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ON THE CHAIN-LEVEL INTERSECTION PAIRING
FOR PL PSEUDOMANIFOLDS

GREG FRIEDMAN

(communicated by Ralph Cohen)

Abstract
James McClure recently showed that the domain for the

intersection pairing of PL chains on a PL manifold M is a
subcomplex of C∗(M)⊗ C∗(M) that is quasi-isomorphic to
C∗(M)⊗ C∗(M) and, more generally, that the intersection pair-
ing endows C∗(M) with the structure of a partially-defined com-
mutative DGA. We generalize this theorem to intersection pair-
ings of PL intersection chains on PL stratified pseudomanifolds
and demonstrate the existence of a partial restricted commuta-
tive DGA structure. This structure is shown to generalize the
iteration of the Goresky-MacPherson intersection product. As
an application, we construct an explicit “roof” representation
of the intersection homology pairing in the derived category of
sheaves and verify that this sheaf theoretic pairing agrees with
that arising from the geometric Goresky-MacPherson intersec-
tion pairing.

1. Introduction

For a compact oriented PL manifold, M , the intersection pairing on chain com-
plexes, which induces the intersection pairing algebra on H∗(M), dates back to Lef-
schetz [17]. However, Lefschetz’s pairing does not provide an algebra structure on
C∗(M), itself, as two chains may only be intersected if they are in general position.
This difficulty does not descend to the homology groups since any pair of cycles are
homologous to cycles in general position, and the resulting intersection product turns
out to be independent of the choices made while putting chains into general position.
This approach to pairings and duality was supplanted eventually in manifold theory
by the more versatile cup product algebra, but it gained new relevance with the work
of Goresky and MacPherson on intersection homology on PL pseudomanifolds (a class
of spaces including complex varieties) in [12] and is also related to the work of Chas
and Sullivan on string topology [5] (see [19]).
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Nearly 80 years after Lefschetz, James McClure [20] has shown that the domain for
the intersection pairing on C∗(M) is in fact a full subcomplex of C∗(M)⊗ C∗(M). In
other words, the subcomplex G2 ⊂ C∗(M)⊗ C∗(M) on which the intersection prod-
uct of chains is well-defined is quasi-isomorphic to C∗(M)⊗ C∗(M).1 In fact, McClure
goes further to show that C∗(M), together with the chain intersection pairing, has
the structure of a partially-defined commutative DGA and is thus quasi-isomorphic
to an E∞ chain algebra. McClure’s goal in doing so was to develop tools to study the
Chas-Sullivan operations in string topology.

With different purposes in mind, our first goal in this paper is to generalize
McClure’s result to the intersection pairing of intersection chain complexes on PL
pseudomanifolds. In other words, we prove that the domain G2 of definition of the
intersection pairing on an oriented PL pseudomanifold X is a full subcomplex of
C∗(X)⊗ C∗(X), and, as a corollary, that the domain of the Goresky-MacPherson
intersection pairing from I p̄C∗(X)⊗ I q̄C∗(X) to C∗(X) (or to I r̄C∗(X), when r̄ >
p̄+ q̄) is a full subcomplex of I p̄C∗(X)⊗ I q̄C∗(X). We then go on to show that
the intersection pairing of intersection chains on a PL pseudomanifold possesses the
structure of a partial restricted algebra, in a sense to be made precise below. Although
the first part of this may seem to be a straightforward generalization of McClure’s
results (and we do, in fact, utilize McClure’s superstructure), some of the details of
McClure’s proof use arguments that rely strongly on the manifold structure of the
spaces involved (in particular, McClure’s proof rests on being able to cover his man-
ifolds by Euclidean balls and then working with general position arguments within
these balls) and thus fail to work on stratified spaces. So, we must turn to alternate
arguments that employ a generalization of McCrory’s results on stratified general
position [22] instead. Since PL manifolds are special cases of PL pseudomanifolds,
our arguments include an alternative proof of McClure’s theorem.

This program is carried out in Sections 3, 4, and 5, below. In the first of these sec-
tions, we are concerned principally with general position issues and showing that
the (appropriately shifted) chain complex C∗(X)⊗ · · · ⊗ C∗(X) contains a quasi-
isomorphic subcomplex Gk consisting of chains in stratified general position and
whose boundaries are in stratified general position. We note here the important fact
(in a certain sense the essence of the whole matter) that such chains cannot in gen-
eral be written as sums C =

∑
Ci1 ⊗ · · · ⊗ Cik

in which each collection Ci1 , . . . , Cik

is in stratified general position and has its boundary in stratified general position.
This is completely analogous to the fact noted in [20] that a cycle C might not be
expressible as a sum of cycles of this form. In general, there will be important can-
celing of boundary terms. See below for a more technical, and hence more accurate,
description, culminating in the statement of Theorem 3.5. Similarly, we find a quasi-
isomorphic subcomplex of the (appropriately shifted) tensor product of intersection
chain complexes I p̄1C∗(X)⊗ · · · ⊗ I p̄kC∗(X) that satisfies the appropriate stratified
general position requirements; see Theorem 3.7.

In Section 4, we define an intersection chain multi-product, patterned after Jim
McClure’s (which in turn relies on earlier prescriptions by Dold and others), whose

1In order to be completely correct, this statement should incorporate some indexing shifts, which
we leave out here in order not to clutter the introduction with too many technicalities; see Section 3
for the correct statements.
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domain is the subcomplex of the tensor product of intersection chains that is con-
structed in Section 3. We then show that this product restricts to the iteration of
the PL intersection product of Goresky and MacPherson [12] in the special case of
k-tuples of chains whose tensor product lies in the domain (in general, not all chains
in the domain can be written as sums of chains of this form).

Section 5 is concerned with the partial restricted algebra structure possessed by
the intersection chain complexes. We will describe this idea more fully in a moment.

In Section 6 (which is independent of Section 5), as a first application of this
circle of ideas, we demonstrate that the sheaf theoretic intersection homology product
defined by Goresky-MacPherson in [13] (see also [2, Section V.9]) using abstract
properties of the derived category of sheaves is equal on PL pseudomanifolds to that
defined in [12] using the geometric intersection pairing. While this result generally
seems to be well-believed in the literature, we have not been able to pinpoint a prior
proof. In addition, this approach has the benefit of providing a very concrete “roof
of maps” in the category of complexes of sheaves on X that serves as a realization of

the pairing morphism in MorDb(X)(I p̄C∗ L⊗ I q̄C∗, I r̄C∗).

1.1. A categorical structure
The material of Section 5 places our results on domains of geometric intersection

pairings into more categorical terms. This framework is due initially to Jim McClure
and was refined by Mark Hovey. We provide some heuristics and motivations here;
more precise details can be found below in Section 5.

Fix a number n and consider classical perversities for dimension n, i.e., functions

p̄ : {2, 3, . . . , n} // Z+

such that

p̄(2) = 0 and p̄(j) 6 p̄(j + 1) 6 p̄(j) + 1.

Define p̄ 6 q̄ if p̄(j) 6 q̄(j) for all j. This makes the set of perversities into a poset,
which we denote by P.

By a perverse chain complex, we mean a functor from P to the category of chain
complexes. An example of a perverse chain complex is the collection of intersection
chain complexes {I?C∗(Y )} for an n-dimensional stratified space Y , where ? indexes
the poset of perversities.

One then expects to define restricted chain algebras that encompass product maps
of the form Dp̄

∗ ⊗Dq̄
∗ //Dr̄

∗ that are defined when p̄+ q̄ 6 r̄, are compatible with
the boundary maps, and satisfy evident naturality, associativity, commutativity, and
unital axioms. The term “restricted” refers to the fact that the product is only defined
for pairs of perversities with p̄+ q̄ less than or equal to the top perversity.

To accomplish this precisely requires a more formal setting, which has been worked
out by Hovey [14]. One defines a symmetric monoidal product on the category of
perverse chain complexes by letting {D?

∗}£ {E?
∗} be the perverse chain complex that

in perversity r̄ is

lim−→
p̄+q̄6r̄

Dp̄
∗ ⊗ E q̄

∗ .
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Then a restricted chain algebra should be a commutative monoid in the resulting
symmetric monoidal category.

An example of a restricted chain algebra is that induced on the collection of shifted
intersection homology groups {S−nI?H∗(Y )} for a stratified space Y , considered as
chain complexes with zero differential, with the product defined by (direct limits of)
the Goresky-MacPherson intersection product defined in [12].

On the other hand, the collection {S−nI?C∗(Y )} of shifted intersection chain com-
plexes is not a restricted chain algebra because the chain-level intersection pairing is
only defined for pairs of chains that are in general position.

Let us say that a subobject of a perverse chain complex is dense (or full) if the
inclusion map is a quasi-isomorphism for each p̄.

By a partial restricted chain algebra, we mean a perverse chain complex {D?
∗}

together with, for each k, a product defined on a dense subobject of {D?
∗}£k; these

partially-defined products are required to have properties that are similar to the
definition of commutative homotopy algebras in [18] (see also [20, Section 9]). We
will define these objects more carefully below in Section 5 under the title of Leinster
partial restricted commutative DGAs.

