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Abstract
Let k be a field, and let G be a finite group. By a theorem of

D. Benson, H. Krause, and S. Schwede, there is a canonical ele-
ment in the Hochschild cohomology of the Tate cohomology
γG ∈ HH3,−1Ĥ∗(G) with the following property: Given any
graded Ĥ∗(G)-module X, the image of γG in Ext3,−1

Ĥ∗(G)
(X,X)

is zero if and only if X is isomorphic to a direct summand
of Ĥ∗(G,M) for some kG-module M . In particular, if γG = 0
then every module is a direct summand of a realizable Ĥ∗(G)-
module.

We prove that the converse of that last statement is not true
by studying in detail the case of generalized quaternion groups.
Suppose that k is a field of characteristic 2 and G is generalized
quaternion of order 2n with n > 3. We show that γG is non-
trivial for all n, but there is an Ĥ∗(G)-module detecting this
non-triviality if and only if n = 3.

1. Introduction

Let k be a field,G a finite group, and let Ĥ∗(G) denote the graded Tate cohomology
algebra of G over k. The starting point of this paper is the following theorem of
D. Benson, H. Krause, and S. Schwede:

Theorem 1.1. [2] There exists a canonical element in Hochschild cohomology of
Ĥ∗(G)

γG ∈ HH3,−1Ĥ∗(G),

such that for any graded Ĥ∗(G)-module X, the following are equivalent:

(i) The image of γG in Ext3,−1

Ĥ∗(G)
(X,X) is zero.

(ii) There exists a kG-module M such that X is a direct summand of the graded
Ĥ∗(G)-module Ĥ∗(G,M).
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Let us call an Ĥ∗(G)-module realizable if it is isomorphic to a module of the
form Ĥ∗(G,M) for some kG-module M . As an immediate consequence we get the
following.

Corollary 1.2. If γG = 0, then every Ĥ∗(G)-module is a direct summand of a real-
izable module.

At this point it is natural to ask for the converse of that statement. That is, given
the fact that γG 6= 0, is there some Ĥ∗(G)-module detecting the non-triviality of γG?
Theorem 1.1 works more generally in the situation of differential graded algebras,
and in that setup the converse of the corresponding corollary is known to the false:
Benson, Krause, and Schwede provide an example of a dg algebra A such that the
canonical class γA ∈ HH3,−1(H∗A) is non-trivial, but every H∗A-module is realizable
(see [2, Proposition 5.16]). Nevertheless, the author believes that the question whether
there is such an example coming from Tate cohomology of groups is still open.

In this paper we will compute γG explicitly for the generalized quaternion groups
G. In what follows, let t > 2 be a power of 2, and let G = Q4t be the group of
generalized quaternions

Q4t =
〈
g, h | gt = h2, ghg = h

〉
.

Let k be a field of characteristic 2, and denote by L = kG the group algebra of G
over k. Then the Tate cohomology ring Ĥ∗(G) is well known; it is given by

Ĥ∗(Q4t) = Êxt
∗
L(k, k)

∼=

{
k[x, y, s±1]/(x2 + y2 = xy, y3 = 0) if t = 2,

k[x, y, s±1]/(x2 = xy, y3 = 0) if t > 4,

with degrees |x| = |y| = 1, |s| = 4 (see, e.g., [4, Chapter XII §11] and [1, IV Lemma
2.10]). Our main goal is to prove the following theorem.

Theorem 1.3. The element γQ8 ∈ HH3,−1Ĥ∗(Q8) is non-trivial, and the cokernel of
the map

Ĥ∗(Q8)[−1]⊕ Ĥ∗(Q8)[−1]
(
y x+y
x y

)
−−−−−−→ Ĥ∗(Q8)⊕ Ĥ∗(Q8)

is a graded Ĥ∗(Q8)-module which is not a direct summand of a realizable one. For
t > 4 the element γQ4t ∈ HH3,−1Ĥ∗(Q4t) is non-trivial, but every graded Ĥ∗(Q4t)-
module is a direct summand of a realizable one.

The plan is as follows: In the first section we will briefly recall the definitions
needed in Theorem 1.1; most of this part is taken from [2], and the reader interested
in details should consult that source. In the second section we turn to the computation
of a Hochschild cocycle m representing the canonical class γG. In the third section
we prove the statements about realizability of modules. Theorem 1.3 will then follow
from Theorems 3.6, 3.8, 4.3, and Propositions 4.7 and 4.8.
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2. Prerequisites

2.1. Notation and conventions
All occurring modules will be right modules. We shall often work over a fixed

ground field k; then ⊗ means tensor product over k. Whenever convenient, we write
(a1, a2, . . . , an) instead of a1 ⊗ a2 ⊗ · · · ⊗ an. IfG is a group, then k is often considered
as a trivial kG-module.

Let R be a ring with unit, and let M be a Z-graded R-module. The degree of
every (homogeneous) element m ∈M will be denoted by |m|. For every integer n the
module M [n] is defined by M [n]j = Mn+j for all j. Given two such modules M and
L, a morphism f : L −→M is a family f j : Lj −→M j of R-module homomorphisms.
The group of all these morphisms is denoted by HomR(L,M). Furthermore, we have
Homm

R (L,M) = HomR(L,M [m]), the morphisms of degree m. The graded module
L⊗M is given by (L⊗M)m =

⊕
i+j=m Li ⊗M j . If M is a differential graded R-

module with differential d, then the differential of M [n] is given by (−1)nd.

2.2. Tate Cohomology
Let us recall briefly the definition and basic properties of Tate cohomology. Let k

be a field, and let G be a finite group. Then L = kG is a self-injective algebra (i.e.,
the classes of projective and injective right-L-modules coincide). For any L-module
N we get a complete projective resolution P∗ of N by splicing together a projective
and an injective resolution of N :

. . . P−2
oo P−1

oo P0
oo

������
��

P1
oo P2

oo . . .oo

N
/ O

__????

Given another L-module M , we can apply the functor HomL(−,M) to P∗; then Tate
cohomology is defined to be the cohomology groups of the resulting complex:

Êxt
n

L(N,M) = Hn(HomL(P∗,M)) for all n ∈ Z.

For arbitrary L-modules X, Y , and Z, we have a cup product

Êxt
m

L (Y, Z)⊗ Êxt
n

L(X,Y ) −→ Êxt
m+n

L (X,Z);

see, e.g., [3, §6]. Therefore, Ĥ∗(G) = Ĥ∗(G, k) = Êxt
∗
kG(k, k) is a graded algebra,

and Ĥ∗(G,M) = Êxt
∗
kG(k,M) is a graded Ĥ∗(G)-module for every kG-module M .

We call a graded Ĥ∗(G)-module X realizable if it is isomorphic to Ĥ∗(G,M) for some
kG-module M .

There is another way of describing the product of Ĥ∗(G), in terms of P∗. Consider
the differential graded algebra A = Hom∗

L(P∗, P∗), which (in degree n) is given by

An =
∏
j∈Z

HomL(Pj+n, Pj),

and the differential d : An −→ An+1 is defined to be

(df)j = ∂ ◦ fj+1 − (−1)nfj ◦ ∂.

