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THE FUNDAMENTAL 2-CROSSED COMPLEX

OF A REDUCED CW-COMPLEX

JOÃO FARIA MARTINS

(communicated by Ronald Brown)

Abstract
We define the fundamental 2-crossed complex Ω∞(X) of a

reduced CW-complex X from Ellis’ fundamental squared com-
plex ρ∞(X) thereby proving that Ω∞(X) is totally free on
the set of cells of X. This fundamental 2-crossed complex has
very good properties with regard to the geometrical realisa-
tion of 2-crossed complex morphisms. After carefully discussing
the homotopy theory of totally free 2-crossed complexes, we
use Ω∞(X) to give a new proof that the homotopy category
of pointed 3-types is equivalent to the homotopy category of
2-crossed modules of groups. We obtain very similar results to
the ones given by Baues in the similar context of quadratic
modules and quadratic chain complexes.

Introduction

A CW-complex X will be called reduced if it has a unique 0-cell, taken to be its
basepoint. Let n be a positive integer. An n-type is a reduced CW-complex X, such
that πi(X) is trivial for i > n. The category {n-types} of n-types is defined as the
category with objects the n-types and morphisms the pointed homotopy classes of
pointed maps.

It is well known that the fundamental group functor yields an equivalence of cat-
egories between the category of groups and the category of 1-types, and that the
fundamental crossed module of a CW-complex provides an equivalence of categories
between the category of 2-types and the localisation Ho(Xmod), with respect to
weak equivalences, of the model category Xmod of crossed modules; see [16, 20].
Note that the category of crossed modules is equivalent to the category of simplicial
groups with Moore complex of length one; for a proof see [14, 20, 23].

The 2-crossed modules were initially defined by Conduché in [14], who proved that
the category 2Xmod of 2-crossed modules is equivalent to the category of simplicial
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groups with Moore complex of length two. A natural generalisation of a 2-crossed
module is a 2-crossed complex [23], obtained from a 2-crossed module by adding a
tail of Z(π1)-modules to the underlying complex of a 2-crossed module, in the same
way a crossed complex is obtained from a crossed module.

In this article we give a new proof that the category of 3-types is equivalent to
the homotopy category of 2-crossed modules of groups [14]; see also [3, 4, 23]. To
this end (and certainly of independent interest), we define the fundamental 2-crossed
complex Ω∞(X) of a CW-complex X, which has very similar properties to Baues’
fundamental quadratic chain complex Q(X) of a CW-complex, constructed in [3].
The category of quadratic chain complexes is a reflexive subcategory of the category
of 2-crossed complexes (a reflection functor was defined in [2]), and (as observed
in [17]) Baues’s Q(X) is obtained from Ω∞(X) by considering this reflection.

We will often impose a minor technical assumption, also appearing in [17], which
is to consider only canonical CW-complexes, where a CW-complex X is canonical if
it has a unique 0-cell, all 2-cells attach along pointed maps and the attaching maps
of all 3-cells are triad maps. This ensures that the fundamental 2-crossed complex of
X may be addressed in a combinatorial way. Nevertheless, the fundamental 2-crossed
complex functor is also defined for CW-complexes satisfying only the first and second
conditions of the definition of a canonical CW-complex, retaining most properties.

Given a canonical CW-complexX, we define Ω∞(X) from the fundamental squared
complex ρ∞(X), constructed in [17], after proving that the category of totally free
squared complexes (with a chosen basis) and a certain type of maps (neat maps) is
isomorphic to the category of totally free 2-crossed complexes, which is not immedi-
ate. From Brown-Loday’s theorem [11, 12], the fundamental squared complex of a
canonical CW-complex is totally free on its cells. In particular, from this construction,
we automatically have that Ω∞(X) is totally free on the set of cells of X, a result
which would be difficult to show directly. The combinatorial definition of totally free
2-crossed complexes [21] will, in particular, give a presentation of the first three
homotopy groups of a canonical CW-complex, as well as the Whitehead products
π2 × π2 → π3, by generators and relations. This appears in [7, 17] in the language of
crossed squares, and it is a variant of the presentation considered in [3] in the context
of quadratic modules.

We prove, following and using the results of [17], that Ω∞(X) has very analogous
properties to Baues’ fundamental quadratic chain complex of a reduced CW-complex.
Apart from the already mentioned fact that Ω∞(X) is totally free, this fundamental
2-crossed complex functor has very good properties with regard to the geometric
realisation of 2-crossed complex maps and their homotopies. For instance, all 2-crossed
complex maps Ω∞(X)→ Ω∞(Y ) between 3-dimensional canonical CW-complexes
can be realised by CW-complex maps X → Y . This is essentially due to Brown-
Loday’s theorem [11, 12].

We carefully discuss the homotopy theory of totally free 2-crossed complexes, in
an analogous way as to what was presented in [3, 25], for quadratic chain complexes
and crossed complexes and give detailed calculations.

The fundamental 2-crossed module Ω3(X) of a CW-complex X can be defined in a
similar way to the fundamental 2-crossed complex Ω∞(X). All maps Ω3(X)→ Ω3(Y )
between the fundamental 2-crossed modules of any two canonical CW-complexes X
and Y , with Y a 3-type, can be geometrically realised. From this it follows, almost
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immediately, that the category of (pointed) 3-types is equivalent to the homotopy
category of 2-crossed modules.

1. Preliminaries

Remark 1.1 (Convention on semidirect products). Let G and E be groups. Given
a left action ⊲ of G on E by automorphisms, the conventions for the semidirect
products G⋉ E and E ⋊G are (g, e)(g′, e′) =

(

gg′, (g′−1 ⊲ e)e′
)

and (e, g)(e′, g′) =
(eg ⊲ e′, gg′), respectively, where g, g′ ∈ G and e, e′ ∈ E.

1.1. Crossed modules and Peiffer commutators
A pre-crossed module consists of a group morphism ∂ : E → G together with a left

action ⊲ of G on E by automorphisms such that

∂(g ⊲ x) = gxg−1, for each g ∈ G and each x ∈ E.

A crossed module is a pre-crossed module satisfying also the condition

∂(x) ⊲ y = xyx−1, for each x, y ∈ E.

Thus, in a crossed module (∂ : E → G, ⊲), the subgroup ker(∂) ⊂ E is central in E.
Let (∂ : E → G, ⊲) be a pre-crossed module. Given x, y ∈ E, their Peiffer commu-

tator is given by

〈x, y〉 =
(

xyx−1
)(

∂(x) ⊲ y−1
)

.

A pre-crossed module is a crossed module if and only if all Peiffer commutators vanish.
A morphism (ψ, φ) between the pre-crossed modules (∂ : E → G, ⊲) and (∂′ : E′ →

G′, ⊲′) is given by a pair of group morphisms ψ : E → E′ and φ : G→ G′ such that
φ ◦ ∂ = ∂′ ◦ ψ, and such that ψ(g ⊲ e) = φ(g) ⊲′ ψ(e), for each e ∈ E and g ∈ G. Mor-
phisms of crossed modules are defined analogously, thus the category of crossed mod-
ules Xmod is a full subcategory of the category preXmod of pre-crossed modules.

1.1.1. Free pre-crossed modules and crossed modules
Let G be a group and K be a set with a map ∂0 : K → G. We say that a pre-crossed
module (∂ : E → G, ⊲) is free on ∂0 if there exists a map i : K → E with ∂0 = ∂ ◦ i
such that the following universal property holds: for any pre-crossed module (∂′ : E′ →
G, ⊲′) and any map ψ0 : K → E′ such that ∂′ ◦ ψ0 = ∂0, there exists a unique group
morphism ψ : E → E′ such that the following diagram commutes:

K

∂0

&&N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

i
��

=

=

=

=

=

=

=

=

=

ψ0

��
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

E
∂ //

ψ

��
�

�

�

�

G

id

��

E′
∂′

// G

with (φ, id) being a morphism of pre-crossed modules. Free crossed modules (E →
G, ⊲) are defined analogously, with the only change being that (E′ → G, ⊲′) is to be
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Figure 1: The action of an element g ∈ π1(Y ) on an e ∈ π2(X,Y ).

a crossed module. Note that the inclusion Xmod→ preXmod is full.

The free pre-crossed module F (K
∂0−→ G) on a set map ∂ : K → G is clearly unique

up to isomorphism. A model for it is given by considering the free group F on the
symbols (g, k) with g ∈ G and k ∈ K, with action g ⊲ (h, k) = (gh, k) on generators
and with boundary map given by ∂(g, k) = g∂(k)g−1 on the free group generators of
F .

Definition 1.2 (Totally free crossed module). We say that a free pre-crossed module
(or crossed module) E → G is totally free if G is a free group.

1.1.2. The fundamental crossed module of a pair and Whitehead’s theorem
Let (X,Y ) be a pointed pair of path connected spaces. The obvious boundary map
∂ : π2(X,Y )→ π1(Y ) together with the usual action of π1(Y ) on π2(X,Y ) (see Fig. 1)
defines a crossed module Π2(X,Y ). We thus have a functor Π2 from the category with
objects being the pointed pairs of path-connected spaces and morphisms being the
pointed homotopy classes of pointed maps of pairs to the category of crossed modules.
All of this is due to Whitehead [24, 25]. For a modern treatment see [10].

Theorem 1.3 (Whitehead’s theorem). If X is obtained from Y by attaching 2-cells,
then Π2(X,Y ) is the free crossed module on the attaching maps (in π1(Y )) of the
2-cells. In particular, if X = X2 is a 2-dimensional reduced CW-complex and Y = X1

is its 1-skeleton, then Π2(X
2, X1) is a totally free crossed module.

The following theorem [3, 25] follows by induction on the n-skeleton Xn of the
CW-complex X, made possible by Whitehead’s theorem and the fact that Y 1 is
aspherical.

Theorem 1.4. Let X and Y be reduced 2-dimensional CW-complexes. The map F 7→
Π2(F ) yields a one-to-one correspondence between pointed homotopy classes of maps
(X,X1, X0)→ (Y 2, Y 1, Y 0) and crossed module maps Π2(X

2, X1)→ Π2(Y
2, Y 1).

1.2. Crossed squares and squared complexes
A crossed square [20] (a notion due Guin-Waléry and Loday) is given by a com-

mutative diagram of groups:

ρ =

L
λ′

−−−−→ N

λ





y





y

ν

M −−−−→
µ

G

(1)
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together with left actions ofG on L,M andN by automorphisms (denoted by (g, x) 7→
gx, where g ∈ G and x is in L, M or N) and a function h : M ×N → L (called a
crossed pairing), such that

1. All group morphisms are G-equivariant, where G acts on itself by conjugation.

2. The morphisms λ, λ′, ν, µ and ν ◦ λ′ = µ ◦ λ define crossed modules, considering
the actions of N and M on L provided by ν and µ and the action of G on L.
Note that M also acts on N through µ, and similarly N acts on M through ν.

3. The crossed pairing h : M ×N → L is G-equivariant, namely,

h (gm, gn) = gh(m,n), for each m ∈M, n ∈ N and g ∈ G.

4. For each l ∈ L, m,m′ ∈M and n, n′ ∈ N , we have

h(mm′, n) = h(mm′, mn)h(m,n) h(m,nn′) = h(m,n)h( nm, nn′) (2)

λh(m,n) = m( nm−1) λ′h(m,n) = (mn)n−1 (3)

h(λl, n) = l( nl−1) h(m,λ′l) = (ml)l−1. (4)

Morphisms of crossed squares are defined in the obvious way.
A squared complex A (see [17]) is given by a commutative diagram of groups:

A = · · ·
∂n+1

// An
∂n // · · ·

∂5 // A4
∂4 // L

λ′

//

λ

��

N

ν

��

M µ
// G,

(5)

with each Ai (where i > 4) being abelian, together with an action of G on all the
groups, on itself by conjugation, and a G-equivariant map h : M ×N → L, making
the square of groups on the right a crossed square, such that

1. All group morphisms are G-equivariant.

2. ∂4(A4) ⊂ kerλ ∩ kerλ′.

