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GRID DIAGRAMS AND SHELLABILITY

SUCHARIT SARKAR

(communicated by Ralph Cohen)

Abstract
We explore a somewhat unexpected connection between knot

Floer homology and shellable posets, via grid diagrams. Given a
grid presentation of a knot K inside S3, we define a poset which
has an associated chain complex whose homology is the knot
Floer homology of K. We then prove that the closed intervals
of this poset are shellable. This allows us to combinatorially
associate a PL flow category to a grid diagram.

1. Introduction

Heegaard Floer homology is a powerful invariant for closed oriented 3-manifolds
introduced by Peter Ozsváth and Zoltán Szabó [OSz04c, OSz04d]. This invar-
iant was later generalized by them in [OSz04b] and independently by Jacob Ras-
mussen [Ras03] to an invariant called knot Floer homology for knots in 3-manifolds,
which was later further generalized to include the case of links [OSz08a]. We will
mostly be concerned with HFK−(S3,K;F2), the minus version of knot Floer homol-
ogy of a knot K ⊂ S3 with coefficients in F2. There are two gradings M and A on
HFK−(S3,K;F2) called the Maslov grading and the Alexander grading. The F2-
module HFK−(S3,K;F2) is obtained as the homology of a certain chain complex,
and the Maslov grading is in fact the homological grading.

The strength of knot Floer homology can be demonstrated by the following few
theorems: Peter Ozsváth and Zoltán Szabó proved that a version of knot Floer homol-
ogy detects the 3-ball genus of the knot [OSz04a], and a version of the link Floer
homology describes the Thurston polytope of the link [OSz08b]. Yi Ni showed that
knot Floer homology can also be used to determine if a knot is fibered [Ni07]. Peter
Ozsváth and Zoltán Szabó also constructed an invariant τ coming from knot Floer
homology which gives a lower bound on the 4-ball genus of a knot [OSz03].

Based on a grid presentation of a knot K ⊂ S3, [MOS09] constructed a chain
complex over F2, whose homology agrees with HFK−(S3,K;F2). A grid diagrams
is a way of representing a knot K in S3. Grid diagrams were first introduced as
arc-presentations in [Bru98], and they are equivalent to the square-bridge posi-
tions of [Lyo80], the Lengendrian realisations of [Mat06], the asterisk presentations
of [Neu84] and the fences of [Rud92]. Grid diagrams have been explored in great
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detail in [Cro95], and the chain complexes coming from grid diagrams have been
studied extensively in [MOSzT07].

In this short paper, we will explore an unexpected connection between knot Floer
homology, grid diagrams, shellability and flow categories. Shellability is a fairly strong
condition for partially ordered sets; see [Bjö80, Bjö84, BW83]. We will prove that
the grid chain complex comes from a poset whose every closed interval is shellable.
Shellable posets carry many rich combinatorial structures, and the author hopes that
some of these structures might lead to a better understanding of knot Floer homology
and to new knot invariants.

In particular, shellability forces many geometric constraints on the order complex
of the poset; namely, the order complex of a thin (resp. subthin) shellable poset
is a sphere (resp. a ball). This allows us to construct a flow category, in the sense
of [CJS95], from a grid diagram. [CJS95] gives a recipe for constructing a stable
homotopy type, starting from a flow category and a coherent choice of framings of the
tangent bundles of the various manifolds that appear. Thus, in order to construct a
stable homotopy type from a grid presentation of a knot, we need to choose coherent
framings of the tangent bundles. Therefore, it will be interesting to investigate what
additional combinatorial properties we need on the posets in order to construct such
coherent framings, and whether the posets coming from grid diagrams satisfy those
properties.
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2. Partially ordered sets

In this section we give a brief overview of some well-known concepts related to
partially ordered sets and shellability, following [Bjö80]. A set P with a binary rela-
tion � is a partially ordered set if a � b, b � c⇒ a � c and a � b, b � a⇔ a = b. If
a � b, a 6= b, then we often say that a is less than b and write a ≺ b. We also often
abbreviate partially ordered sets as posets. A poset P gives rise to the small category
C(P ), whose objects are the elements of P , and the set of morphisms from x to y is
non-empty if and only if y � x, and in that case there is a unique morphism.