Here ∂ denotes the differential of P∗. A is called the endomorphism dga of P . With
this definition, the cocycles of A (of degree n) are exactly the chain transformations
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P [n]→ P , and two cocycles differ by a coboundary if and only if they are chain
homotopic. Using standard arguments from homological algebra, one shows that the
following map is an isomorphism of k-vector spaces:

HnA
∼=−→ Êxt

n

L(k, k),

[f ] 7→ [ε ◦ f0].
(1)

Here ε : P0 −→ k is the augmentation. This isomorphism is compatible with the mul-
tiplicative structures. We will often write ā for elements of the endomorphism dga; if
ā is a cocycle, then a denotes the corresponding cohomology class.

2.3. Hochschild Cohomology
We now give a short review of Hochschild cohomology. Let Λ be a graded algebra

over the field k, and let M be a graded Λ-Λ-bimodule, the elements of k acting
symmetrically. Define a cochain complex C•,∗(Λ,M) by

Cn,m(Λ,M) = Homm
k (Λ⊗n,M),

with a differential δ of bidegree (1, 0) given by

(δϕ)(λ1, . . . , λn+1) = (−1)m|λ1|λ1ϕ(λ2, . . . , λn+1)

+
n∑

i=1

(−1)iϕ(λ1, . . . , λiλi+1, . . . , λn+1) + (−1)n+1ϕ(λ1, . . . , λn)λn+1.

The Hochschild cohomology groups HH∗,∗(Λ,M) are defined as the cohomology
groups of that complex:

HHs,t(Λ,M) = Hs(C∗,t(Λ,M)).

In particular, we can regard M = Λ as a bimodule over itself; we will then write
HHs,t(Λ) = HHs,t(Λ,Λ). For example, an element of HH3,−1(Λ) is represented by a
family of k-linear maps

m = {mi,j,l : Λ
i ⊗ Λj ⊗ Λl −→ Λi+j+l−1}i,j,l∈Z

satisfying the cocycle relation

(−1)|a|a ·m(b, c, d)−m(ab, c, d) +m(a, bc, d)−m(a, b, cd) +m(a, b, c) · d = 0

for all a, b, c, d ∈ Λ.
Whenever X and Y are Λ-Λ-bimodules, one has a cup product pairing

∪ : HomΛ(X,Y )⊗HH∗,∗Λ −→ Ext∗,∗Λ (X,Y ).

Here Exts,tΛ (X,Y ) is defined to be ExtsΛ(X,Y [t]). In particular, we have the map

HH3,−1Ĥ∗(G) −→ Ext3,−1

Ĥ∗(G)
(X,X)

φ 7→ idX ∪φ

for every Ĥ∗(G)-module X. This is the map occurring in Theorem 1.1.

2.4. The canonical element γ
We are now going to describe the construction of the element γ mentioned in

Theorem 1.1. More generally, we will construct an element γA ∈ HH3,−1H∗A for
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every differential graded algebraA over k; then we can takeA to be the endomorphism
algebra of a complete projective resolution of k as a trivial kG-module to get γG ∈
HH3,−1Ĥ∗(G).

For a dg-algebra A, consider H∗A as a differential graded k-module with trivial
differential. Then choose a morphism of dg-k-modules f1 : H

∗A −→ A of degree 0
which induces the identity in cohomology. This is the same as choosing a representa-
tive in A for every class in H∗A in a k-linear way. For every two elements x, y ∈ H∗A,
f1(xy)− f1(x)f1(y) is null-homotopic; therefore, we can choose a morphism of graded
modules

f2 : H
∗A⊗H∗A −→ A

of degree −1 such that for all x, y ∈ H∗A, we have

df2(x, y) = f1(xy)− f1(x)f1(y).

Then for all a, b, c ∈ H∗A,

f2(a, b)f1(c)− f2(a, bc) + f2(ab, c)− (−1)|a|f1(a)f2(b, c)

is a cocycle in A, the cohomology class of which will be denoted by m(a, b, c). This
defines a map m : (H∗A)⊗3 −→ H∗A of degree −1. An explicit computation shows
that m is a Hochschild cocycle, thereby representing a class γA ∈ HH3,−1H∗A. This
class is independent of the choices made.

3. Computation of the canonical element

From now on, let k be a field of characteristic 2. Let t > 2 be a power of 2, and let
G = Q4t be the group of generalized quaternions

Q4t =
〈
g, h | gt = h2, ghg = h

〉
.

We denote by kG the group algebra of G over k, and F = kG denotes the free module
of rank 1 over that algebra. In this section, we are going to explicitly compute a
Hochschild cochain m representing the canonical class γG.

3.1. The class of a map

We begin with an observation that will reduce the subsequent computations some-
what. Let us recall the construction of a representative of γG. First of all, we have
to construct a projective resolution P , and we will actually find a minimal projective
resolution. Then we have to choose a cycle selection homomorphism f1 : Ĥ

∗(G)→
Hom∗

kG(P, P ) such that any class a is mapped to a representative f1(a). We can
find a k-linear map f2 : Ĥ

∗(G)⊗ Ĥ∗(G)→ Hom∗
kG(P, P ) of degree −1 satisfying

df2(a, b) = f1(a)f1(b)− f1(ab) for all a, b. Finally, we are interested in terms of the
form

f2(a, b)f1(c) + f2(a, bc) + f2(ab, c) + f1(a)f2(b, c); (2)

this is a cocycle in Hom∗
kG(P, P ). In order to determine the class of this cocycle, it

is enough to know the degree 0 map of it (cf. (1)). This observation leads to the
following definition.
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Definition 3.1. For every f ∈ Homn
kG(P, P ), i.e., a family of maps fj : Pj+n → Pj

(j ∈ Z), not necessarily commuting with the differential, we denote by C(f) the class
of the map ε ◦ f0 : Pn → k in Hn HomkG(P∗, k) = Ĥn(G).

Note that the complex HomkG(P∗, k) has trivial differential; thus, every element in
HomkG(P∗, k) and in particular ε ◦ f0 is a cocycle. The definition above gives a map

C : Homn
kG(P, P ) −→ Ĥn(G)

f 7→ [ε ◦ f0].

Proposition 3.2. The map C has the following properties:

(i) If f ∈ Homn
kG(P, P ) is a cocycle, then C(f) is the cohomology class of f ; in

particular, C ◦ f1 = id.

(ii) The map C is k-linear.

(iii) If C(f1) = C(f2) for some f1, f2 ∈ Homn
kG(P, P ), then C(f1g) = C(f2g) for all

g ∈ Homm
kG(P, P ).

(iv) If a ∈ Homm
kG(P, P ) is a cocycle and f ∈ Homn

kG(P, P ) is an arbitrary element,
then C(fa) = C(f)C(a).