3. Both µ(M) and ν(N) act trivially in An for n > 4.

4. The tail of A, by definition {An, ∂n;n > 4} is a chain complex of abelian groups.

If π1(A) denotes the cokernel of group map (n,m) ∈ N ⋊M 7→ ν(n)µ(m) ∈ G, then
there is an induced action of π1(A) in each An, where n > 4.

1.2.1. Neat crossed module corners, neat crossed squares and neat squared com-
plexes

A crossed module corner is, by definition, a diagram in the category of groups:

M
µ

−−−−→ G
ν

←−−−− N, (6)

such that we also have actions of G on N and M by automorphisms, defining two
crossed modules. Morphisms of crossed module corners are defined in the obvious way
from crossed module morphisms. Given a pre-crossed module ∂ : M → P , consider the
following subgroups: M = {(m, 1)}m∈M and M = {m}m∈M =

{(

m, ∂(m)−1
)}

m∈M

of M ⋊ P (Remark 1.1). Define a pre-crossed module corner M −→M ⋊ P ←− M̄ ,
where all group homomorphisms are inclusions and all actions are by conjugation.
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This defines a functor ι from the category of pre-crossed modules into the category
of crossed module corners, which is however not full.

A neat crossed module corner is given by the following data: a pre-crossed mod-
ule M → P , a crossed module corner (6), and group isomorphisms T+ : M → N
and T0 : M ⋊ P → G, making the following diagram commutative and preserving all
actions (that is (id, T0, T+) is to be an isomorphism of crossed module corners):

M //

id

��

M ⋊ P

T0

��

Moo

T+

��

M
µ

// G N.
νoo

A neat morphism between neat crossed module corners C and C ′, associated to the
pre-crossed modules (M → P ) and (M ′ → P ′) is a crossed module corner map C →
C ′ induced, through ι, by a pre-crossed module morphism (M → G)→ (M ′ → G′).
We therefore have an equivalence of categories between the category of pre-crossed
modules and the category of neat crossed module corners and neat morphisms.

Definition 1.5 (Neat squared complex and neat crossed square). A squared com-

plex (5) is said to be neat if the associated crossed module corner M
µ
−→ G

ν
←− N is

neat. A neat morphism between neat squared complexes is a morphism of squared
complexes which is neat at the level of crossed module corners. We analogously define
the category of neat crossed squares and neat morphisms.

1.2.2. The fundamental crossed square of a pointed triad
Let (X;A,B) be a pointed triad. In other words, X is a path-connected pointed space
with two path-connected subspaces A and B, containing the basepoint, such that
the intersection W = A ∩B is path connected. Consider the triad homotopy group
π3(X;A,B); see for example [1, 6]. There are obvious morphisms π3(X;A,B)→
π2(A,W ) and π3(X;A,B)→ π2(B,W ). There also exists an action of π1(W ) on
all of these groups, and all boundary maps are π1(W )-equivariant. The generalised
Whitehead product [1, 5] defines a π1(W )-equivariant (set) map h : π2(A,W )×
π2(B,W )→ π3(X;A,B). It is proved in [17, 18] that given any pointed triad
(X;A,B), the square of groups (with obvious morphisms)

π3(X;A,B)
λ′

−−−−→ π2(B,W )

λ





y





y

ν

π2(A,W ) −−−−→
µ

π1(W ),

together with the generalised Whitehead product and the actions of π1(W ), defines
a crossed square ρ3(X;A,B).

1.2.3. Canonical CW-complexes and bifiltered maps
Let B2 = {z ∈ C : |z − 1| 6 1} and B2

− = {z ∈ C : |z − 1/2| 6 1/2}. Let also B2
+ =

B2 \ int(B2
−). This yields a CW-decomposition of B2 with a 0-cell at {0} (taken as its

basepoint), two 1-cells and two 2-cells. This also defines a pointed triad (B2;B2
−, B

2
+).

(We refer to Fig. 2.) We can also define a triad structure on S2, taking S2
− and S2

+ to
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B2
−

B2
+

Figure 2: The triad structure (B2;B2
−, B

2
+) on the 2-ball B2.

be the southern and northern hemispheres. The following definition is due to Ellis;
see [17]. As usual Xn denotes the n-skeleton of the CW-complex X.

Definition 1.6 (Canonical CW-complexes). A CW-complex X is canonical if

1. The CW-complex X has a unique 0-cell, taken as its basepoint.

2. The attaching map ∂B2 → X1 of each 2-cell is pointed. This thus defines an
obvious triad (X2, X2

−, X
2
+) induced from the triad structure in B2.

3. Each 3-cell attaches along a pointed triad map (S2;S2
−, S

2
+)→ (X2;X2

−, X
2
+).

Definition 1.7 (Bifiltered map). Let X and Y be canonical CW-complexes with
their unique 0-cells taken to be the basepoints. A map f : X → Y is said to be bifil-
tered if it is cellular, thus pointed, and moreover f(X2

+) ⊂ Y
2
+ and f(X2

−) ⊂ Y
2
−. A

homotopy H connecting the bifiltered maps f, g : X → Y is bifiltered if it is filtered
(i.e., H(Xi × I) ⊂ Y i) and moreover H(X2

+ × I) ⊂ Y
2
+ and H(X2

− × I) ⊂ Y
2
−.

Triad maps f : (X;X2
−, X

2
+)→ (Y, Y 2

−, Y
2
+) between canonical CW-complexes need

not be bifiltered, since bifiltered maps should further satisfy f(X1) ⊂ Y 1.

Theorem 1.8 (Bifiltered approximation theorem). Each map f : X → Y between
canonical CW-complexes is homotopic to a bifiltered map f ′. If f is bifiltered when
restricted to a subcomplex Z of X, then such homotopy can be chosen relative to Z.

Proof. Choose a cellular approximation g to f : X → Y and a homotopy H1 : X ×
I → Y connecting f and g and constant over Z. By using the following lemma,
there exists a map H ′

2 : (Z ∪X
2)× I ∪ (X × {0})→ Y , stable in Z, extending g and

connecting the restriction of g to Z ∪X2 with a bifiltered map g′ : X2 ∪ Z → Y .
By a trivial inductive argument, H ′

2 extends to all of X × I, defining a homotopy
connecting g and a bifiltered map f ′.

Lemma 1.9. Every cellular map f : B2 → Y 2 (where B2 has a CW-decomposition
with single 0-, 1- and 2-cells) is homotopic to a bifiltered map f ′ : B2 → Y 2 through
a homotopy which fixes S1 = ∂B2.

Proof. Let R be made of the left, right and bottom faces of D2 = [0, 1]2. Consider a
homeomorphism r : D2/R→ B2. Then the element f ◦ r : D2 → X is an element of
π2(Y

2, Y 1). Any 2-cell of vi of Y defines a map ei : D
2/R→ Y 2, yielding an element

of π2(Y
2, Y 1), in the same way. As an element of π2(Y

2, Y 1), the element f ◦ r is
homotopic to an element of the form

φ = (g1 ⊲ ei1)
θ1(g2 ⊲ ei2)

θ2 · · · (gn ⊲ ein)
θn , where gi ∈ π1(Y

1) and θi ∈ Z,

by using the results of 1.1.1 and 1.1.2, since the crossed module Π2(Y
2, Y 1) is free.

Consider a homotopy in Y 1 from ∂(φ) to ∂(f ◦ r). Let φ′ be the vertical concatenation
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of φ and this homotopy, defining a map φ′ : D2/R→ Y such that the restriction of
it to the top of D2 is ∂(f ◦ r). Given the form of the action of π1(Y

1) on π2(Y
2, Y 1)

(see Fig. 1) the map f ′ = φ′ ◦ r−1 : B2 → Y is bifiltered, and by the construction of
f ′ there exists a homotopy connecting f and f ′, stable on the boundary S1 of B2.

We have categories CWb of canonical CW-complexes and bifiltered maps and
CWb/ ∼= of canonical CW-complexes and bifiltered maps up to bifiltered homotopy.
We will also consider the categories CW and CW/ ∼= of canonical CW-complexes and
pointed maps and of canonical CW-complexes and pointed maps up to pointed homo-
topy. By using the bifiltered approximation theorem (see the construction below), any
reduced CW-complex is homotopic to a canonical CW-complex, a fact mentioned
in [17]. Therefore, the category CW/ ∼= is equivalent to the category CW/ ∼= of
CW-complexes and pointed homotopy classes of pointed maps. Define also a full sub-
category {3-types}can of the category {3-types}, called the category of canonical
3-types, with objects being the 3-types whose underlying CW-complex is canonical.
Clearly the inclusion {3-types}can → {3-types} is an equivalence of categories.

Consider a CW-complex X satisfying conditions 1 and 2 of the definition of a
canonical CW-complex. Let Y be a homotopically equivalent CW-complex, obtained
from X by substituting the attaching maps of all 3-cells by homotopic triad maps,
whose existence follows from the bifiltered approximation theorem. Note X2 = Y 2.

Lemma 1.10. There exists a triad homotopy equivalence (X,X2
−, X

2
+)→ (Y, Y 2

−, Y
2
+)

which is the identity over 2-skeletons, thus in particular defining a bifiltered homotopy
equivalence if X and Y are 3-dimensional CW-complexes.

Proof. Clearly there exist homotopy equivalences f : X → Y and g : Y → X which
are the identity over 2-skeletons. Consider the constant homotopies H2 : f

2 ◦ g2 →
idY 2 and K2 : g

2 ◦ f2 → idX2 , where f2 is the restriction of f to the 2-skeleton X2

of X, and analogously for g2. Since the inclusions of X2 in X and of Y 2 in Y are
cofibrations, we can find a homotopy inverse g′ of f extending g2 such that there
exist homotopies H : f ◦ g′ → idY , extending H2, and K : g′ ◦ f → idX , extending
the following concatenation of homotopies (which is clearly a constant homotopy)

idX2 = g2 ◦ f2
(g2f2K2)

−1

−−−−−−−−→ g2 ◦ f2 ◦ g2 ◦ f2
g2H2f

2

−−−−−→ g2 ◦ f2
K2−−→ idX2 .

(We use the notation and the main result of [8, 7.4].) Therefore, f and g′ define a
triad homotopy equivalence, which is the identity over 2-skeletons.

1.2.4. The fundamental crossed square ρ3(X) of a canonical CW-complex
Let X be a canonical CW-complex. The fundamental crossed square of it [17] is

ρ3(X;X2
−, X

2
+) =

π3(X;X2
−, X

2
+)

λ′

−−−−→ π2(X
2
+,W )

λ





y





y

ν

π2(X
2
−,W ) −−−−→

µ
π1(W ).

(7)

We have two crossed modules, Π2(X
2
−,W ) and Π2(X

2
+,W ), which are both totally

free, since X2
− and X2

+ each are obtained fromW =WX = X2
− ∩X

2
+ (a 1-dimensional
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CW-complex) by attaching 2-cells. Note that W ∼= X1
∨∨

{2-cells} S
1, thus π1(W ) is

the free group on the set A ∪B, where A and B are the sets of 1- and 2-cells. Given
that both spaces X2

− and X2
+ are aspherical, we have two exact sequences:

0→ π2(X
2
+,W )

ν
−→ π1(W )

p+
−−→ π1(X

2
+)
∼= π1(X

1)→ 1

and

0→ π2(X
2
−,W )

µ
−→ π1(W )

p−
−−→ π1(X

2
−)
∼= π1(X

1)→ 1, (8)

which are split given that π1(X
1) is a free group (p+ and p− are induced by the

inclusion of W in X2
+ and X2

−, respectively). For the applications below, we enhance
the commutative square (7) to the following diagram, with exact mid row and column:

π3(X;X2
−, X

2
+)

λ′

//

λ

��

π2(X
2
+,W )

ν

��

{1} // π2(X
2
−,W )

µ
//

∂
''P

P

P

P

P

P

P

P

P

P

P

P

π1(W )

p+

��

p−
// π1(X

2
−)
∼= π1(X

1) // {1}

π1(X
2
+)
∼= π1(X

1).