We say that b covers a, and write a← b if a ≺ b and ∄z, a ≺ z ≺ b. If ∄z, b ≺ z,
then we say that b is a maximal element. Minimal elements are defined similarly. If
b is covered by a maximal element, then we say that b is a submaximal element.

Any subset of a poset has an induced partial order. A subset C ⊆ P is called a
chain if the induced order on C is a total order. Given a poset P , we can create
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another poset B(P ), called the barycentric subdivision of P , whose elements are the
chains of P , partially ordered by inclusion. Maximal chains and submaximal chains
of P are the maximal elements and submaximal elements of B(P ) respectively. The
length of a chain is the cardinality of the chain considered just as a set.

The Cartesian product of two posets P and Q is defined as the poset P ×Q, whose
elements are pairs (p, q) with p ∈ P and q ∈ Q, and we declare (p′, q′) � (p, q) if and
only if p′ � p in P and q′ � q in Q. The order complex of a poset P is the simplicial
complex X(P ), whose k-simplices are chains of length (k + 1). The boundary maps
are defined naturally. For any finite poset P , the simplicial complex X(B(P )) is the
(first) barycentric subdivision of the simplicial complex X(P ). For any two finite
posets P , Q, the space X(P )×X(Q) is naturally homeomorphic to the simplicial
complex X(P ×Q).

We define a closed interval [a, b] as {z ∈ P | a � z � b}. The other types of intervals
are (a, b) = {z ∈ P | a ≺ z ≺ b}, [a, b) = {z ∈ P | a � z ≺ b}, (a, b] = {z ∈ P | a ≺ z

� b} (−∞, b] = {z ∈ P | z � b}, (−∞, b) = {z ∈ P | z ≺ b}, [a,∞) = {z ∈ P | a �
z}, (a,∞) = {z ∈ P | a ≺ z} and (−∞,∞) = P . A poset is said to be graded if in
every interval, all the maximal chains have the same length, in which case the com-
mon length is known as the length of the interval. A graded poset is said to be thin,
if every submaximal chain is covered by exactly two maximal chains. A graded poset
is subthin if it is not thin, and every submaximal chain is covered by at most two
maximal chains.

A graded poset is said to be shellable if the maximal chains have a total ordering
6, such that mi < mj ⇒ ∃mk < mj and ∃x ∈ mj such that mi ∩mj ⊆ mk ∩mj = mj \
{x}. A more geometric way of saying this is the following: A graded poset P is shellable
if the maximal dimensional simplices of its order complexX(P ) can be totally ordered
in some way, such that each such simplex intersects the union of the smaller such
simplices in a non-empty union of maximal dimensional faces on its boundary.

Theorem 2.1 ([Bjö80]). If a finite poset P is shellable, then every interval of P is
shellable. Furthermore, the barycentric subdivision B(P ) is also shellable.

A graded poset is said to be edge-lexicographically shellable or EL-shellable if there
is a map f from the set of all covering relations to a totally ordered set, such that
for any closed interval [x1, xn] of length n, if we associate the (n− 1)-tuple labeling
(f([x1, x2]), . . . , f([xn−1, xn])) to a maximal chain {x1 ← x2 · · · ← xn−1 ← xn}, then
there is a unique maximal chain for which the (n− 1)-tuple labeling is increasing,
and under the lexicographic ordering, the corresponding (n− 1)-tuple labeling is the
smallest one among the labelings coming from maximal chains between x1 and xn.

Theorem 2.2 ([Bjö80]). If a finite poset P is EL-shellable, then every closed interval
of P is shellable.

The following theorem explores the geometric properties of shellable posets and
suggests that shellablility is a strong condition.

Theorem 2.3 ([DK74]). The order complex of a finite, shellable and thin poset of
length n+ 1 is PL-homeomorphic to the n-dimensional sphere. The order complex
of a finite, shellable and subthin poset of length n+ 1 is PL-homeomorphic to the
n-dimensional ball, and the boundary of the ball corresponds to those submaximal
chains which are covered by exactly one maximal chain.
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In Section 3, we will encounter posets with the following properties: A grading
assignment is a map g from the elements of the poset to Z, such that whenever
a← b, g(b) = g(a) + 1. Having a grading assignment is weaker than being graded,
but is stronger than each closed interval being graded. A poset, where every closed
interval is graded, is said to be locally thin if every closed interval of length 3 has
exactly two maximal chains. This is equivalent to saying that every interval of the form
(y, x) is thin. A GT poset is a locally thin poset equipped with a grading assignment,
such that there are only finitely many elements in each grading.