In this language, our main theorem can be stated as follows. A more detailed
explanation of the meaning of this theorem can be found in Section 5.

Theorem 1.1. For any compact oriented PL stratified pseudomanifold Y , the par-
tially-defined intersection pairing on the perverse chain complex of intersection chains
{S−nI?C∗(Y )} extends to the structure of a Leinster partial restricted commutative
DGA.

Note that this partial chain algebra structure does not violate Steenrod’s obstruc-
tions to the commutative cochain problem, since those obstructions apply only to
everywhere-defined algebraic structures, not to partial algebraic structures.

1.2. Future applications
James McClure, Scott O. Wilson, and the author are currently pursuing a program

to demonstrate that the algebraic structures discovered here are homeomorphism
invariants (at least over the rationals) in the following sense: the partial restricted
algebras that correspond to homeomorphic pseudomanifolds are related by a chain
of homomorphisms of partial restricted algebras that are weak equivalences, meaning
that they induce isomorphisms at the level of homology. This is a stronger state-
ment than that which follows from Goresky-MacPherson [13], which assures us only
that there is a homeomorphism-invariant restricted algebra structure in the derived
category.

Furthermore, Wilson’s paper [25] implies that, over the rationals, partial commu-
tative DGAs can be rectified to ordinary commutative DGAs. We propose to prove
the analogous statement for partial restricted chain algebras. This would provide a
way of assigning to a PL pseudomanifold a rational restricted commutative DGA that
could be seen as an “intersection” analogue of Sullivan’s rational polynomial de Rham
complex of PL forms. Such DGAs should prove interesting objects of study, perhaps
leading to a theory of intersection rational homotopy groups, or to a singular space
version of the Deligne-Griffiths-Morgan-Sullivan theorem [6]. These invariants would
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be more refined than classical rational homotopy theory in the same sense that inter-
section homology groups provide more refined information than ordinary homology
groups on spaces carrying the appropriate filtration structures. Conjecturally, these
may be a rational version of the intersection homotopy groups of Gajer [10, 11].

Further results over other coefficient rings may be possible by employing E∞ struc-
tures.

1.3. A note on sign changes from the original version of [20]
During the initial writing of this paper, in particular the sections concerning the

comparison of the Goresky-MacPherson intersection product with the generalized
intersection pairing defined in Section 4.2, below, it became clear that certain signs
(powers of −1) were not working out quite right. This led to a re-examination by
McClure of his pairings in the original version of [20] and the discovery that some
changes were necessary in order both to conform to Koszul sign conventions and
to obtain the appropriate associativity of his multi-products. These changes have
been described in McClure’s erratum [21] and are incorporated into this paper. We
provide here a short list of the main modifications as a convenience to the reader
already familiar with the original version of [20] who would like a quick overview of
what is different here. The reasoning behind these changes, as well as the relevant
definitions, are provided more fully as these notions arise, below; we provide some
of the more technical computations in Appendix A, both for ease of access for those
interested only in the changes from the original version of [20] and to avoid cluttering
the main text even further than necessary. The correct signs are due to McClure.

1. Our Poincaré duality map incorporates a sign x // (−1)m|x|x ∩ Γ, where Γ is
the fundamental class of an m-dimensional oriented (pseudo-)manifold, and |x|
is the degree of the cohomology class x. See Section 4.1.

2. We replace McClure’s original exterior product

ε : C∗(X)⊗ C∗(Y ) // C∗(X × Y )

with a product

ε̄ : S−n1C∗(X)⊗ S−n2C∗(Y ) // S−n1−n2C∗(X × Y ).

This map is defined to be (−1)dim(X) dim(Y ) times the composition of the appro-
priate (signed!) chain isomorphism

S−n1C∗(X)⊗ S−n2C∗(Y ) ∼= S−n1−n2(C∗(X)⊗ C∗(Y ))

with S−n1−n2ε. See Section 3.1.

3. Gk is redefined in the obvious way to incorporate the shifts of the chain com-
plexes involved, and the proofs of Theorems 3.5 and 3.7, corresponding to
McClure’s Proposition 12.3, must be modified to take these into account. In
particular, some new care must be taken with the homotopy and product argu-
ments.

These sign issues are discussed further in Section 4.1, throughout the text as they
arise, and also in Appendix A, in which we verify some of the resulting fixes.



266 GREG FRIEDMAN

Acknowledgements

I thank Jim McClure and Scott Wilson for many helpful discussions, and Jim
McClure especially for providing motivation and straightening out the sign issues.
Mark Hovey was instrumental in working out the details of the category of perverse
chain complexes.

2. Background

In this section, we recall some background definitions.

2.1. Pseudomanifolds
Let c(Z) denote the open cone on the space Z, and let c(∅) be a point.
A stratified paracompact Hausdorff space Y (see [4] or [13]) is defined by a filtration

Y = Y n ⊃ Y n−1 ⊃ Y n−2 ⊃ · · · ⊃ Y 0 ⊃ Y −1 = ∅
such that for each point y ∈ Yi = Y i − Y i−1, there exists a distinguished neighborhood
U of y such that there is a compact Hausdorff space L, a filtration of L

L = Ln−i−1 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅,
and a homeomorphism

φ : Ri × c(L) // U

that takes Ri × c(Lj−1) onto Y i+j ∩ U . The subspace Yi = Y i − Y i−1 is called the
ith stratum, and, in particular, it is a (possibly empty) i-manifold. L is called the link
of the component of the stratum; it is, in general, not uniquely determined, though
it will be unique when Y is a stratified PL pseudomanifold, as defined in the next
paragraph.

A PL pseudomanifold of dimension n is a PL space X (equipped with a class of
locally finite triangulations) containing a closed PL subspace Σ of codimension at
least 2 such that X − Σ is a PL manifold of dimension n dense in X. A stratified
PL pseudomanifold of dimension n is a PL pseudomanifold equipped with a specific
filtration such that Σ = Xn−2 and the local normal triviality conditions of a strati-
fied space hold with the trivializing homeomorphisms φ being PL homeomorphisms
and each L being, inductively, a PL pseudomanifold. In fact, for any PL pseudo-
manifold X, such a stratification always exists such that the filtration refines the
standard filtration of X by k-skeletons with respect to some triangulation [2, Chap-
ter I]. Furthermore, intersection homology is known to be a topological invariant of
such spaces; in particular, it is invariant under choice of triangulation or stratification
(see [2, 13, 15]).

A PL pseudomanifold X is oriented if X − Σ is oriented as a manifold.

2.2. Intersection homology
In the context of PL pseudomanifolds, the intersection chain complex, as defined

initially by Goresky and MacPherson [12] (see also [2, Chapter I]), is a subcomplex of
the complex C∗(X) of PL chains on X. This C∗(X) is a direct limit lim−→T∈T C

T
∗ (X),



ON THE CHAIN-LEVEL INTERSECTION PAIRING FOR PL PSEUDOMANIFOLDS 267

where CT
∗ (X) is the simplicial chain complex with respect to the triangulation T and

the direct limit is taken with respect to subdivision within a family of triangulations
compatible with each other under subdivision and compatible with the stratification
of X.

Intersection chain complexes are subcomplexes of C∗(X) defined with regard to
perversity parameters p̄ : Z>2 // Z+ that are required to satisfy p̄(2) = 0 and p̄(k) 6
p̄(k + 1) 6 p̄(k) + 1. We think of the perversity as taking the codimensions of the
strata of X as input. The output tells us the extent to which chains in the intersection
chain complex will be allowed to intersect that stratum. Thus a simplex σ in Ci(X)
(represented by a simplex in some triangulation) is deemed p̄-allowable if

dim(σ ∩Xn−k) 6 i− k + p̄(k),

and a chain ξ ∈ Ci(X) is p̄-allowable if every simplex with non-zero coefficient in ξ
or ∂ξ is allowable as a simplex. The allowable chains constitute the chain complex
I p̄C∗(X), and the p̄-perversity intersection homology groups are the homology groups
of this chain complex.

We also note here that one can proceed with two versions of this: one can use the
usual compactly supported chains that, in a given triangulation, can be described
by finitely many simplices with non-zero coefficients. Or, one may use Borel-Moore
chains, for which one requires only that chains contain locally-finite numbers of sim-
plices with non-zero coefficients. This latter case is important to the sheaf-theoretic
version of intersection homology and will be important to us in Section 6, below.
We will denote the Borel-Moore chain complex by C∞∗ (X), and, when we need to be
precise, we will denote the compactly supported complex by Cc

∗(X). No decoration
generally will imply compactly supported chains. The intersection chain complexes
and homology groups will share the corresponding notation.

For more background on intersection homology, we urge the reader to consult the
exposition by Borel, et. al. [2]. For both background and application of intersec-
tion homology in various fields of mathematics, the reader should see Kirwan and
Woolf [16].

3. Stratified general position for pseudomanifolds

In this section, we study the domain for the intersection products of chains in a
pseudomanifold. We begin by developing some preliminary notation and definitions
based on those in McClure [20].

