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VERSAL DEFORMATION THEORY OF ALGEBRAS
OVER A QUADRATIC OPERAD

ALICE FIALOWSKI, GOUTAM MUKHERJEE and ANITA NAOLEKAR

(communicated by Claude Cibils)

Abstract
We develop deformation theory of algebras over quadratic

operads where the parameter space is a commutative local alge-
bra. We also give a construction of a distinguised deformation of
an algebra over a quadratic operad with a complete local algebra
as its base—the so-called versal deformation—which induces all
other deformations of the given algebra.

In memory of our good friend Jean-Louis Loday

1. Introduction

Formal one-parameter deformation theory for algebras was originally introduced
for associative algebras by M. Gerstenhaber in the 1960s (see [7, 8]). Since then it has
been applied to many other algebraic categories. Most of these cases turned out to be
algebras over a suitable quadratic operad. Gerstenhaber’s theory was generalized to
an algebra over a binary quadratic operad by D. Balavoine in 1997 (see [1]) and further
developed by M. Kontsevich and Y. Soibelman (see [12]). In [13], J.L. Loday and
B. Vallette introduced a deformation complex for any P-algebra A over a quadratic
operad P. It turns out that this deformation complex is the resulting dg Lie algebra
obtained from convolution dg Lie algebra gP,A = (HomS(P ¡,EndA)), [, ]), where P ¡ is
the Koszul dual co-operad of P, twisted by the algebra structure.

Classical deformation theory is not general enough to describe all nonequivalent
deformations of a given object. To take care of this, one needs to enlarge the base of
deformations from a one parameter power series ring to a local commutative algebra,
or more generally, to a complete local algebra. It is known that under certain cohomo-
logical restrictions there exists a “characteristic” versal deformation of a type of alge-
bras, with complete local algebra base, that induces all nonequivalent deformations
and is universal at the infinitesimal level (see, e.g., [18]). An explicit construction of
versal deformation has been given for Lie [3, 4], associative, infinity [5], and Leibniz
algebras [6].
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The aim of this paper is to show that the above method of construction of versal
deformations of a particular type of algebra can be extended to construct versal
deformations of an algebra over any quadratic operad. For this it is necessary to
develop the relevant operadic tools. To this end we develop an obstruction theory for
extending a given deformation, of an algebra over a quadratic operad with a finite-
dimensional local commutative algebra base R, to a deformation over a suitable
extension of R using the operadic calculus as developed in [13, Chapter 12].

The paper is organized as follows: In Section 2 we briefly review the basic def-
initions and results involving algebras over a quadratic operad, and the associated
deformation complex necessary for our purpose, and we fix the notation that we follow
throughout the text. In Section 3 we develop the deformation theory of algebras over
an operad with local commutative algebra base. In Section 4 we study infinitesimal
deformations and their properties. Given a deformation λ of a P-algebra A, with a
finite-dimensional base R and a local abelian extension 0→M →R′ → R→ 0 of
R by an R-module M with dimRM <∞, we address in Section 5 the question of
extending λ to a deformation of A with base R′. It turns out that, in general, this
extension is not always possible. The associated obstruction can be interpreted as a
2-cochain in the deformation complex associated to A. We prove that obstructions are
2-cocycles and that vanishing of the associated cohomology class is a necessary and
sufficient condition for extending a given deformation to a deformation over a larger
base. The results of Section 5 are crucial in order to construct a versal deformation
of an algebra over a quadratic operad, which is the content of the next section. In
Section 6 we introduce the notion of formal deformation of algebras over a quadratic
operad with a complete local algebra base, and we define the notion of versal defor-
mation. Finally, we give a construction of a versal deformation of an algebra over a
quadratic operad, using the results developed in Sections 4 and 5.

2. Preliminaries on operads and operadic cohomology

In this section we recall some basic definitions and results about (algebraic) operads
and the deformation complex of an algebra over a quadratic operad as in [13]. General
references for operads and related results are [9, 10, 13, 14, 15, 16, 17].

The symbol N denotes the set of non-negative integers. Throughout this paper, we
work over a fixed field k of characteristic 0. We denote the category of vector spaces
over k by Vect. The tensor product of vector spaces over k is denoted by ⊗. For any
positive integer n, Sn denotes the group of permutations on n elements. For any map
f : ⊗n

i=1 Ei → F , f(x1, · · · , xn) will stand for f(x1 ⊗ · · · ⊗ xn).

2.1. S-module
Definition 2.1. An S-module over k is a family

M = {M(0),M(1), · · · ,M(n), · · · }

of right k[Sn] modules M(n). An S-module M is finite dimensional if M(n) is finite
dimensional for all n. A morphism f : M −→ N between two S-modules M and N is
a family of maps f(n) : M(n) −→ N(n) that are Sn-equivariant for all n.

Note that to every S-module M is associated a functor, called the Schur functor,
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M̃ : Vect −→ Vect such that M̃(V ) = ⊕n>0M(n)⊗Sn V
⊗n, where the left action of

Sn on V ⊗n is given by σ(v1, v2, · · · , vn) = (vσ−1(1), vσ−1(2), · · · , vσ−1(n)).
The tensor product of two S-modules is the S-module M ⊗N defined by

(M ⊗N)(n) = ⊕i+j=nInd
Sn
Si×SjM(i)⊗N(j).

The composite of two S-modules M and N is the S-module

M ◦N = ⊕n>0M(n)⊗N⊗n,

where N⊗n is the tensor product of n copies of the S-module N . The category
(S-Mod, ◦, I) is a monoidal category with respect to this composite product, where
I is the S-module (0,k, 0, · · · ).

Recall that the composite of the two S-modules M and N satisfies the formula

˜(M ◦N) = M̃ ◦ Ñ ,

where on the right-hand side the symbol ◦ stands for the composition of functors.

2.2. Operads and cohomology
Definition 2.2. A symmetric operad P = (P, γ, η) is a monoid in the monoidal cat-
egory (S-Mod, ◦, I). Explicitly, a symmetric operad P = (P, γ, η) is an S-module
P = {P(n)}n>0 endowed with morphisms of S-modules

γ : P ◦ P −→ P,

called the composition map, and

η : I −→ P,

called the unit map, which makes P into a monoid.