Definition 2.4. Given a GT poset P , we can associate to it a chain complex C(P )
over F2, defined as follows: The ith chain group Ci is the F2-module freely generated
by the elements of P with grading i. The boundary map ∂i : Ci → Ci−1 is defined as
∂x =

∑
y←x y.

3. Grid diagrams

In this section we will introduce grid diagrams and associate certain posets to
them. A grid diagram is a picture on the standard torus, although for convenience,
we often think of it as a diagram on a square in the plane. Much of the material in
this section comes from [MOS09, MOSzT07]. The interested reader should con-
sult [MOSzT07] for a more complete description of grid diagrams.

A grid diagram of index n is a picture on the standard torus T . There are n α

circles, which are pairwise disjoint and parallel to the meridian, such that they cut
up the torus into n horizontal annuli, and there are n β circles, which are pairwise
disjoint and parallel to the longitude, such that they cut up the torus into n verti-
cal annuli. Furthermore, each α circle intersects with each β circle exactly once, so
clearly T \ (α ∪ β) has n2 components. There are 2n markings on T \ (α ∪ β), num-
bered X1, . . . , Xn, O1, . . . , On, such that each horizontal annulus contains Xi and Oi

for some i, and each vertical annulus contains Oi and Xi+1, for some i, with the
numbering being done modulo n. Figure 3.1 shows a grid diagram of index 5.

Given a grid diagram, we can construct a knot inside R3 as follows: If T is embedded
in R3 in the standard way, with the meridian bounding a disk inside the torus, and
the longitude bounding a disk outside, then the knot is obtained by joining Xi to Oi

in the horizontal annuli inside the torus T and by joining Oi to Xi+1 in the vertical
annuli outside the torus T . For example, the grid diagram of 3.1 represents the trefoil.
In the other direction, given a knot K ⊂ R3, it is not difficult to get a grid diagram
for K.

Lemma 3.1 ([Cro95]). For every knot K ⊂ R3, there is a grid diagram that repre-
sents K.

Given a grid diagram of index n representing a knot K, we will define a GT poset
G, such that the homology of the associated chain complex is isomorphic to minus
version of knot Floer homology over F2.

A generator is a formal sums x̃ = x1 + x2 + · · ·+ xn of n points, such that each α

circle contains one point and each β circle contains one point. The set of all the n!
generators is denoted by G̃. The set G consists of elements of the form x = x̃

∏n

i=1 U
ki

i
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Figure 3.1: A grid diagram for the trefoil.

where x̃ ∈ G̃ and ki ∈ N ∪ {0}. We need the following few definitions to understand
the partial order on G:

A domain D connecting a generator x̃ to another generator ỹ is a 2-chain in
T \ (α ∪ β) (i.e., a linear combination of the component of T \ (α ∪ β)) such that
∂(∂D|α) = ỹ − x̃. Every domain D can be associated to an integer valued index called
theMaslov index µ(D). The set of all domains connecting x̃ to ỹ is denoted by D(x̃, ỹ).
For a point p ∈ T \ (α ∪ β) and a 2-chain D, we define np(D) to be the coefficient of D
at the point p. We define D0(x̃, ỹ) as a subset of D(x̃, ỹ) consisting of all the domains
D with np(D) = 0 whenever p is one of the 2n X or O markings. If x = x̃

∏
i U

ki

i and

y = ỹ
∏

i U
li
i are two elements in G, then we define D(x, y) as the subset of D(x̃, ỹ)

consisting of all the domains D with nOi
(D) = li − ki and nXi

(D) = 0. A 2-chain D

is positive if np(D) > 0 for all points p ∈ T \ (α ∪ β).

Lemma 3.2 ([OSz08a, Definition 3.4]). For any x̃ ∈ G̃, the set D0(x̃, x̃) consists of
only the trivial domain. Therefore, for any pair x, y ∈ G−, the set D(x, y) has at most
one element.