Proof. (i) follows from (1). (ii) holds by definition. (iii): If C(fi) = 0, then ε ◦ fi = 0.
This implies ε ◦ fi ◦ g = 0; hence C(fig) = 0. For general f1, f2, note C(f1 − f2) = 0;
by what we just proved, C((f1 − f2)g) = 0 and therefore C(f1g) = C(f2g). (iv): Choose
a cocycle h ∈ Homn

kG(P, P ) satisfying C(h) = C(f). Then by (iii)

C(fa) = C(ha) = C(h)C(a) = C(f)C(a).

The following corollary will simplify computations later on.

Proposition 3.3. The map f2 can be chosen in such a way that C ◦ f2 = 0.

Proof. Choose any f̃2 (satisfying df̃2(a, b) = f1(a)f1(b)− f1(ab)). Put f2 = f̃2 − f1 ◦
C ◦ f̃2. Since df1 = 0, we get

df2(a, b) = df̃2(a, b) = f1(a)f1(b)− f1(ab),

and from C ◦ f1 = id, it follows that

C ◦ f2 = C ◦ f̃2 − C ◦ f1 ◦ C ◦ f̃2 = 0.

Consider (2) with this simplified version of f2. By applying C, we get the term

C(f2(a, b)f1(c)) + C(f2(a, bc)) + C(f2(ab, c)) + C(f1(a)f2(b, c)).

This is the cohomology class of (2). Note that the individual terms f2(a, b)f1(c),
f2(a, bc) . . . will not be cocycles in general, but the map C assigns cohomology classes
to them in such a way that the sum will be the class we are looking for.

By our choice of f2 (such that C ◦ f2 = 0), the first three terms in the sum vanish
(note that C(f2(a, b)f1(c)) = C(f2(a, b))c by Proposition 3.2.(iv)). Thus we are inter-
ested in terms of the form C(f1(a)f2(b, c)), where a, b, c run through all elements of a
k-basis of Ĥ∗(G).
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3.2. Generating cocycles and homotopies

Now we start the actual computation of γ. We begin with the construction of
a minimal projective resolution P and some cocycles in the endomorphism dga of
P . Let us define some elements of the group algebra kG as follows. Put a = g + 1,
b = h+ 1 and c = hg + 1. Furthermore, we write N =

∑
j∈G j for the norm element.

Here are some formulae we will frequently use:

at = b2 = c2, a2t = b4 = 0,

ba = ac = a+ b+ c, N = a2t−1b,

c = a+ bg, gc = a+ b,

N = ca2t−2b = ca2t−1, N = a2t−1 + a2t−2b+ ca2t−2,

cat−1b = cat−1 + at−1b.

Also note that a2t−1, a2t−2, and a2t−4 lie in the center of kQ4t. Now a 4-periodic
complete projective resolution of the trivial kG-module k is given as follows (see
[4, Chapter XII §7]):

. . . P0 = F
Noo P1 = F 2

(a b)
oo P2 = F 2

(
at−1 c
b a

)
oo P3 = F

(ac)
oo P4 = F

Noo . . .oo

Since the resolution is minimal, the differential of the complex HomkG(P∗, k) vanishes;
therefore, we immediately get the well-known additive structure of Ĥ∗(G):

Ĥ4n(G) ∼= Ĥ4n+3(G) ∼= k, Ĥ4n+1(G) ∼= Ĥ4n+2(G) ∼= k2.

Let us write s̄ : P → P [4] for the shift map, given by the identity map in every degree.
This is an invertible cocycle; thus, multiplication by a suitable power of s yields an
isomorphism Ĥ4n+u(G) ∼= Ĥu(G) for u = 0, 1, 2, 3 and n ∈ Z. Now we are heading for
explicit generators x, y of Ĥ1(G) ∼= H1 Hom∗

kG(P, P ), which are represented by chain
maps x̄, ȳ : P [1]→ P . By construction, we have P1 = F 2 and P0 = F . We extend the
two projections P1 → P0 to chain transformations P [1]→ P as follows: For x̄ : P →
P [1] we take

. . . Foo

a2t−2b

��

F 2
(a b)

oo

(1 0)

��

F 2

(
at−1 c
b a

)
oo

(
at−2 1
0 g

)
��

F
(ac)

oo

(11)
��

F
Noo

a2t−2b

��

. . .oo

. . . Foo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo F
(ac)

oo . . .oo

and extend this 4-periodically. The 4-periodic chain map ȳ : P → P [1] is defined as
follows:

. . . Foo

a2t−1

��

F 2
(a b)

oo

(0 1)

��

F 2

(
at−1 c
b a

)
oo

(0 1
1 0)

��

F
(ac)

oo

(01)
��

F
Noo

a2t−1

��

. . .oo

. . . Foo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo F
(ac)

oo . . .oo
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Since these cocycles are 4-periodic, they commute with s̄. Let us determine the pair-
wise products of these maps. We start with x̄ȳ:

. . . Foo (
a2t−1

a2t−1

)
��

F 2
(a b)

oo

(0 a2t−2b)

��

F 2

(
at−1 c
b a

)
oo

(0 1)

��

F
(ac)

oo

(
1
g

)
��

F
Noo (

a2t−1

a2t−1

)
��

. . .oo

. . . F 2oo F
(ac)

oo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo . . .oo

The product ȳx̄ is given as follows:

. . . Foo

(
0

a2t−2b

)
��

F 2
(a b)

oo

(a2t−1 0)

��

F 2

(
at−1 c
b a

)
oo

(0 g)

��

F
(ac)

oo

(11)
��

F
Noo

(
0

a2t−2b

)
��

. . .oo

. . . F 2oo F
(ac)

oo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo . . .oo

Next, we compute x̄2:

. . . Foo (
a2t−2b
a2t−2b

)
��

F 2
(a b)

oo

(a2t−2b 0)

��

F 2

(
at−1 c
b a

)
oo

(at−2 1)

��

F
(ac)

oo

(
at−2+1

g

)
��

F
Noo (

a2t−2b
a2t−2b

)
��

. . .oo

. . . F 2oo F
(ac)

oo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo . . .oo

And now ȳ2:

. . . Foo

(
0

a2t−1

)
��

F 2
(a b)

oo

(0 a2t−1)

��

F 2

(
at−1 c
b a

)
oo

(1 0)

��

F
(ac)

oo

(10)
��

F
Noo

(
0

a2t−1

)
��

. . .oo

. . . F 2oo F
(ac)

oo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo . . .oo

In each of these cocycles, the map P2 → P0 determines the cohomology class by the
isomorphism (1); in k2, they correspond to (0 1), (0 1), (ε(at−2) 1), and (1 0), respec-
tively. Hence, Ĥ2(G) is generated by x2 and y2, and we have xy = yx. Furthermore,
we also see from this description that

xy =

{
x2 + y2 if t = 2,

x2 otherwise.