Throughout the paper, by an operad we shall mean a symmetric operad.

Definition 2.3. Let P,Q be operads. A morphism of operads from P to Q is a
morphism of S-modules α : P −→ Q that is compatible with the composition maps.

Example 2.4. Let V be a vector space over k, and for every n ∈ N let EndV (n) =
Homk(V

⊗n, V ). Then EndV = {EndV (n), n ∈ N} is naturally a symmetric operad,
called the endomorphism operad of V .

Definition 2.5. Let P be an operad. A P-algebra, or an algebra over P, denoted by
(A,α), is a vector space A over k, equipped with a morphism of operads α : P →
EndA.

A morphism of P-algebras φ : (A,α) −→ (B, β) is a k-linear map φ : A −→ B such
that for any a1, · · · , an ∈ A and µ ∈ P(n),

φ(α(µ)(a1, · · · , an)) = β(µ)(φ(a1), · · · , φ(an)).

Definition 2.6. The free operad over the S-module M is an operad F(M) equipped
with an S-module morphism η(M) : M −→ F(M) that satisfies the following univer-
sal condition: any S-module morphism f : M −→ P, where P is an operad, extends
uniquely to an operad morphism f̃ : F(M) −→ P, that is, f̃ ◦ η(M) = f .
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The functor F from the category of S-modules to the category of k-operads is
left adjoint to the forgetful functor from the category of k-operads to S-modules. An
explicit construction of the free operad can be found in [2].

Definition 2.7. Let P be an operad. An ideal of P is a sub- S-module I of P such
that the operad structure of P passes on to the quotient P/I.

Let E be an S-module, and R be a sub-S-module such that R ⊆ F(E)(2), where
F(E)(2) is the graded sub-S-module of the free operad F(E), which is spanned by
the composites of two elements of E [13, Section 5.5.3]. Such a pair (E,R) is called
a quadratic data.

Definition 2.8. Given a quadratic data (E,R), let

P(E,R) = F(E)/(R)

be the quotient of the free operad F(E) over E by the operadic ideal (R) generated
by R. Then the operad P(E,R) is called the quadratic operad associated to the pair
(E,R).

Definition 2.9. An S-module C is a cooperad if it is a comonoid in the monoidal
category (S-mod, ◦, I). A cofree cooperad on an S-module M is the cooperad Fc(M),
which is cofree in the category of conilpotent cooperads.

Recall that the Koszul dual cooperad of a quadratic operad is defined as follows:

Definition 2.10. The quadratic cooperad C(E,R) associated to the quadratic data
(E,R) is the sub-cooperad of the cofree cooperad Fc(E) that is universal among the
sub-cooperads of Fc(E) such that the following composite is 0,

C ↪→ Fc(E) � Fc(E)(2)/(R).

The Koszul dual cooperad of the quadratic operad P(E,R) is the quadratic cooperad

P ¡ := C(sE, s2R),

where sE denotes the S-module E whose degree is shifted by 1.

We recall the definition of the deformation complex of an algebra over a quadratic
operad [13].

Let A be a P-algebra, where P = P(E,R) is a quadratic operad. Let

g = gP,A = (HomS(P ¡,EndA), [, ], ∂)

be the convolution dg Lie algebra associated to A. Since A is concentrated in degree 0,
the cohomological degree on the differential graded Lie algebra

g : Hom(A,A)
∂−→ HomS(P ¡(1),EndA)

∂−→ HomS(P ¡(2),EndA) · · ·

is induced by the weight grading. Thus Hom(A,A) is the 0th cochain module and

HomS(P ¡(n),EndA) is the nth cochain module. Moreover, since P is homogeneous
quadratic, the coboundary map ∂ in the above complex is null. We note that the set
of P-algebra structures on a space A is in one-to-one correspondence with the set of
Maurer–Cartan elements of degree 1 of g, i.e., all elements φ in HomS(P ¡(1),EndA)
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satisfying [φ, φ] = 0. Given such an element φ, one can define a differential ∂φ on the
Lie algebra g, which makes it into a differential graded Lie algebra. The differential
∂φ is called the twisted differential, and gφ = gφP,A = (HomS(P ¡,EndA)), [, ], ∂φ) is
called the twisted differential graded Lie algebra. The twisted differential ∂φ is given
by: ∂φ(f) = [φ, f ]. The underlying cochain complex of this twisted dg Lie algebra is
the deformation complex that we intend to work with. We end this section with the
following definition.

Definition 2.11. For any P-algebra (A, π) where P is a quadratic operad, we define

H∗P(A) := H∗(g
π) = H∗(g, ∂π).

3. Deformations

Let R be a commutative local unital algebra with unit 1R over k. Let ε : R→
k, ε(1R) = 1 be the canonical augmentation map, and let M = ker(ε) be the unique
maximal ideal in R. In this section, we study the notion of deformation of an algebra
over a quadratic operad with base R, and its properties.

Let P = P(E,R) be a quadratic operad. We will denote by PR the operad that
is obtained by extension of P to the category of modules over R; in other words,
PR(n) = R⊗P(n) for all n ∈ N. Let (A, π) be a P-algebra. Let AR = R⊗A denote
the extension of A. Then AR can be viewed as a PR-algebra by extending π : P −→
EndA to πR : PR −→ EndAR , since

HomR(A
⊗Rn
R , AR) ∼= R⊗Homk(A

⊗n, A).

Moreover, A = k⊗A can be viewed as a PR-algebra by considering A as a module
over R via ε; that is, the R-module structure on A is given by r · a = ε(r)a, for r ∈ R
and a ∈ A.

Definition 3.1. A deformation λ of a P-algebra (A, π) with base (R,M) is a mor-
phism of operads λ : PR −→ EndAR such that (ε⊗ Id) : AR −→ k⊗A ∼= A is a PR-
algebra morphism.

In other words, a deformation of (A, π) with base (R,M) is a PR-algebra structure
on AR that reduces to π, modulo M: A ∼= k⊗R (R⊗A).

