,,(F) for the 2-form defined
using Bgy.. We claim that the symplectic volume coincides with the Rie-
mannian volume, which will complete the proof since Volg, , (T 2 = #Th e
(see e.g., Beauville [8, Remark 9.9], Bismut-Labourie [10, Prop. 1.2, 1.3]).
By our description of M(X}) as a fusion product, the fixed point manifold
F = F(X}) is obtained from the fixed point manifold F(X3) (viewed as a
group valued Hamiltonian T%-space) by fusion: F(3{) = F(22)s,s and

F(Z)=F@E)® - ®F(X) ® F(53) ® - ® F(X3),
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with h factors F(X1) and (r — 1) factors F(X3). Lemma C.2 from Ap-
pendix C says that the symplectic volume of group valued Hamiltonian
torus spaces does not change under fusion. Hence Volg, (F(X})) =
Volg,, (F(53))"* 1. Finally, the expression (30) for the 2-form on M (%3)
shows that Volpg,, (F(X})) coincides with the Riemannian volume of T
with respect to Byc. [l

Proposition 5.3. The phase factor is given by Cp(ty)'/?=(—1)rtr—D#Ry,

Proof. The point m = (e,...,e) € F lies in identity level set of ®, and its
stabilizer in G" is the image of the diagonal embedding of G. The 2-form
w restricts to a symplectic form on the tangent space E = T,,M(X). The
factor Cp(ty)'/? € U(1) may be computed using (21).

We first apply this recipe for the 2-holed sphere E%, so that £ =
T,,M(23) = g ®g. Formula (30) shows that wy, is the standard 2-form
on g ® g, given by the inner product B. A compatible complex structure
is given by the endomorphism (£,1) — (—n,§). Thus, as a complex G-
representation E is just the complexification E = g€. It follows that the
eigenvalues of A (other than 1) come in complex conjugate pairs

ei¢j,e_i¢j, 0<¢; <m/2,

and the corresponding eigenvalues of A2 are e%i/2 and e ¥i/2 —
—e~i/2. Hence

Cr(ta)Y? = (—1)#7.

Now consider the case r > 1,h arbitrary. The tangent space is
TmM(X}) = (g® @)1 but because of the fusion terms the symplectic
form is not the standard symplectic form defined by the inner product on g.
However, by Appendix C, Lemma C.3 it is equivariantly and symplectically
isotopic to the standard symplectic form. Since the phase factor ¢ F(tA)l/ 2
is a root of unity, it is invariant under equivariant symplectic isotopies, and
we conclude as before that Cp(ty)'/2 = (—1)+r—1D#R+ O

We conclude that the fixed point integral is given by

(35) x(vr,ty) = <%)h”_l
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5.6. Verlinde formula.

From (35) and (32) we obtain:

Theorem 5.4 (Verlinde Formula). Let G be a simply connected Lie
group and k a given integral level. The Spin.-index of the moduli space
of flat connections on X} at level k, with markings pn = (p, ..., pr) € (Af)"
is given by the formula

(36)  XM(ZR)u) = H#Tese)" ™ D ITE)P 2 X0 (2) - X (82)-

AEA

Remarks 5.5. (a) Theorem (5.4) also covers the case without boundary,
since M(X9) = M(Z},0). One obtains

XM(ED)) = (#There)" ™ Y [T ()P0

XeA;

(b) For the two-holed sphere Y3, formula (36) simplifies by the orthogonal-
ity relations for level k characters, and gives X (M (X2) 41 1s) = Opr e+

(c) In Bismut-Labourie [10] the Spin_-indices x(M(X}),) are computed
by direct application of the Kawasaki-Riemann-Roch formula to the
reduced spaces. Their approach involves a description of all orbifold
strata of the reduced space. The equality with the above sum over

level k& weights is non-trivial; it is established in [10] for sufficiently
high level k.

(d) Theorem 5.4 gives a formula for a Spin -index rather than the dimen-
sion of a space of holomorphic sections. Vanishing results for higher
cohomology groups have recently been proved by Teleman [34, Section
8].

A more involved computation leads to a formula for semi-simple, com-
pact, connected groups which need not be simply connected, for the case of
a single boundary component r = 1. An interesting feature of our approach
is that we obtain a formula for each connected component of the moduli
space of flat bundles. We will state the result without proof. Let G' = G/T,
where G is simply connected and I' C Z(G) is a subgroup of the center Z(G)
of G. For j =1,...,s,let I'; C G; be the image of I' under projection to
the jth simple factor. Let

M/(2h) = M(Sh)/T% = GH /T = (G)™.
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The product of commutators, ® : M(Z}) = G?! — @ is invariant under the
action of I'*" and descends to the G-valued moment map &' : M'(X}) — G.
For any ¢’ € G’, the moduli space of flat G'-connections with holonomy
conjugate to ¢’ is a disjoint union of symplectic quotients M’'(X), where
g varies over all pre-images of ¢’ in G. The reduced spaces at central el-
ements v € I' C G may also be interpreted as moduli spaces of flat con-
nections on the G’-bundle over E%, with topological type given by ~. Let
k = (k1,...,ks), where each k; is a positive multiple of the greatest common
divisor of ¢; and #FJQ-. Then there exists a pre-quantum line bundle at level
k, determined by a choice of character ¢ € Hom(I'?",U(1)), and for any
p € Ay, the Spin -index of the symplectic quotient M’(X), at p is given by
the formula,

#Thopc) #I3h «
(#% Z e(p, A) W Xu(ta)™

AEA}

(37) X(M'(Z),) =

Here €(¢,\) = 1 if ¢ restricts to the trivial homomorphism on Fih, and
0 otherwise. The sum over components leads to a simpler formula, which
involves only a sum over weights corresponding to characters of G'. In the
case G' = PSU(p) (5.6) reduces to formulas of Pantev [2] (p = 2), and
Beauville [1'] (p > 3 prime).
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