We choose an α circle and a β circle on the grid diagram G and cut open the
torus T along those circles to obtain a diagram in [0, N)× [0, N) ⊂ R2. In this planar
diagram, the α circles become the lines y = i and the β circles become the lines x = i

for 0 6 i < N . Following [MOSzT07], for two points a = (a1, a2) and b = (b1, b2)
in R2, we define J(a, b) = 1

2 if (a1 − b1)(a2 − b2) > 0 and 0 otherwise. We extend J

bilinearly for linear combinations of points. Let O and X denote the formal sums∑
i Oi and

∑
i Xi, respectively. For x̃ ∈ G̃, we define the Maslov grading M(x̃) =

J(x̃−O, x̃−O) + 1 and the Alexander grading A(x̃) = J(x̃− X+O

2 ,X−O)− N−1
2 .

The following is straightforward:

Lemma 3.3 ([MOSzT07, Section 2.2]). A(x̃) and M(x̃) are integer valued grad-
ings which are independent of the choice of α and β circles along which the torus is
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cut open. If D ∈ D(x̃, ỹ) is a domain, then M(x̃)−M(ỹ) = µ(D)− 2
∑

i nOi
(D) and

A(x̃)−A(ỹ) =
∑

i(nXi
(D)− nOi

(D)).

We extend the assignment of Maslov and Alexander gradings from G̃ to G by
definingM(x̃

∏
i U

ki

i ) = M(x̃)− 2
∑

i ki and A(x̃
∏

i U
ki

i ) = A(x̃)−
∑

i ki. Stated dif-
ferently, we assign an (M,A) bigrading of (−2,−1) to each Ui.

If the reader is following the analogies from the Floer homology picture, then it
should be pretty clear by this point that the positive domains of Maslov index one
are of special importance to us. Lemma 3.4 characterizes them. Note that the lemma
also follows from Lemma 3.5.

A domain R ∈ D(x̃, ỹ) is called an empty rectangle if R has coefficients 0 and 1
everywhere, and the closure of the region where R has coefficient 1 forms a rectangle
which does not contain any x̃-coordinate or any ỹ-coordinate in its interior. It is
clear that empty rectangles have Maslov index one [MOS09, Equation 12]. The set
of empty rectangles joining x̃ to ỹ is denoted by R(x̃, ỹ). Note that R(x̃, ỹ) = ∅
unless x̃ and ỹ differ in exactly two coordinates, and even then #|R(x̃, ỹ)| 6 2. For
x = x̃

∏
i U

ki

i and y = ỹ
∏

i U
li
i in G, we define R(x, y) = R(x̃, ỹ) ∩ D(x, y).

Lemma 3.4 ([MOS09]). If D ∈ D(x̃, ỹ) is a positive domain with µ(D) = 1, then
D is an empty rectangle.

Lemma 3.5. Let D ∈ D(x̃, ỹ) be a positive domain. Then there exist generators

ũ0, ũ1, . . . , ũk ∈ G̃ with ũ0 = x̃ and ũk = ỹ and empty rectangles Di ∈ R(ũi−1, ũi) such
that D =

∑
i Di.

Proof. We can assume thatD is not a trivial domain, and thereby assume without loss
of generality that nx̃1

(D) 6= 0. Furthermore, since ∂(∂D|α) = ỹ − x̃, the coefficient of
D at either the top-right square or the bottom-left square of x̃1 must be non-zero.
Assume, after rotating everything by 180◦ if necessary, that the coefficient of the
top-right square is non-zero.

Consider all rectangles R, such that R is contained in D as 2-chains (i.e., the
2-chain D \R is positive), and R has x̃1 as its bottom-left corner. Partially order
such rectangles by inclusion. Let R0 be a maximal element under such an order, and
let p0 be the top-right corner of R0. We want to show that R0 contains an x̃-coordinate
other than x̃1.

Assume that D has non-zero coefficient at the square to the top-left of p0. Since
R0 is a maximal element, either p0 must lie on the α circle immediately below the
α passing through x̃1, or D must have zero coefficient at some square above the top
edge of R. In the first case, R0 contains the x̃-coordinate lying on the β circle passing
through p0, and so we are done. For the second case, let us start at p0 and proceed
left along the top edge of R0 until we reach the first point p1, such D has non-zero
coefficient at the top-right square of p1, but has zero coefficient at the top-left square
of p1. Then it is easy to see that p1 must be an x̃-coordinate, and once more, we are
done. A similar analysis shows that if D has non-zero coefficient at the bottom-right
square of p0, then also R0 contains an x̃-coordinate other than x̃1. Finally, if the
coefficient of D is zero at both the top-left and the bottom-right square of p0, then
p0 itself is an x̃-coordinate.