We have the following result [13, Proposition 12.2.6].

Proposition 3.2. For any P-algebra (A, π), the set of all deformations of (A, π)
with base (R,M) is in one-to-one correspondence with the set of all Maurer–Cartan
elements in the dg Lie algebra M⊗ gπ.

Definition 3.3. Suppose λ1 and λ2 are two deformations of a P-algebra (A, π) with
the same base (R,M). They are said to be equivalent if there exists a PR-algebra
isomorphism φ : (AR, λ1) −→ (AR, λ2) such that

AR
φ−→ AR

ε⊗Id↘ ↙ ε⊗Id

k⊗A
commutes.
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Definition 3.4. LetR be a complete local algebra,R =
←
lim (R/Mn),M denoting the

maximal ideal in R. A formal deformation of a P-algebra (A, π) with base (R,M) is

a PR-algebra structure on the completed tensor product R⊗̂A =
←
lim ((R/Mn)⊗A),

such that ε⊗̂ Id : R⊗̂A −→ k⊗A ∼= A is a PR-algebra morphism.

Example 3.5. Let R = k[[t]] be the ring of formal power series with coefficients in
k. Then a formal deformation of a P-algebra (A, π) over R is precisely the formal
“1-parameter” deformation of (A, π).

Definition 3.6. Let λ be a deformation of the P-algebra (A, π) with base (R,M) and
augmentation ε : R −→ k. Let R′ be another commutative local algebra with unit,
and augmentation ε′ : R′ −→ k with Ker(ε′) = M′. Let f : R −→ R′ be an algebra
homomorphism with f(1R) = 1R′ . Then ε′ ◦ f = ε.

Consider R′ as an R-module via the map f : r′ · r = r′f(r) so that

R′ ⊗A = (R′ ⊗R R)⊗A = R′ ⊗R (R⊗A).

Then the push-out of the deformation λ is the deformation f∗λ of (A, π) with base
(R′,M′), defined by

f∗λ(1R′ ⊗ µ){r′1 ⊗R (r1 ⊗ a1), r′2 ⊗R (r2 ⊗ a2), · · · , r′n ⊗R (rn ⊗ an)}
= r′1r

′
2 · · · r′n ⊗R λ(1R ⊗ µ)(r1 ⊗ a1, r2 ⊗ a2, · · · , rn ⊗ an), µ ∈ P ¡(1)(n).

It is straightforward to see that f∗λ is a deformation of (A, π) with base (R′,M′).

Remark 3.7. Note that by the proof of Proposition 3.2, as in [13], if λ is a deformation
of the P-algebra (A, π) with a base (R,M), then λ can be expressed as

λ = π +

s∑
i=1

mi ⊗ φi, (3.1)

where π is a Maurer–Cartan element of gπ and
∑s

i=1mi ⊗ φi is a Maurer–Cartan
element of M⊗ gπ. Also, the push-out f∗λ is given by

f∗λ = π +
s∑

i=1

f(mi)⊗ φi, (3.2)

where
∑s

i=1 f(mi)⊗ φi is a Maurer–Cartan element of M′ ⊗ gπ.

Definition 3.8. A deformation λ of (A, π) with base (R,M) is called infinitesimal
if, in addition, M2 = 0.

To consider the equivalence of infinitesimal deformations, cohomology comes into
play naturally.

Let λ be an infinitesimal deformation of (A, π), with base (R,M) such that

λ = π +
s∑

i=1

mi ⊗ φi.

Let ξ ∈M′ = Homk(M,k). Clearly, ξ can be viewed as an element of Homk(R,k)
with ξ(1R) = 0.

Define a 1-cochain αλ,ξ of gπ by

αλ,ξ = (ξ ⊗ Id)λ.
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Theorem 3.9. For any infinitesimal deformation λ of a P-algebra (A, π), αλ,ξ is a
1-cocycle.

Proof. As in Remark 3.7, we write λ = π +
∑s

i=1mi ⊗ φi. Then, using the fact that
ξ(1R) = 0, the 1-cochain αλ,ξ can be expressed as

αλ,ξ = (ξ ⊗ Id)λ = (ξ ⊗ Id)(π +
s∑

i=1

mi ⊗ φi) =
s∑

i=1

ξ(mi)φi.

The fact that
∑s

i=1mi ⊗ φi ia a Maurer–Cartan element in M⊗ gπ, and the fact
that M2 = 0, implies that

s∑
i=1

mi ⊗ [φi, π] = 0.

Therefore,
s∑

i=1

ξ(mi)[π, φi] = (ξ ⊗ Id)(

s∑
i=1

mi ⊗ [π, φi]) = 0.

Using the above observations, we deduce that

∂π(αλ,ξ) = [π, αλ,ξ] = [π,

s∑
i=1

ξ(mi)φi] =

s∑
i=1

ξ(mi)[π, φi] = 0.

Let us define for ξ ∈M′ the cohomology class of the cocycle αλ,ξ by aλ,ξ. The
correspondence ξ 7−→ aλ,ξ defines a map

aλ : M
′ −→ H1

P(A).

Theorem 3.10. Let λ1 and λ2 be two infinitesimal deformations of (A, π) with base
(R,M). Assume that R is of finite dimension. Then the deformations λ1 and λ2 are
equivalent iff αλ1,ξ and αλ2,ξ represent the same cohomology class; that is, aλ1,ξ =
aλ2,ξ for ξ ∈M′.

Proof. This result is proved in [13, Theorem 12.2.7] for R = k[t]/(t2). The present
theorem is proved by following the same idea. We only give the essential steps.

Let {mi}16i6r be a basis of M, and let {ξi}16i6r be the dual basis of M′. By defi-
nition, λ1 and λ2 are equivalent if, and only if, there exists a PR-algebra isomorphism

ρ : AR −→ AR, such that (ε⊗ Id) ◦ ρ = ε⊗ Id . (3.3)

Since AR = R⊗A = (k⊕M)⊗A ∼= A⊕ (M⊗A), the isomorphism ρ can be
written as ρ = ρ1 + ρ2, where ρ1 : A −→ A and ρ2 : A −→M⊗A.

