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HOMOTOPY TYPE OF SPACE OF MAPS INTO A K(G, n)

JAKA SMREKAR

(communicated by Ronald Brown)

Abstract
Let X be a connected CW complex and let K(G,n) be

an Eilenberg-Mac Lane CW complex where G is abelian. As
K(G,n) may be taken to be an abelian monoid, the weak homo-
topy type of the space of continuous functions X → K(G,n)
depends only upon the homology groups of X. The purpose of
this note is to prove that this is true for the actual homotopy
type. Precisely, the space map∗

(
X,K(G,n)

)
of pointed contin-

uous maps X → K(G,n) is shown to be homotopy equivalent
to the Cartesian product∏

i6n
map∗

(
Mi,K(G,n)

)
.

Here, Mi is a Moore complex of type M
(
Hi(X), i

)
. The spaces

of functions are equipped with the compact open topology.

1. Introduction

Let G be an abelian group, let Y be a CW complex of type K(G,n), and let X
be any CW complex. Then Y and consequently map∗(X,Y ) are topological abelian
monoids (if G is uncountable then in the category of compactly generated spaces).
As has been observed by Thom [21] (see also Brown [2] and Federer [6]), it follows
that all Postnikov invariants of (a CW approximation of) map∗(X,Y ) vanish, and
map∗(X,Y ) is a weak product of Eilenberg-Mac Lane spaces. Thus the weak homo-
topy type of map∗(X,Y ) is determined by homology groups of X. We show that the
actual homotopy type of map∗(X,Y ) is determined by homology groups of X.

Theorem 1.1. Let X be a connected CW complex and let Y be a K(G,n) complex.
Set Mi =M(HiX, i). The space map∗(X,Y ) is homotopy equivalent to the product

map∗(M1, Y )× · · · ×map∗(Mn, Y ).

In particular, if X ′ is another CW complex and H∗(X) ∼= H∗(X
′) (abstractly), then

the spaces map∗(X,Y ) and map∗(X
′, Y ) are homotopy equivalent.
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We emphasize that the spaces map∗(X,Y ) and map∗(Mi, Y ) need not have CW
homotopy type. In fact, straightforward criteria for a function space to have CW
homotopy type are difficult to obtain in general, and this served as the author’s
principal motivation (the interested reader is referred to papers [9, 15, 16, 17] for
more on CW homotopy type of function spaces). The following criterion provides a
handy, if somewhat surprising, reduction to less complicated function spaces:

Corollary 1.2. Given the assumptions of Theorem 1.1, map∗(X,Y ) has the homo-
topy type of a CW complex if and only if the spaces map∗(Mi, Y ), for i 6 n, have the
homotopy type of a CW complex.

Proof. Use Theorem 1.1 as well as Theorem 2 and Proposition 3 of Milnor [13].

Corollary 1.3. Given the assumptions of Theorem 1.1, the space of unpointed maps
map(X,Y ) is homotopy equivalent to Y ×map∗(M1, Y )× · · · ×map∗(Mn, Y ).

(Theorem 1.1 and Corollary 1.3 will be proved below.)
Corollary 1.3 can be thought of as a considerable generalization of Corollary 1.4

of Kahn [9]. It gives the best possible result for a general CW complex X as domain.
In [18], Spanier considered cofunctors X 7→ map

(
X,Y

)
with Y a space of type

K(Z, n). He investigated only weak homotopy type although one of his original ques-
tions (see [18, Introduction]) concerned the actual homotopy type. Our results provide
some insight into the latter.

Conventions
The terms map and continuous function will be used synonymously. If X and Y

are topological spaces, then map(X,Y ) denotes the space of maps X → Y with the
compact open topology. A fibration is a map with the homotopy lifting property
for all spaces. Dually, a cofibration is a map whose image is closed with the homo-
topy extension property for all spaces. A homotopy equivalence is a map f : X → Y
which admits a homotopy inverse, i.e., a map g : Y → X such that the composites gf
and fg are homotopic to their respective identities. If map(X,Y ) contains a homo-
topy equivalence, then X and Y are called homotopy equivalent which we denote
X ' Y . If X ' {∗} then X is called contractible. By Strøm [20], this defines a closed
model category structure on the category of topological spaces and continuous maps.
Hence Theorem 1.1 can be interpreted as a statement within that closed model cat-
egory.

We topologize map
(
(X,A), (Y,B)

)
= {f ∈ map(X,Y ) | f(A) ⊂ B} as a subspace

of map(X,Y ). Taking A = ∗ and B = ∗ yields the space of pointed maps denoted by
map∗(X,Y ). If X is a pointed space, then we let SX denote its reduced suspension
with the obvious base point. Dually, if Y is a pointed space, then ΩY = map∗(S

1, Y )
is the loop space with the constant loop as base point.