3.1. Preliminaries and statements of theorems
Let X be an n-dimensional PL stratified pseudomanifold. We will denote the k-fold

product of X with itself by X(k) (to avoid confusion with the skeleton Xm). We give
the product the obvious stratification:

X(k)m =
⋃

Pk
i di=m

Xd1 × · · · ×Xdk .
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As in [20], let k̄ = {1, . . . , k} for k > 1, and let 0̄ = ∅. If R : k̄ // k̄′ is any map of
sets, let R∗ : X(k′) //X(k) denote the induced composition

X(k′) = Map(k̄′, X) // Map(k̄, X) = X(k).

Then R∗(x1, . . . , xk′) = (xR(1), . . . , xR(k)). These maps represent generalizations of
the standard diagonal embedding ∆: X ↪→ X ×X.

We note that if R : k̄ // k̄′ is surjective, then R∗ : X(k′) //X(k) has the property
that each component of each stratum ofX(k′) injects into a component of a stratum of
X(k). In particular, the stratum Xd1 × · · · ×Xdk′ injects into XdR(1) × · · · ×XdR(k) .
Furthermore, for each stratum component of Xd1 × · · · ×Xdk

⊂ X(k), the inverse
image (R∗)−1(Xd1 × · · · ×Xdk

) is either empty (if there exist 1 6 i, ` 6 k such that
R(i) = R(`) but di 6= d`) or contained in XdR−1(1)

× · · · ×XdR−1(k′) (if di = d` when-
ever R(i) = R(`)). Note that, in the latter case, each dR−1(a) is well-defined precisely
because of the condition that di = d` whenever R(i) = R(`).

The following definition generalizes McClure’s definition in [20] of general position
for maps of manifolds:

Definition 3.1. If A is a PL subset of X(k), we will say that A is in stratified general
position with respect to R∗ if for each stratum component Z = Xd1 × · · · ×Xdk

of
X(k) such that di = d` if R(i) = R(`), we have

dim((R∗)−1(A ∩ Z)) 6 dim(A ∩ Z) +
k′∑

i=1

dR−1(i) −
k∑

i=1

di. (1)

In other words, A is in stratified general position with respect to R∗ if for each
stratum component Z of X(k), A ∩ Z is in general position with respect to the map
of manifolds from the stratum containing (R∗)−1(Z) to Z. A PL chain is said to
be in stratified general position if its support is, and we write CR∗

∗ (X(k)) for the
subcomplex of PL chains D of C∗(X(k)) such that both D and ∂D are in stratified
general position with respect to R∗.

We will also need two other notions from [20]. First, for a differential graded
complex C∗, we let SmC∗ be the shifted complex with (SmC∗)i = Ci−m and with
∂SmC∗ = (−1)m∂C∗ . This last notation differs from [20], where Σm is used to denote
the shift; we here reserve Σ for singular loci of pseudomanifolds. This shift is intro-
duced so that all maps, including the pairing maps to be introduced below, will be
degree 0 chain morphisms. When C∗(X) is a geometric chain complex, we let the
notion of the support of a chain be independent of the functor; in other words, we
take |S−nx| = |x|, the geometric support of the chain x ∈ C∗(X).

Remark 3.2. We note that for chain complexes C∗ and D∗, S−m−n(C∗ ⊗D∗) and
S−mC∗ ⊗ S−nD∗ are not in general isomorphic as chain complexes by the obvious
homomorphism since

∂S−m−n(c⊗ d) = (−1)m+nS−m−n∂(c⊗ d)
= (−1)m+nS−m−n(∂c⊗ d+ (−1)|c|c⊗ ∂d),

where |c| is the degree of c. On the other hand,

∂(S−mc⊗ S−nd) = (−1)mS−m∂c⊗ S−nd+ (−1)m+|c|+nS−nc⊗ S−n∂d.
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The appropriate isomorphism must take S−m−n(c⊗ d) to (−1)n deg(c)S−mc⊗ S−nd.
This sign correction was not taken into account in the original version of [20].

More generally, for complexes Ai
∗, define

Θ: Sm1A1
∗ ⊗ · · · ⊗ SmkAk

∗ // S
P

mi(A1
∗ ⊗ · · · ⊗Ak

∗)

by

Θ(Sm1x1 ⊗ · · · ⊗ Smkxk) = (−1)
Pk

i=2(mi

P
j<i |xj |)S

P
mi(x1 ⊗ · · · ⊗ xk).

This is a chain isomorphism; see Lemma A.1, in Appendix A below.

Secondly, we will need to consider the exterior product ε defined in [20, Section 7].
The product ε is the multilinear extension of the product that takes σ1 ⊗ σ2, where
the σi are oriented simplices, to a chain with support |σ1| × |σ2| and with appropriate
orientation. This is a direct generalization of the standard simplicial cross product
construction (see, e.g., [23]); we refer the reader to [20, Section 7] for details. The
original version of [20] used only this product, but the revised version incorporates a
sign and grading correction in order to define ε̄, which will be appropriately Poincaré
dual to the cross product on cochains; without these sign and grading corrections,
this duality occurs only up to signs. In [20], εk is defined as a map

C∗(M1)⊗ · · · ⊗ C∗(Mk) // C∗(M1 × · · · ×Mk).

With dim(Xi) = mi, we define

ε̄k : S−m1C∗(X1)⊗ · · · ⊗ S−mkC∗(Xk) // S−
P

miC∗(X1 × · · · ×Xk)

as (−1)e2(m1,...,mk) times the composition of the chain isomorphism

Θ: S−m1C∗(X1)⊗ · · · ⊗ S−mkC∗(Xk) // S−
P

miC∗(X1 × · · · ×Xk)

described in the preceding paragraph with the −∑
mi shift of McClure’s ε. Here

e2(m1, . . . ,mk) is the elementary symmetric polynomial of degree two on the symbols
m1, . . . ,mk, so

e2(m1, . . . ,mk) =
k∑

i=1

∑

j<i

mimj .

In other words, ε̄ is the composite

S−m1C∗(X1)⊗ · · · ⊗ S−mkC∗(Xk) Θ−→ S−
P

mi(C∗(X1)⊗ · · · ⊗ C∗(Xk))

(−1)e2S−
P

mi ε−−−−−−−−−−→ S−
P

miC∗(X1 × · · · ×Xk).

As for ε, ε̄ is a monomorphism. Furthermore, it is a degree 0 chain map since Θ and
ε are.

The map ε̄ so-defined is Poincaré dual to the iterated cochain cross product; see
Lemma A.2 in Appendix A. This version of the chain product also corrects the com-
mutativity of Lemma 10.5b from the original version of [20]; see Lemma A.4 in
Appendix A.
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3.1.1. Domains
With the notation introduced above, we can define our domain for the intersection
pairing:

Definition 3.3. For k > 2, let the domain Gk be the subcomplex of (S−nC∗X)⊗k

consisting of elements D such that both ε̄(D) and ε̄(∂D) are in stratified general
position with respect to all generalized diagonal maps, i.e.,

Gk =
⋂

k′<k

⋂

R : k̄³k̄′

ε̄−1(S−nkCR∗
∗ (X(k))).

Remark 3.4. The reason for the shifting is so that the intersection product becomes
a degree 0 chain map. See [20].

We can now state our main theorems concerning domains.

Theorem 3.5. The inclusion Gk ↪→ (S−nC∗X)⊗k is a quasi-isomorphism for all
k > 1.

For intersection chains, we must generalize slightly.

Definition 3.6. Let P = (p̄1, . . . , p̄k) be a collection of traditional perversities, and
let

GP
k = Gk ∩

(
S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X)

)
.

In other words, GP
k consists of those chains D in S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X)

such that ε̄k(D) and ε̄k(∂D) are in stratified general position with respect to R∗ for
all surjective R : k̄ ³ k̄′.

Theorem 3.7. The inclusion GP
k ↪→ S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X) is a quasi-

isomorphism.

Remark 3.8. These theorems can be generalized to include other cases of interest in
intersection homology. We could incorporate local coefficient systems defined only on
X − Σ, or, more generally, multiple local coefficient systems Li and work with

S−nI p̄1C∗(X;L1)⊗ · · · ⊗ S−nI p̄kC∗(X; Lk).

We could also instead consider the complexes C∞∗ (X) and IC∞∗ (X). In fact, the defi-
nitions of general position carry over immediately, and all homotopies constructed in
the following proof are proper, thus they yield well-defined maps on these locally-finite
chain complexes. The proofs that Gk and GP

k are quasi-isomorphic to the appropriate
tensor products is the same. We can also consider “mixed type” versions of Gk that
are quasi-isomorphic to

S−nI p̄1C∞∗ (X)⊗ · · ·S−nI p̄jC∞∗ (X)⊗ S−nI p̄j+1Cc
∗(X)⊗ · · · ⊗ S−nI p̄kCc

∗(X).

The necessary modifications are fairly direct.