By compatibility (3.3), we get ρ1 = Id. Using the adjunction property of tensor
products, we have

Homk(A;M⊗A) ∼= M⊗Homk(A,A) ∼= Homk(M
′; Homk(A,A)),

where the isomorphisms are given by

ρ2 7−→
r∑
1

mi ⊗ φi 7−→
r∑
i

χi. (3.4)

Here φi = (ξi ⊗ id) ◦ ρ2, χi(ξj) = δi,jφi.
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Thus we can write

ρ = Id +
r∑
1

mi ⊗ φi.

Recall that ρ is a PR-algebra morphism iff

ρ(λ1(1R ⊗ µ)) = λ2(1R ⊗ µ)(ρ, ρ, · · · , ρ), (3.5)

µ ∈ P ¡(1)(n), where on the right-hand side we have n many copies of ρ.
Let us set ψk

i = αλk,ξi , i = 1, 2, . . . , r, and k = 1, 2. Then we have

λk(1R ⊗ µ) = π(µ) +
r∑
1

mi ⊗ ψk
i (µ) (3.6)

for all µ ∈ P ¡(1). We explicitly write both sides of the equation (3.5), using the fact
that the deformations involved are infinitesimal:

λ2(1R ⊗ µ)(ρ, ρ, · · · , ρ)

= π(µ) +

r∑
i=1

mi ⊗ ψ2
i (µ) +

n∑
k=1

r∑
i=1

mi ⊗ (π(µ)(Id, Id, · · · , φi, Id, · · · )),

where in the last summand φi is in the kth slot.
On the other hand,

ρ(λ1(1R ⊗ µ)) = ρ(π(µ) +
r∑
1

mi ⊗ ψ1
i (µ))

= π(µ) +
r∑
1

mi ⊗ φi ◦ π(µ) +
r∑
1

mi ⊗ ψ1
i (µ).

It follows from (3.5) that

r∑
1

mi ⊗ (ψ2
i − ψ1

i ) +
r∑
1

mi ⊗ ∂πφi = 0.

Hence,

∂πφi = ψ2
i − ψ1

i = αλ2,ξi − αλ1,ξi for all i = 1, . . . , r.

So, aλ1,ξ = aλ2,ξ, for all ξ ∈M′.

Let R be a local algebra with maximal ideal M. Then R/M2 is local with maximal

ideal M/M2 and (M/M2)
2
= 0. Let q : R −→ R/M2 be the projection map. Let λ be

a deformation of (A, π) with base (R,M). Then the deformation q∗λ is infinitesimal
and we have a map

aq∗λ : (M/M2)′ −→ H1
P(A).

Definition 3.11. The dual space (M/M2)′ is called the tangent space of R and is
denoted by TR. The mapping

aq∗λ : (M/M2)′ −→ H1
P(A)

is called the differential of λ and is denoted by dλ. In particular, if M2 = 0, then the
differential dλ of the infinitesimal deformation λ is the map aλ.
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Corollary 3.12. If two deformations λ1 and λ2 of a PR-algebra (A, π) are equivalent,
then their differentials are equal.

4. Universal Infinitesimal deformation

In this section we construct a specific example of an infinitesimal deformation of
a P-algebra satisfying finite dimensionality of the first cohomology module. We shall
also prove a fundamental property of this deformation. In the last section we will see
that this infinitesimal deformation is the first step of an inductive construction of a
versal deformation.

Let (A, π) be a given P-algebra satisfying the condition dim H1
P(A) <∞. Let us

denoteH1
P(A) by H. Consider the k-algebra C1 = k⊕H′ with the following structure:

(k1, h1) · (k2, h2) = (k1k2, k1h2 + k2h1).

Clearly, C1 is local with maximal ideal M = H′ and M2 = 0.
Fix a homomorphism

σ : H −→ g1P,A = HomS(P ¡(1),EndA)

that takes a cohomology class into a representative cocycle. We note that

H′ ⊗A = Homk(H
1
P(A),k)⊗A ∼= Homk(H

1
P(A), A)

and

AC1 = C1 ⊗A ∼= (k⊕H′)⊗A ∼= A⊕Homk(H, A).

Define a PC1-algebra structure η1 on AC1 by

η1 = π +
n∑

i=1

hi
∗ ⊗ σ(hi) (4.1)

as a map C1 ⊗ P ¡(1) −→ (k⊕H′)⊗ EndA = C1 ⊗ EndA, where {hi}16i6n denotes a
finite basis of H and {hi∗}16i6n denotes the dual basis.

Proposition 4.1. For any homomorphism σ : H −→ g1P,A = HomS(P ¡(1), EndA),
(AC1

, η1) is a PC1
-algebra.

Proof. We need to show that η1 is a Maurer–Cartan element in C1 ⊗ gπ. The cobound-
ary of the complex C1 ⊗ gπ is given by

∂̄π := IdC1 ⊗ ∂π.

From (4.1),

η1 = π +
∑
i

hi
∗ ⊗ σ(hi).

So

∂̄π(η1) = IdC1
⊗ [π, η1] = IdC1

⊗ [π, π] +
∑
i

h∗i ⊗ [π, σ(hi)]
)
= 0,

using the fact that σ(hi) is a 1-cocycle in gπ.
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Proposition 4.2. Up to isomorphism, the PC1-algebra structures of AC1 does not
depend on the choice of σ.