Thus D contains a rectangle R1, with two x̃-coordinates, say x̃1 and x̃2, being
the bottom-left corner and the top-right corner respectively. Now consider the partial
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order on rectangles that we have defined earlier, but restrict only to the ones whose
top-right corner is an x̃-coordinate. Let R3 be a minimal element. Then the rectangle
R3 is an empty rectangle connecting x̃ to some generator ũ1. The positive domain
D \R3 ∈ D(ũ1, ỹ) has a smaller sum of coefficients as 2-chains, and hence an induction
finishes the proof.

The partial order on G is defined by declaring y � x if and only if there exists
a positive domain in D(x, y). It is clear that the elements in different Alexander
gradings are not comparable. The covering relations are indexed by the elements of
R(x, y). It is routine to prove the following:

Lemma 3.6 ([MOSzT07, Section 2.2]). With the grading assignment being the Mas-
lov grading, the grid poset G is a GT poset.

Following Definition 2.4, let C(G) be the chain complex associated to the GT poset
G. Its homology is bigraded, with the Maslov grading being the homological grading,
and the Alexander grading being an extra grading.

Theorem 3.7 ([MOS09]). The homology H∗(C(G)) is isomorphic, as bigraded F2-
modules, to HFK−(S3,K;F2), the minus version of knot Floer homology over F2.

4. Shellability

Let G be a grid diagram of index n drawn on a torus T , which represents a knot
K. Let G be the associated GT poset. We will show that each closed interval in G is
EL-shellable.

Draw a circle l which is disjoint from all the β circles and intersects each α

circle exactly once. To each empty rectangle R ∈ R(x, y), we associate the triple
(s(R), i(R), t(R)) in the following way: s(R) is 0 if R intersects l and is 1 other-
wise; if s(R) = 0, i(R) is the minimum number of β circles that we have to cross
to travel from l to the leftmost arc of R, going left throughout; if s(R) = 1, i(R) is
the minimum number of β circles that we have to cross to go from l to the leftmost
arc of R, going right throughout; in both the cases, while counting the number of
intersections, we include the leftmost β arc of R; the number t(R) always denotes
the thickness of the empty rectangle R, which is the number of vertical annuli that
R hits. The set of such triples is ordered lexicographically, and thus we have a map
from the set of all covering relations to a totally ordered set. Figure 4.1 shows the
grid diagram from Figure 3.1, along with three generators x̃, ỹ and z̃, represented
by the white squares, the white circles and the black circles, respectively; the line l

is the dotted line; two empty rectangles R1 ∈ R(x̃, ỹ) and R2 ∈ R(x̃, z̃) are shown;
(s(R1), i(R1), t(R1)) = (0, 2, 2) and (s(R2), i(R2), t(R2)) = (1, 2, 1).

Theorem 4.1. Let x, y ∈ G. The map which sends a covering relation represented
by an empty rectangle R to (s(R), i(R), t(R)) induces an EL-shelling on the closed
interval [y, x].

Note that the interval [y, x] is non-empty if and only if there is a positive domain
in D(x, y). From now on, we only consider that case. Recall from Section 2 that
given a maximal chain m = {y ← z1 ← · · · ← zm ← x} in [y, x], we associate to it the
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Figure 4.1: Empty rectangles R1 ∈ R(x̃, ỹ) and R2 ∈ R(x̃, z̃).

labeling ((s, i, t)(y ← z1), . . . , (s, i, t)(zm ← x)), where (s, i, t)(p← q) is the (s, i, t)-
triple associated to the empty rectangle corresponding to the covering relation p← q.
Also note that given z ∈ G and a triple (s, i, t), there is at most one element z′ ∈ G
covering z, such that the covering relation corresponds to that triple. Thus, no two
maximal chains in [y, x] have the same labeling. Therefore, there is a unique maximal
chain m0 for which the labeling is lexicographically the minimum. The following two
lemmas prove the above theorem:

Lemma 4.2. The lexicographically minimum labeling is an increasing labeling.