The proofs of Theorems 3.5 and 3.7 (as well as of the more general cases men-
tioned in the remark) are nearly identical, so we will present only the proof of The-
orem 3.5 in detail. For Theorem 3.7, we simply note that instead of chains of the
form

∑
A naS

−nτai ⊗ · · · ⊗ S−nτak
, we would instead consider chains of the form
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∑
A naS

−nξai
⊗ · · · ⊗ S−nξak

, where each ξaj
is a p̄j allowable chain in X. We note

also that since all homotopies constructed below are stratum-preserving and proper,
they preserve allowability of chains (compactly supported or not), and the induced
homologies will also be allowable (see [8, 9]).

3.2. Proof of Theorem 3.5
In this subsection, we prove Theorem 3.5.

Proof of Theorem 3.5. The proof follows the outline of that of McClure’s [20, Propo-
sition 12.2], and many of the steps are essentially identical. However, there are some
points at which it is necessary to pay closer attention to the stratification, and one
large step (our variant of McClure’s Proposition 14.6) that must be done entirely dif-
ferently. This is because McClure covers his manifolds with euclidean balls and then
employs general position arguments within these euclidean structures; even modified
versions of this covering approach seem to fail on stratified spaces. We will roughly
follow the entire proof in order to achieve a sense of completeness and to ensure that
all steps at which the stratification enters materially are properly addressed. However,
we will refer often to [20], particularly for steps that do not rely on explicit mention
of the stratification.

We recall that if X is a stratified spaces, a (PL) homotopy H : Y × I //X is
called stratum preserving if for each y ∈ Y , H(y, I) is contained in a single stratum of
X. If φ : X × I //X is a stratum preserving homotopy and l is an integer 1 6 l 6 k,
then there is an lth factor homotopy determined by

X(k)× I ∼= X(l − 1)×X × I ×X(k − l) id×φ×id−−−−−→ X(k),

and this homotopy is stratum-preserving. Our goal, generally speaking, is to use
stratum-preserving homotopies to push chains into general position one factor at a
time.

For this, we first need a version of McClure’s Lemma 13.2 [20], which says, essen-
tially, that lth factor homotopies take products of chains to products of chains. It is
fairly straightforward that McClure’s lemma remains true in our context, though we
update the statement, mostly to take account of the change from ε to ε̄ (see above).

To account for some of the shifting, notice that (S−nkC∗(X(k)))⊗ C∗(I) is canon-
ically isomorphic to S−nk(C∗(X(k))⊗ C∗(I)) with no signs coming in (since we asso-
ciate no suspension to the C∗(I) term). Thus we have a well-defined chain map
S−nkε : S−nk(C∗(X(k))⊗ C∗(I)) // S−nkC∗(X(k)× I).
Lemma 3.9. Let h : X(k)× I //X(k) be an lth factor stratum-preserving homo-
topy, and suppose that C is in the image of ε̄k. Then:

1. S−nk(h ◦ i1)∗C is in the image of ε̄k, and
2. If ι is the canonical generator of C1(I), then (S−nkh∗)(S−nkε)(C ⊗ ι) is in the

image of ε̄k.

In other words, an lth factor homotopy homotopes a product to a product, and
the trace of the homotopy is also a product.

Next, we recall McClure’s filtration [20, Definition 13.3] of (S−mC∗M)⊗k, modified
here to take into account our shift conventions:
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Definition 3.10.

1. For 0 6 j 6 k, let Λj be the set of all surjections R : k̄ ³ k̄′ such that for each
i > j, the set R−1(R(i)) has only one element.

2. For 0 6 j 6 k, let Gj
k be the subcomplex of (S−n(C∗X))⊗k of chains C for which

ε̄k(C) and ε̄k(∂C) are in stratified general position with respect to R∗ for all
R ∈ Λj :

Gj
k =

⋂

k′<k

⋂

R : k̄
//
k̄′

R∈Λj

ε̄−1
k (S−nkCR∗

∗ X(k)).

This yields the filtration

Gk = Gk
k ⊂ Gk−1

k ⊂ · · · ⊂ G0
k = (S−nC∗X)⊗k,

and we will prove the following proposition, which immediately implies Theorem 3.5:

Proposition 3.11. The inclusion Gj
k ↪→ Gj−1

k is a quasi-isomorphism for each j,
1 6 j 6 k.

The proof of this proposition relies on the following lemma, analogous to [20,
Lemma 13.5].

Lemma 3.12. Suppose D ∈ Gj−1
k and ∂D ∈ Gj

k. Then there is a jth factor stratum-
preserving homotopy h : X(k)× I //X(k) such that:

1. h ◦ i0 is the identity,
2. the chains

• S−nk(h ◦ i1)∗(ε̄kD),
• S−nk(h ◦ i1)∗(ε̄k(∂D)), and
• S−nkh∗(S−nkε(ε̄k(∂D)⊗ ι))

are in stratified general position with respect to R∗ for all R ∈ Λj,
3. S−nkh∗(S−nkε(ε̄k(D)⊗ ι)) is in stratified general position with respect to R∗

for all R ∈ Λj−1.

Assuming this lemma, the proof of Proposition 3.11 follows as for [20, Proposition
13.4] by using the homotopy of the lemma to create the following homologies:

1. for a cycle D ∈ Gj−1
k , a homology to a cycle C ∈ Gj

k such that the homology is
itself in Gj−1

k , and

2. for a chain D ∈ Gj−1
k with ∂D ∈ Gj

k, a relative homology to a chain in Gj
k whose

boundary is also ∂D, and such that the homology is itself in Gj−1
k .

We run through the argument because the new shift conventions must be taken into
account (though ultimately they do not do any harm to the essence of McClure’s
argument).

Given a cycle D as stated and the h guaranteed by the lemma, S−nk(h ◦ i1)∗ε̄kD
is in the image of ε̄k by Lemma 3.9. Since ε̄k is a monomorphism, we obtain a well-
defined cycle C = (ε̄k)−1(S−nk(h ◦ i1)∗ε̄kD). By Lemma 3.12, C ∈ Gj

k.
Similarly, by Lemma 3.9, (S−nkh∗)(S−nkε)((ε̄kD)⊗ ι) is in the image of ε̄k. Let

E be the inverse image of this chain under ε̄k. By Lemma 3.12, E ∈ Gj−1
k .
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As in [20], let λ, κ ∈ C0(I) such that ∂ι = λ− κ. Then

ε̄k(∂E) = ∂(S−nkh∗)(S−nkε)((ε̄kD)⊗ ι)
= (S−nkh∗)(S−nkε)∂((ε̄kD)⊗ ι)
= (S−nkh∗)(S−nkε)(∂(ε̄kD)⊗ ι+ (−1)|ε̄kD|ε̄D ⊗ (λ− κ))
= 0 + (−1)|ε̄kD|(S−nkh∗)(S−nkε)(ε̄kD ⊗ (λ− κ))
= (−1)|ε̄kD|(S−nk(h ◦ i1)∗(ε̄kD)− S−nk(h ◦ i0)∗(ε̄kD))

= (−1)|ε̄kD|ε̄k(C −D).

Thus C and D are homologous, since ε̄k is a monomorphism.
Similarly, to check the second statement, let D ∈ Gj−1

k with ∂D = C ∈ Gj
k, and

choose a homotopy h as given by Lemma 3.12.
Then S−nk(h ◦ i1)∗ε̄kD and (S−nkh∗)(S−nkε)(ε̄k∂D ⊗ ι) are in the image of ε̄k.

Let E1 and E2 be the respective inverse images, which are in Gj
k by Lemma 3.12.

Now

ε̄k(∂E2) = ∂(S−nkh∗)(S−nkε)(ε̄k∂D ⊗ ι)
= (−1)|ε̄k∂D|(S−nkh∗)(S−nkε)(ε̄k∂D ⊗ (λ− κ))
= (−1)|ε̄k∂D|(S−nk(h ◦ i1)∗(ε̄k∂D)− S−nk(h ◦ i0)∗(ε̄k∂D))

= (−1)|ε̄k∂D|ε̄k(∂E1 − C).

Thus, since ε̄k is a monomorphism, C = ∂(E1 + (−1)|ε̄k∂D|E2).

So we must prove Lemma 3.12.

Proof of Lemma 3.12. To simplify the notation, we will assume that j = k. The other
cases may be obtained by obvious modifications that would require overcomplicating
the formulas that follow.

We suppose that D is a chain in Gk−1
k and that ∂D ∈ Gk

k. We must show that
there is a kth factor homotopy h : X × I //X such that:

1. h ◦ i0 is the identity (where i0 is the inclusion X = X × 0 ↪→ X × I),
2. S−nk(h ◦ i1)∗(ε̄kD), S−nk(h ◦ i1)∗(ε̄k(∂D)), and S−nh∗(S−nkε(ε̄k∂D ⊗ ι)) are

in stratified general position with respect to R∗ for all R : k̄ ³ k̄′ (where i1 is
the inclusion X = X × 1 ↪→ X × I and ι is the canonical chain in C1(I)), and

3. S−nkh∗(S−nkε(ε̄kD ⊗ ι)) is in stratified general position with respect to R∗ for
all R ∈ Λk−1.

We choose a triangulation K of X such that D ∈ (c∗K)⊗k. We let τ1, . . . , τω be
the simplices of K with fixed, arbitrary orientations. Then we can write

D =
∑

A

nAS
−nτa1 ⊗ · · · ⊗ S−nτak

,

where the sum runs over multi-indices A = (a1, . . . , ak) ∈ {1, . . . , ω}k. Similarly,

∂D =
∑

A

n′AS
−nτa1 ⊗ · · · ⊗ S−nτak

.
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To define the desired homotopy, we utilize the following proposition, which gen-
eralizes (and slightly strengthens) McClure’s [20, Proposition 14.6]. Although the
proposition is analogous to McClure’s, we have not been able to construct a proof
using McClure’s methods, and thus we greatly differ here from [20].