Proof. Let σ′ : H −→ g1P,A be another choice of σ, and denote the corresponding PC1 -
algebra structure on C1 ⊗A by η′. Then for h ∈ H, σ(h) and σ′(h) are two 1-cocycles
of A, representing the same cohomology class; that is, σ(h)− σ′(h) is a 1-coboundary.
Let σ(h)− σ′(h) = ∂π(γ(h)), where γ : H −→ Homk(A,A). Here Homk(A,A) is the
0 cochains of gπ. Using the identification

C1 ⊗A ∼= A⊕Homk(H, A),

define a C1-linear automorphism ρ : C1 ⊗A −→ C1 ⊗A by ρ(a, φ) = (a, φ̄), where
φ̄(h) = φ(h) + γ(h)(a). We need to show that ρ preserves the PC1 -algebra structure,
that is,

ρ(η1(1C1 ⊗ µ)) = η′(1C1 ⊗ µ) ◦ (ρ, ρ, · · · , ρ), (4.2)

where the number of copies of ρ on the right-hand side is the same as the (homoge-

neous) degree of µ in P ¡(1). Now observe that, using the isomorphism

Homk(H, A) ∼= Homk(H,k)⊗A,

we can rewrite the expression (4.1) of η1 as

η1(1C1 ⊗ µ)((a1, φ1), · · · , (an, φn)) = (π(µ)(a1, · · · , an), ψµ),

where ψµ(h) = σ(h)(µ)(a1, · · · , an) +
∑

i π(µ)(a1, · · · , φi(h), · · · , an), where in the
summation, φi is at the ith slot. Similarly,

η′(1C1 ⊗ µ)((a1, φ1), · · · , (an, φn)) = (π(µ)(a1, · · · , an), ψ′µ),

where

ψ′µ(h) = σ′(h)(µ)(a1, · · · , an) +
∑

i π(µ)(a1, · · · , φi(h), · · · , an)
= (σ(h)− ∂π(γ(h)))(µ)(a1, · · · , an) +

∑
i π(µ)(a1, · · · , φi(h), · · · , an).

We evaluate both sides of (4.2) using the expressions of η1, η
′ as given above and

the definitions of ρ and the coboundary ∂π, to get ψ′µ(h)− ψµ(h) = 0, for all h ∈ H.
Then equation (4.2) holds.

The main property of the infinitesimal deformation η1 is its universality in the
class of infinitesimal deformations with finite-dimensional base.

Theorem 4.3. For any infinitesimal deformation λ of the P-algebra A with a finite-
dimensional local base (R,M), there exists a unique homomorphism φ : C1 →R such
that λ is equivalent to the push-out φ∗η1.

Proof. Let aλ : M
′ → H1

P(A) = H denote the differential of λ,

aλ : ξ 7→ aλ,ξ = [αλ,ξ], ξ ∈M′.

Consider the map φ = Id⊕a′λ : k⊕H′ → k⊕M = R. Let {mi}ri=1 be a basis of
M, and let {ξi} be the dual basis.

It is enough to show αφ∗η1 = σ ◦ aλ (Theorem 3.10). Let {h1, · · · , hn} be a basis
of H, and let {h1∗, · · · , hn∗} be the corresponding dual basis of H′.
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Then by Remark 3.7 and equation (3.2) we have

φ∗η1 = π +

n∑
j=1

φ(hj
∗)⊗ σ(hj).

Now,

a′λ(hj
∗) =

r∑
i=1

ξi(a
′
λ(hj

∗))mi and aλ(ξi) =
n∑

j=1

hj
∗(aλ(ξi))hj .

Thus

αφ∗η1(ξi)(µ; a1, · · · , an)
= (ξi ⊗ Id)φ∗η1(µ)(1R ⊗ a1, · · · , 1R ⊗ an)

= (ξi ⊗ Id)

π(µ)(a1, · · · , an) + n∑
j=1

φ(hj
∗)⊗ σ(hj)(µ; a1, · · · , an)


= (ξi ⊗ Id)

 n∑
j=1

a′λ(hj
∗)⊗ σ(hj)(µ; a1, · · · , an)


=

n∑
j=1

ξi(a
′
λ(hj

∗))⊗ σ(hj)(µ; a1, · · · , an)

=
k∑

j=1

hj
∗(aλ(ξi))⊗ σ(hj)(µ; a1, · · · , an)

= σ

 n∑
j=1

hj
∗(aλ(ξi))hj

 (µ; a1, · · · , an)

= σ ◦ aλ(ξi)(µ; a1, · · · , an).

Therefore, αφ∗η1 = σ ◦ aλ. The uniqueness of the homomorphism φ : C1 −→ R fol-
lows from the definition of φ and the fact that two infinitesimal deformations θ and
θ′ are equivalent if, and only if, the corresponding maps aθ and aθ′ are equal, (cf.
Theorem 3.10).

5. Deformation Extensions

Let us recall some definitions and results from [11]. LetR be a commutative algebra
over k. Let (Cq(R), δ) denote the standard Hochschild complex, where Cq(R) is the
R-module R⊗(q+1) with R acting on the first factor by multiplication of R. Let
Shq(R) be the R-submodule of Cq(R) generated by chains

sp(r0, r1, r2, · · · , rq) =
∑

σ∈Sh(p,q−p)

sgn(σ)(r0, rσ−1(1), rσ−1(2), · · · , rσ−1(q)) ∈ Cq(R)

for r1, r2, · · · , rq ∈ R; 0 < p < q.

Then Sh∗ is a subcomplex of C∗(R), and hence we have a complex called the
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Harrison complex

Ch∗(R) = {Chq(R), δ}; Chq(R) = Cq(R)/Shq(R).

For an R-moduleM , the Harrison cochain complex defining the Harrison cohomology
with coefficients in M is given by Ch∗(R;M) = HomR(Ch∗(R),M).

Definition 5.1. For an R-module M , we define

Hq
Harr(R;M) = Zq(R,M)/Bq(R,M) = Hq(Ch∗(R,M)),

where Zq(R,M) and Bq(R,M) are the spaces of q-cocycles and q-coboundaries,
respectively.

Proposition 5.2. Let R be a commutative local algebra with maximal ideal M, and
let M be an R-module with MM = 0. Then we have the canonical isomorphism

Hq
Harr(R; M) ∼= Hq

Harr(R;k)⊗M.

Definition 5.3. A (split) abelian extension or square-zero extension R′ of R by an
R-module M is a k-algebra R′ together with an exact sequence of k-modules

0 −→M
i−→ R′ p−→ R −→ 0,

where p is an algebra homomorphism so that N = i(M) is an R′-module and this R′-
module structure is induced by the R-module structure on M as r′i(m) = i(p(r′)m).
In particular, N is an ideal in R′ satisfying N2 = 0.

Definition 5.4. An abelian extension R′ of R by R-module M is called a local
abelian extension if, in addition, MM = 0, where M is the maximal ideal of R.