Note that ν and µ are injective. The following important lemma is implicit in [17].

Lemma 1.11. Define a projection map p+ : π1(W )→ π1(X
1) = π1(X

2
+) given by the

inclusion of W on X2
+. Consider the inclusion map π1(X

1)→ π1(W ) given by the
inclusion of X1 in W , thus corresponding to the inclusion of free generators. Define
an action of π1(X

1) on π2(X
2
−,W ) provided by the action of π1(W ) on π2(X

2
−,W )

and the inclusion of π1(X
1) in π1(W ). Let ∂ = p+ ◦ µ. Then

1. With the action just defined,
(

π2(X
2
−,W )

∂
−→ π1(X

1)
)

is the free pre-crossed
module on the attaching maps of the 2-cells of X in π1(X

1).

2. Let M = π2(X
2
−,W ). The exact sequence (8), which is split, gives an isomor-

phism of crossed modules, where the first crossed module is given by the normal
inclusion m ∈M 7→ (m, 1) ∈M ⋊ π1(X

1) and the action is by conjugation:

(

M →M ⋊ π1(X
1)
) (id,T0)
−−−−→ Π2(X

2
−,W )

.
=

(

π2(X
2
−,W )→ π1(W )

)

.

Explicitly, T0(m, g) = µ(m)g, where m ∈M and g ∈ π1(X
1).

3. Under the identification π1(W ) ∼=M ⋊ π1(X
1), the map p+ : π1(W )→ π1(X

1)
is given by

(m,w) 7→ ∂(m)w.

4. In addition, from π2(X
2
+,W ) = ker(p+), it follows that there exists a naturally

defined isomorphism

M = {m}m∈M
T+
−−→ π2(X

2
+,W )

where m = (m, ∂(m)−1), and moreover, through (T+, T0), the crossed module
Π2(X

2
+,W ) is isomorphic to the one given by the inclusion ofM inM ⋊ π1(X

1).
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In particular, the fundamental crossed square of a CW-complex is neat 1.2.1, and
we also have a functor ρ3 from the category of canonical CW-complex and bifiltered
maps to the category of neat crossed squares and neat maps; see also 1.2.6.

1.2.5. Free and totally free crossed squares and squared complexes

Consider a crossed module corner (6). Suppose we have a set K together with maps
λ0 : K →M and λ′0 : K → N , such that ν ◦ λ′0 = µ ◦ λ0. A crossed square

ρ′ =

F
λ′

−−−−→ N

λ





y





y

ν

M −−−−→
µ

G

is said to be free on (λ0, λ
′
0) if there exists an inclusion map i : K → F such that for

each crossed square of the form (1) and each map φ : K → L such that λ′ ◦ φ = λ′0
and λ ◦ φ = λ0, there exists a unique crossed square map ρ′ → ρ, which is the identity
onM,N and G, and such that the underlying map φ : F → L extends φ : K → L. For
details see [11, 17, 22].

The following definition is due to Ellis ([17]) and is motivated by Lemma 1.11.

Definition 1.12 (Totally free and 2-free crossed square). Let S2 be a set together

with a map ∂0 : S2 → F , where F is the free group on a set S1. Let (M
∂
−→ F ) be

the associated totally free pre-crossed module. Consider the following neat crossed
module corner, 1.2.1, with all maps being inclusions:

M




y

M −−−−→ M ⋊ F.

(9)

As above, M = {m}m∈M = {(m, ∂(m)−1}m∈M . Consider a set-map λ0 : K → ker(∂)
⊂M , and let λ′0(k) = λ0(k) = (λ0(k), 1). Then the free crossed square on λ0 : K →M
and λ′0 : K →M is said to be the totally free crossed square on (S1, S2,K, ∂0, λ0).
A crossed square whose underlying crossed module corner has the form (9), with
M → F being a totally free pre-crossed module, will be called 2-free.

Definition 1.13 (Free and 2-free crossed squares with a chosen basis). The category
of totally free crossed squares with a chosen basis has objects (S1, S2,K, ∂0, λ0), as
above, and morphisms crossed square maps between the associated totally free crossed
squares. We analogously define the category of 2-free crossed squares with a chosen
(pre-crossed module) basis.

The following non-trivial theorem is a particular case of the van Kampen the-
orem for diagrams of spaces, which appears in [11, 12]. Let X be a canonical
CW-complex. Let K be the set of its 3-cells, each attaching through a triad map
(S2;S2

−, S
2
+)→ (X2;X2

−, X
2
+) and therefore defining maps λ′0 : K → π2(X

2
+,W ) and

λ0 : K → π2(X
2
−,W ).
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Theorem 1.14 (Brown-Loday). The fundamental crossed square of a canonical CW-
complex X of dimension three is the free crossed square on the maps above and is, in
particular (by Lemma 1.11), totally free.

If X is a 3-dimensional CW-complex satisfying conditions 1 and 2 of the defi-
nition of a canonical CW-complex, then X is bifiltered homotopic to a canonical
CW-complex (Lemma 1.10), and therefore its fundamental crossed square is totally
free as well.

A squared complex A as in (5) is said to be totally free if its associated crossed
squared is totally free and also each An is a free Z(π1(A))-module. There exist cat-
egories of totally free squared complexes, with or without chosen basis, 1.2.5. From
our previous discussion in 1.2.4 and 1.2.5, it follows that (see [17]) if X is a canonical
CW-complex, then the diagram of groups

· · · → π5(X
5, X4)

∂5 // π4(X
4, X3)

∂4 // π3(X
3;X2

−, X
2
+)

λ′

//

λ

��

π2(X
2
+,W )

ν

��

π2(X
2
−,W )

µ
// π1(W )

(whereW = X2
− ∩X

2
+) is a squared complex called the fundamental squared complex

ρ∞(X) of X, which is totally free on the cells of X.

Remark 1.15. A totally free or 2-free squared complex (or crossed square) with a
chosen basis is automatically neat.

Consider the categories CWb and CWb/ ∼=, of canonical CW-complexes and bifil-
tered maps, up to bifiltered homotopy in the latter case; see 1.2.3. We have functors
ρ∞ from CWb and CWb/ ∼= into the category of neat squared complexes and neat
maps. These functors can also be seen as taking values in the category of totally free
squared complexes with a chosen basis and neat maps.

1.2.6. Geometric realisation of squared complex maps
Squared complex maps have nice properties with regard to geometric realisation, as
shown in the following result due to Ellis; see [17, Propositions 8 and 9], proved by
an obvious induction on n-skeletons, noting that for a canonical CW-complex Y the
spaces Y 2

± are aspherical.

Theorem 1.16 (Ellis). We have

• Given a 5-truncated totally free squared complex F , there exists a 5-dimensional
canonical CW-complex X with ρ∞(X) isomorphic to F .

• Given canonical CW-complexes X and Y with X of dimension 6 4, any squared
complex map F : ρ∞(X)→ ρ∞(Y ) can be realised by a pointed map f : X → Y
with f(Xi) ⊂ Y i, if i > 3 and f(X2

±) ⊂ Y
2
±.

Remark 1.17. In the second assertion of the previous theorem, note that the realisa-
tion map f : X → Y need not be bifiltered, for we may need to consider f(X1) 6⊂ Y 1,
but with f(X1) ⊂ Y 2

− ∩ Y
2
+. By Ellis’ proof we can however see (in the conditions

above) that neat squared complex maps ρ∞(X)→ ρ∞(Y ) can be realised by bifil-
tered maps X → Y .
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2. 2-crossed modules and 2-crossed complexes

2.1. Definition of 2-crossed modules
We follow the conventions of [14, 19] for the definition of a 2-crossed module [14].

Definition 2.1. A 2-crossed module is given by a chain complex of groups:

L
δ
−→ E

∂
−→ G

together with left actions ⊲ by automorphisms of G on L and E (and on G by
conjugation) and aG-equivariant function {, } : E × E → L (called the Peiffer lifting).
These are to satisfy:

1. L
δ
−→ E

∂
−→ G is a chain complex of G-modules (in other words ∂ and δ are

G-equivariant and ∂ ◦ δ = 1).

2. δ({e, f}) = 〈e, f〉, for each e, f ∈ E. Recall that 〈e, f〉 = (efe−1)(∂(e) ⊲ f−1).

3. [l, k] = {δ(l), δ(k)}, for each l, k ∈ L. Here [l, k] = lkl−1k−1.

4. {δ(l), e} {e, δ(l)} = l(∂(e) ⊲ l−1), for each e ∈ E and l ∈ L.

5. {ef, g} =
{

e, fgf−1
}

∂(e) ⊲ {f, g}, for each e, f, g ∈ E.

6. {e, fg} = {e, f} (∂(e) ⊲ f) ⊲′ {e, g}, where e, f, g ∈ E.

Here we have put

e ⊲′ l = l
{

δ(l)−1, e
}

, where l ∈ L and e ∈ E.

It follows from the previous axioms that ⊲′ is a left action of E on L by auto-
morphisms (see [9, 14]). Together with the map δ : L→M , this defines a crossed
module, and in particular ker(δ) ⊂ L is central in L.

For a proof of the following lemma see [19].

Lemma 2.2. In a 2-crossed module (L
δ
−→ E

∂
−→ G, ⊲, {, }) we have, for each e, f, g ∈

E, a ∈ G and k ∈ L,

{ef, g} = (e ⊲′ {f, g}){e, ∂(f) ⊲ g}, {e, fg} =
(

(efe−1) ⊲′ {e, g}
)

{e, f}, (10)

{1E , e} = {e, 1E} = 1L, a ⊲ (e ⊲′ k) = (a ⊲ e) ⊲′ (a ⊲ k), (11)

{e, f}−1 = ∂(e) ⊲ {e−1, efe−1}, {e, f}−1 = (efe−1) ⊲′ {e, f−1}, (12)

{e, f}−1 = (∂(e) ⊲ f) ⊲′ {e, f−1}, {e, f}−1 = e ⊲′ {e−1, ∂(e) ⊲ f}. (13)

Note that
{

δ(l)−1, e
}−1

l−1 = e ⊲′ l−1 = l−1 {δ(l), e} and ∂(e) ⊲ l = (e ⊲′ l){e, ∂(l)−1}, (14)

thus ∂(e) ⊲ l = e ⊲′ l if e ∈ E and l ∈ ker δ; see equation (11). For each a, b, c ∈ E we
have

a ⊲′ {b, c} = ∂(a) ⊲ {b, c}
{

a, 〈b, c〉
−1 }

= {∂(a) ⊲ b, ∂(a) ⊲ c}{a, (∂(b) ⊲ c)bc−1b−1}.

A morphism between the 2-crossed modules (L1 → E1 → G1, ⊲1, {, }1) and (L2 →
E2 → G2, ⊲2, {, }2) is given by three group morphisms: η : L1 → L2, ψ : E1 → E2 and
φ : G1 → G2, defining a chain map between the underlying complexes, such that

η({e, f}1) = {ψ(e), ψ(f)}2, η(g ⊲1 x) = φ(g) ⊲2 η(x) and ψ(g ⊲1 e) = φ(g) ⊲2 ψ(e).
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Example 2.3. Given a pre-crossed module E → G, we consider the Peiffer subgroup
〈E,E〉 of E, generated by the Peiffer commutators 〈a, b〉, 1.1.1. Then 〈E,E〉 → E →
G is a 2-crossed module, where the Peiffer lifting is {a, b} = 〈a, b〉.