Proposition 3.13. Let X be a stratified PL pseudomanifold of dimension n,
and let K be a triangulation of X. Then there is a stratum-preserving PL isotopy
φ : X × I //X such that:

1. φ|X×0 is the identity,

2. if σ and τ are simplices of K, then φ(σ, 1) and τ are in stratified general position,
i.e.,

dim(φ(σ, 1) ∩ τ ∩Xκ) 6 dim(σ ∩Xκ) + dim(τ ∩Xκ)− κ
for all κ, 0 6 κ 6 n (note that since φ is an isotopy, we have dim(σ ∩Xκ) =
dim(φ(σ, 1) ∩Xκ)), and

3. if σ and τ are simplices of K, then for all κ, 0 6 κ 6 n,

dim(φ((σ ∩Xκ)× I) ∩ τ)
6 max(dim(supp(φ((σ ∩Xκ)× I))) + dim(τ ∩Xκ)− κ,dim(σ ∩ τ ∩Xκ)).

The proof of the proposition is deferred to below.
Let h : X(k)× I // I be the kth factor homotopy obtained from the isotopy φ of

the proposition. Note that since φ was stratum-preserving, so is h. Let R : k̄ // k̄′

be any surjection. We must verify that the various chains described above are in
the appropriate general position with respect to R∗. We will show explicitly that
S−nkh∗(S−nkε(ε̄k∂D ⊗ ι)) is in stratified general position with respect to R∗, the
other proofs being similar.

To simplify the notation somewhat in what follows, we will employ the following
substitution in order to remove the shifts. Notice that, as far as supports of chains
are concerned, the support of

S−nkh∗(S−nkε(ε̄k∂D ⊗ ι))

= S−nkh∗


S−nkε


ε̄k

∑

A|n′A 6=0

n′AS
−nτa1 ⊗ · · · ⊗ S−nτak

⊗ ι






is precisely the same as that of

h∗


εk+1


 ∑

A|n′A 6=0

n′AS
−nτa1 ⊗ · · · ⊗ S−nτak

⊗ ι




 ∈ C∗(X(k)).

This is because we are done taking boundaries at this point, so the various signs that
come into play from the dimension shifts no longer need to be taken into account. The
only thing that matters at this point are which terms are non-zero, and that is already
settled. Thus for the purpose of checking the dimensions of intersections in order to
make sure that stratified general position is satisfied (which is all that remains to do
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in this section), we are free to replace ∂D with ∂D̄ =
∑

A|n′A 6=0 n
′
Aτa1 ⊗ · · · ⊗ τak

and
to proceed using ε and h∗ instead of their shifted versions. We make this change now.

We must consider what happens on each stratum Z = Xd1 × · · · ×Xdk
of X(k).

As we have previously noted, if R(a) = R(b) but da 6= db for any pair a, b ∈ k̄, then
R∗(X(k′)) does not intersect this stratum and general position for this stratum is
automatic. Therefore, we may confine ourselves to strata Xd1 × · · · ×Xdk

of X(k) for
which R(a) = R(b) implies da = db.

Now, supp(h∗(ε(∂D̄ ⊗ ι))) is contained in the union over all A such that
n′A 6= 0 of τa1 × · · · × τak−1 × φ(τak

× I), and so, letting R−1(R(k)) = Q, we see that
supp(h∗(ε(∂D̄ ⊗ ι))) ∩ im(R∗) is contained in the union over all A such that n′A 6= 0
of 

 ∏

j 6=R(k)

⋂

i∈R−1(j)

τai


×


φ(τak

× I) ∩
⋂

i∈Q−{k}
τai


 .

It follows that, on our stratum Z,

supp(h∗(ε(∂D̄ ⊗ ι))) ∩ im(R∗) ∩ Z

⊂

 ∏

j 6=R(k)

⋂

i∈R−1(j)

(τai ∩Xdi)


×


(φ(τak

× I) ∩Xdk
) ∩

⋂

i∈Q−{k}
(τai ∩Xdi)


 .

Thus

dim(supp(h∗(ε(∂D̄ ⊗ ι))) ∩ im(R∗) ∩ Z)

6 max
n′A 6=0


 ∑

j 6=R(k)

dim


 ⋂

i∈R−1(j)

(τai ∩Xdi)




+dim


(φ(τak

× I) ∩Xdk
) ∩

⋂

i∈Q−{k}
τai ∩Xdi





 . (2)

If ak is such that dim(φ(τak
× I)) < dim(τak

) + 1, then for any A with ak as its
final entry, we will have h∗(ε(τa1 ⊗ · · · ⊗ τak

)) = 0, since h∗(ε(τa1 ⊗ · · · ⊗ τak
)) must

be a chain of dimension 1 +
∑k

i=1 dim(τai), while

dim(h(τa1 × · · · × τak
)) =

k−1∑

i=1

dim(τai) + dim(φ(τak
× I)).

In this case, h∗(ε(τa1 ⊗ · · · ⊗ τak
)) must trivially satisfy any general position require-

ments. So we may assume for the rest of the argument that dim(φ(τak
× I)) =

dim(τak
) + 1.

By (1), it suffices to show for each remaining multi-index (those such that n′A 6= 0
and dim(φ(τak

× I)) = dim(τak
) + 1) that the right-hand side of inequality (2) is

6 dim(supp(h∗(ε(τa1 ⊗ · · · τak
⊗ ι))) ∩ Z) +

k′∑

i=1

dR−1(i) −
k∑

i=1

di. (3)
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Note that supp(h∗ε(∂D̄ ⊗ ι)) ∩ Z = supp(h∗((|εk∂D̄| ∩ Z)× I)) since h is stratum-
preserving.

The following lemma will be used to complete the proof:

Lemma 3.14.

1. For each j /∈ R(k),

dim


 ⋂

i∈R−1(j)

τai
∩XdR−1(j)




6
(
1− |R−1(j)|) dR−1(j) +

∑

i∈R−1(j)

dim(τai ∩XdR−1(j)
)

(recall that dR−1(j) is well-defined for the stratum Z).
2. We have

dim


φ(τak

× I) ∩Xdk
) ∩

⋂

i∈Q−{k}
(τai ∩XdR−1(k)

)




6 (1− |Q|)dk + dim(supp(h∗(ε(τak
⊗ ι))) ∩Xdk

) +
∑

i∈Q−{k}
dim(τai ∩Xk).

To see that this lemma suffices to finish the proof of Lemma 3.12, we compute

∑

j 6=R(k)

dim


 ⋂

i∈R−1(j)

(τai ∩XdR−1(j)
)




+ dim


(φ(τak

× I) ∩Xdk
) ∩

⋂

i∈Q−{k}
(τai ∩Xdk

)




6
∑

j 6=R(k)


(1− |R−1(j)|)dR−1(j) +

∑

i∈R−1(j)

dim(τai ∩XdR−1(j)
)




+ (1− |Q|)dk + dim(supp(h∗(ε(τak
⊗ ι))) ∩Xdk

)

+
∑

i∈Q−{k}
dim(τai ∩XdR−1(k)

)

=
k′∑

j=1

(
1− |R−1(j)|) dR−1(j) + dim(supp(h∗(ε(τak

⊗ ι))) ∩Xdk
)

+
∑

i 6=k

dim(τai ∩Xdi).

But
k′∑

j=1

|R−1(j)|dR−1(j) = dimZ =
k∑

i=1

di,
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and

dim(supp(h∗(ε(τak
⊗ ι))) ∩Xdk

) +
∑

i 6=k

dim(τai
∩Xdk

)

= dim(supp(h∗(ε(τa1 ⊗ · · · τak
⊗ ι))) ∩ Z).

Thus the desired inequality (3) holds.

It remains to prove Proposition 3.13 and Lemma 3.14.

Proof of Lemma 3.14.

1. The proof is essentially the same as that of [20, Lemma 14.5]: We continue to
work with the stratum Z and with a fixed R. Let E = τa1 ⊗ · · · ⊗ τak

. Choose
j ∈ R−1(k), and let R̄ : k̄ // k̄′′ be any surjection that takes R−1(j) to 1 and
is bijective on k̄ −R−1(j). Then

⋂

i∈R−1(j)

(τai ∩XdR−1(j)
) =

⋂

i∈R̄−1(j)

(τai ∩XdR̄−1(1)
).