Henceforth, by an extension we shall always mean a local abelian extension.

Remark 5.5. Note that, as R is local, R′ is also local with MR′ = p−1(M) as its
maximal ideal. Moreover, the condition MM = 0 clearly implies that, for any x ∈
MR′ and n ∈ N , xn = 0.

We will use the following results relating Harrison cohomology and extensions of
the algebra R by means of M , [11].

Proposition 5.6. (i) The space H1
Harr(R;M) is isomorphic to the space of deriva-

tions R −→M .

(ii) Elements of H2
Harr(R;M) correspond bijectively to isomorphism classes of

extensions

0 −→M −→ R′ −→ R −→ 0

of the algebra R by means of M .

(iii) The space H1
Harr(R;M) can also be interpreted as the group of automorphisms

of any given extension of R by M .

Corollary 5.7. If R is a local algebra with the maximal ideal M, then

H1
Harr(R ;k) ∼=

( M

M2

)′
= TR.
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LetR be a finite-dimensional commutative, unital, local algebra with augmentation
ε and maximal ideal M. Let λ be a deformation of a P = P(k, E,R)-algebra (A, π)
with the base (R,M). Let (R′,MR′) be an extension of (R,M) by an R-module M ,
where dimRM <∞. In this section we consider the problem of extending the given
deformation λ to a deformation with base (R′,MR′).

First, let us consider the case of a one-dimensional extension. Let

0 −→ k
i−→ R′ p−→ R −→ 0

be any one-dimensional extension of R. By the above proposition the isomorphism
classes of one-dimensional extensions of R are in one-to-one correspondence with the
Harrison cohomology H2

Harr(R;k) of R with coefficients in k where the R module
structure on k is given by rk = ε(r)k.

Let [f ] ∈ H2
Harr(R;k). Suppose 0 −→ k

i−→ R′ p−→ R −→ 0 is a representative of
the class of one-dimensional extensions of R, corresponding to the cohomology class
[f ].

Let us recall how the algebra structure on R′ is related to f . Fix a splitting
q : R → R′. Let ε̂ = ε ◦ p : R′ → k denote the augmentation of R′. Then the map
b 7→ (p(b), i−1(b− q ◦ p(b))) is a k-module isomorphism R′ ∼= R⊕ k. Let (r, k)q ∈ R′
denote the inverse of (r, k) ∈ R⊕ k under the above isomorphism. The cocycle f rep-
resenting the extension is determined by f(r1, r2) = i−1((r1, 0)q(r2, 0)q − (r1r2, 0)q).
On the other hand, f determines the algebra structure on R′ by

(r1, k1)q · (r2, k2)q := (r1r2, r1 · k2 + r2 · k1 + f(r1, r2))q.

As in Section 3, let {mi}ri=1 be a fixed basis of the maximal idealM ofR with the dual
basis {ξi}ri=1. Let ψi = αλ,ξi , 1 6 i 6 r be the 1-cochain introduced as in Section 3.
Then by Proposition 3.2, the deformation λ can be written as

λ = π +
r∑

i=1

mi ⊗ ψi,

where
∑r

i=1mi ⊗ ψi is a Maurer–Cartan element in M⊗ gπ.
Let {nj}16j6r+1 be defined by nj = (mj , 0)q for 1 6 j 6 r and nr+1 = (0, 1)q.

Then {nj}16j6r+1 is a basis of the maximal ideal MR′ of R′.
A deformation Γ with base R′ extending λ is entirely determined by the following

two facts:

• Γ defined on P ¡(1) can be extended to the category of R′-modules, and

• if Γ̂ is the unique extension of Γ, then Γ̂(r) = 0 for every r ∈ R.
Let ψ ∈ g1 be any cochain. Define

Γ(1R′ ⊗ µ) = π(µ) +

r∑
j=1

nj ⊗ ψj(µ) + nr+1 ⊗ ψ(µ), (5.1)

where µ ∈ P ¡(1).
Extending to the category of R′-modules, this defines a R′-linear map

Γ: R′ ⊗ P ¡(1) −→ R′ ⊗ EndA.

By the universal property of free operads, we extend Γ to a morphism of operads
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Γ̃ : F(ER′) −→ End(AR′). Now, Γ induces a PR′-algebra structure on AR′ if, and

only if, Γ̃((R)) = 0, and it is clear from our construction of Γ that it extends the
given deformation λ.

As λ defines an algebra structure on R⊗A, [λ, λ] = 0. This implies [13, Proposi-
tion 12.2.6])

r∑
i=1

mi ⊗ ∂π(ψi) + 1/2

r∑
i,j=1

mimj ⊗ [ψi, ψj ] = 0. (5.2)

Note that saying that Γ induces an algebra structure onR′ ⊗A is equivalent to saying
that, as an element of the Lie algebra gR′⊗P,R′⊗A ∼= R′ ⊗ gP,A, [Γ,Γ] vanishes. From
the expression of Γ, we get

[Γ,Γ] =

[
π +

r∑
i=1

ni ⊗ ψi + nr+1 ⊗ ψ, π +
r∑

i=1

ni ⊗ ψi + nr+1 ⊗ ψ

]
= [π, π] + 2

r∑
i=1

ni ⊗ ∂πψi + 2nr+1 ⊗ ∂πψ +
r∑

i,j=1

ninj ⊗ [ψi, ψj ]

+2
r∑

i=1

ninr+1 ⊗ [ψi, ψ] + n2r+1 ⊗ [ψ,ψ],

using the fact that ∂π(f) = [π, f ].
We note that [π, π] = 0. As ninr+1 = 0 for 1 6 i 6 r (Mk = 0) and n2r+1 = 0, the

above expression is equal to

2
r∑

i=1

ni ⊗ ∂πψi + 2nr+1 ⊗ ∂πψ +
r∑

i,j=1

ninj ⊗ [ψi, ψj ].