Proof. Assume not. Let m0 be the unique maximal chain whose labeling is lexico-
graphically the minimum. Let p1 ← p2 ← p3 be the first place in m0 where the labeling
decreases. Let R1 and R2 be the two empty rectangles corresponding to the two cov-
ering relations. Since each vertical annulus and each horizontal annulus has at least
one X marking, ∂(R1 +R2) is non-zero on on exactly three or exactly four β circles.

If ∂(R1 +R2) is non-zero on exactly four β circles, then switch R1 and R2, thereby
producing a new maximal chain whose labeling is smaller than the labeling for m0

and thus contradicting the assumption that the labeling for m0 was the minimum. If,
on the other hand, ∂(R1 +R2) is non-zero on exactly three β circles, then R1 +R2

looks like a hexagon. Depending on the shape of the hexagon and the position of
the line l, only the cases as shown in Figure 4.2 can occur. In each of the cases, the
lexicographically smallest way to divide the hexagon is shown, and in each case, that
happens to correspond to a chain where the labeling is increasing. This proves that
the labeling for the maximal chain m0 is increasing.

Lemma 4.3. If the labeling corresponding to a maximal chain is an increasing label-
ing, then that maximal chain is the one whose labeling is lexicographically the mini-
mum.
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Figure 4.2: The lexicographically smallest way to cut a hexagon.

Proof. Let m be a maximal chain whose labeling is increasing, and let m0 be the
unique maximal chain whose labeling is lexicographically the minimum. We want to
show that m = m0.

Starting at y, let us assume that m1 and m2 agree up to an element z ∈ G. Let D be
the unique positive domain in D(x, z). Let m1 = m0 ∩ [z, x], and let m2 = m ∩ [z, x].
Let R and R′ be the empty rectangles corresponding to the two covering relations
on z coming from the two chains m1 and m2. We will show that (s(R), i(R), t(R)) =
(s(R′), i(R′), t(R′)) which would imply that R = R′; that, in turn would imply that
m and m0 agree for at least one more generator, thus concluding the proof.

Now, if D does not intersect l, then s is forced to be 1. On the other hand, if D
does intersect l, then eventually in both m1 and m2, some covering relation will have
s = 0, and since the labelings in both m1 and m2 are increasing, they both must start
with s = 0. Therefore, we see that s is fixed.

First we analyze the case when s = 1. So assume that the whole domain D lies
to the right of l, and let i0 be the minimum number of β circles we have to cross to
reach D from l going right throughout. Clearly i, the second coordinate in the triple
(s, i, t), can never be smaller than i0. Furthermore, since the whole domain D has to
be used up in both the chains m1 and m2, so at some point, i will be equal to i0.
Since the labelings in both m1 and m2 are increasing, this fixes i = i0.

To see that t is also fixed, we need an induction statement. Look at all p of the form
z ← p � x, such that the covering relation z ← p is by an empty rectangle with i = i0.
Let R0 be the thinnest empty rectangle among them, and let t0 be the thickness of R0.
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Figure 4.3: Fixing the thickness of the starting empty rectangle when s = 1.

Our induction claim states: in any maximal chain in [z, x], at some point we have to
use an empty rectangle with i = i0 and t 6 t0. The induction is done on the length of
the interval [z, x]. Clearly when this length is 2, the statement is true. Let us assume
that we do not start with the thinnest empty rectangle, but rather start with an
empty rectangle R1. Neither R0, nor R1 contains any coordinate of z in its interior,
and hence the local diagram must look like Figure 4.3. Since the Maslov index of
D \R1 is one lower than that of D, and since it has a starting empty rectangle with
(i, t) = (i0, t0), induction applies finishing the proof.

Thus in both the chains m1 and m2, at some point we have to use an empty
rectangle with i = i0 and t 6 t0. But since the labelings in both m1 and m2 are
increasing, and (i0, t0) is the smallest value of (i, t) that we can start with, we have
to start with t = t0. Thus, this fixes t.