Remarks
Let X be a CW complex. Since Y = K(G,n) is homotopy equivalent to

ΩK(G,n+ 1), the function space map∗(X,Y ) is homotopy equivalent to the space
map∗

(
X,ΩK(G,n+ 1)

)
(see Lemma 2.1 below), which in turn is homeomorphic with

map∗
(
SX,K(G,n+ 1)

)
(see Lemma 2.3 of [16]). For the purpose of Theorem 1.1,
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therefore, M(A, 1) can be any CW complex M with H1(M) ∼= A and H̃k(M) = 0 for
k 6= 1. In fact it is sufficient to prove Theorem 1.1 when X is simply connected (and
n > 2).

If we choose Y to be the geometric realization of a simplicial K(G,n) (see Mil-
nor [12]), then Y is a group with continuous inverse ι : Y → Y and a multiplication
µ : Y × Y → Y that is continuous on all products C × Y (and Y × C) for compact
subspaces C of Y . It is not difficult to check that in this case map∗(X,Y ) is a group
that has an induced continuous inverse and multiplication M , which is continuous
on products Γ×map∗(X,Y ) for compact Γ. The standard argument of topological
groups applies to deduce that we may arrange for a pointed homotopy equivalence
in Theorem 1.1.

Since πk
(
map∗(X,K(G,n)), ∗) is isomorphic with H̃n−k(X;G), it follows that the

weak homotopy type of map∗(X,K(G,n)) is determined by the cohomology groups
H̃j(X;G). However, the actual homotopy type is not determined by the cohomology
groups H̃j(X;G), as shown by the following counterexample:

Example

Let G be the product of cyclic groups
∏
p∈P Z/p, where p ranges over the set

of all primes P, and let Y = K(G,n). Then Hom(Q/Z, G) = 0 since the quotient
Q/Z ∼= ⊕p∈PZp∞ is divisible and G is reduced. On the other hand, Ext(Q/Z, G) ∼=∏
p∈P Ext(Q/Z, G) ∼=

∏
p∈P Z/p = G. Hence, if we take 2 6 m 6 n− 1 and let

X =M(Q/Z,m− 1), then we have H̃j(X;G) ∼= H̃j(Sm;G) for all j. However, by
Theorem 3 of Milnor [13], map∗(S

m, Y ) has CW homotopy type, while the space
map∗(X,Y ) does not have CW homotopy type. If it did, then by [16, Proposition 4.6]
(take P = P), all but finitely many of the spaces Zp = map∗

(
M(Zp∞ ,

m− 1), Y
)

would be contractible. But none are contractible as πn−m(Zp, ∗) ∼=
H̃m(M(Zp∞ ,m− 1);G) ∼= Z/p. Hence map∗(S

m, Y ) and map∗(X,Y ) are not homo-
topy equivalent.

Discussion of (im)possible generalizations

Generally, even the weak homotopy type of a mapping space map∗(X,Y ) is not
determined merely by homology groups of X. For a striking example of this, the space
of pointed maps from RP∞ to S2 is weakly contractible by celebrated Miller’s theo-
rem [11], while if we takeX =

∨∞
n=1M(Z/2, 2n− 1), the mapping space map∗(X,S

2)
which is homeomorphic with the Cartesian product

∏∞
n=1 map∗(M(Z/2, 2n− 1), S2)

has plenty of nontrivial homotopy groups as there is plenty of 2-torsion in the homo-
topy groups of S2.

Clearly, Theorem 1.1 implies the analogous result for Y a finite product of Eilen-
berg-Mac Lane spaces (of abelian groups). On the other hand, I do not know if
the result can be extended to CW complexes (simple, say) with trivial Postnikov
invariants but infinitely many nontrivial homotopy groups.

It seems difficult to achieve results about map(X,Y ) of the same strength and at
the same level of generality as in Theorem 1.1 even when Y is a two-stage Postnikov
space. Namely, if k : K(A, r) → K(B,n+ 1) is the k-invariant in question, then the
problem of identifying the homotopy class of the induced map k# : map(X,K(A, r))
→ map(X,K(B,n+ 1)) is not an easy one if X is an infinite complex.
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If X is a finite complex, however, then by Theorem 3 of Milnor [13], map(X,Y )
is homotopy equivalent to a CW complex. In that case, its homotopy type is deter-
mined by its weak homotopy type, which in turn can be recovered from the simplicial
mapping space model, and hence the technique of Brown [2] may be used to compute
the homotopy type of map(X,Y ) from the Postnikov invariants of Y . It would be
interesting to know if the results of of [2] could be used for determination of the
actual homotopy type of map(X,Y ) from the Postnikov decomposition of Y when X
is infinite.