2.2. An equivalence Ψ between the categories of neat squared complexes
and neat maps and 2-crossed complexes

Definition 2.4. A 2-crossed complex [13, 21] is given by a chain complex of groups

· · ·
∂n+1

// An
∂n // · · ·

∂5 // A4
∂4 // L

δ // E
∂ // G , (15)

together with actions of G on all the groups of the complex (and on itself by conju-
gation) and a G-equivariant map {, } : E × E → L such that:

1. L
δ // E

∂ // G is a 2-crossed module.

2. All groups An where n > 4 are abelian.

3. The action of ∂(E) ⊂ G on An where n > 4 is trivial.

The tail of a 2-crossed complex is, by definition, the complex {An, n > 4} of abelian
groups. This is analogous to the squared complex case.

Going back to crossed squares, suppose we have a pre-crossed module (M → G, ⊲).
Consider a neat crossed square 1.2.1 of the form:

ρ =

L
λ′

//

λ

��

M

ν

��

M
µ

//

∂
##H

H

H

H

H

H

H

H

H

M ⋊G

p+

��

G.

(16)

Therefore, µ : M →M ⋊G is the normal inclusionm 7→ (m, 1G), andM is the normal
subgroup of M ⋊G defined as M = {m}m∈M , where, as before, m = (m, ∂(m)−1) =
(m, 1)(1, ∂(m)−1). Also, p+ : M ⋊G→ G is p+(m,w) = ∂(m)w, thus p+ ◦ ν = 1G.
Define a 2-crossed module Ψ(ρ) in the following way: As a group complex we put

L
λ
−→M

∂
−→ G.

(Note that ∂ = p+ ◦ µ, thus given that ν ◦ λ′ = µ ◦ λ it follows that ∂ ◦ λ = 1G.) The
group G acts on L and M through the inclusion g ∈ G 7→ (1, g) ∈M ⋊G, as g ⊲ m =
gm and g ⊲ l = gl, where g ∈ G, m ∈M and l ∈ L, thus λ and ∂ are equivariant under
G. As the Peiffer lifting we put

{n,m} = h
(

nmn−1, n−1
)

= h
(

nmn−1, (1, ∂(n))(n−1, 1)
)

,

which clearly is G-equivariant.

Lemma 2.5. The construction above defines a 2-crossed module and can be extended
to a functor Ψ from the category of neat crossed squares and neat maps into the
category of 2-crossed modules, which extends in the obvious way to neat squared com-
plexes, by sending the tail of a squared complex identically to the tail of the associated
2-crossed complex.
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Proof. We prove conditions 2 to 6 of the definition of a 2-crossed module. Note that

λ({n,m}) = λ(h(nmn−1, n−1)) = (nmn−1) n
−1

(nm−1n−1)

= (nmn−1)
∂(n) n−1

(nm−1n−1) = (nmn−1) ∂(n)m−1 = 〈n,m〉,

and therefore condition 2 of the definition of a 2-crossed module follows. Also,

a ⊲′ l
.
= l

{

λ(l−1), a
}

= lh
(

λ(l−1)aλ(l), (λ(l), 1)
)

= lh
(

λ(l−1)aλ(l), λ′(l)
)

= l(λ(l
−1)aλ(l) l)l−1 = al, where a ∈M and l ∈ L,

which proves that (λ : L→M,⊲′) is a crossed module. Given l, k ∈ L,

{λ(l), λ(k)} = h
(

λ(l)λ(k)λ(l)−1, (λ(l−1), 1)
)

= lkl−1k−1 = [l, k].

To prove condition 5, note that for a, b, c ∈M we have {ab, c} = h
(

abcb−1a−1, ab
−1

)

,

whereas,

{a, bcb−1}∂(a) ⊲ {b, c} = h(abcb−1a−1, a−1)∂(a) ⊲ h(bcb−1, b
−1

)

= h(abcb−1a−1, a−1)a
−1

(ah(bcb−1, b
−1

)) = h(abcb−1a−1, a−1)a
−1

h(abcb−1a−1, ab
−1

)

= h(abcb−1a−1, (a−1) a(b
−1

)) = h(abcb−1a−1, ab
−1

).

Condition 4 is proved by noting that if a, b, c ∈M , we have {a, bc} = h(abca−1, a−1),
and also

{a, b}(∂(a) ⊲ b) ⊲′ {a, c} = h(aba−1, a−1) µ(∂(a)⊲b)h(aca−1, a−1).

Note that, since a b = aba−1, for each a, b ∈M ,

λ(h(aba−1, a−1))(∂(a) ⊲ b) = (aba−1)
(

a−1

(ab−1a−1)
)

a−1

(ab) = aba−1.

Therefore, since (λ : L→M,⊲′) is a crossed module,

{a, b}(∂(a) ⊲ b) ⊲′ {a, c} =
(

(aba−1)h(aca−1, a−1)
)

h(aba−1, a−1) = h(abca−1, a−1).

It now remains to prove condition 4 of the definition of a 2-crossed module. We have

{λ(l), a}{a, λ(l)} = h
(

λ(l)aλ(l)−1, λ′(l−1)
)

h
(

aλ(l)a−1, a−1
)

=
(

λ(l)aλ(l)−1

l−1
)

lh
(

aλ(l)a−1, a−1
)

= l
(

al−1
)

h
(

aλ(l)a−1, a−1
)

= l
(

al−1
)

h
(

λ(al), a−1
)

= la
−1(al−1

)

= l∂(a) ⊲ l−1.

The fact that Ψ is a functor and that it can be extended to neat squared complexes
is immediate from its construction, since we only consider neat 2-crossed module
maps.

Theorem 2.6. The functor Ψ is an equivalence of categories.

Proof. Given a 2-crossed module (L
δ
−→ E

∂
−→ G, {, }, ⊲), we must check that (16) is a

crossed square, where h(m,n−1) = {n, n−1mn} = ∂(n) ⊲ {n−1,m}−1, equation (12),
and also (m,g)l = m ⊲′ (g ⊲ l), which gives an action ofM ⋉G on L by automorphisms.
We also put λ′(l) = λ(l) = (λ(l), 1).
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That µ and ν define crossed modules follows from the fact that they are nor-
mal inclusions. That λ′ and λ define crossed modules follows from the fact that
(L→M,⊲′) is a crossed module. To prove that h is M ⋊G equivariant, note that
for each g ∈ G we have(gm, gn−1) = h(g ⊲ m, g ⊲ n−1) = {g ⊲ n, g ⊲ (n−1mn)} = g ⊲
{n, n−1mn} = gh(m,n−1). Also, for each a ∈M we have

∂(n)−1 ⊲ h(am, an−1) = {(∂(n)−1 ⊲ a)n−1a−1, ama−1}−1

=
(

{(∂(n)−1 ⊲ a)n−1,m}∂(n−1a) ⊲ {a−1, ama−1}
)−1

=
(

(∂(n)−1 ⊲ a) ⊲′ {n−1,m}){∂(n)−1 ⊲ a, ∂(n−1) ⊲ m}∂(n−1a) ⊲ {a−1, ama−1}
)−1

=
(

(∂(n)−1 ⊲ a) ⊲′ {n−1,m}−1
)

(we have used (12) and {∂(n)−1 ⊲ a, ∂(n−1) ⊲ m} = ∂(n)−1 ⊲ {a,m}), whereas,

ah(m,n−1) = a ⊲′
(

∂(n) ⊲ {n−1,m}−1) = ∂(n) ⊲
(

(∂(n)−1 ⊲ a) ⊲′ {n−1,m}−1
)

,

where we have used (11). To prove equations (2) note that

h(mm′, n−1)

= ∂(n) ⊲ {n−1,mm′}−1 = ∂(n) ⊲
(

{n−1,m}((∂(n−1) ⊲ m) ⊲′ {n−1,m′})
)−1

= (m ⊲′ ∂(n) ⊲ {n−1,m′})−1∂(n) ⊲ {n−1,m}−1 =
(

mh(m′, n−1)
)

h(m,n−1)

and

h(m, a−1b
−1

) = h(m, (∂(a) ⊲ a−1)∂(ab) ⊲ b−1) = h
(

m, b∂(b−1) ⊲ a)
−1)

= ∂(ab) ⊲ {(∂(b−1) ⊲ a−1)b−1,m}−1

= ∂(ab) ⊲
(

(

(∂(b−1) ⊲ a−1) ⊲′ {b−1,m}
)

{∂(b−1) ⊲ a−1, ∂(b−1) ⊲ m}
)−1

=
(

∂(a) ⊲ {a−1,m}
)−1

∂(a) ⊲
(

a−1 ⊲′ ∂(b) ⊲ {b−1,m}
)−1

= h(m, a−1) a
−1

h(m, b
−1

).

Equations (3) can be proven as

λ
(

h(m,n−1)
)

= δ
(

∂(n) ⊲ {n−1,m}−1
)

= m
(

∂(n) ⊲ (n−1m−1n)
)

= m n−1

m−1,

and also

λ′
(

h(m,n−1)
)

= λ(h(m,n−1) = m∂(n) ⊲ (n−1m−1n) = (m∂(n) ⊲ (n−1m−1n), 1),

whereas,

(mn−1)n =
(

m, 1
)(

∂(n) ⊲ n−1, ∂(n)
)(

m−1, 1)(n, ∂(n)−1
)

= (m∂(n) ⊲ (n−1m−1n), 1).

Equations (4) are easily proven.

2.3. Totally free and 2-free 2-crossed modules and complexes (with or
without a chosen basis)

The reference now is [21]. Let ∂ : M → G be a pre-crossed module. Let δ0 : K →M

be a set map such that im(δ0) ⊂ ker(∂). Then a 2-crossed module H = (F
δ
−→M

∂
−→

G, ⊲, {, }) is said to be free on δ0 : K →M if there exists an inclusion ι : K → F with
δ0 = δ ◦ ι such that the following universal property is satisfied: For any 2-crossed

module H′ = (L
δ′

−→ E
∂
−→ G, ⊲, {, }) and any map η0 : K → L such that δ′ ◦ η0 = δ0,
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there exists a unique map η : F → L extending η0 and such that (η, id, id) : H → H′

is a 2-crossed module morphism.
A free 2-crossed module on a map λ0 : K → ker(∂) ⊂M , where ∂ : M → F is a

pre-crossed module, is said to be totally free if (M → F ) is itself a totally free pre-
crossed module 1.1.1. This defines the category of totally free 2-crossed modules, a
full subcategory of the category of 2-crossed modules. The category of totally free
2-crossed modules with a chosen basis has objects given by (S1, S2,K, ∂0, λ0), where
S1, S2 and K are sets, λ0 : K → ker(∂) ⊂M is a map, where ∂ : M → F is the free
pre-crossed module on the map ∂0 : S2 → F and F is the free group on S1. The
morphisms are given by all 2-crossed module maps between the associated totally
free 2-crossed modules. A 2-crossed module (L→ E → G) is 2-free if the pre-crossed
module (E → G) is totally free. The category of 2-free 2-crossed modules with chosen
(pre-crossed module) basis is denoted by 2Xmod2-free

b
.

From the universal properties defining free crossed squares and free 2-crossed mod-
ules, and the construction of Ψ follows:

Theorem 2.7. The functor Ψ yields isomorphisms of categories between the cate-
gories of totally free or 2-free crossed squares with chosen basis and neat morphisms
and the categories of totally free or 2-free 2-crossed modules with a chosen basis.