Now on the one hand,

dim


 ⋂

i∈R̄−1(1)

(τai ∩XdR−1(j)
)×

∏

i/∈R̄−1(1)

(τai ∩XdR−1(j)
)




= dim


 ⋂

i∈R̄−1(1)

(τai ∩XdR−1(j)
)


 +

∑

i/∈R̄−1(1)

dim(τai ∩Xdi),

while, on the other hand, since εk(E) is in stratified general position with respect
to any R (by our standing assumptions),

dim


 ⋂

i∈R̄−1(1)

(τai ∩XdR−1(j)
)×

∏

i/∈R̄−1(1)

(τai ∩Xdi)




= dim(supp(εk(E)) ∩ im(R̄∗) ∩ Z)

6 dim(supp(εk(E)) ∩ Z) +
k′′∑

i=1

dR̄−1(i) −
k∑

i=1

di

(by stratified general position)

= dim(supp(εk(E)) ∩ Z) + dR−1(j) +
∑

u/∈R−1(j)

du −
k∑

i=1

di

(by our choice of R̄)

= dim(supp(εk(E)) ∩ Z) + dR−1(j) −
∑

u∈R−1(j)

du

= dim(supp(εk(E)) ∩ Z) + dR−1(j)(1− |R−1(j)|).
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Since dim(supp(εk(E)) ∩ Z) =
∑k

i=1 dim(τai
∩Xdi

), these two equations yield
the result of the lemma.

2. By the same proof as in the first part of the lemma,

dim




⋂
i∈Q

i6=k

τai ∩XdR−1(k)


 6 (2− |Q|)dk +

∑

i∈Q−{k}
dim(τai

∩Xdk
).

Now, by the conclusion of Proposition 3.13, we can assume for any simplex η in
Xdk

(in particular for any simplex in
⋂

i∈Q−{k}(τai
∩Xdi

)) that

dim(φ((τak
∩Xdk

)× I)) ∩ η)
6 max(dim(supp(φ((τak

∩Xdk
)× I)))

+ dim(η ∩Xdk
)− dk, dim(τak

∩ η ∩Xdk
)).

If dim(supp(φ((τak
∩Xdk

)× I))) + dim(η ∩Xdk
)− dk is the larger number,

then

dim


(φ(τak

× I) ∩Xdk
) ∩

⋂

i∈Q−{k}
(τai ∩Xdi)




6 dim(supp(φ((τak
∩XdR−1(k)

)× I))) + (2− |Q|)dk

+
∑

i∈R−1(k)−{k}
(dim(τai ∩Xdk

))− dk

6 (1− |Q|)dk + dim(supp(h∗(ε(τak
⊗ ι))) ∩Xdk

)

+
∑

i∈Q−{k}
dim(τai ∩Xdk

).

If dim(τak
∩ η ∩Xdk

) is the larger number, then

dim


(φ(τak

× I) ∩Xdk
) ∩

⋂

i∈Q−{k}
(τai ∩Xdk

)




6 dim


τak

∩
⋂

i∈Q−{k}
(τai ∩Xdk

)


 .

Once again, since ∂D̄ was initially assumed to be in general position with respect
to any R, it follows as in the proof of the first part of the lemma that this is

6 (1− |Q|)dk +
∑

i∈Q

dim(τai ∩Xdk
),

which is certainly

6 (1− |Q|)dk + dim(supp(h∗(ε(τak
⊗ ι))) ∩Xdk

)

+
∑

i∈Q−{k}
dim(τai ∩Xdk

).
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Proof of Proposition 3.13. The proof will make use of McCrory’s proof of his strat-
ified general position theorem [22]. This in turn makes use of the general position
constructions for manifolds presented by Zeeman in [26, Chapter 6]. McCrory shows
that given a “stratified polyhedron” (the definition of which includes our stratified PL
pseudomanifold X), and closed subpolyhedra A,B,C such that B ⊃ C, then there
exists an ε-PL isotopy H : X × I //X such that H(c, t) = c for all c ∈ C, t ∈ I and
H(B − C, 1) and A are in stratified general position, i.e., (B − C) ∩Xi and A ∩Xi

are in general position in Xi for each i-manifold Xi.
The construction of McCrory’s isotopy is by a double sequence of local “(j, κ)-

shifts” that works up through the strata and down through the simplices of each
stratum. In other words, one constructs a sequence of isotopies G1, . . . , Gn such that
Gκ fixes Xκ−1 (and C), and each Gκ is, in turn, composed of a sequence of iso-
topies F j,κ, where the parameter j descends through the dimensions of simplices2 of
Xκ −Xκ−1. Each F j,κ consists of simultaneous disjoint local isotopies of neighbor-
hoods in X of the j-simplices of Xκ −Xκ−1. These neighborhoods may meet along
their boundaries, but the local isotopies are fixed on these boundaries, so there is
no problem with performing all of the local isotopies of F j,κ simultaneously. Each
such (j, κ)-shift is constructed by applying in Xκ Zeeman’s shift construction for
manifolds and then joining this Zeeman shift with the identity map on the link L of
the stratum (to be completely precise, one must also take into account the standard
stratified homeomorphism between local neighborhoods of simplices and standard
distinguished neighborhoods of the form Bκ × c̄L; see [22]). By the arguments pre-
sented by McCrory [22] and Zeeman [26], the end result of this sequence of isotopies
puts B − C in stratified general position with respect to A.

Our isotopy will be constructed similarly, by performing (j, κ)-shifts for all possible
simplices. For this purpose, there are two important points to note:

• As McCrory notes, the set A comes into his construction only in that the trian-
gulation K is chosen so that A is a subcomplex. Thus one should expect that
the choice of A is irrelevant beyond this, and thus by performing the appropri-
ate (j, κ)-shifts, one can put any subcomplex of K into general position with
respect to all other subcomplexes of K simultaneously.
In fact, it is not completely true that this is the only way that A comes into
the definition of McCrory’s shift. In Zeeman’s shift construction, which is the
cornerstone of McCrory’s, A (there played by the symbol Y ), also enters into
which simplices have their neighborhoods shifted and into the definition of the
shift. The first issue — only shifting simplices that actually intersect A— simply
limits the number of local isotopies being performed to avoid unnecessary ones,
but performing extra local isotopies does no harm. As for how the shifts are
actually defined, the only fact about A that is significant in the definition of
Zeeman’s shift is that the intersection of A with the link of the simplex η whose
neighborhood is to be shifted should not be the entire linking sphere. (Zeeman
works exclusively in the realm of manifolds.) This allows one to construct a
homeomorphism between the standard simplex (of the appropriate dimension)

2By a simplex of U − V , we mean a simplex of U that is not contained in V .
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and the transverse disk to η such that the intersection of A with the link of η
gets mapped into a single face of the standard simplex.
In our case (or McCrory’s), if we wish to perform a (j, κ)-shift in a neighborhood
of a j-simplex η of Xκ and the intersection of A with the link of η in Xκ

is the entire κ− j − 1 dimensional linking sphere, then in fact an entire star
neighborhood of η in Xκ will be contained in A, and general position with
respect to A ∩Xκ in Xκ will automatically be satisfied. Thus in order to define
each (j, κ)-shift for each fixed κ, it will suffice to allow the κ− 1 skeleton of Xκ

(in the relevant triangulation at the time) to play the role of A for the purpose
of applying Zeeman’s construction to define the local shifts.

• As for A, B also comes into the construction of McCrory’s isotopy both as
determining which simplices should have their neighborhoods shifted and in the
determination of the actual shifts. Once again, shifts in the McCrory construc-
tion are limited to those surrounding simplices that lie in B, but once again, this
is an unnecessary limitation — making additional shifts does no harm. And once
again, it is necessary for constructing Zeeman’s shift within McCrory’s that the
intersection of B (there called X) with the link in Xκ of the simplex η whose
neighborhood we shift should not be the entire κ− j − 1 sphere, and the reasons
for this are identical. But once again, for the purpose of defining Zeeman’s shift
within the stratum Xκ, we may let the κ− 1 skeleton of Xκ play the role of Zee-
man’s X (McCrory’s B ∩Xκ), and then there is no difficulty defining the shift.
Again, we are unconcerned with κ-simplices in Xκ since these are automatically
in general position with respect to any polyhedra in Xκ.

Thus, we construct a stratum-preserving isotopy φ0 : X × I //X as follows: For
each κ, 1 6 κ 6 n, we will define an isotopy Gκ such that Gκ|Xκ−1 is the identity. We
will define φ0 to be the isotopy determined by performing the isotopies G1, . . . , Gn

successively.
Each Gκ also comprises successive isotopies Fκ−1,κ · · ·F 0,κ, and each F j,κ consists

of performing McCrory’s (j, κ)-shift for all j-simplices of Xκ −Xκ−1 in the trian-
gulation that has been arrived at to that point (by requiring each isotopy to be
simplicial with respect to successive refinements of K). Each such (j, κ)-shift is built
as in McCrory by joining the identity map of the link of the stratum with a Zeeman
shift in Xκ (utilizing, as in McCrory, the intermediate step of homeomorphing the
appropriate local neighborhoods into standard distinguished neighborhoods). For the
purpose of defining the Zeeman shift, we plug into Zeeman’s machinery the intersec-
tion of the entire κ− 1 skeleton of Xκ (in the present triangulation) with Xκ−1. This
skeleton plays the role of both McCrory’s A and B (Zeeman’s X and Y ).