Another direction would be to try to generalize Theorem 1.1 to spaces of maps
map(X,BC), where BC is the classifying space of a crossed complex as in Brown and
Higgins [4], viewing Theorem A therein itself a generalization of Thom’s result [21]
to more general classifying spaces.

Outline of proof of Theorem 1.1

To a simply connected CW complexX, we associate a homology decomposition, i.e.,
a sequence of subcomplex inclusions {∗} = X1 6 X2 6 X3 6 · · · , where each inclu-
sion Xi−1 → Xi is a principal cofibration with homotopy cofibre of type M(HiX, i),
and the union (colimit) complex ∪iXi is homotopy equivalent to X. For any complex
Y , the mapping space map∗(X,Y ) may be viewed as the limit space of the induced
inverse sequence · · · → map∗(X3, Y ) → map∗(X2, Y ) → map∗(X1, Y ). We prove The-
orem 1.1 by showing that if Y is a K(G,n), then, in fact, map∗(X,Y ) is homotopy
equivalent to map∗(Xn, Y ) and, in addition, the fibrations

map∗(Xi, Y ) → map∗(Xi−1, Y ) (1)

are all fibre homotopically trivial, i.e., homotopy equivalent to product fibrations.

2. Principal fibration induced by cone adjunction

We first recall that the homotopy type of map(X,Y ) (respectively, of map∗(X,Y ))
depends only upon the homotopy types (respectively, pointed homotopy types) of X
and Y . Next, we carefully describe the properties of the principal fibration of mapping
spaces map(Cϕ, Y ) → map(L, Y ), where Cϕ is the mapping cone of a map ϕ : A→ L.

Lemma 2.1. Let ϕ : (A,A1) → (X,X1) and ψ : (Y, Y1) → (B,B1) be maps of pairs
and define Φ: map(X,Y ) → map(A,B) by f 7→ ψfϕ. If ϕ and ψ are homotopy equiv-
alences of pairs, then Φ: map

(
(A,A1), (X,X1)

)
→ map

(
(B,B1), (Y, Y1)

)
is a homo-

topy equivalence.

Proof. See Maunder [10, Theorem 6.2.25 and its proof].

Proposition 2.2. Let ϕ : A→ L be a cellular map of CW complexes (with respect
to some decomposition of L) and let Cϕ = CA tϕ L denote the mapping cone of ϕ
(reduced or unreduced). Pick a0 ∈ A and set x0 = ϕ(a0). Let (Y, y0) be any pointed
CW complex.
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1. The following is a pullback diagram:

map
(
(Cϕ, x0), (Y, y0)

)
map

(
(CA, a0), (Y, y0)

)

map
(
(L, x0), (Y, y0)

)
map

(
(A, a0), (Y, y0)

)
.

-

?

R

?

r

-

(2)

Vertical arrows R and r are fibrations and map
(
(CA, a0), (Y, y0)

)
is contract-

ible. This renders R a principal fibration with all fibres either empty or homotopy
equivalent to the loop space Ω

(
map

(
(A, a0), (Y, y0)

)
, consty0

)
which is homeo-

morphic with map
(
(SA, ∗), (Y, y0)

)
.

2. If (X,L) is a CW pair and ϕ induces a homotopy equivalence Cϕ → X, then

map
(
(Cϕ, x0), (Y, y0)

)
→ map

(
(X,x0), (Y, y0)

)
(3)

is a fibre homotopy equivalence over map
(
(L, x0), (Y, y0)

)
. Also, the restriction

map map(Cϕ, Y ) → map(X,Y ) is a fibre homotopy equivalence over map(L, Y ).

Proof. It is not difficult to check that the square is a pullback since it is dual to
the pushout diagram of the mapping cone adjunction of a cellular map. The ver-
tical arrows are fibrations because they are restrictions to cofibred subspaces (see
Lemma A.2 of [16], for example). The space map

(
(CA, a0), (Y, y0)

)
is contractible

by Lemma 2.1, hence (2) is the diagram of a principal fibration. (It is equivalent to the
‘standard one’ when we are pulling back the path fibration P map

(
(A, a0), (Y, y0)

)
→

map
(
(A, a0), (Y, y0)

)
by the coglueing theorem of Brown and Heath [3].) Therefore,

every nonempty fibre of R is homotopy equivalent to the fibre of r over consty0 ,
that is, precisely, map

(
(CA,A), (Y, y0)

)
. The claim about the fibres now follows from

Lemma 2.3 of [16].