A 2-crossed complex (15) is totally free if the underlying 2-crossed module (L→
E → G) is totally free and, further, each An is a free Z(G/im(∂))-module. We denote
the category of totally free 2-crossed complexes with a chosen basis by 2Xcompf

b
.

There exists an isomorphism of categories Ψ between the category of totally free
squared complexes with a chosen basis 1.2.5 and neat morphisms and the category
of totally free 2-crossed complexes with a chosen basis.

2.4. Homotopy of pre-crossed module maps
Let (∂ : E → G, ⊲) and (∂ : E′ → G′, ⊲) be pre-crossed modules. Given a pre-crossed

module map (ψ : E → E′, φ : G→ G′), a φ-derivation is a map s : G→ E′ such that

s(gh) =
(

φ(h)−1 ⊲ s(g)
)

s(h), for each g, h ∈ G. (17)

Note that if s is a derivation then s(1G) = 1E , and also s(g−1) = φ(g) ⊲ s(g)−1, if
g ∈ G. Also, s(ghg−1) = φ(g)−1 ⊲

(

(φ(h)−1 ⊲ s(g)) s(h) s(g)−1
)

. Let us define

ψ′′(a) = ψ(a) (s ◦ ∂)(a), where a ∈ E,

φ′(g) = φ(g) (∂ ◦ s)(g), where g ∈ G.

Then φ′ : G→ G′ will be a group morphism, since given g, h ∈ G,

φ′(gh) = φ(h)φ(g) (∂ ◦ s)(gh) = φ(g)φ(h) ∂
(

φ(h)−1 ⊲ s(g)
)

∂(s(h))

= φ(g) (∂ ◦ s)(g)) (φ(h) (∂ ◦ s)(h)) = φ′(g) φ′(h).

However, given a, b ∈ E,

ψ′′(ab) = ψ(ab) (s ◦ ∂)(ab) = ψ(a)ψ(b)
(

φ(∂(b)−1) ⊲ s(∂(a))
)

s(∂(b))

= ψ′′(a) s(∂(a))−1ψ(b)
(

φ(∂(b)−1) ⊲ s(∂(a))
)

s(∂(b))

= ψ′′(a)
〈

ψ(b), φ(∂(b)−1) ⊲ s(∂(a))−1
〉−1

ψ(b) s(∂(b))

= ψ′′(a)
〈

ψ(b), φ(∂(b)−1) ⊲ s(∂(a))−1
〉−1

ψ′′(b).
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Therefore ψ′′ : E → E′ is not a group morphism, in general, unless (E′ → G′) is a
crossed module. We therefore consider an additional map t′ : E → ker(∂) ⊂ E′ and
put ψ′(a) = ψ′′(a) t′(a), for each a ∈ E. In order that (ψ′, φ′) is a pre-crossed module
morphism, the map t′ : E → ker(∂) ⊂ E′ is to satisfy, for each a, b ∈ E and g ∈ G,

t′(ab) = ψ′′(b)−1 〈ψ(b), φ(∂(b)−1) ⊲ s(∂(a))−1
〉

t′(a) ψ′′(b) t(b), (18)

t′(g ⊲ a) = s
(

g∂(a)g−1
)−1

(φ(g) ⊲ ψ(a))−1 (φ′(g) ⊲ ψ′(a)) . (19)

We will then have

ψ′(ab) = ψ′′(a)
〈

ψ(b), φ(∂(b)−1) ⊲ s(∂(a))−1
〉−1

ψ′′(b) t′(ab)

= ψ′′(a) t′(a) ψ′′(b) t′(b) = ψ′(a) ψ′(b)

and also

ψ′(g ⊲ a) = ψ(g ⊲ a) s
(

∂(t ⊲ a)
)

t′(g ⊲ a)

= (φ(g) ⊲ ψ(a)) s
(

g∂(a)g−1
)

t′(g ⊲ a) = φ′(g) ⊲ ψ′(a).

Since t′ : E → E′ has values in ker(∂) we have (∂ ◦ ψ′)(a) = (φ′ ◦ ∂)(a). The pair
(ψ′, φ′) therefore defines a pre-crossed module map (E → G)→ (E′ → G′).

We can express (19) in a different way; this will motivate the construction in 2.4.1:

φ(g)−1 ⊲
(

t′(g ⊲ a)
)

= s(g)s(∂(a))−1
(

φ(∂(a))−1 ⊲ s(g)−1
)

ψ(a)−1(∂ ◦ s)(g) ⊲
(

ψ(a)s(∂(a))t′(a)
)

= s(g)s(∂(a))−1
〈

ψ(a)−1, s(g)−1
〉−1

ψ(a)−1s(g)−1(∂ ◦ s)(g) ⊲
(

ψ(a)s(∂(a))t′(a)
)

.

Thus, for each a ∈ E and g ∈ G, we should have

t′(g ⊲ a) = φ(g) ⊲
(

s(g)s(∂(a))−1
〈

ψ(a)−1, s(g)−1
〉−1

s(∂(a))s(g)−1
)

φ(g) ⊲
〈

s(g), s(∂(a))−1ψ(a)−1
〉

(

φ(g)(∂ ◦ s)(g)
)

⊲ t′(a). (20)

Definition 2.8 (Homotopy of pre-crossed module maps). Two pre-crossed module
maps (ψ, φ) and (ψ′, φ′), from (∂ : E → G, ⊲) to (∂ : E′ → G′, ⊲), are said to be
homotopic if there exists a φ-derivation s : G→ E′, see equation (17), and a map
t′ : E → ker(∂) ⊂ E′, satisfying equations (18) and (20), such that, for each g ∈ G
and e ∈ E, we have φ′(g) = φ(g) ∂(s(g)) and also ψ′(e) = ψ(e) (s ◦ ∂)(e) t′(e).

2.4.1. An auxiliary pre-crossed module

Let G = (L
δ
−→ E

∂
−→ G, ⊲, {, }) be a 2-crossed module. Equations (17), (18) and (20)

can be nicely interpreted, and extended, by embedding them in the definition of a

pre-crossed module
(

E ⋉∗ (E ⋉⊲′ L)
β
−→ G⋉⊲ E, •

)

associated with G. This will play
a major role in Subsections 2.5 and 2.6.

We resume the notation of Subsection 2.1. Recall that e ⊲′ k
.
= k{δ(k)−1, e} defines

a left action of E on L by automorphisms. Form the semidirect product E ⋉⊲′ L, see
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Remark 1.1. Consider the left action ∗ of E on E ⋉⊲′ L, with (cf. equation (18)):

b ∗ (e, k) =
(

∂(b) ⊲ e,
(

b ⊲′ {b−1, ∂(b) ⊲ e−1}
)

b ⊲′ k
)

=
(

∂(b) ⊲ e, ({b, e−1}−1)b ⊲′ k
)

, where e, b ∈ E and k ∈ L;

see equation (13). To prove that this is a left action by automorphisms note that

(ba) ∗ (e, k) =
(

∂(b)∂(a) ⊲ e, ba ⊲′ {a−1b−1, ∂(ba) ⊲ e−1}ba ⊲′ k
)

=
(

∂(b)∂(a) ⊲ e,
(

b ⊲′ {b−1, ∂(ba) ⊲ e−1}
) (

ba ⊲′ {a−1, ∂(a) ⊲ e−1}
)

ba ⊲′ k
)

= b ∗ a ∗ (e, k),

and also
(

b ∗ (e−1, k)
)(

b ∗ (e′−1, k′)
)

=
(

∂(b) ⊲ e−1, ({b, e}−1)b ⊲′ k
) (

∂(b) ⊲ e′−1, ({b, e′}−1)b ⊲′ k′
)

=
(

∂(b) ⊲ (e′e)−1, ((∂(b) ⊲ e′) ⊲′ {b, e}−1)
(

(∂(b) ⊲ e′) ⊲′ b ⊲′ k
)

({b, e′}−1)b ⊲′ k′
)

=
(

∂(b) ⊲ (e′e)−1, ((∂(b) ⊲ e′) ⊲′ {b, e}−1)({b, e′}−1)
(

be′ ⊲′ k
)

b ⊲′ k′
)

=
(

∂(b) ⊲ (e′e)−1, {b, e′e}−1)
(

be′−1 ⊲′ k
)

b ⊲′ k′
)

= b ∗
(

(e′e)−1, (e′−1 ⊲′ k)k′
)

= b ∗
(

(e−1, k)(e′−1, k′)
)

.

Consider the group E ⋉∗ (E ⋉⊲′ L), whose group law is (Remark 1.1)

(a, e, k)(a′, e′, k′) =
(

aa′, (∂(a′−1) ⊲ e)e′,
(

(a′e′)−1 ⊲′
(

{a′, ∂(a′)−1 ⊲ e−1}k
)

)

k′
)

.

(21)
Therefore, if we put a = (a, 1, 1), e = (1, e, 1) and k = (1, 1, k), and the same for their
images under ⊲ and ⊲′, then

(a, e, k) = aek, aka−1 = a ⊲′ k, eke−1 = e ⊲′ k. (22)

Moreover, we have (23), (24) and (25), below:

aea−1 = (∂(a) ⊲ e)(a ⊲′ {a−1, ∂(a) ⊲ e−1}) = (∂(a) ⊲ e)({a, e−1})−1, (23)

kak−1 = a (a−1 ⊲′ k) k−1 and eae−1 = a (∂(a−1) ⊲ e) ({a−1, e−1}−1) e−1, (24)

klk−1 = δ(k) ⊲′ l = (δ(k), 1, 1)l(δ(k), 1, 1)−1 = (1, δ(k), 1)l(1, δ(k), 1)−1. (25)

A particular case of the multiplication is

(a, 1, k)(a′, 1, k′) =
(

aa′, 1, (a′−1 ⊲ k)k′
)

, where a, a′ ∈ E and k, k′ ∈ L.

Thus since (δ : L→ E, ⊲′) is a crossed module
(

δ(l), 1, k
)(

δ(l′), 1, k′
)

=
(

δ(l)δ(l′), 1, l′−1kl′k′
)

, where k, k′, l, l′ ∈ L.

Lemma 2.9. There exists a left action • of G⋉⊲ E on E ⋉∗ (E ⋉⊲′ L), with

(g, x) • (a, e, k) =
(

g ⊲ a, g ⊲
(

(∂(a)−1 ⊲ x)ex−1
)

,

g ⊲
(

xe−1 ⊲′
{

a−1, x−1
}−1)

g ⊲
{

x, e−1a−1
}

(

g∂(x)
)

⊲ k
)

,
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thus for each g ∈ G and each x ∈ E (this is to be compared with equation (20)):

g • (a, e, k) = (g ⊲ a, g ⊲ e, g ⊲ k),

x • (a, e, k) =
(

a, (∂(a)−1 ⊲ x)ex−1, xe−1 ⊲′
{

a−1, x−1
}−1{

x, e−1a−1
}

∂(x) ⊲ k
)

.

A particular case which will be important later is

x • (δ(k), 1, l) = (δ(k), 1, k−1∂(x) ⊲ (kl)), where x ∈ E and k, l ∈ L.

Proof. First of all note that

x • g • (a, e, k) = g • g−1 ⊲ x • (a, e, k) and g • g′ • (a, e, k) = (gg′) • (a, e, k).