But we will need explicit chain homotopies for all these relations later on, so let us
start with the commutator relation xy = yx. Let p̄ be the 4-periodic null-homotopy
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for x̄ȳ + ȳx̄ defined as follows:

. . . Foo

a2t−2

$$HHHHHHHHHH F 2
(a b)

oo

0

$$HH
HH

HH
HH

HH F 2

(
at−1 c
b a

)
oo

(0 1
0 0)
$$HHHHHHHHH F

(ac)
oo

(01)
$$HH

HH
HH

HH
HH F

Noo . . .oo

. . . F 2oo F
(ac)

oo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo . . .oo

Now let us compute ȳ3:

. . . Foo

0

��

F
Noo

(
a2t−1

0

)
��

F 2
(a b)

oo

(
0 0
0 a2t−1

)
��

F 2

(
at−1 c
b a

)
oo

(a2t−1 0)

��

F
(ac)

oo

0

��

. . .oo

. . . Foo F 2
(a b)

oo F 2(
at−1 c
b a

)oo F
(ac)

oo F
N

oo . . .oo

Then we find a null-homotopy for that map in two steps: First, consider the 4-periodic
extension of the map

. . . Foo

0

!!CC
CC

CC
CC

CC
CC

C F
Noo

(
bh−1

at−1h−1

)
""DDDDDDDDDDDDD F 2

(a b)
oo

(
cg−1

at−1

)T

h−1

""DDDDDDDDDDDDD F 2

(
at−1 c
b a

)
oo

0

!!CC
CC

CC
CC

CC
CC

C F
(ac)

oo . . .oo

. . . Foo F 2
(a b)

oo F 2(
at−1 c
b a

)oo F
(ac)

oo F
N

oo . . .oo

and call it w̄′. Note that this will not quite be a homotopy for ȳ3, because it yields
the wrong result in degrees P4n+2 → P4n−1 for all n ∈ Z. But if we put

P8n+j+3 → P8n+j : w̄8n+j =

{
w̄′

8n+j if j = 0, 1, 2, 3,

(w̄′ + ȳ2)8n+j if j = 4, 5, 6, 7,

then we get an 8-periodic null-homotopy for ȳ3 which will be called w̄ and satisfies
s̄w̄ + w̄s̄ = ȳ2s̄.

3.3. Computation for the quaternion group
Due to the different multiplicative relation in Ĥ∗(G), we need to consider the cases

t = 2 and t > 4 separately. We start with t = 2. In this case, the map

. . . F 2oo

0

$$HH
HH

HH
HH

HH F 2
(a c
b a)oo

0

$$HHHHHHHHH F
(ac)

oo

0

$$HH
HH

HH
HH

HH F
Noo

a3+a2+ab

$$HHHHHHHHHH F 2
(a b)

oo . . .oo

. . . Foo F
N

oo F 2
(a b)

oo F 2

(a c
b a)

oo F
(ac)

oo . . .oo

can be extended (as we did with w̄ above) to an 8-periodic null-homotopy r̄ for
x̄2 + x̄ȳ + ȳ2 satisfying s̄r̄ + r̄s̄ = (x̄+ ȳ)s̄. Notice that x̄ȳ2 : P3 → P0 is the identity
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map, which implies that xy2 6= 0 ∈ Ĥ3(G). Gathering the results we obtained so far,
we recover the known fact that

Ĥ∗(G) ∼= k[x, y, s±1]/(x2 + y2 = xy, y3 = 0).

Let us remark here that all monomials in x and y of degree bigger than 3 vanish in
this ring.

Proposition 3.4. Let α, β, γ be monomials in the (non-commutative) variables x̄, ȳ,
and assume that the degree |β| > 3. Then we have the following formulae:

C(p̄α) = 0, C(r̄α) = 0, C(w̄α) = 0,

C(x̄p̄α) = xyC(α), C(γr̄α) = 0, C(γw̄α) = 0,

C(ȳp̄α) = 0,

C(x̄2p̄α) = x2yC(α),
C(ȳ2p̄α) = 0,

C(βp̄α) = 0.

Proof. By Proposition 3.2.(iii) we can assume that the degree of β is at most 3.
Furthermore, we can assume α = 1 by Proposition 3.2.(iv). In order to determine
C(āw̄) for any given cocycle ā of degree n, we consider the composition

Pn+2
w̄n−−→ Pn

ā0−→ P0
ε−→ k

as an element of Hn+2 HomkG(P∗, k). Notice im(w̄n) ⊂ ker(ε) · Pn. Therefore, im(ā0 ◦
w̄n) ⊂ ker(ε) · P0 = ker(ε), and hence ε ◦ ā0 ◦ w̄n = 0. The same proof works for r̄
instead of w̄, so we are left with p̄. For C(x̄p̄), consider x̄p̄ in degree 0; i.e.,

P2
p̄1−→ P1

x̄0−→ P0.
(0 1
0 0) (1 0)

This equals (0 1) : P2 −→ P0, which corresponds to xy. The remaining cases can be
shown analogously.

Remark 3.5. Using C, we can prove that there is no 4-periodic null-homotopy for
x̄2 + x̄ȳ + ȳ2 as follows: Suppose there is a 4-periodic null-homotopy; call it r̂. Since
d(r̂ − r̄) = 0, q̄ = r̂ − r̄ is a cocycle, representing some class q. By construction, s̄r̄ =
(r̄ + x̄+ ȳ)s̄. Since r̂ is 4-periodic, we have C(s̄q̄) = C(q̄s̄)− C((x̄+ ȳ)s̄) = qs− (x+
y)s by Proposition 3.2. On the other hand, C(s̄q̄) = sq, and hence (x+ y)s = 0, a
contradiction. In a similar way, one shows that there is no 4-periodic null-homotopy
for x̄3.

As a next step, we are going to define the functions f1 and f2. A k-basis of Ĥ∗(G)
is given by C = {si, xsi, ysi, x2si, y2si, x2ysi | i ∈ Z}. Define the k-linear map f1 on
the basis C by

f1 : Ĥ
∗(G)→ Hom∗

kG(P, P )

xεyδsi 7→ x̄εȳδ s̄i

for all i, ε, δ ∈ Z for which the expression on the left-hand side lies in C. Let us define
the set B = {1, x, y, x2, y2, x2y}. For all b, c ∈ B and i, j ∈ Z, we have f1(bs

icsj) =
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f1(bc)s̄
i+j and f1(bs

i)f1(cs
i) = f1(b)f1(c)s̄

i+j , since s̄ commutes with both x̄ and
ȳ. This implies that we can define f2 on B × B and then extend it to C× C via
f2(bs

i, csj) = f2(b, c)s̄
i+j . Now define f2 on B × B as follows:

f2(b, c)
c

1 x y

b

1 0 0 0
x 0 0 r̄
y 0 p̄+ r̄ 0
x2 0 x̄r̄ + r̄ȳ + w̄ 0
y2 0 ȳp̄+ ȳr̄ + w̄ + p̄x̄+ x̄p̄+ x̄ȳ w̄
x2y 0 x̄2p̄+ x̄r̄ȳ + r̄ȳ2 + w̄ȳ + x̄2ȳ r̄ȳ2 + x̄w̄ + ȳw̄

x2 y2 x2y

b

1 0 0 0
x x̄r̄ + r̄y + w̄ r̄ȳ + w̄ x̄r̄ȳ + r̄ȳ2 + w̄ȳ
y p̄x̄+ x̄p̄+ x̄ȳ w̄ ȳr̄ȳ + p̄ȳ2 + x̄w̄ + ȳw̄
x2 x̄r̄x̄+ r̄ȳx̄+ w̄x̄ r̄ȳ2 + x̄w̄ + ȳw̄ ∗
y2 ȳ2r̄ + ȳ2p̄+ w̄x̄+ w̄ȳ w̄ȳ ∗
x2y ∗ ∗ ∗