Now, suppose that σ and τ are any simplices of the triangulation K of X. We
prove that φ0 takes σ into stratified general position with respect to τ . It suffices to
show that φ0 takes σ ∩Xκ into general position with respect to τ ∩Xκ for any κ,
0 6 κ 6 n. This is trivial for κ = 0. For κ > 0, first the isotopies G1, . . . , Gκ−1 take
σ ∩Xκ to some subpolyhedron, say Z, of Xκ. τ ∩Xκ is also such a subpolyhedron.
Suppose that dim(Z ∩Xκ) (which is equal to dim(σ ∩Xκ)) is equal to ` and that

dim(Z ∩ τ ∩Xκ) = s 6 `.
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If l = κ, then we already have general position in this stratum. Otherwise, the iso-
topies Fκ−1,κ, . . . , F `+1,κ fix Z since local shifts of neighborhoods of t-simplices fix
the t− 1 skeleton. Furthermore, while the shifts F `,κ, . . . , F s+1,κ do isotope the
`, . . . , s+ 1 simplices of Z, since their interiors do not intersect τ , it follows from
the McCrory-Zeeman construction of the local shifts that the images of their interi-
ors under the isotopy continue not to intersect τ . From here, the movement of the
present image of Z under the further isotopies

F s,κ, . . . , F dim(σ∩Xκ)+dim(τ∩Xκ)−κ+1,κ

is exactly that of McCrory’s isotopy, which pushes Z into general position with respect
to τ ∩Xκ. Finally, any remaining isotopies

F dim(σ∩Xκ)+dim(τ∩Xκ)−κ+1,κ, . . . , F 0,κ

do not damage this general position, by [26, Lemma 30].
Since the further isotopies that constitute Gκ+1, . . . , Gn fix Xκ, it follows that φ0

isotopes σ into stratified general position with respect to τ .
To complete the proposition, we need to modify φ0 to an isotopy φ that also sat-

isfies condition (3) of the proposition. For this, let us consider φ0 : X × I // I as a
PL map ψ : X × I //X × I, given by ψ(x, t) = (φ0(x, t), t). We may triangulate the
domain and codomain copies of X × I so that the isotopy is simplicial and also so that
each triangulation restricts on X × 0 and X × 1 to a refinement of K. We may
also assume for each triangulation that η × I is a subcomplex for each η in K. Now,
taking the codomain copy of X × I with its triangulation, we construct a PL isotopy
Φ: X × I × I //X × I just as we constructed φ0 above, but this time relative to
X × 0 and X × 1 (in other words, X × 0 and X × 1 are held fixed). Such relative
isotopies are also considered by McCrory and Zeeman, and we make the same modi-
fications here as above — in particular we shift the neighborhoods of all possible sim-
plices, this time except for those in X × 0 and X × 1. The previous arguments remain
unchanged to demonstrate that for each σ, τ in K, Φ(ψ(σ × I), 1) ∩ (X × (0, 1)) is in
stratified general position with respect to τ × (0, 1). In particular,

dim(Φ(ψ(σ × I), 1) ∩ (τ × I) ∩ (Xκ × (0, 1)))
6 dim(σ ∩Xκ) + 1 + dim(τ ∩Xκ) + 1− (κ+ 1)

= dim(σ ∩Xκ) + 1 + dim(τ ∩Xκ)− κ.
Furthermore, of course,

dim(Φ(ψ(σ, 1), 1) ∩ (τ × 1) ∩ (Xκ × 1))
= dim(φ0(σ, 1) ∩ τ ∩Xκ) 6 dim(σ ∩Xκ) + dim(τ ∩Xκ)− κ

and

dim(Φ(ψ(σ, 0), 1) ∩ (τ × 0) ∩ (Xκ × 0)) = dim(σ ∩ τ ∩Xκ).

Now, let πX : X × I //X be the projection to X, let i1 : X × I //X × I × I be
the inclusion into X × I × 1, and define φ : X × I //X by φ = πXΦi1ψ. To see that
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φ satisfies the desired requirements of the proposition, first notice that

dim(Φ((σ ∩Xκ)× I) ∩ τ)

= max(dim(φ((σ ∩Xκ)× (0, 1)) ∩ τ), dim(φ(σ ∩Xκ, 0) ∩ τ), dim(φ(σ ∩Xκ, 1) ∩ τ)).

Now

dim(φ(σ ∩Xκ, 0) ∩ τ) = dim(σ ∩ τ ∩Xκ),

and

dim(φ(σ ∩Xκ, 1) ∩ τ) = dim(φ0(σ ∩Xκ, 1) ∩ τ).
Furthermore, the projection of Φ(ψ(σ × I), 1) ∩ (τ × I) ∩ (Xκ × (0, 1)) to X must
contain φ((σ ∩Xκ)× (0, 1)) ∩ τ . By the stratified general position we have achieved

dim(Φ(ψ(σ × I), 1) ∩ (τ × I) ∩ (Xκ × (0, 1)))
6 dim(σ ∩Xκ) + 1 + dim(τ ∩Xκ)− κ.

If

dim(supp(φ((σ ∩Xκ)× (0, 1)))) = dim(σ ∩Xκ) + 1,

we are done. The only other possibility is that

dim(supp(φ((σ ∩Xκ)× (0, 1)))) = dim(σ ∩Xκ).

But, by the definition of φ0, this is only possible when dim(σ ∩Xκ) = κ. So

φ((σ ∩Xκ)× (0, 1)) ∩ (τ × I)
must have the form

(σ ∩Xκ ∩ τ)× (0, 1).

In this case, the projection X × I //X decreases the dimension of this intersection
by 1, and we still have

dim(Φ(ψ(σ × I), 1) ∩ (τ × I) ∩ (Xκ × (0, 1)))
6 dim(supp(φ((σ ∩Xκ)× (0, 1)))) + dim(τ ∩Xκ)− κ.

This completes the proof.

4. Intersection pairings

In this section, we study the intersection pairings defined on our domains Gk

and GP
k . In the simplest cases, these correspond to the simultaneous intersection of

multiple chains, and we will indeed show that these intersection products correspond
to the iteration of Goresky-MacPherson intersection products when such are defined
(though not all generalized products have this form as the domains GP

k allow for
the “intersection” of more general objects). Yet more general intersection products
will arise in Section 5 within in the functorial machinery of the Leinster partial
commutative algebra structure.
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4.1. Sign issues
Our initial work on the following material was hampered by several difficulties

that arose due to seeming inconsistencies in the signs (powers of −1) that occurred
in the various formulas relating the general intersection pairing we define below with
the iterated Goresky-MacPherson intersection pairing. Our struggle with these “sign
problems” led back to an inconsistency with the Koszul sign conventions in the orig-
inal version of McClure’s paper [20], and this problem was traced back to some
sign issues involving the definition of the transfer map in Dold [7]. Given a map
of oriented manifolds f : M //M ′, Dold first defines his (homology) transfer maps
f! : H∗(M ′) //H∗(M) in the usual way as a composition of Poincaré duality on M ′,
followed by the cohomology pullback f∗, followed by Poincaré duality on M (this is
the gist of the construction — Dold actually considers quite general relative cases
— see [7, Section VIII.10]). However, there is a cryptic note on page 314 of [7],
noting that certain signs one should expect in resulting identities do not appear
because the transfer should be defined “in a more systematic treatment” with a sign
(−1)(dim M−j)(dim M ′−dim M), where j is the dimension of the chain to which f! is being
applied.

Applying this correction, however, did not completely fix the sign issues occurring
here until it was noticed by McClure that the sign problem is not with the defi-
nition of the transfer but with the definition of Poincaré duality! McClure argues
that the correct definition of the Poincaré duality map P : H∗(M) //Hm−∗(M)
for a closed oriented m-manifold M with orientation class Γ should be given by
P (x) = (−1)m|x|(x ∩ Γ). Note the sign. Of course this homomorphism is an isomor-
phism regardless of sign, but this should be considered the “correct choice” for the
following reason:

Let C∗(M) be the complex of (singular or simplicial) chains on M , and C∗(M)
the corresponding cochain complex. As usual, we can raise or lower indices and
think of C∗(M) as a complex with differential of degree −1 by setting T∗(X) =
C−∗(X). Then H∗(T∗(X)) = H−∗(X). Then we can think of ∩Γ as a homomorphism
T∗(X) // C∗+m(X), and ∩Γ commutes with the differentials; see [7, p. 243]. But
this is not the correct behavior for a map of degree m according to the Koszul con-
ventions! In order to be considered a chain map, a degree m homomorphism should
(−1)m commute with the differential; see [7, Remark VI.10.5]. If we instead use
P (x) = (−1)m|x|(x ∩ Γ), then we do obtain the desired (−1)m commutativity.