The action by an element of G is clearly by automorphisms. On the other hand,

(1, x, 1)(a, e, 1)(1, x−1, 1) =
(

a, (∂(a)−1 ⊲ x)ex−1,
(

xe−1 ⊲′
{

a−1, x−1)
}−1)

)

,

and therefore, putting x = (1, x, 1), where x ∈ E,

x • (aek) = xaex−1
{

x, e−1a−1
}

∂(x) ⊲ k, (26)

from which it follows (note (22) and (25) and that (δ : L→ E, ⊲′) is a crossed module):
(

x • (aek)
)(

x • (a′e′k′)
)

= xaex−1
{

x, e−1a−1
}

(

∂(x) ⊲ k
)

(xa′e′x−1)
{

x, e′−1a′−1
}

∂(x) ⊲ k′

= xaea′e′x−1
(

(xe′−1a′−1x−1) ⊲′
(

{

x, e−1a−1
}

∂(x) ⊲ k
){

x, e′−1a′−1
}

∂(x) ⊲ k′

= xaea′e′x−1
{

x, e′−1a′−1
}(

(

∂(x) ⊲ (e′−1a′−1)
)

⊲′
(

{

x, e−1a−1
}

∂(x) ⊲ k
)

∂(x) ⊲ k′

= xaea′e′x−1
{

x, e′−1a′−1e−1a−1
}

∂(x) ⊲
(

(e′−1a′−1) ⊲′ k
)

∂(x) ⊲ k′.

On the other hand, by using (11), (21), (23) and (26)

x • (aeka′e′k′) = x •
(

aa′(∂(a′−1) ⊲ e)e′
(

(a′e′)−1 ⊲′
(

{a′, ∂(a′)−1 ⊲ e−1}k
)

k′
)

.

= xaa′(∂(a′−1) ⊲ e)e′x−1
{

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

∂(x) ⊲
(

(a′e′)−1 ⊲′
(

{a′, ∂(a′)−1 ⊲ e−1}k
)

k′
)

= xae(a′ ⊲′ {a′−1, e})a′e′x−1
{

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

∂(x) ⊲
(

(a′e′)−1 ⊲′
(

{a′, ∂(a′)−1 ⊲ e−1}k
)

k′
)

.

Thus

x • (aeka′e′k′) = xaea′e′
(

(xe′−1) ⊲′ {a′−1, e}
) {

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

∂(x) ⊲
(

(a′e′)−1 ⊲′
(

{a′, ∂(a′)−1 ⊲ e−1}k
)

k′
)

.

To show that aek 7→ x • (aek) is a group morphism, we need to prove that, by (13):

{x, e′−1a′−1e−1a−1} = (xe′−1 ⊲′ {a′−1, e−1})
{

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

∂(x) ⊲
(

e′−1 ⊲′ {a′−1, e−1}
)−1

.



148 JOÃO FARIA MARTINS

This follows from (note equation (14) and the fact that (δ : L→ E, ⊲′) is a crossed
module):
(

xe′−1 ⊲′ {a′−1, e−1}
) {

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

∂(x) ⊲
(

e′−1 ⊲′
{

a′−1, e−1}−1
)

=
(

(xe′−1) ⊲′ {a′−1, e−1}
) {

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

(xe′−1) ⊲′
(

{a′−1, e−1}−1
)

{x, e−1
〈

a′−1, e−1
〉

e}

= (xe′−1〈a′−1, e−1〉e′x−1) ⊲′
{

x, e′−1(∂(a′)−1 ⊲ e−1)a′−1a−1
}

{x, e′−1
〈

a′−1, e−1
〉

e′}

= {x, e′−1a′−1e−1a−1}.

We have used equation (10). Let us now prove that x • y • (aek) = (xy) • (aek). First
note that given a, e, e′ ∈ E, we have, by (10) and (22),

x • (eae′) = (x • e)(x • a)(x • e′) = xex−1{x, e−1}xax−1{x, a−1}xe′x−1{x, e′−1}

= xeax−1
(

(xa−1x−1) ⊲′ {x, e−1}
)

{x, a−1}xe′x−1{x, e′−1}

= xeax−1{x, a−1e−1}xe′x−1{x, e′−1} = xeae′x−1{x, e′−1a−1e−1}.

By using (26), we have (xy) • (aek) = xyae(xy)−1
{

xy, e−1a−1
}

∂(xy) ⊲ k, whereas,

x • y • (aek) =
(

x • y • (ae)
)(

x • y • k
)

=
(

x •
(

yaey−1{y, e−1a−1}
)

)

(

∂(xy) ⊲ k
)

=
(

x • (yaey−1)
)(

x • {y, e−1a−1}
)

(

∂(xy) ⊲ k
)

= xyaey−1x−1{x, y−1e−1a−1y}
(

∂(x) ⊲ {y, e−1a−1}
)

(

∂(xy) ⊲ k
)

= xyaey−1x−1{xy, e−1a−1}
(

∂(xy) ⊲ k
)

.

We therefore have a pre-crossed module
(

E ⋉∗ (E ⋉⊲′ L)
β
−→ G⋉⊲ E, •

)

, where
β(a, e, k) = (∂(a), e). Using (22) and a ⊲′ k

.
= k{δ(k−1), a}, we obtain

〈a, a′〉 = (〈a, a′〉, 1, 1) 〈a, e′〉 = (1, 1, {a, e′}) 〈a, k′〉 = (1, 1, {a, δ(k′)})

〈e, a′〉 = (1, 1, {e, a′}) 〈e, e′〉 = (1, 1, {e, e′}) 〈e, k′〉 = (1, 1, {e, δ(k′)})

〈k, a′〉 = (1, 1, {δ(k), a′}) 〈k, e′〉 = (1, 1, {δ(k), e′}) 〈k, k′〉 = (1, 1, [k, k′]).

Put q ⊲ad q
′ = qq′q−1. Using Example 2.3, we can explicitly compute the Peiffer pair-

ing in
(

E ⋉∗ (E ⋉⊲′ L)
β
−→ G⋉⊲ E, •

)

, which will be used below:

〈aek, a′e′k′〉 = 〈a, eka′e′k′−1k−1e−1〉 β(a) • 〈ek, a′e′k′〉

= (aeka−1) ⊲ad 〈a, a
′e′k′−1k−1e−1〉 〈a, ek〉 β(a) • 〈ek, a′e′〉

= (aeka′a−1) ⊲ad 〈a, e
′k′−1k−1e−1〉 (aeka−1) ⊲ad 〈a, a

′〉 〈a, ek〉 β(a) • 〈ek, a′e′〉

=
(

1, 1, (aeδ(k)a′a−1) ⊲′ {a, e′δ(k′−1k−1)e−1}
)

(

〈a, a′〉, 1, {a, a′}−1((aeδ(k)a−1) ⊲ {a, a′})
) (

1, 1, {a, ek}
)(

1, 1, ∂(a) ⊲ {ek, a′e′}
)

=
(

〈a, a′〉, 1, {a, a′}−1(aeδ(k)a′a−1) ⊲′ {a, e′δ(k′−1k−1)e−1}
)

(

1, 1, ((aeδ(k)a−1) ⊲ {a, a′}), 1
) (

1, 1, {a, ek}
)(

1, 1, ∂(a) ⊲ {ek, a′e′}
)

=
(

〈a, a′〉, 1, {a, a′}−1{aeδ(k), a′e′δ(k′)}
)

. (27)
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2.5. Quadratic derivations and homotopy of 2-crossed module maps

Let A =
(

L
δ
−→ E

∂
−→ G, ⊲, {, }

)

and A′ =
(

L′ δ
−→ E′ ∂

−→ G′, ⊲, {, }
)

be 2-crossed

modules. Let also f = (η, ψ, φ) : A → A′ be a 2-crossed module morphism. A pair (t, s)
of maps s : G→ E′ and t : E → L′, satisfying equations (28), (29) and (31) below,
will be called a quadratic f -derivation (this is to be compared with (17), (18), (20)
and [3, IV-4]):

s(gh) =
(

φ(h)−1 ⊲ s(g)
)

s(h), where g, h ∈ G, (28)

t(ab) =
(

ψ(b)(s ◦ ∂)(b)
)−1

⊲′
({

ψ(b), φ(∂(b)−1) ⊲ s(∂(a))−1
}

t(a)
)

t(b), (29)

where a, b ∈ E. Thus, since (δ : L′ → E′, ⊲′) is a crossed module, by equation (11),

t
(

δ(k)δ(l)
)

= η(l)−1 t
(

δ(k)
)

η(l) t
(

δ(l)
)

, where k, l ∈ L, (30)

and also (for each g ∈ G and e ∈ E),

t(g ⊲ a) = φ(g) ⊲
(

s(g)s(∂(a))−1 ⊲′
{

ψ(a)−1, s(g)−1
}−1)

φ(g) ⊲
{

s(g), s(∂(a))−1ψ(a)−1
}

(

φ(g)(∂ ◦ s)(g)
)

⊲ t(a). (31)

Thus, by using (13) and condition 4 of Definition 2.1, it follows that for each g ∈ G
and l ∈ L:

t
(

g ⊲ δ(l)
)

= φ(g) ⊲
(

η(l)−1s(g) ⊲
(

η(l) t(δ(l))
))

. (32)

The following very important lemma has an immediate proof. The pre-crossed module
(

E ⋉∗ (E ⋉⊲′ L)
β
−→ G⋉⊲ E, •) was constructed in 2.4.1.

Lemma 2.10. The pair of maps t : E → L′ and s : G→ E′ is a quadratic f -deriva-
tion if and only if H = (i2, i1) is a pre-crossed module morphism from (E → G, ⊲) to
(

E ⋉∗ (E ⋉⊲′ L)
β
−→ G⋉⊲ E, •), where

a ∈ E
i27→

(

ψ(a), s ◦ ∂(a), t(a)
)

∈ E ⋉∗ (E ⋉⊲′ L),

g ∈ G
i17→

(

φ(g), s(g)
)

∈ G⋉⊲ E.

Therefore, compare with Lemma IV (4.6) of [3]:

Lemma 2.11. If F is a totally free (or 2-free) 2-crossed module on the sets S1, S2 and
S3, and if f : F → A is a 2-crossed module map, then a quadratic f -derivation can
be specified, uniquely, by its value on the sets S1, S2, with no compatibility relations.

The following is a 2-crossed complex analogue of proposition IV (4.4) in [3].

Lemma 2.12. Given a quadratic f -derivation (t, s) we have

t
(

〈a, b〉
)

=
{

ψ(a), ψ(b)
}−1{

ψ(a) s(∂(a)) δ(t(a)), ψ(b) s(∂(b)) δ(t(b))
}

. (33)

Proof. Since (i1, i2) is a pre-crossed module morphism it preserves Peiffer pairings.
Now use (27). Note that ∂({e, f}) = 1 if e, f ∈ E.
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Theorem 2.13. For a quadratic f -derivation (s, t), the map f ′ = (η′, ψ′, φ′), where

η′(l) = η(l) (t ◦ δ)(l), where l ∈ L,

ψ′(a) = ψ(a) (s ◦ ∂)(a) (δ ◦ t)(a), where a ∈ E,

φ′(g) = φ(g) (∂ ◦ s)(g), where g ∈ G

is a morphism of 2-crossed modules, in which case we put f
(f,s,t)
−−−−→ f ′.

Proof. At the level of pre-crossed module maps, this follows from the discussion in 2.4.
That ψ′ is a G-equivariant group morphism follows from (30) and (32). Finally, Peiffer
liftings are preserved due to (33) and ∂(〈E,E〉)) = 1.

Definition 2.14. We say that two 2-crossed module maps f, f ′ : A → A′ are homo-

topic if there exists a quadratic f -derivation (s, t) such that f
(f,s,t)
−−−−→ f ′.

Contrary to the crossed complex case [10, 25], homotopy of 2-crossed module maps
is not an equivalence relation. This is related to the fact [15] that the composition of
two 1-tranfors between Gray categories maps need not be a 1-tranfor.