By Lemma 2.1, the map (3) is a homotopy equivalence, hence it is a fibre homotopy
equivalence by [3, Corollary 3.7] (similarly for the unpointed version).

Remark 2.3. The harmless looking Proposition 2.2 deserves a comment. In our most
important application (end of the proof of Lemma 5.1 below, fibre homotopy equiv-
alence F#) the base function space map∗(L, Y ) will not be assumed to have CW
homotopy type. In fact, the homotopy type of a mapping space can be rather grue-
some. (See [16] for examples.) Hence it is important that no assumptions on the
base space be necessary for the application of Corollary 3.7 of [3] (or, equivalently,
Theorem 6.1 of Dold [5]) as opposed to, for example, Theorem 6.3 of [5].

3. Minimal decompositions

To show that the fibrations (1) are fibre homotopy trivial, we associate to the
domain complex X a homotopy equivalent CW complex with the least possible num-
ber of cells and, equally important, with gluing maps whose images meet ‘only those
cells which they are supposed to meet’. Such a representative for X is called, by abuse
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of language, a minimal decomposition. The corresponding homology decomposition
will be defined in Definition 3.2 below.

Lemma 3.1 (Minimal decomposition). Given a simply connected CW complex X
and a specific free presentation of each of its homology groups Hn(X) ∼= 〈Sn; Σn〉
(n > 2), there are a CW complex Z and a homotopy equivalence f : Z → X such that
each cell of Z is either:

(1) A ‘generator’ n-cell enα, which is a cycle in cellular homology mapped by f to a
cellular cycle representing the specified generator α ∈ Sn; or

(2) A ‘relator’ (n+ 1)-cell en+1
β with cellular boundary corresponding to the specified

relator β ∈ Σn+1.

Also, we may assume that all cells are attached along based maps of spheres, and that

(2 ′) The closure of an n-cell en meets an (n− 1)-cell en−1 if and only if the incidence
number [en : en−1] is non-zero. These are necessarily only generator (n− 1)-
cells. In particular, each generator n-cell enα is attached along a (based) gluing
map ϕnα : S

n−1 → Z(n−2) of the (n− 1)-sphere into the (n− 2)-skeleton.

Proof. Theorem 4C.1 of Hatcher [8] states (1) and (2) for X of finite type. The finite
type restriction is unnecessary, and the generalization to (2′) is easy. (Compare also
Rutter [14, Lemma 2.1].)

Definition 3.2. A CW decomposition with the properties of Z as in Lemma 3.1
will be called minimal. When speaking about a minimal decomposition of a simply
connected CW complex X (with some free presentations of its homology groups)
it will be tacitly assumed that X has been replaced with the homotopy equivalent
complex Z guaranteed by Lemma 3.1.

To a minimal decomposition of a complex X, we may associate a homology filtra-
tion (homology decomposition)

{∗} = X1 6 X2 6 X2 6 X3 6 · · ·

by letting Xi be the union of the i-skeleton X(i) of X and all the relator (i+ 1)-cells.
Then the inclusion induced morphism Hj(Xi) → Hj(X) is bijective for j 6 i, and
Hj(Xi) = 0 for j > i. Moreover, if we set Hi = Hi(X), then the quotient Xi/Xi−1 is
a Moore complex M(Hi, i), and there exists a map ϕ : M(Hi, i− 1) → Xi−1 which
induces a homotopy equivalence Cϕ → Xi. Here Cϕ is the homotopy cofibre of ϕ.

4. Reduction to a finite dimensional domain

Let X be any CW complex and let Y be a CW complex with πk(Y ) trivial for
k > n. The purpose of this section is to show that if A is any subcomplex of X con-
taining the n-skeleton X(n), then the restriction fibration map∗(X,Y ) → map∗(A, Y )
is a homotopy equivalence onto image. This is used to show that if Xn is the n-th
stage of the homology decomposition of X, then the mapping map∗(X,K(G,n)) →
map∗(Xn,K(G,n)) is actually a homotopy equivalence.