Now, let us assume that s = 0. We need an induction statement to show that i is
fixed. For each coordinate zi of z, consider the horizontal line segment hi lying on
some α curve, which starts at zi and ends at l and goes right throughout. We call
zi admissible if every point just below the line segment hi belongs to D. Since the
starting empty rectangles in the chains m1 and m2 have s = 0, there is at least one
admissible coordinate. Among all the admissible coordinates, let z1 be the one with
hi having the smallest length. Let i0 be the smallest length, measured by number
of intersections with β curves. Our induction claim states: in any maximal chain in
[z, x], at some point we have to use an empty rectangle with s = 0 and i 6 i0. The
induction is done on the length of [z, x]. Clearly when the length is 2, the claim is
true. Let us assume that we start with an empty rectangle R0 with s = 0 and i > i0.
Since R0 has Maslov index one, it cannot contain any z coordinate in its interior and
it also cannot contain any horizontal annulus. Therefore, it is easy to see that R0 has
to be disjoint from h1, and thus D \R0 has Maslov index one lower than D and still
intersects l and has an admissible coordinate with h = i0. Thus induction applies and
proves our claim. It is obvious that the starting empty rectangles in the chains m1

and m2 must have s = 0 and i > i0. Since both have increasing labelings, we must
start with empty rectangles with (s, i) = (0, i0).
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Figure 4.4: Fixing the thickness of the starting empty rectangle when s = 0.

Next, we want to show that t is also fixed. This is also done by an induction
very similar to the ones above. Consider all p with z ← p � x, such that the covering
relation z ← p has (s, i) = (0, i0). Let R0 be the thinnest empty rectangle among all
such covering relations, and let t0 be the thickness of R0. The induction claim states:
in any maximal chain in [z, x], at some point we have to use an empty rectangle
with (s, i) = (0, i0) and t 6 t0, and the induction is done on the length of [z, x]. Once
again, it is trivial when the length is 2. Assume that we start with a empty rectangle
R1 with (s, i) = (0, i0) and t > t0. The empty rectangles R0 and R1 must look like
Figure 4.4.

Note that D \R1 has Maslov index one lower than D and it still intersects l, and
it still has an admissible coordinate with h = i0. Thus induction applies. Since the
labelings for m1 and m2 are both increasing, this implies that they both must start
with an empty rectangle with (s, i, t) = (0, i0, t0). Thus we see that the thickness is
fixed. As explained earlier, this finishes the proof.

Proof of Theorem 4.1. Fix a closed interval [y, x]. By Lemma 4.3, there is at most
one maximal chain in [y, x], namely the one whose labeling is lexicographically the
minimum, for which the the labeling is increasing. Lemma 4.2 tells us that the lex-
icographically minimum labeling is also an increasing labeling. Therefore, there is a
unique maximal chain in [y, x] for which the labeling is increasing, and that labeling
is lexicographically the minimum.

5. Flow category

Inspired by the definition of the flow category in [CJS95], let us define a PL flow
category C to be a small category with the following additional structures and proper-
ties: there is a grading assignment g : ObC → Z; for any x ∈ ObC , the set MorC(x, x)
consists of only the identity; for any two distinct x, y ∈ ObC , the set MorC(x, y) is
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a (possibly empty) (g(x)− g(y)− 1)-dimensional PL-manifold (possibly with bound-
ary); for any x, y, z ∈ ObC , the map MorC(x, y)×MorC(y, z)→ MorC(x, z) is a PL-
embedding, such that if x, y, z are distinct, then the image of the embedding is a
subspace of the boundary of MorC(x, z); furthermore, if p ∈ MorC(x, z) is a point on
the boundary, then there exists y ∈ ObC \{x, z}, such that p is in the image of the
embedding MorC(x, y)×MorC(y, z) →֒ MorC(x, z).

In this section, given a GT poset P whose every closed interval is shellable, we will
construct a PL flow category F(P ). There will also be a natural functor from F(P )
to C(P ), the category associated to the poset P .

The objects of F(P ) are the elements of P , and the grading assignment on ObF(P )

is simply the grading assignment of P . The space MorF(P )(x, y) is non-empty if
and only if y � x. If y ≺ x, consider the interval [y, x]; let B([y, x]) be its barycen-
tric subdivision, and now consider the interval [{y, x},∞) in B([y, x]); the space
MorF(P )(x, y) is defined to be its order complex,X([{y, x},∞)). Let z ≺ y ≺ x; before
we define the structure map MorF(P )(x, y)×MorF(P )(y, z)→ MorF(P )(x, z), observe
that the Cartesian product of the poset [{y, x},∞), viewed as an interval in B([y, x]),
and the poset [{z, y},∞), viewed as an interval in B([z, y]), is naturally isomor-
phic to the poset [{z, y, x},∞), viewed as an interval in B([z, x]); the structure map
is the composition X([{y, x},∞))×X([{z, y},∞)) = X([{y, x},∞)× [{z, y},∞)) =
X([{z, y, x},∞)) →֒ X([{z, x},∞)).