2.6. Free homotopy of totally free 2-crossed complexes
This notion of homotopy between 2-crossed complex maps is analogous to the

case of homotopies of quadratic chain complexes presented in [3, III-2]. Let A =
{An, n ∈ N} and C = {Cn, n ∈ N} be 2-crossed complexes. Let f = (fn) be a 2-crossed
complex map C → A. A quadratic f -derivation is a sequence of maps ŝi : Ci → Ai+1

such that (ŝ2, ŝ1) is a quadratic (f3, f2, f1)-derivation, of 2-crossed modules, and all
the remaining maps are C1-equivariant for n = 3 and C1/∂(C2)-equivariant if n > 4.
Further

ŝ3({e, f}) = 1A4
for each e, f ∈ C2. (34)

(This last condition seems to be missing in [3], however it is apparently indispensable
in the 2-crossed complex case.) We say that two 2-crossed complex maps f, f ′ : C → A

are homotopic and put f
(f,ŝ)
−−−→ f ′, if there exists a quadratic f -derivation ŝ such

that f ′1(c) = f1(c) ∂ ◦ s1(c), where c ∈ C1 and f ′n(c) = fn(c) (sn−1 ◦ ∂(c)) (∂ ◦ sn(c)),
where c ∈ Cn. By (34), and the fact that ∂4(A4) ⊂ ker(∂3) is central in A3, it follows
that f ′ is always a 2-crossed complex morphism for each quadratic f -derivation.

As in the case of 2-crossed modules, homotopy of 2-crossed complex maps is not
an equivalence relation in general. Let us consider [3] the case when F = {Fn, n ∈ N}
is a totally free 2-crossed complex, on the chosen basis {Bn, n ∈ N}, Subsection 2.3.
Given arbitrary set maps sn : Bn → An+1 and a 2-crossed complex map f : F → A
there exists a unique quadratic f -derivation ŝ extending s. Equation (34) is used to
prove uniqueness.

Definition 2.15 (Free homotopy). Let F = {Fn, n ∈ N} be a totally free 2-crossed
complex, on the chosen basis {Bn, n ∈ N}. Let A = {An, n ∈ N} be a 2-crossed com-
plex. A free homotopy is, by definition, a series of set maps sn : Bn → An+1. Clearly
the set of free homotopies forms a group under the pointwise product of maps.

Definition 2.16. Two 2-crossed complex maps f, f ′ : F → A are free homotopic if

there exists a free homotopy s = {sn} such that f
(f,ŝ)
−−−→ f ′, where ŝ is the unique
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extension of s to a quadratic f -derivation. Free homotopy is an equivalence relation.
Moreover, 2-crossed complex maps F → A and their free homotopies form a groupoid.

Definition 2.17. If F = (L→M → G) is a 2-free 2-crossed module, with chosen
(pre-crossed module) basis, consisting of the sets S1 ⊂ G and S2 ⊂M , and A = (P →
Q→ R) is any 2-crossed module, then a free homotopy s = (s1, s2) is, by definition,
given by set maps s1 : S1 → Q and s2 : S2 → P . This defines a groupoid of 2-crossed
module maps F → A and their free homotopies.

The category of totally free 2-crossed complexes with a chosen basis and with mor-
phisms 2-crossed complex maps up to free homotopy is denoted by 2Xcompf

b
/ ∼=. The

category of 2-free 2-crossed modules, with a chosen basis, with morphisms
2-crossed module maps up to free homotopy is denoted by 2Xmod2-free

b
/ ∼=.

3. 2-crossed modules and pointed 3-types

3.1. The fundamental 2-crossed module Ω3(X) of a CW-complex
We now define the fundamental 2-crossed module Ω3(X) of a canonical CW-

complex. Let X be a canonical CW-complex 1.2.3. Therefore X determines a pointed
triad X = (X;X2

−, X
2
+, ∗), with the 1-skeleton X1 of X being a strong deformation

retract of both X2
− and X2

+. Let pX : X2
+ → X1 be the obvious retraction. Note

that X1 is a subcomplex of the 1-dimensional CW-complex X2
− ∩X

2
+. Consider the

equivalence Ψ between the categories of neat crossed squares and neat maps and of
2-crossed modules, Subsections 2.2 and 2.3, and also 1.2.1. Recall 1.2.3.

Definition 3.1. For a canonical CW-complex X, its fundamental 2-crossed module

Ω3(X) =
(

π3(X;X2
−, X

2
+)

δ
−→ π2(X

2
−, X

2
− ∩X

2
+)

∂
−→ π1(X

2
+)
∼= π1(X

1), {, }, ⊲
)

is given by Ω3(X) = Ψ(ρ3(X)), where ρ3(X) is the fundamental crossed square of
X (which is neat in a natural way), 1.2.4 and 1.2.5. This defines a functor Ω3 from
the category of canonical CW-complexes and bifiltered maps (or bifiltered homotopy
classes of bifiltered maps) to the category of 2-crossed modules.

Let us be more specific about the construction of Ω3(X). The map δ is the natural
map appearing in the exact sequence of a triad; see 1.2.2. The map ∂ : π2(X

2
−, X

2
− ∩

X2
+)→ π1(X

2
+) is the composition of the natural map π2(X

2
−, X

2
− ∩X

2
+)→ π1(X

2
− ∩

X2
+) with the map p+ : π1(X

2
− ∩X

2
+)→ π1(X

2
+) induced by the inclusionX2

− ∩X
2
+ →

X2
+. It is easy to see that this defines a chain complex. The action of π1(X

2
+) on the rest

of the complex Ω3(X) is defined from the composition of the usual action of π1(X
2
− ∩

X2
+) on π3(X;X2

−, X
2
+) and π2(X

2
−, X

2
− ∩X

2
+) with the map π1(X

2
+)→ π1(X

2
− ∩X

2
+)

induced by the retraction pX : X2
+ → X1 ⊂ X2

− ∩X
2
+. Note that π1(X

1) ∼= π1(X
2
+).

Given m,n ∈ π2(X
2
−, X

2
− ∩X

2
+), the Peiffer lifting is {n,m} = h

(

nmn−1, n−1
)

,
where h : π2(X

2
−, X

2
− ∩X

2
+)× π2(X

2
+, X

2
− ∩X

2
+)→ π3(X;X2

−, X
2
+) is the generalised

Whitehead product [1, 5]. Recall Lemma 1.11.

Example 3.2. Consider the 2-sphere S2 with a CW-decomposition with unique 0- and

2-cells. We have Ω3(S
2) =

(

Z
n7→0
−−−→ Z→ {0}, {, }

)

with {a, b} = ab.
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We can prove directly that Ω3(X) is a 2-crossed module. The advantage of defining
it from Ellis’ fundamental crossed square of a canonical CW-complex [17] is that the
following non-trivial result follows directly from Brown-Loday’s theorem [11, 12]
(see 1.2.5) and Subsections 2.2 and 2.3.

Theorem 3.3. The fundamental 2-crossed module of a 3-dimensional canonical CW-
complex is the totally free 2-crossed module on the 1-, 2- and 3-cells of X and their
attaching maps.

Remark 3.4. The functor Ω3 is also defined for CW-complexes satisfying only condi-
tions 1 and 2 of the definition of a canonical CW-complex. Lemma 1.10 tells us that
it does not matter the way we transform a CW-complex X in a homotopic canonical
CW-complex Y with X2 = Y 2 since in this case we will have Ω3(X) ∼= Ω3(Y ).

3.2. The fundamental 2-crossed complex Ω∞(X) of a CW-complex
We have an isomorphism of categories Ψ between the category of totally free

squared complexes (with a chosen basis) and neat maps and the category 2Xcompf

b

of totally free 2-crossed complexes, with a chosen basis; see Subsections 2.2 and 2.3.

Definition 3.5. The fundamental 2-crossed complex of a canonical CW-complex X
is Ω∞(X) = Ψ (ρ∞(X)). Therefore the underlying group complex of Ω∞(X) is

→ π5(X
5, X4)→ π4(X

4, X3)→ π3(X
3;X2

−, X
2
+)

δ
−→ π2(X

2
−, X

2
− ∩X

2
+)

∂
−→ π1(X

1).

Theorem 3.6. The fundamental 2-crossed complex of a canonical CW-complex X is
the totally free 2-crossed complex on the cells of X and their attaching maps.

We thus have functors Ω∞ from the categories CWb and CWb/ ∼= of canonical CW-
complexes and bifiltered maps (up to bifiltered homotopy in the second case) into the
category 2Xcompf

b
of totally free 2-crossed complexes, with a chosen basis.

Remark 3.7. By the exact homotopy double complex of the triad (X;X2
−, X

2
+), the

homotopy groups π1(X), π2(X) and π3(X) of a canonical CW-complex X are the first
three homology groups of Ω∞(X). The quadratic map q : π2(X)→ π3(X) induced by
the Hopf map S3 → S2 is encoded in the map e 7→ {e, e}; see [17, page 104]. Note
that for e ∈ ker(∂) and k ∈ π3(X;X2

− ∩X
2
+) we have {eδ(k), eδ(k)} = {e, e}. For the

remaining homology groups of Ω∞(X), see [17, Theorem 3].

Remark 3.8. The fundamental quadratic chain complex of a CW-complex [3] is a
natural quotient of Ω∞(X); see [17]. This quotient [2] gives a reflection from the
category of 2-crossed complexes into the category of quadratic chain complexes.

There exists an inclusion functor ι from the category of 2-crossed modules 2Xmod
into the category 2Xcomp of 2-crossed complexes, sending a 2-crossed module G =
(L→ E → G) to the 2-crossed complex (→ {0} → {0} → L→ E → G) obtained by
adding a trivial tail to G. This inclusion functor has a left adjoint, the co-truncation
functor cT, sending a 2-crossed complex (15) to the 2-crossed module (L/∂(A4)→
E → G). The restriction cT : 2Xcompf

b
→ 2Xmod2-free

b
of the cotruncation functor

descends to a functor cT : 2Xcompf

b
/ ∼=→ 2Xmod2-free

b
/ ∼= since free homotopic 2-

crossed complex maps are sent to homotopic 2-crossed module maps under cT; see
Subsection 2.6. Lemma 3.9 follows immediately from one of the long exact sequences
of the 4-add (tetrad) (X4;X3, X2

−, X
2
+); see [5, Section 8] and [18].
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Lemma 3.9. Let X be a canonical CW-complex. Then Ω3(X) ∼= cT(Ω∞(X)).

3.3. Realisation of 2-crossed complex maps
The fact that there exists an isomorphism of categories Ψ from the category of

totally free squared complexes (with a chosen basis) and neat maps into the category
of totally free 2-crossed complexes (with a chosen basis) permits us to use the results
of [17] to prove the following result: LetN > 4 be an integer. A 2-crossed complex (15)
is called N -truncated if An is trivial for n > N . The following lemma follows from [17,
Propositions 8 and 9]; see 1.2.6, namely Remark 1.17. It can be proven by an obvious
induction on the n-skeleton of a CW-complex, as in the proof of Lemma 3.11.

Lemma 3.10 (Realisation-I). We have

1. Given a 5-truncated totally free 2-crossed complex F , there exists a canonical
CW-complex X such that Ω∞(X) = F .

2. Given canonical CW-complexes X and Y , if X is of dimension 4, or smaller,
then given any map F : Ω∞(X)→ Ω∞(Y ) there exists a bifiltered map f : X →
Y such that Ω∞(f) = F , in which case we say that f is a realisation of F .
Given a subcomplex X ′ of X, any realisation f ′ : X ′ → Y of the restriction
F ′ : Ω∞(X ′)→ Ω∞(Y ) of F to Ω(X ′), can be extended to a realisation of F .