Lemma 4.1. Let Y be a connected CW complex with πi(Y ) = 0 for i > n, where
n > 1. The function space map∗(S

n, Y ) is homotopy equivalent to a discrete space,
while, for m > n, the space map∗(S

m, Y ) is contractible.
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Proof. Since Zm = map∗(S
m, Y ) is an H-group, all path-components of Zm are homo-

topy equivalent. By Theorem 3 of Milnor [13], the space Zm has the homotopy type
of a CW complex. Hence all path-components of Zm are open, and each has the
homotopy type of a CW complex. We consider the path-component of the con-
stant loop const : Sm → {∗} ⊂ Y . Note that the homotopy group πi(Zm, const) =[
(Si, ∗),

(
map∗(S

m, Y ), const
)]

can be identified with the set of path-components

of map∗
(
Si,map∗(S

m, Y )
)
. By the pointed version of the exponential law, the lat-

ter function space is homeomorphic with map∗(S
i ∧ Sm, Y ) = map∗(S

i+m, Y ) (the
proof of Lemma 2.3 of [16] can be used almost verbatim). Hence πi(Zm, const) ∼=
πi+m(Y, ∗). An application of Whitehead’s theorem concludes the proof.

Proposition 4.2. Let X be a CW complex with a single 0-cell x0. Assume that all
cells are based at x0, i.e., each n-cell is attached along a based map (Sn−1, ∗) →
(X(n−1), x0). Let A be a subcomplex of X such that the relative CW complex (X,A)
has cells of dimension at least k. Finally, let Y be a connected CW complex such that
πi(Y ) = 0 for i > n+ 1. The restriction fibration

R : map∗(X,Y ) → map∗(A, Y )

is a homotopy equivalence onto image if k > n+ 1. It is surjective if k > n+ 2.

Proof. Set X
(m)
A = A ∪X(m) and note that, by assumption, X

(k−1)
A = A. For eachm,

the relative skeleton X
(m)
A is the reduced mapping cone of a based map ϕm : ∨λ∈Λm

Sm−1
λ → X

(m−1)
A . By Proposition 2.2, the induced fibration Rm : map∗

(
X

(m)
A , Y

)
→

map∗
(
X

(m−1)
A , Y

)
is equivalent to the homotopy fibre of

ϕ#
m : map∗

(
X

(m−1)
A , Y

)
→ map∗

(
∨λ∈Λm Sm−1

λ , Y
)
.

Denote Wm = map∗
(
∨λ∈Λm Sm−1

λ , Y
)
.

Note that, for any family of based CW complexes {(Tλ, ∗λ) | λ}, the evident func-
tion from map∗(∨λTλ, Y ) to the Cartesian product

∏
λmap∗(Tλ, Y ) is a homeomor-

phism. Using this observation together with Lemma 4.1, it follows that form > n+ 2,
the space Wm is contractible. Therefore, Rm is a homotopy equivalence if m > n+ 2.
Next, the space Wn+1 is homotopy equivalent to a totally disconnected space (pre-
cisely, to a Cartesian product of discrete spaces) all of whose path-components are
contractible. This means that the image Cn+1 of map∗

(
C(∨λ∈Λn+1S

n
λ ), Y

)
→Wn+1,

which is exactly the path-component of the constant map inWn+1, is contractible. As

Rn+1 is a principal fibration, it follows that Rn+1 : map∗
(
X

(n+1)
A , Y

)
→ im(Rn+1) is

equivalent to the homotopy fibre of im(Rn+1) → Cn+1. Hence Rn+1 is a homotopy
equivalence onto image. By Geoghegan [7], the restriction fibration map∗(X,Y ) →
map∗(X

(n+1), Y ) is a homotopy equivalence, being a canonical projection correspond-
ing to the inverse sequence of fibrations Rm, for m > n+ 2, that are homotopy equiv-
alences. This concludes the proof of the proposition.

Lemma 4.3. Let Y be an Eilenberg-Mac Lane space K(G,n) and let X be a simply
connected CW complex with homology filtration X2 6 X3 6 · · · associated to a min-
imal decomposition. Then map∗(X,Y ) → map∗(Xn, Y ) is a homotopy equivalence.
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Proof. By Proposition 4.2 we know that map∗(X,Y ) → map∗
(
X(n+1), Y

)
is a homo-

topy equivalence and that

map∗
(
X(n+1), Y

)
→ map∗(Xn, Y ) (∗)

is a homotopy equivalence onto image. It suffices to prove that (∗) is surjective. By
assumption, X(n+1) is obtained from Xn by attaching generator (n+ 1)-cells, that
is, X(n+1) is the cofibre of a map

ϕ :
∨
λ

Sn → X(n−1) ↪→ Xn.

Restriction (∗) is the homotopy fibre of the induced function ϕ# : map∗(Xn, Y ) →
map∗

(
∨λ Sn, Y

)
, which factors through map∗(X

(n−1), Y ). Since Y is a K(G,n), on
the group of path components ϕ# transforms as

H̃n(Xn;G) → H̃n(X(n−1);G) → H̃n(∨λSn;G).