Thus Γ defines a R′ ⊗ P-algebra structure on R′ ⊗A extending λ, the R⊗P-
algebra structure on R⊗A, if, and only if,

[Γ,Γ] = 0

⇐⇒ nr+1 ⊗ ∂πψ = −
r∑

i=1

ni ⊗ ∂πψi −
1

2

r∑
i,j=1

ninj ⊗ [ψi, ψj ]

⇐⇒ (0, 1)q ⊗ ∂π(ψ) = −
r∑

i=1

(mi, 0)q ⊗ ∂π(ψi)−
1

2

r∑
i,j=1

(mimj , f(mi,mj))q ⊗ [ψi, ψj ]

(using the isomorphism between R′ ∼= R⊕ k)

⇐⇒ ∂π(ψ) = −
1

2

r∑
i,j=1

f(mi,mj)[ψi, ψj ].

Let us define a 2-cochain Φ on gP,A as follows:

Φ =
r∑

i,j=1

f(mi,mj)[ψi, ψj ].

This cochain is called the obstruction cochain.

Proposition 5.8. The obstruction cochain Φ is a 2-cocycle in gP,A.
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Proof. From equation 5.2,
r∑

i=1

(mi, 0)q ⊗ ∂πψi + 1/2

r∑
i,j=1

(mimj , 0)q ⊗ [ψi, ψj ] = 0 (5.3)

as an element of R′ ⊗ gπ.
Let ∂′π be the differential of R′ ⊗ g induced by ∂π in gπ. Then

∂′π

 r∑
i,j=1

ninj ⊗ [ψi, ψj ]


=

r∑
i,j=1

ninj ⊗ ∂π[ψi, ψj ]

=

 r∑
i,j=1

ninj ⊗
(
[∂πψi, ψj ]− [ψi, ∂πψj ]

)
=

 r∑
i=1

ni ⊗ ∂πψi,

r∑
j=1

nj ⊗ ψj

−
 r∑

i=1

ni ⊗ ψi,

r∑
j=1

nj ⊗ ∂πψj


=

 r∑
i=1

(mi, 0)q ⊗ ∂πψi,
r∑

j=1

(mj , 0)q ⊗ ψj


−

 r∑
i=1

(mi, 0)q ⊗ ψi,

r∑
j=1

(mj , 0)q ⊗ ∂πψj


= −1

2

 r∑
k,l=1

(mkml, 0)q ⊗ [ψk, ψl],

r∑
j=1

(mj , 0)q ⊗ ψj


+
1

2

 r∑
i=1

(mi, 0)q ⊗ ψi,
r∑

k,l=1

(mkml, 0)q ⊗ [ψk, ψl]

 ,by (5.3)

= −1

2

r∑
i,j,k=1

(mimjmk, f(mimj ,mk))q ⊗ [[ψi, ψj ], ψk]

+
1

2

r∑
i,j,k=1

(mimjmk, f(mi,mjmk))q ⊗ [ψi, [ψj , ψk]]

=
1

2

r∑
i,j,k=1

ninjnk ⊗ ([ψi, [ψj , ψk]]− [[ψi, ψj ], ψk])

as f(mimj ,mk) = f(mi,mjmk), f being a 2-cocycle and Mk = 0

=
1

2

r∑
i,j,k=1

ninjnk ⊗ [[ψi, ψk], ψj ]

= 0, by the Jacobi identity.

On the other hand,

∂′π(
r∑

i,j=1

ninj ⊗ [ψi, ψj ]) =
r∑

i,j=1

(mimj , f(mi,mj))q ⊗ ∂π[ψi, ψj ].
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Hence, by the previous argument,
r∑

i,j=1

(mimj , f(mi,mj))q ⊗ ∂π[ψi, ψj ] = 0.

By equation (5.2),
∑r

i,j=1mimj ⊗ ∂π[ψi, ψj ] = 0. Hence,

∂πΦ =
r∑

i,j=1

f(mi,mj)∂π[ψi, ψj ] = 0.

The above proposition enables us to define a map from the set of 2-cocycles
Z2(R,k) to H2

P(A). We shall see that this map passes to cohomology.
Let f and f1 be two 2-cocycles in the same cohomology class in H2

Harr(R;k);
that is, f − f1 = δh for some 1-cochain h ∈ Ch1(R,k). The obstruction cocycle for
extending λ to an extension corresponding to f is given by

∑
i,j f(mi,mj)[ψi, ψj ]. The

obstruction cocycle corresponding to the cocycle f1 is given by
∑
i,j

f1(mi,mj)[ψi, ψj ].
Now,∑

i,j

f(mi,mj)[ψi, ψj ]−
∑
i,j

f1(mi,mj)[ψi, ψj ] =
∑
i,j

δh(mi,mj)[ψi, ψj ]

=
∑
i,j

(mih(mj)− h(mimj) + h(mi)mj)[ψi, ψj ]

=−
∑
i,j

h(mi,mj)[ψi, ψj ].

The terms mih(mj) and h(mi)mj vanish as ε(M) = 0. On the other hand, from
equation (5.2),

r∑
i=1

mi ⊗ ∂π(ψi) = −1/2
r∑

i,j=1

mimj ⊗ [ψi, ψj ].

Hence

(h⊗ id)
r∑

i=1

mi ⊗ ∂πψi = −1/2
r∑

i,j=1

h(mimj)[ψi, ψj ]

⇒ ∂π

(
2

r∑
i=1

h(mi)ψi

)
=

r∑
i=1

h(mi)∂π(ψi) = −
r∑

i,j=1

h(mimj)[ψi, ψj ].

The above consideration defines a map

θλ : H
2
Harr(R;k) −→ H2

P(A), by θλ([f ]) = [Φ],

where [Φ] is the cohomology class of Φ. The map θλ is called the obstruction map.
The proof of the following proposition is straightforward.

Proposition 5.9. Let λ be a deformation of a P-algebra A with base R, and let
R′ be a one-dimensional extension of R corresponding to the cohomology class [f ] ∈
H2

Harr(R;k). Then λ can be extended to a deformation of A with base R′ if, and only
if, the obstruction θλ([f ]) = 0.