Theorem 5.1. For any GT poset P whose every closed interval is shellable, the cate-
gory F(P ) is a PL flow category. Furthermore, whenever y ≺ x, the simplicial complex
MorF(P )(x, y) is PL-homeomorphic to a ball.

Proof. Let y ≺ x. We will prove that MorF(P )(x, y) = X([{y, x},∞)) is PL-homeo-
morphic to the (g(x)− g(y)− 1)-dimensional ball. Since the interval [y, x] is graded
with length g(x)− g(y) + 1, the interval [{y, x},∞) in B([y, x]) is graded with length
g(x)− g(y). Since P is locally thin, the interval (y, x) is thin, and therefore, the inter-
val [{y, x},∞) in B([y, x]) is subthin; furthermore, a submaximal chain of [{y, x},∞)
is covered by exactly one maximal chain if and only if it does not contain {y, x}.
Finally, since the interval [y, x] is shellable, we know from Theorem 2.1 that the inter-
val [{y, x},∞) is shellable. Therefore, Theorem 2.3 applies and tells us that the order
complex X([{y, x},∞)) is PL-homeomorphic to the (g(x)− g(y)− 1)-dimensional
ball; furthermore, the boundary of the ball corresponds precisely to the submaxi-
mal chains of [{y, x},∞) that do not contain {y, x}.

Now let z ≺ y ≺ x. Next, we will prove that the map MorF(P )(x, y)×MorF(P )(y, z)
→ MorF(P )(x, z) is a PL-embedding into the boundary of MorF(P )(x, z). The map
is an embedding because it is essentially the inclusion of X([{z, y, x},∞)) as a sub-
complex of X([{z, x},∞)). Its image lies in the boundary of MorF(P )(x, z) because
none of the chains in [{z, y, x},∞) contain the point {z, x}.

Finally, let us prove that every point in the boundary of MorF(P )(x, z) is in the
image of such an embedding. Let p be a point in the boundary. Let ∆ be a maximal
dimensional simplex in the boundary of X([{z, x},∞)) that contains p. Let C be the
submaximal chain in [{z, x},∞) that corresponds to ∆. Since ∆ lies in the boundary,
C does not contain the element {z, x}. Therefore, the smallest element of C is some
element of the form {z, y, x}, with z ≺ y ≺ x. Then p lies in the image of the map
MorF(P )(x, y)×MorF(P )(y, z)→ MorF(P )(x, z).
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Therefore, using Lemma 3.6, Theorems 2.2 and 4.1, we can associate a PL flow
category to a grid diagram in a natural way. This suggests that we might be able
to associate a stable homotopy type to a grid diagram in a natural way, whose
homology will be the knot Floer homology. However, in order to apply the Cohen-
Jones-Segal machinery [CJS95], we need to frame the tangent bundles of MorF(P )

in a coherent way: namely, for every y ≺ x, we want a trivialization of the bun-
dle T∗(MorF(P )(x, y))⊕ R over MorF(P )(x, y) such that, whenever z ≺ y ≺ x, the
trivialization of the bundle T∗(MorF(P )(x, y))⊕ R⊕ T∗(MorF(P )(y, z))⊕ R over
MorF(P )(x, y)×MorF(P )(y, z) agrees with the pullback of the trivialization of the
bundle T∗(MorF(P )(x, z))⊕ R under the inclusion map MorF(P )(x, y)×MorF(P )(y, z)
→֒ MorF(P )(x, z). It is not clear what is the relevant notion of the tangent bundle
of a PL-manifold. More importantly, it is not clear how to produce these coherent
framings starting with a GT poset whose every closed interval is shellable. It seems
likely that to do so we need more structures on the poset. It would be an interesting
endeavor to characterize those extra structures and to check if the GT posets arising
from grid diagrams have them.
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