If X and Y are 3-dimensional, then we can strengthen this result as:

Lemma 3.11 (Realisation-II). Let X and Y be canonical CW-complexes of dimen-
sion 3. The functor Ω3 yields a one-to-one correspondence between bifiltered homotopy
classes of bifiltered maps f : X → Y and 2-crossed module maps F : Ω3(X)→ Ω3(Y ).

Proof. The discussion in 2.2 permits us to prove the analogous statement for the
fundamental crossed square functor ρ3, considering neat crossed square maps; see
Remark 1.17. The fact that Ω3 is surjective on morphisms follows from Remark 1.17.

We now prove that the assignment is injective. Let WX = X2
− ∩X

2
+ and WY =

Y 2
− ∩ Y

2
+, both 1-dimensional CW-complexes. Suppose that f and f ′ are bifiltered

maps X → Y inducing the same (neat) map F : ρ3(X;X2
−, X

2
+)→ ρ3(Y ;Y 2

−, Y
2
+) at

the level of fundamental crossed squares. Since ρ3(f) and ρ3(f
′) define the same map

F : π1(WX)→ π1(WY ), there exists a pointed homotopy HW : WX × I →WY con-
necting the restrictions of f and f ′ to WX . Since ρ3(f) and ρ3(f

′) are neat (that
is F (π1(X

1)) ⊂ π1(Y
1)), we can suppose that HW (X1 × I) ⊂ Y 1. By using Theo-

rem 1.4, together with the fact that Y 1 and WY are aspherical, we can conclude that
HW extends to a triad homotopy H2 : X2 × I → Y 2, connecting the restriction of f
and f ′ to X2. By construction H2 is bifiltered.

Let R ⊂ X be made out of the interiors of the 3-cells of X. Consider a 3-cell c of
X, attaching along a map t : (S2;S2

−, S
2
+)→ (X2;X2

−, X
2
+). The fact that f(t) is triad

homotopic to f ′(t), for any 3-cell, gives us a homotopy T : R× I → Y connecting the
restriction of f and f ′ to R. A priori the extension of T to the boundary of the 3-cells
need not coincide with the previously defined homotopy H2 : X2 × I → Y . However,
since this is a triad homotopyH2 : (X2 × I;X2

− × I,X
2
+ × I)→ (Y 2;Y 2

−, Y
2
+), with all

spaces Y 2
−, Y

2
+ and WY = Y 2

− ∩ Y
2
+ being aspherical, we can choose T (by an obvious

filling argument) so that it can be extended to the boundary of the 3-cells, coinciding
with H2 there. This finishes the proof.



154 JOÃO FARIA MARTINS

Let X and Y be canonical CW-complexes. Given a 2-crossed module morphism
F : Ω3(X)→ Ω3(Y ), there exists a map F ′ : Ω∞(X4)→ Ω∞(Y ) such that cT(F ′) = F
(see Lemma 3.9) since Ω∞(X4) is a totally free 2-crossed complex. We have

Lemma 3.12. Let X and Y be canonical CW-complexes with Y a 3-type. Any 2-
crossed module map F : Ω3(X)→ Ω3(Y ) has a geometric realisation, and moreover
this realisation f is unique up to a triad homotopy H : (X × I;X2

− × I,X
2
+ × I)→

(Y ;Y 2
−, Y

2
+), satisfying moreover H(X1 × I) ⊂ Y 1. If X ′ is a subcomplex of X and

if we already have a realisation f ′ of the restriction of F to Ω3(X
′), then we can

suppose that f extends f ′.

Proof. Choose a lifting F ′′ of F to a map F : Ω∞(X4)→ Ω∞(Y ). By using
Lemma 3.10 we can geometrically realise F ′′ by a map f4 : X4 → Y , which can cer-
tainly be extended to a map f : X → Y , since Y is a 3-type. By Lemma 3.9 it follows
that Ω3(f) = F . To prove unicity up to homotopy of the stated type, we can use
the same method as in the previous lemma, taking into account the fact that Y is a
3-type to extend a triad homotopy X3 × I → Y to all of X × I.

3.4. Realisation of homotopies
Let X be a canonical CW-complex. Let X ×′ I be the reduced cylinder of X,

obtained from X × I by collapsing X0 × I to a point. Let X0 = X × {0} and X1 =
X × {1}. The space X ×′ I can be given the structure of a CW-complex with X0 and
X1 embedded cellularly in X ×′ I, and intersecting along their common basepoint,
the unique 0-cell X0 of X. We also have an extra (i+ 1)-cell c# of X ×′ I for each
i-cell c of X. Since we are mainly working with canonical CW-complexes, we discuss
whether X ×′ I is canonical or not; however see Remark 3.8 and Lemma 1.10. Given
a cell c of X, the element of Ω∞(X) yielded by c will be denoted by [c].

The 2-skeleton (X ×′ I)2 of X ×′ I is naturally a canonical CW-complex, where
X2

0 and X2
1 are embedded cellularly. Any 1-cell c1 of X (with copies c10 in X0 and c

1
1 in

X1) gives a 2-cell (c1)# of X ×′ I, which, we impose, attaches along the concatenation
([c10])

−1[c11]. In particular [c11] = [c10]∂([(c
1)#]).

Each 2-cell c2 of X (with copies c20 inX0 and c
2
1 inX1) yields a 3-cell (c

2)# of (X ×′

I)3, which however does not necessarily attach under a triad map (S2;S2
−, S

2
+)→

((X ×′ I)2; (X ×′ I)2−, (X ×
′ I)2+). Picking bifiltered approximations of the attaching

maps of each 3-cell (c2)#, for a 2-cell c2 of X, gives a canonical CW-complex (X � I)3

homotopic to (X ×′ I)3. To be more specific, if c2 attaches along the concatenation
[g1]

θ1 · · · [gn]
θn , where each gi is a 1-cell of X and θi ∈ {±1}, we make (c2)# attach

along
(

[c20] s
(

[g1]
θ1 · · · [gn]

θn
)

)−1

[c21], which is a triad map, homotopic to the original

attaching map (recall the proof of the bifiltered approximation theorem in 1.2.3).
Here s is the only derivation from the group π1(X

1) into π2((X ×
′ I)2−, (X ×

′ I)2− ∩
(X ×′ I)2+) such that for each 1-cell g of X we have that [g] 7→ [g#]. We are con-
sidering the totally free pre-crossed module π2((X ×

′ I)2−, (X ×
′ I)2− ∩ (X ×′ I)2+)→

π1
(

(X ×′ I)1
)

and the inclusion map π1(X
1)→ π1

(

(X ×′ I)1
)

. In particular, [c21] =
[c20] s(∂(c

2
0)) δ([(c

2)#]).
Similarly, if c3 is a 3-cell of X, then we have a 4-cell (c3)# of (X � I)4, which

we attach to (X � I)3 along
(

[c30]t(δ(c
3))

)−1
[c13], which is a map homotopic to the

original attaching map of (c3)# in (X ×′ I)3. Here t : π2(X
2
−, X

2
− ∩X

2
+)→ π3(X ×

′
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I; (X ×′ I)−, (X ×
′ I)+) is such that for each 2-cell t([c2]) = [(c2)#], and, moreover,

(t, s) is a quadratic derivation with respect to the inclusion Ω3(X
2)→ Ω3(X

2 � I).
In particular [c31] = [c30] t(∂(c

3
0)) δ([(c

3)#]).
Continuing this process yields a canonical CW-complex X � I, homotopic to X ×′

Iand whose bifiltered homotopy type is well defined by Lemma 1.10.

Lemma 3.13. Let X be a canonical CW-complex. There exists a canonical CW-
complex X � I, containing X0 ∨X1 as a subcomplex, such that there exist homotopy
equivalences (which are the identity over X0 = X × {0} and X1 = X × {1})

r : X � I → X ×′ I and r′ : X ×′ I → X � I.

Further, X � I has the same number of cells as X ×′ I at each dimension.

The following lemma follows as a consequence of Lemma 3.13.

Lemma 3.14. Let X and Y be canonical CW-complexes. Any two bifiltered maps
f0, f1 : X → Y are pointed homotopic if and only if there exists a bifiltered map
H ′ : X � I → Y extending f0 ∨ f1.

Proof. IfH ′ : X � I → Y extends f0 ∨ f1, thenH = H ′ ◦ r′ is a homotopy connecting
f0 and f1. On the other hand, if H : X ×′ I → Y is a homotopy connecting f0 and f1
then we can take H ′ : X � I → Y to be a bifiltered approximation to r ◦H, coinciding
with f0 ∨ f1 on X0 ∨X1.

Lemma 3.15. Let X be a canonical CW-complex and A = (An) a 2-crossed complex.
Consider two 2-crossed complex maps F, F ′ : Ω∞(X)→ A. There exists a one-to-one
correspondence between 2-crossed complex homotopies connecting F and F ′ and 2-
crossed complex maps H : Ω∞(X � I)→ A, extending F ∨ F ′ : Ω∞(X0 ∨X1)→ A.

Proof. Consider the explicit construction of the CW-decomposition of X � I. Since
Ω∞(X � I) is totally free, the set of 2-crossed complex maps H : Ω∞(X � I)→ A
extending F ∨ F ′ : Ω∞(X0 ∨X1)→ A is given by the set of all assignments (si) of
an element of Ai+1 to each i-cell c of X, satisfying the conditions motivated by the
explicit form of the attaching maps of the (i+ 1)-cells c♯ of X � I. By construction

it follows that we have a 2-crossed complex homotopy F0
(F0,ŝ)
−−−−→ F1, where (ŝi) is the

unique extension of (si) to an F0-quadratic derivation. Clearly this correspondence is
one-to-one.

Let X be a canonical CW-complex and G a 2-crossed module. Consider two 2-
crossed module maps F, F ′ : Ω3(X)→ G. From the same argument there exists a one-
to-one correspondence between 2-crossed module homotopies connecting F and F ′

and 2-crossed module maps H : Ω3(X � I)→ A, extending F ∨ F ′ : Ω3(X0 ∨X1)→
G.

Lemma 3.16. Let X and Y be canonical CW-complexes with Y and 3-type. Two
bifiltered CW-complex maps X → Y are homotopic, as maps, if and only if their
induced 2-crossed module maps are homotopic.

Proof. The proof follows from Lemmas 3.12, 3.14 and 3.15.
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We now define a functor Ω̇3 : CW/ ∼=→ 2Xmod2-free
b

/ ∼= from the category 1.2.3
of canonical CW-complexes and pointed homotopy classes of pointed maps into the
category of 2-free 2-crossed modules (with a chosen basis) and homotopy classes of
2-crossed module maps. On objects Ω̇3 is defined in the same way as Ω3. If f : X → Y
is a pointed map, then Ω̇3(f) is the equivalence class of Ω3(f

′), where f ′ is a bifiltered
approximation to f , Theorem 1.8. We have

Theorem 3.17. The restriction of Ω̇3 to the category {3-types}can of canonical
3-types defines an equivalence of categories Ω̇3 : {3-types}

can → 2Xmod2-free
b

/ ∼=.

Proof. It is easy to see that given a 2-free 2-crossed module G = (L→ E → G)
there then exists a totally free 4-truncated 2-crossed complex G′ = (A→ L′ → E →
G) whose co-truncation is G. Let X ′ be a 4-dimensional CW-complex such that
Ω∞(X ′) ∼= G′, thus Ω3(X) ∼= G, by Lemma 3.9. Let X be a CW-complex obtained
from X ′ by killing all of the homotopy groups πi of X

′ with i > 4 (the 4th-Postnikov
section of X). By the cellular approximation theorem, Ω3(X) ∼= Ω3(X

′) ∼= G, thus Ω̇3

is essentially surjective. That Ω̇3 is fully faithful follows from the previous lemma.
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