Direct verification shows that df2(b, c) = f1(bc)− f1(b)f1(c) for all b, c for which f2
is defined. Each ∗ can be replaced by a suitable polynomial expression in x̄, ȳ, p̄, r̄, w̄
such that df2(b, c) = f1(bc)− f1(b)f1(c) holds for all b, c; as we will see, it does not
matter which choice we make here. Our f2 will then already be simplified in the sense
of Proposition 3.3, which is why some apparently unnecessary terms occur (e.g., the
x̄ȳ in f2(y, x

2)). Indeed, C ◦ f2 = 0, as one can check using Proposition 3.4.

As a final step, we need to investigate the term

m(a, b, c) = C(f1(a)f2(b, c))

for all a, b, c ∈ C. Since f2(b, c) is 8-periodic, we have

m(as2h, bsi, csj) = m(a, b, c)s2h+i+j

for all integers h, i, j and a, b, c ∈ C. Therefore, it is enough to consider all triples
(a, b, c) ∈

(
B ∪ Bs

)
× B × B.

Consider the case a ∈ B. If a = 1, then C(f1(a)f2(b, c)) = C(f2(b, c)) = 0. If a ∈
{y2, x2y}, then f1(a)f2(b, c) is a sum of terms βp̄α, βr̄α, βw̄α, and βx̄ȳα, where α
and β are monomials in x̄ and ȳ, the degree of β is at least 2, and β 6= x̄2. Hence,
C(f1(a)f2(b, c)) = 0 by Proposition 3.4.

Next, consider a = x. By Proposition 3.4 we get C(x̄f2(b, c)) from f2(b, c) by the
following rule: Put an x̄ in front of all monomials in x̄ and ȳ. Then remove all sum-
mands containing p̄, r̄, or w̄, except those beginning with p̄, x̄p̄, or ȳp̄, where we
replace the p̄ by xy, and x̄p̄ and ȳp̄ by x2y. Finally, replace all x̄ and ȳ by x and y,
respectively. Using this procedure, we get the following table for C(x̄f2(b, c)):
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C(x̄f2(b, c))
c

1 x y x2 y2 x2y

b

1 0 0 0 0 0 0
x 0 0 0 0 0 0
y 0 xy 0 xyx+ x2y + x2y 0 ∗
x2 0 0 0 ∗ ∗ ∗
y2 0 x2y + xyx+ x2y + x2y 0 ∗ ∗ ∗
x2y 0 ∗ ∗ ∗ ∗ ∗

Here each ∗ stands for some homogeneous polynomial in x, y of degree at least 4.
Almost all these expressions vanish, and the only remaining terms are

m(x, y, x) = xy,

m(x, y, x2) = x2y.

For the case a = y we use a similar method resulting from Proposition 3.4, and we
end up with m(y, b, c) = 0 for all b, c ∈ B. Finally, for a = x2 we find that the only
non-zero term is m(x2, y, x) = x2y.

The case a ∈ Bs is slightly more difficult. Consider the map

h(b, c) = s̄f2(b, c)s̄
−1 − f2(b, c),

measuring how far away f2 is from 4-periodicity. From the equations

s̄p̄s̄−1 = p̄,

s̄r̄s̄−1 = r̄ + x̄+ ȳ,

s̄w̄s̄−1 = w̄ + ȳ2,

we get the following table for h:

h(b, c)
c

1 x y x2 y2 x2y

b

1 0 0 0 0 0 0
x 0 0 x̄+ ȳ x̄2 x̄ȳ x̄2ȳ
y 0 x̄+ ȳ 0 0 ȳ2 ȳx̄ȳ + x̄ȳ2

x2 0 x̄2 0 x̄3 0 ∗
y2 0 ȳx̄ ȳ2 0 ȳ3 ∗
x2y 0 x̄2ȳ 0 ∗ ∗ ∗

where ∗ denotes certain homogeneous polynomials in x̄ and ȳ of degree at least 4.
Applying C to this table and using relations in Ĥ∗(G), we get

C(h(b, c)) c
1 x y x2 y2 x2y

b

1 0 0 0 0 0 0
x 0 0 x+ y x2 x2 + y2 x2y
y 0 x+ y 0 0 y2 0
x2 0 x2 0 0 0 0
y2 0 x2 + y2 y2 0 0 0
x2y 0 x2y 0 0 0 0

(3)
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By definition of h, we have h(b, c)s̄ = s̄f2(b, c)− f2(b, c)s̄; hence

C(h(b, c))s = C(s̄f2(b, c))− C(f2(b, c))︸ ︷︷ ︸
0

s = m(s, b, c).

Therefore, this table shows the values m(s, b, c) with b, c ∈ B. On the other hand, we
know that m is a Hochschild-cocycle; in particular, for all a, b, c ∈ B,

am(s, b, c) +m(as, b, c) +m(a, sb, c) +m(a, s, bc) +m(a, s, b)c = 0.

Using m(a, s, b)c = m(a, 1, b)sc = 0, m(a, s, bc) = m(a, 1, bc)s = 0, and m(a, sb, c) =
m(a, b, c)s, we get

m(as, b, c) = am(s, b, c) +m(a, b, c)s. (4)

We know the right-hand side for all a, b, c ∈ B. Gathering all results, we get the
following theorem.

Theorem 3.6. The canonical element γG is represented by the Hochschild cocycle m
which is given by the formulae

m(x, y, x) = xy,

m(x, y, x2) = x2y,

m(x2, y, x) = x2y,

m(a, b, c) = 0 for all other a, b, c ∈ B,
m(sa, b, c) = sm(a, b, c) + sa C(h(b, c)), where C(h(b, c)) is given by (3),

m(s2ia, sjb, slc) = s2i+j+lm(a, b, c).

The element γ ∈ HH3,−1Ĥ∗(G) represented by m is non-trivial.

Proof. It remains to prove the non-triviality of γ. Assumem = δg for some Hochschild
(2,−1)-cochain g. Then,

m(a, b, c) = (δg)(a, b, c) = a g(b, c) + g(ab, c) + g(a, bc) + g(a, b)c

for all a, b, c. In particular,

0 = m(y, x, y) = yg(x, y) + g(yx, y) + g(y, xy) + g(y, x)y,

0 = m(x, y, y) = xg(y, y) + g(xy, y) + g(x, y2) + g(x, y)y,

0 = m(y, y, x) = yg(y, x) + g(y2, x) + g(y, yx) + g(y, y)x,

0 = m(x, x, x) = xg(x, x) + g(x2, x) + g(x, x2) + g(x, x)x,

xy = m(x, y, x) = xg(y, x) + g(xy, x) + g(x, yx) + g(x, y)x.