But H̃n(X(n−1);G) is trivial; hence the homotopy fibre (∗) is surjective.

5. Proof of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1. We assume a minimal decomposition for X and take the asso-
ciated homology filtrationX2 6 X3 6 · · · . By Lemma 4.3 we know that the restriction
map∗(X,Y ) → map∗(Xn, Y ) is a homotopy equivalence, and we may replace X by
its n-th homology stage Xn. Hence it suffices to prove Lemma 5.1 below.

Lemma 5.1. Let Y = K(G,n) and 3 6 i 6 n. The restriction fibration map∗(Xi, Y )
→ map∗(Xi−1, Y ) is fibre homotopy trivial.

The following step is crucial.

Lemma 5.2. Given the assumptions of Lemma 5.1, let (L′, L) be the adjunction of
an i-cell e attached along a based map

ϕ : (Si−1, ∗) → (L(i−2), x0)

of the (i− 1)-sphere to the (i− 2)-skeleton of L. Denote by K the smallest subcomplex
of L that contains the image of ϕ. Note that K is finite and contained in L(i−2). Set
K ′ = K ∪ e.

Then the induced map ϕ# : map∗(K,Y ) → map∗(S
i−1, Y ) is nullhomotopic as

a pointed map. Hence the restriction fibration map∗(K
′, Y ) → map∗(K,Y ) is fibre-

homotopy trivial and consequently so is map∗(L
′, Y ) → map∗(L, Y ). There are sec-

tions s : map∗(L, Y ) → map∗(L
′, Y ) and sK : map∗(K,Y ) → map∗(K

′, Y ) giving
rise to a commutative diagram as follows:
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map∗(L
′, Y ) map∗(K ∪ e, Y )

map∗(L, Y ) map∗(K,Y ).

-

-

6
s

6
sK

In other words, if f, g : L→ Y are continuous functions with f |K = g|K , then the
extensions s(f) and s(g) restrict to the same function on K ∪ e.

Proof. Proposition 2.2 yields the following pullback diagram:

map∗(L
′, Y ) map∗(B

i, Y )

map∗(L, Y ) map∗(S
i−1, Y ).

?

-

?
-ϕ#

This is to say that the fibration map∗(L
′, Y ) → map∗(L, Y ) is the principal fibration

obtained as the homotopy fibre of ϕ#. The latter factors as

map∗(L, Y ) → map∗(K,Y )
ϕ#

−−→ map∗(S
i−1, Y ).

Since K is finite, map∗(K,Y ) is globally well-pointed (see [15, Lemmas 3.2–3.4]) and
has the homotopy type of a CW complex. Therefore, map∗(K,Y ) has the pointed
homotopy type of a CW complex for any choice of base point. Thus we compute

[map∗(K,Y ),map∗(S
i−1, Y )]∗ ∼= H̃n−i+1

(
map∗(K,Y );G

)
.

Note that πk
(
map∗(K,Y ), const

) ∼= H̃n−k(K;G) is trivial for n− k > (i− 2) + 1
since K is (i− 2)-dimensional. By the Hurewicz theorem and universal coefficients,
H̃n−i+1

(
map∗(K,Y );G

)
is trivial. Therefore, ϕ# is nullhomotopic as a pointed map.

Let h : map∗(K,Y )× I → map∗(S
i−1, Y ) denote a homotopy between the constant

map and ϕ#. Then a section sK : map∗(K,Y ) → map∗(K
′, Y ) is given by

sK(f)|K = f, sK(f)(φ[ζ, t]) = h(f, t)(ζ).

Here, [ , ] denotes the quotient map Si−1 × I → Si−1 × I/Si−1 × 0 = Bi, and φ : Bi

→ K ∪ e denotes the characteristic map of the cell e.
The pre-composition of h with restriction map∗(L, Y ) → map∗(K,Y ) gives a point-

ed trivialization of ϕ# : map∗(L, Y ) → map∗(S
i−1, Y ). The corresponding section

s : map∗(L, Y ) → map∗(L
′, Y ), defined by

s(f)|L = f, s(f)
(
φ[ζ, t]

)
= h(f |K , t)(ζ),

lifts the section sK , as claimed.

Proof of Lemma 5.1. We construct Xi from Xi−1 in two stages. First, we attach all
the generator i-cells via an attaching map

ϕ = ∨λϕλ :
∨
λ

Si−1 → X
(i−2)
i−1 ↪→ Xi−1

to obtain X(i). By Proposition 2.2 the map ϕ induces the pullback diagram below:
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map∗(X
(i), Y ) map∗(∨λBi, Y )

∏
λ

map∗(B
i, Y )

map∗(Xi−1, Y ) map∗(∨λSi−1, Y )

∏
λ

map∗(S
i−1, Y ).