We state the following proposition, the proof of which is similar to the proof of
Corollary 5.8 in [6].
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Proposition 5.10. Suppose that for a deformation λ of a P-algebra A with base R,
the differential dλ : TR −→ H is onto. Then the group of automorphisms A of the
extension

0 −→ k
i−→ R′ p−→ R −→ 0 (5.4)

operates transitively on the set of equivalence classes of deformations Γ of A with base
R′ such that p∗Γ = λ. In other words, if Γ exists, it is unique up to an isomorphism
and an automorphism of this extension.

More generally, for an extension

0 −→M
i−→ R′ p−→ R −→ 0

with dimRM <∞, the above arguments can be generalized.
The obstruction map in this more general situation is defined by

θλ : H
2
Harr(R;M) −→ M ⊗H2

P(A)
[f ] 7→ [Φ].

Then, as in the case of one-dimensional extension, we have the following.

Proposition 5.11. Let λ be a deformation of a P-algebra A with base (R,M), and
let M be a finite-dimensional R-module with MM = 0. Consider an extension R′
of R

0 −→M
i−→ R′ p−→ R −→ 0

corresponding to some [f ] ∈ H2
Harr(R;M). A deformation Γ of A with base R′ such

that p∗Γ = λ exists if, and only if, the obstruction θλ([f ]) = 0. If dλ : TR −→ H is
onto, then the deformation Γ, if it exists, is unique up to an isomorphism and an
automorphism of the above extension.

We end this section with the following naturality property of the obstruction map,
the proof of which is similar to Proposition 5.10 in [6].

Proposition 5.12. Suppose R1 and R2 are finite-dimensional unital local algebras
with augmentations ε1 and ε2, respectively. Let φ : R2 −→ R1 be an algebra homo-
morphism with φ(1) = 1 and ε1 ◦ φ = ε2. Suppose λ2 is a deformation of a P-algebra
A with base R2 and λ1 = φ∗λ2 is the push-out via φ. Then the following diagram
commutes:

H2
Harr(R1;M)

φ∗

��

θλ1

''NNNNNNNNNNN

H2
P(A)

H2
Harr(R2;M)

θλ2

77ppppppppppp

6. Construction of a Versal Deformation

We begin the last section with the definition of the notion of a versal deformation
of a P-algebra. The importance of versal deformation lies in the fact that it includes
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information of all other non-equivalent deformations of a given object. We use the
results developed in the last two sections to give a constructive proof of the existence
of versal deformations of a given P-algebra. In fact, starting with the infinitesimal
deformation as introduced in Section 4, we give an explicit construction of a versal
deformation of a P-algebra by an inductive argument, using the obstruction theory
developed in Section 5.

Definition 6.1. A formal deformation η of a P-algebra A with base R′ is called
versal if it satisfies the conditions

(i) for any formal deformation λ of A with base R there exists a homomorphism
f : R′ −→ R such that the deformation λ is equivalent to f∗η;

(ii) if R satisfies the condition M2 = 0, then f is unique.

We proceed to construct a versal deformation of a P-algebra A. As before, let
H = H1

P(A), and assume that dim(H) <∞. Let η1 be the universal infinitesimal
deformation with base C1 as constructed in Section 4. Suppose for some k > 1 we
have constructed a finite-dimensional local algebra Ck and a deformation ηk of A
with base Ck. Let

µ : H2
Harr(Ck;k) −→ (Ch2(Ck))′

be a homomorphism sending a cohomology class to a cocycle representing the class.
Let

fCk : Ch2(Ck) −→ H2
Harr(Ck;k)′

be the dual of µ. By Proposition 5.6 (ii), we have the following extension of Ck:

0 −→ H2
Harr(Ck;k)′

īk+1−→ C̄k+1
p̄k+1−→ Ck −→ 0. (6.1)

The corresponding obstruction θηk
([fCk ]) ∈ H2

Harr(Ck;k)′ ⊗H2
P(A) gives a linear map

ωk : H
2
Harr(Ck;k) −→ H2

P(A) with the dual map

ωk
′ : H2

P(A)
′ −→ H2

Harr(Ck;k)′.

We have an induced extension

0 −→ coker(ω′k) −→ C̄k+1/
(̄
ik+1 ◦ ω′k(H2

P(A)
′)
)
−→ Ck −→ 0.

Since coker(ω′k)
∼= (ker(ωk))

′, it yields an extension

0 −→ (ker(ωk))
′ ik+1−→ Ck+1

pk+1−→ Ck −→ 0, (6.2)

where Ck+1 = C̄k+1/
(̄
ik+1 ◦ ω′k(H2

P(A)
′)
)
and ik+1, pk+1 are the mappings induced

by īk+1 and p̄k+1, respectively. Observe that the algebra Ck+1 is also local. Since Ck
is finite dimensional, the cohomology group H2

Harr(Ck;k) is also finite dimensional,
and hence Ck+1 is finite dimensional as well.

Remark 6.2. It follows from Proposition 5.2 that the specific extension (6.1) has the
following “universality property.” For any Ck-module M with MM = 0, (6.1) admits
a unique morphism into an arbitrary extension of Ck:

0 −→M −→ R′ −→ Ck −→ 0.
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Proposition 6.3. The deformation ηk with base Ck of a P-algebra A admits an exten-
sion to a deformation with base Ck+1, that is unique up to an isomorphism and an
automorphism of the extension

0 −→ (ker(ωk))
′ ik+1−→ Ck+1

pk+1−→ Ck −→ 0.

Proof. From the above construction of the extension in 6.2, it is clear that θηk
([fCk ]) =

ωk|ker(ωk) = 0. Therefore, the proof is complete by Proposition 5.11.

By induction, the above process gives a sequence of finite-dimensional local alge-
bras Ck and the deformation ηk of the P-algebra A with base Ck:

k
p1←− C1

p2←− · · · pk←− Ck
pk+1←− Ck+1

such that (pk+1)∗ηk+1 = ηk.
As a consequence, we obtain a formal deformation η of the P-algebra A with base

C =lim←−k→∞ Ck.
The proof of the following theorem is analogous to the proof of Theorem 6.8 of [6].

Theorem 6.4. Let A be a P-algebra with dim(H) <∞. Then the formal deformation
η with base C constructed above is a versal deformation of A.
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