Adding up these equations, we get (using x2 + y2 = xy)

xy = x · (g(x, y) + g(y, x)).

This implies g(x, y) + g(y, x) = y. On the other hand, interchanging the roles of x
and y we get g(x, y) + g(y, x) = x, a contradiction.
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3.4. Computation for the generalized quaternion group

From now on, we assume that t > 4. Then there is an 8-periodic null-homotopy v̄
for x̄2 + x̄ȳ, partially given by

. . . F 2oo

0
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HH
HH

HH F 2

(
at−1 c
b a

)
oo (

at−3 0
0 0

)
$$HHHHHHHHH F

(ac)
oo

0

$$HH
HH

HH
HH

HH F
Noo

u

$$HHHHHHHHHH F 2
(a b)

oo . . .oo

. . . Foo F
N

oo F 2
(a b)

oo F 2(
at−1 c
b a

)oo F
(ac)

oo . . .oo

satisfying s̄v̄ + v̄s̄ = x̄. Here we write u = ca2t−2 + ba2t−3 and need to prove

au = a2t−2b+ a2t−1, cu = a2t−2b+ a2t−1,

ua = a2t−2b+N, ub = a2t−2b.

For instance, to prove the first formula, note that

au+ aca2t−2 = aba2t−3 = a2t−3ba = a2t−3ac = ca2t−2 = (a+ b+ ac)a2t−2.

The other formulae can be proved similarly.

Again one verifies that x2y 6= 0, so that we recover the well-known structure of
Ĥ∗(G) to be

Ĥ∗(G) ∼= k[x, y, s±1]/(y3, x2 + xy).

Using the variable z = x+ y, we obtain the isomorphism

Ĥ∗(G) ∼= k[x, z, s±1]/(xz, x3 + z3).

In the following, we will frequently switch between these two descriptions.

Proposition 3.7. We have the following formulae:

C(p̄α) = 0, C(v̄α) = 0, C(w̄α) = 0,

C(x̄p̄α) = x2C(α), C(γv̄α) = 0, C(γw̄α) = 0,

C(ȳp̄α) = 0,

C(x̄2p̄α) = x2yC(α),
C(ȳ2p̄α) = 0,

C(βp̄α) = 0,

for any α, β, γ monomials in x̄, ȳ with |β| > 3.

We omit the straightforward proof and turn to the definition of the maps f1 and
f2. As before, let B = {1, x, y, x2, y2, x2y}; we define f1 as

f1(s
ixayb) = s̄ix̄aȳb

for all a, b, i ∈ Z for which xayb lies in B. Now we define f2 on B × B as follows:
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f2(b, c)
c

1 x y

b

1 0 0 0
x 0 0 v̄
y 0 p̄+ v̄ 0
x2 0 x̄v̄ 0
y2 0 ȳp̄+ p̄ȳ + v̄ȳ w̄
x2y 0 x̄2p̄+ x̄v̄ȳ + v̄ȳ2 + x̄w̄ + x̄2ȳ v̄ȳ2 + x̄w̄

c
x2 y2 x2y

b

1 0 0 0
x x̄v̄ v̄ȳ x̄v̄ȳ + v̄ȳ2 + x̄w̄
y p̄x̄+ x̄p̄+ x̄2 w̄ ȳv̄ȳ + p̄ȳ2 + x̄w̄
x2 x̄2v̄ + x̄v̄ȳ + v̄ȳ2 + x̄w̄ v̄ȳ2 + x̄w̄ x̄2v̄ȳ + x̄v̄ȳ2 + x̄2w̄
y2 ȳ2v̄ + ȳ2p̄+ w̄x̄ w̄ȳ ȳ2v̄ȳ + ȳ2p̄ȳ + w̄x̄ȳ
x2y x̄2p̄x̄+ x̄v̄ȳx̄+ v̄ȳ2x̄+ x̄w̄x̄ x̄2w̄ x̄2ȳv̄ȳ + x̄2p̄ȳ2 + x̄3w̄

Also put f2(s
ia, sjb) = f2(a, b)s̄

i+j for all i, j ∈ Z and a, b ∈ B. This function is chosen
in such a way that C(f2(a, b)) = 0 for all a, b ∈ B. One verifies that

m(x, y, x) = x2,

m(x2, y, x) = x2y,

m(x, y, x2) = x2y,

and m vanishes on all other triples (a, b, c) ∈ B×3. Let us define m′ as follows:

m′(sia, sjb, skc) = si+j+km(a, b, c) for all a, b, c ∈ B, (5)

and define h(a, b) = s̄f2(a, b)s̄
−1 − f2(a, b). Then C(h(b, c)) is given by the following

table:

C(h(b, c)) c
1 x y x2 y2 x2y

b

1 0 0 0 0 0 0
x 0 0 x x2 x2 x2y
y 0 x 0 0 y2 0
x2 0 x2 0 0 0 0
y2 0 x2 y2 0 0 0
x2y 0 x2y 0 0 0 0

(6)

So we get the following explicit description of m:

Theorem 3.8. The canonical element γG is represented by the Hochschild cocycle m
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which is given by the formulae:

m(x, y, x) = x2,

m(x2, y, x) = x2y,

m(x, y, x2) = x2y,

m(a, b, c) = 0 for all other a, b, c ∈ B,
m(sa, b, c) = sm(a, b, c) + sa C(h(b, c)), where C(h(b, c)) is given by (6),

m(s2ia, sjb, slc) = s2i+j+lm(a, b, c).

The element γ ∈ HH3,−1Ĥ∗(G) represented by m is non-trivial.

Proof. It remains to prove the non-triviality of γ. Suppose that m is a Hochschild
coboundary; then m = δg for some g : Λ⊗2 → Λ[−1]. Adding up the equations

x3 = m(x, z, x2) = xg(z, x2) + g(x, z)x2

0 = m(x2, x, z) = x2g(x, z) + g(x3, z) + g(x2, x)z

0 = m(z, x2, x) = zg(x2, x) + g(z, x3) + g(z, x2)x

0 = m(z, z2, z) = zg(z2, z) + g(z3, z) + g(z, z3) + g(z, z2)z

0 = zm(z, z, z) = z2g(z, z) + zg(z2, z) + zg(z, z2) + zg(z, z)z

and simplifying, we get the contradiction x3 = 0.