?

-

?

-=

?

-ϕ#

-=

The induced map ϕ# maps into the product
∏
λmap∗(S

i−1, Y ). The composition

with the λ-th projection prλ ◦ϕ# equals ϕ#
λ , which is nullhomotopic as a pointed

map by Lemma 5.2. Hence ϕ# is nullhomotopic by a product homotopy. Let Kλ

denote the smallest subcomplex of X that contains imϕλ, and fix homotopies
hλ : map∗(Kλ, Y )× I → map∗(S

i−1, Y ) between ∗ and ϕ#
λ . Then we can define a

section s : map∗(Xi−1, Y ) → map∗(X
(i), Y ) by

s(f)|Xi−1 = f, s(f)
(
φλ[ζ, t]

)
= hλ(f |Kλ

, t)(ζ).

As above, Bi is identified with the quotient Si−1 × I/Si−1 × 0, and φλ : B
i → X(i)

are characteristic maps of the attached cells.

Now we attach the relator (i+ 1)-cells to X(i) via an attaching map

ψ = ∨µψµ :
∨
µ

Si → X(i).

We obtain a pullback diagram similar to the one above:

map∗(Xi, Y ) map∗(
∨
µ

Bi+1, Y )

map∗(X
(i), Y )

map∗(
∨
µ

Si, Y ).
?

-

?

-ψ#

We claim that we can lift s to a map (necessarily a section) σ : map∗(Xi−1, Y ) →
map∗(Xi, Y ). To prove this we observe projections of the composite

map∗(Xi−1, Y )
s−→ map∗(X

(i), Y )
ψ#

−−→ map∗(
∨
µ

Si, Y ) =
∏
µ

map∗(S
i, Y )

onto the factors. Let eµ be an (i+ 1)-relator cell with attaching map ψµ : S
i → X(i),

and let L denote the smallest subcomplex containing the image of ψµ. Note that L
contains only generator i-cells; by property b.’ of Lemma 3.1. (On L ∩X(i−1) there
are no particular restrictions.) We number the i-cells e1, . . . , er and let K denote
L \ {e1, . . . , er}. Then K is a finite subcomplex contained in X(i−1) ⊂ Xi−1. By con-
struction, the following diagram is commutative:
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map∗(X
(i), Y ) map∗(L, Y ) map∗(S

i, Y )

map∗(Xi−1, Y ) map∗(K,Y ).

- -
ψ#

µ

6
s

-

6
sK

Here, sK is defined by sK(g)|K = g, and sK(φλ[ζ, t]) = hλ(g|Kλ
, t)(ζ) whenever eλ is

one of the e1, e2, . . . , er in which case, tautologically, Kλ ⊂ K.

We compute

[map∗(K,Y ),map∗(S
i, Y )]∗ ∼= H̃n−i(map∗(K,Y );G

)
.

Note that πk
(
map∗(K,Y ), const

) ∼= H̃n−k(K;G) is trivial for n− k > (i− 1) + 1,
i.e., k 6 n− i, since K is (i− 1)-dimensional. By the Hurewicz theorem and
universal coefficients, the group [map∗(K,Y ),map∗(S

i, Y )]∗ is trivial, and therefore
ψ#
µ ◦ sK is nullhomotopic (as a pointed map). Hence so is the pre-composite with

restriction map∗(Xi−1, Y ) → map∗(K,Y ), which equals ψ#
µ ◦ s : map∗(Xi−1, Y ) →

map∗(S
i, Y ) by commutativity. Hence the map into the product ψ# ◦ s is also null-

homotopic, and s may be lifted to σ : map∗(Xi−1, Y ) → map∗(Xi, Y ), which is auto-
matically a section. There exists a (pointed cellular) map k : M(HiX, i− 1) → Xi−1

such that the inclusion Xi−1 → Xi extends to a homotopy equivalence F : Ck → Xi

with Ck the mapping cone of k. Proposition 2.2 gives the following commutative
diagram, where the square is a pullback and F# is a fibre homotopy equivalence:

map∗(Xi, Y ) map∗(Ck, Y ) map∗(CM(HiX, i− 1), Y )

map∗(Xi−1, Y ) map∗(M(HiX, i− 1), Y ).