4. Realizability of modules

4.1. Massey products
There is a strong connection between the canonical class γ and triple Massey

products over Ĥ∗(G). This has already been noted in [2, Lemma 5.14], and we will
generalize this fact to Massey products of matrices (as introduced by May [5]). We
start with some notation. Let Λ be a graded k-algebra, and suppose that I is a graded
set; i.e., a set together with a function | · | : I → Z. For every such set, we define I[n]
to be the shifted graded set given by the same set with new grading |i|[n] = |i|+ n
for all i ∈ I. We denote by ΛI the shifted free Λ-module

ΛI =
⊕
i∈I

Λ[|i|].

Then ΛI [n] = ΛI[n]. If J is another graded set, we can consider morphisms f : ΛJ →
ΛI . Every such map can be represented by a (possibly infinite) matrix (fi,j)i∈I,j∈J

with |fi,j | = |i| − |j|. Such a matrix is column-finite; i.e., for every j there are only
finitely many non-zero fi,j ’s. Let us denote by ΛI,J the set of such matrices. Every
such yields a map f : ΛJ → ΛI .

A triple of matrices (A,B,C) will be called composable if there are graded sets
I, J,K,L with A ∈ ΛI,J , B ∈ ΛJ,K , C ∈ ΛK,L. Every morphism m : Λ⊗3 → Λ[−1] can
be extended to the module of all composable triples by putting

m(A,B,C) ∈ ΛI[−1],L : m(A,B,C)i[−1],l =
∑
j∈J

∑
k∈K

m(aij , bjk, ckl).
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From now on we assume Λ = H∗A ∼= Ĥ∗(G), where A is the endomorphism-dgA of
some projective resolution of the trivial kG-module k. Also, let m : Λ⊗3 → Λ[−1]
be some Hochschild cocycle representing the canonical element γ ∈ HH3,−1Ĥ∗(G).
Recall that (see, e.g., [5]) for every composable triple of matrices (A,B,C) with
AB = 0 and BC = 0 the triple matric Massey product 〈A,B,C〉 is defined and a
coset of A · ΛJ[−1],L + ΛI[−1],K · C. Notice that there is no obstruction to generalizing
May’s definition to infinite matrices.

Proposition 4.1. For every composable triple (A,B,C) with AB = 0 and BC = 0,
we have that m(A,B,C) ∈ 〈A,B,C〉.
Proof. We have

m(A,B,C) = f1(A)f2(B,C) + f2(AB,C) + f2(A,BC) + f2(A,B)f1(C)

= f1(A)f2(B,C) + f2(A,B)f1(C),

and the last term represents one element of the Massey product.

A triple (A,B,C) will be called exact if it is composable and the sequence

ΛI A←− ΛJ B←− ΛK C←− ΛL

is exact.

Proposition 4.2. Let A ∈ ΛI,J be any matrix, and define M = cokerA. Then the
following are equivalent:

(i) The module M is a direct summand of a realizable module.

(ii) For every composable triple (A,B,C) with AB = 0 and BC = 0, we have that
0 ∈ 〈A,B,C〉.

(iii) For some exact triple (A,B,C), we have 0 ∈ 〈A,B,C〉.
Proof. For (i) ⇒ (ii), let M be a direct summand of H∗N , where N is some dg-A-
module. Then there are maps M

i−→ H∗N
r−→M with ri = idM . Let π : ΛI →M be

the projection map, and put W = iπ. Then WA = 0, so that 〈W,A,B〉 is defined, and
the juggling formula (see [5, Corollary 3.2.(iii)]) yields W 〈A,B,C〉 = 〈W,A,B〉C as
cosets of WΛI[−1],KC. Let E : ΛK → H∗N [−1] be some element in 〈W,A,B〉. Since
ΛK is free, we know that the composition r ◦ E lifts as ΛK S−→ ΛI[−1] π−→M [−1] for
some matrix S. But then

πSC = rEC ∈ r 〈W,A,B〉C = rW 〈A,B,C〉 = π 〈A,B,C〉 .

This means that there is some matrix T such that AT + SC ∈ 〈A,B,C〉, which
implies 0 ∈ 〈A,B,C〉.

The implication (ii) ⇒ (iii) is obvious. For (iii) ⇒ (i), note that

M ← ΛI A←− ΛJ B←− ΛK C←− ΛL

is the beginning of a (shifted) free resolution of M . We have m(A,B,C) ∈ ΛI[−1],L,

and a representative of γ ∪ idM ∈ Êxt
3,−1

Λ (M,M) is given by the composition

g : ΛL m(A,B,C)−−−−−−→ ΛI[−1] → (cokerA)[−1] = M [−1].

By assumption and Proposition 4.1, m(A,B,C) = AX + Y C for some matrices X
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and Y , so that this composition equals

ΛL C−→ ΛK Y−→ ΛI[−1] →M [−1],

which in turn says that g is the coboundary of ΛK Y−→ ΛI[−1] →M [−1]; hence γ ∪
idM = 0. By Theorem 1.1 of [2],M is a direct summand of some realizable module.

4.2. The group of quaternions

Let G = Q8. We shall make use of one of the implications of Proposition 4.2 to
prove the existence of a Ĥ∗G-module which detects the non-triviality of γG:

Theorem 4.3. The cokernel of the map

Λ[−1]⊕ Λ[−1]

y x+ y
x y


−−−−−−−−−→ Λ⊕ Λ

is not a direct summand of a realizable Ĥ∗G-module.

Proof. Let A =
(
y x+y
x y

)
; then A2 = 0 and therefore the Massey product 〈A,A,A〉

is defined. We claim that it does not contain 0. An explicit calculation using the
description of m given in Theorem 3.6 yields

m(A,A,A) =

(
x2 0
x2 x2

)
.

Let us denote the latter matrix by B; then by Proposition 4.2 we need to prove that
B is not of the form B = AQ+RA for some 2× 2-matrices Q and R. To do so, define
D =

( x y
x+y x

)
; then AD = DA = 0. If we denote by tr the trace of a matrix, then we

have

tr(BD) = tr(AQD) + tr(RAD) = tr(QDA) + tr(RAD) = 0

(note that these computations take place in a commutative ring). But

tr(BD) = tr

(
0 ∗
∗ x2y

)
= x2y 6= 0,

a contradiction.

Remark 4.4. The triple (A,A,A) is actually exact, but we do not need this.

In order to construct a module which is not a direct summand of a realizable one,
it is often enough to consider “ordinary” Massey products, i.e., the case of 1× 1-
matrices; this is true for example in the cases G = Z/2Z× Z/2Z ([2, Example 7.7])
and G = Z/3Z (characteristic 3, [2, Example 7.6]). In our present case, it is not that
easy:

Proposition 4.5. Let k = F2 be the field with 2 elements. For all a, b, c ∈ Ĥ∗(Q8)
satisfying ab = 0 and bc = 0, we have 0 ∈ 〈a, b, c〉.
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Proof. By [2, Lemma 5.14], the class m(a, b, c) is contained in the Massey product
〈a, b, c〉. Therefore, it is enough to show that m(a, b, c) is an element of the indeter-
minacy

a · Ĥ |b|+|c|−1(G) + Ĥ |a|+|b|−1(G) · c

for all a, b, c. By construction of m it is enough to do so for those triples (a, b, c)
and (sa, b, c) with a, b, c ∈

{
1, x, y, x+ y, x2, y2, x2 + y2, x2y

}
which satisfy ab = 0 and

bc = 0.
If |a|, |b| 6 1, then ab = 0 implies a = 0 or b = 0 (here we use that k = F2). If

|b| > 2, then m(a, b, c) = 0 unless b ∈ {y2, y2 + x2} and a, c ∈ {x, x+ y}, in which
case m(a, b, c) = x2y is divisible by a. So we can assume that |b| = 1 and therefore
|a| > 2 and |c| > 2, which implies m(a, b, c) = 0 by Theorem 3.6.