-F#

HHHHHHHHHj

-

? ?
-k

#

The section of map∗(Xi, Y ) → map∗(Xi−1, Y ) yields a section of map∗(Ck, Y ) →
map∗(Xi−1, Y ). Since map∗(CM(HiX, i− 1), Y ) is contractible, it follows that k#

is nullhomotopic. Hence map∗(Ck, Y ) → map∗(Xi−1, Y ) is fibre homotopy equivalent
to a product fibration. Since F# is a fibre homotopy equivalence, map∗(Xi, Y ) →
map∗(Xi−1, Y ) is fibre homotopy equivalent to a product fibration with fibre
map∗(SM(HiX, i− 1), Y ) ' map∗(M(HiX, i), Y ), as claimed.

Proof of Corollary 1.3. Let µ : Y × Y → Y be the multiplication on Y = K(G,n),
and let M : map(X,Y )×map(X,Y ) → map(X,Y ) be the induced multiplication on
map(X,Y ), defined by M(f, g) : x 7→ µ(f(x), g(x)). We write µ(y1, y2) = y1 · y2 and
M(f, g) = f · g. Next, we use y−1 for the inverse, and note that y 7→ y−1 is always
continuous. If y ∈ Y and g ∈ map(X,Y ), then y · g is shorthand for consty · g, i.e.,
the continuous map x 7→ y · g(x).

If G is countable, then µ, and hence M are continuous and the assignment
ΦX : map(X,Y ) → Y ×map∗(X,Y ), f 7→

(
f(x0), f(x0)

−1 · f
)
is a homeomorphism

with inverse ΨX : (y, g) 7→ y · g. The subscript X is employed to indicate the evident
functorial dependence on X.
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If G is not countable, then µ and M are certainly continuous on compact subsets.
To exploit that, we will make use of the ‘convenient category’ introduced by Brown [1]
and popularized by Steenrod [19].

There exists a pointed homotopy equivalence α : Y → Y ′ with pointed homo-
topy inverse β : Y ′ → X, where Y ′ is a simplicial complex with the metric topol-
ogy (see Theorem 2 of [13]). If L is any subcomplex of X, then the associated
maps β# : map(L, Y ′) → map(L, Y ) and α# : map(L, Y ) → map(L, Y ′) are mutually
inverse homotopy equivalences that are clearly natural in L. In addition, the ‘stan-
dard’ homotopies β#α# ' id and α#β# ' id (see Maunder [10, Proof of 6.2.25]) are
also natural in L. The analogous remark holds for the pointed version.

Let FL : map(L, Y ′) → Y ′ ×map∗(L, Y
′) denote the composite

map(L, Y ′)
β#

−−→ map(L, Y )
ΦL−−→ Y ×map∗(L, Y )

α×α#

−−−−→ Y ′ ×map∗(L, Y
′),

and let GL : Y
′ ×map∗(L, Y

′) → map(L, Y ′) denote the composite

Y ′ ×map∗(L, Y
′)

β×β#

−−−−→ Y ×map∗(L, Y )
ΨL−−→ map(L, Y )

α#

−−→ map(L, Y ′).

On the nose, FL and GL are continuous in the category of compactly generated Haus-
dorff spaces, where products and function spaces are equipped with the compactly
generated refinements of, respectively, the Cartesian product and the compact open
topology, by results of [19]. However, as Y ′ is metrizable, so is map(L, Y ′) if L is
finite. This implies that for finite L, the spaces map(L, Y ′) and Y ′ ×map∗(L, Y

′)
are already compactly generated. Thus, FL and GL are continuous as they are
whenever L is finite. Finally, note that map(X,Y ′) is the inverse limit of the sys-
tem consisting of spaces {map(L, Y ) | L finite} together with restriction maps. Also,
Y ′ ×map∗(X,Y

′) is the inverse limit of the system {Y ′ ×map∗(L, Y
′) | L finite}

together with the obvious maps. As the functions FL and GL are natural in L,
they uniquely define continuous functions F : map(X,Y ′) → Y ′ ×map∗(X,Y

′) and
G : Y ′ ×map∗(X,Y

′) → map(X,Y ′).
By using naturality of homotopies β#α# ' id and α#β# ' id, one proceeds sim-

ilarly as above to obtain continuous homotopies HL : map(L, Y ′)× I → map(L, Y ′)
between GLFL and the identity, as well as homotopies KL : Y

′ ×map∗(L, Y
′)× I →

Y ′ ×map∗(L, Y
′) between FLGL and the identity, all natural in L. Hence, the func-

tions HL and KL define homotopies H : map(X,Y ′)× I → map(X,Y ′) and K : Y ′ ×
map∗(X,Y

′)× I → Y ′ ×map∗(X,Y
′). By uniqueness, H : GF ' id and K : FG '

id, as claimed. The statement of Corollary 1.3 now follows by another application
of the homotopy equivalences α, β, α#, β#, and Theorem 1.1.
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