For m(sa, b, c), we have by (4)

m(sa, b, c) = am(s, b, c) +m(a, b, c)s.

We have already seen that the second summand lies in the indeterminacy; the first
summand is contained in

a · Ĥ |s|+|b|+|c|−1(G) = sa · Ĥ |b|+|c|−1(G)

and therefore in the indeterminacy.

Remark 4.6. Note that the proposition is not true for arbitrary fields of characteristic
2: If the field k contains an element α ∈ k satisfying α2 + α+ 1 = 0, then the Massey
product 〈

αx+ y, α2x+ y, αx+ y
〉

is defined and does not contain 0.

4.3. Generalized quaternions
The picture changes as soon as we consider generalized quaternion groups G = Q4t

with t > 4. It turns out that there is no module detecting the non-triviality of the
canonical element γG.

Let m be as in Theorem 3.8, and write m = m′ +m′′, where m′ is defined in (5).
Notice that m′ is a Hochschild cocycle, because it is defined to be s-periodic, so it is
enough to check the cocycle condition on elements in B. But on these elements, m′

agrees withm. Hence,m′ is a cocycle, and so ism′′. Let γ′ and γ′′ be the corresponding
elements in HH3,−1Ĥ∗(G). In the next two propositions we will show that, for every
module M , γ′ ∪ idM = 0 and γ′′ ∪ idM = 0 in Ext3,−1(M,M), respectively. It will
then follow that M is a direct summand of a realizable module.

Proposition 4.7. For every Λ-module M we have γ′ ∪ idM = 0.

Proof. Notice that every matrix A ∈ ΛI,J can be uniquely written as a sum

A = A1 +Axx+Ayy +Ax2x2 +Ay2y2 +Ax2yx
2y,

where the six matrices on the right-hand side lie in k[s±1]I,J[?]. The first step in our
proof will be to find a suitable free resolution

M ← ΛI A←− ΛJ B←− ΛK C←− ΛL

of M . We begin with the definition of A. Let I be a minimal set of generators of the
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right Λ-module M ; i.e., I generates M but any proper subset of I does not generate
M (in the case where M is not finitely generated, one has to use Zorn’s lemma to
prove the existence of I). The inclusion I ⊆M induces a surjection ΛI →M . Let J
be a minimal set of generators for the kernel of that map; then we obtain an exact

sequence ΛJ A−→ ΛI →M . Taking K to be a minimal set of generators for the kernel

of A, we get a map ΛK B−→ ΛJ onto that kernel, and finally we let L be a minimal set
of generators for the kernel of B to obtain an exact sequence

M ← ΛI A←− ΛJ B←− ΛK C←− ΛL.

We claim that A1 = 0. Assume the contrary and let i ∈ I, j ∈ J be such that (A1)i,j 6=
0. Then I − {i} generates M , which contradicts the choice of I. Similarly one shows
that B1 = 0 and C1 = 0, and therefore ByCy = (BC)y2 = 0.

Now define W = AxByx+Ax2Byx
2 and V = ByCy2y2. Then

AV = AxByCy2x3,

WC = AxByCxx
2 +Ax ByCy︸ ︷︷ ︸

0

x2 +AxByCx2x3 +AxByCy2x3

+Ax2ByCxx
3 +Ax2 ByCy︸ ︷︷ ︸

0

x3.

Therefore,m′(A,B,C) = AV +WC, and by Proposition 4.2 we get γ′ ∪ idM = 0.

Proposition 4.8. For every Λ-module M , we have γ′′ ∪ idM = 0.

Proof. We start with a slight modification of the representative m′′. Let us put B =
{1, x, z, x2, z2, x3}, and define the function g as follows: For all integers i, put

g(s−1x2, six) = si−1z2,

g(s−1x2, siz) = si−1x2,

and g(a, b) = 0 on all other elements a, b in {sic | c ∈ B}. Then m̃ = m′′ + ∂g defines
a new representative for the element γ′′. For all a, b, c ∈ B and i, j > 1, we have

m̃(a, sib, sjc) = m′′(a, sib, sjc) + ag(sib, sjc) + g(siab, sjc)

+ g(a, si+jbc) + g(a, sib)sjc,

and by definition of m′′ and g each summand on the right-hand side vanishes. We
also have that

m̃(s−1a, sib, sjc) = m′′(s−1a, sib, sjc) + s−1a g(sib, sjc)︸ ︷︷ ︸
0

+ g(si−1ab, sjc)︸ ︷︷ ︸
0

+ g(s−1a, si+jbc) + g(s−1a, sib)sjc.

We claim that this is zero if |a| > 2, |b| > 1, and |c| > 1. In that case, we have |bc| > 2
and therefore g(s−1a, si+jbc) = 0, so that it remains to show m′′(s−1a, sib, sjc) =
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g(s−1a, sib)sjc, or equivalently,

m′′(s−1a, b, c) = g(s−1a, b)c.

To see this, we consider the several cases for a separately. If a = x3, then

m′′(s−1a, b, c) = s−1x3C(h(b, c)),

where h is as in Theorem 3.8. But |h(b, c)| > 1, so the last expression vanishes, as
does g(s−1a, b)c. For a = z2 we get

m′′(s−1a, b, c) = s−1z2C(h(b, c)),

but |h(b, c)| > 2 or C(h(b, c)) is divisible by x, and therefore again the right-hand side
vanishes. The last case is a = x2, where we need to show

s−1x2C(h(b, c)) = g(s−1x2, b)c.

Both sides vanish for degree reasons unless |b| = |c| = 1, and in that case both sides
will equal s−1x3 if b 6= c, and 0 otherwise.

The rest is easy. We start with a free resolution of M as in the proof of Propo-
sition 4.7. We can (and do) assume that the degree |i| of every element i ∈ I lies in
{0, 1, 2, 3}. Also, we assume that the degree of every element of J lies in {−1, 0, 1, 2},
the degree of every element of K belongs to {−8,−7,−6,−5}, and the degree of every
element of L is in {−15,−14,−13,−12}. Then we know that every non-zero entry
of B and C is a linear combination of terms of the form sib with i > 1 and b ∈ B,
|b| > 1. Furthermore, every non-zero entry of A is a linear combination of elements in
B ∪ {s−1x2, s−1z2, s−1x3}. By what we have shown above, m̃(A,B,C) = 0, and we
are done.
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