Note that this sign choice for Poincaré duality maps automatically incorporates the
sign correction into Dold’s transfer map since, letting m = dimM and m′ = dimM ′,
for x ∈ Cj(M ′), we obtain

f!(x) = f∗((−1)(m
′−j)m′

(∩ΓM ′)−1(x)) ∩ ΓM (−1)(m
′−j)m,

which is (−1)(m
′−j)(m′−m) times Dold’s transfer.

Furthermore, redefining P (x) = (−1)m|x|S−m(x ∩ Γ) makes this a degree 0 chain
map.

We will use this convention for Poincaré duality throughout. Interestingly, this sign
does not alter the sign of the Goresky-MacPherson intersection product [12]; see the
proof of Proposition 4.9, below.
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4.2. An intersection homology multi-product
In this section, we construct a generalized intersection product

µk : GP
k

// S−nI r̄C∗(X),

where r̄ is a perversity greater than the sum of the perversities in P . This is done
using a transfer (umkher) map that is essentially a hybrid of the Poincaré-Whitehead
duality utilized by Goresky-MacPherson [12] and the umkehr map of McClure [20].

We recall (see [2, Section II.1]) that ifA andB are closed PL subspaces of respective
dimensions i and i− 1 of a PL space X, then the chains C ∈ Ci(X) that satisfy
|C| ⊂ A and |∂C| ⊂ B correspond bijectively to homology classes [X] ∈ Hi(A,B).
Thus “in order to prescribe chains, we need only describe sets and homology classes.”

Now suppose f : Xn // Y m is a PL map of compact oriented PL stratified pseudo-
manifolds such that f−1(ΣY ) ⊂ ΣX , where ΣX and ΣY are the respective singular sets
of X and Y . Suppose that C ∈ Ci(Y ) and dim(|C| ∩ ΣY ) < i. Then C corresponds
to the homology class [C] ∈ Hi(|C|, |∂C|). Let A = |C|, B = |∂C|, A′ = f−1(A), and
B′ = f−1(B). We consider the following composition of maps:

S−mHi(A,B) −→ S−mHi(A ∪ ΣY , B ∪ ΣY )

(−1)m(m−i)(·∩ΓY )−1

−−−−−−−−−−−−−−→∼=
Hm−i(Y − (B ∪ ΣY ), Y − (A ∪ ΣY ))

f∗−→ Hm−i(X − (B′ ∪ ΣX), X − (A′ ∪ ΣX))

∩ΓX(−1)n(m−i)

−−−−−−−−−−→∼=
S−nHi+n−m(A′ ∪ ΣX , B

′ ∪ ΣX). (4)

The indicated signed cap products with the respective fundamental classes rep-
resent the Poincaré-Whitehead-Goresky-MacPherson duality isomorphism; see [12,
Appendix]. We also incorporate the sign convention discussed above in Section 4.1.

Next, we note that

Hi+n−m(A′ ∪ ΣX , B
′ ∪ ΣX) ∼= Hi+n−m(A′, B′ ∪ (ΣX ∩A′))

by excising out ΣX − ΣX ∩A′. Furthermore, if dim(ΣX ∩A′) 6 i+ n−m− 2, then
by the long exact sequence of the triple (and another excision argument),

Hi+n−m(A′, B′ ∪ (ΣX ∩A′)) ∼= Hi+n−m(A′, B′).

So, when this dimension condition is satisfied, we obtain a map

S−mHi(A,B) // S−nHi+n−m(A′, B′),

which is a morphism of degree 0.

Remark 4.1. N.B. It is the condition dim(ΣX ∩ f−1(|C|)) 6 i+ n−m− 2 that will
force the intersection pairing to be well-defined only for intersection chains in GP

k

with certain perversity requirements on P . We cannot hope to have a well-defined
pairing for Gk, in general, unless X is, in fact, a manifold.

Now, let ∆ be the diagonal map X ↪→ X(k). So if R is the unique function
R : k̄ // 1̄, then ∆ = R∗ in the notation of Section 3.
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Definition 4.2. Let S−nkC∆
∗ (X(k)) be the subcomplex of S−nkC∗(X(k)) of chains

D such that if D ∈ S−nkCi+nk(X(k)), then

1. dim(|D| ∩ ΣX(k)) < dim |D|,
2. D is in stratified general position with respect to ∆ (in particular,

dim(∆−1(|D|)) 6 i+ n, and dim(∆−1(|∂D|)) 6 i+ n− 1),

and
3. dim(∆−1(|D|) ∩ ΣX) 6 i+ n− 2, and dim(∆−1(|∂D|) ∩ ΣX) 6 i+ n− 3.

Then the chains in S−nkC∆
∗ (X(k)) satisfy all of the conditions outlined above for

there to be a well-defined degree 0 chain homomorphism

∆! : S−nkC∆
∗ (X(k)) // S−nC∗(X)

defined by taking the chain D to the homology class [D] ∈ S−nkHi+nk(|D|, |∂D|) and
then applying the composition

S−nkHi+nk(|D|, |∂D|) // S−nHi+n(f−1(|D|), f−1(|∂D|)) // S−nCi+n(X),

where the first map is the composition described in diagram (4) and the second map
makes use of the natural isomorphism between homology classes and chains recalled
at the beginning of this subsection.

Definition 4.3. The morphism ∆! : S−nkC∆
∗ (X(k)) // S−nC∗(X) is a pseudo-

manifold version of a special case of the classical transfer or umkehr map. See [7, 20]
for more details. We show in Appendix A that ∆! is indeed a chain map, and we also
show there that the corresponding transfers f! : S−mCf

∗ (M) // S−nC∗(N) of [20]
are chain maps, where Mm, Nn are PL manifolds, f is a PL map, and Cf

∗ (M) is the
chain complex of chains in general position with respect to f ; see [20].

Definition 4.4. Suppose P = {p̄1, . . . , p̄k} is a sequence of traditional perversities
and that p̄1 + · · ·+ p̄k 6 r̄ for some traditional perversity r̄. Then we let

µk = ∆! ◦ ε̄k : GP
k,∗ // S−nC∗(X).

Note that µ1 is the identity.

We demonstrate in the following proposition that µk is well-defined on appropriate
GP

k and that its image lies in S−nI r̄C∗(X).

Proposition 4.5. Suppose P = {p̄1, . . . , p̄k} is a sequence of traditional perversities
and that p̄1 + · · ·+ p̄k 6 r̄ for some traditional perversity r̄. Then µk determines a
well-defined chain map (of degree 0) GP

k
// S−nI r̄C∗(X).

Proof. Suppose C ∈ (GP
k )i. We must show that ε̄k(C) ∈ S−nkC∆

∗ (X(k)) so that µk

is well-defined, and we must check that ∆!ε̄k(C) is in S−nI r̄C∗(X). In particular, we
must verify the three conditions of Definition 4.2. But by definition of GP

k , ε̄k(C) is in
general position with respect to ∆, so the second condition is satisfied automatically.
The first condition is also trivial since |ξ| ∩ Σ ⊂ |∂ξ| ∩ Σ for any intersection chain,
and this implies the same for their products.
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Now, C is represented by a chain in

⊕j1+···+jk=i(S−nI p̄1C∗(X))j1 ⊗ · · · ⊗ (S−nI p̄kC∗(X))jk
.

Thus if I is a k-component multi-index, C breaks into a unique sum
∑
|I|=i CI , where

each CI lies in a separate

(S−nI p̄1C∗(X))j1 ⊗ · · · ⊗ (S−nI p̄kC∗(X))jk

with
∑k

i=1 ji = i. We know that ε̄k(C) ∈ S−nkC∗(X(k)), and since ∆ is the gen-
eralized diagonal, ∆−1(|ε̄kC|) = |ε̄k(C)| ∩∆(X). Moreover, for each stratum Xκ,
∆−1(X(k)) ∩Xκ

∼= ∆(Xκ) ⊂ Xκ(k).
Furthermore, for each multi-index I = {j1, . . . , jk}, each

(S−nI p̄1C∗(X))j1 ⊗ · · · ⊗ (S−nI p̄kC∗(X))jk

is generated by chains S−nξa1 ⊗ · · · ⊗ S−nξak
, where each ξa`

is a p̄l allowable chain.
So for all `, dim(ξa`

∩Xκ) 6 dim(ξa)− (n− κ) + p̄`(n− κ). It follows that

dim(|ε̄k(S−nξa1 ⊗ · · · ⊗ S−nξak
)| ∩Xκ(k)) 6

k∑

`=1

dim(ξa`
∩Xκ)

6
k∑

`=1

(dim(ξa`
)− (n− κ) + p̄`(n− κ))

= i+ nk − k(n− κ) +
k∑

`=1

p̄`(n− κ)

= i+ kκ+
k∑

`=1

p̄`(n− κ).

This is true for all S−nξa1 ⊗ · · · ⊗ S−nξak
∈ (GP

k )i, and since C, and hence each CI ,
is in stratified general position with respect to ∆, we have for each κ, 0 6 κ 6 n− 2,

dim(∆−1(|ε̄(C)|) ∩Xκ) = dim(|ε̄kC| ∩∆(Xκ))
6 dim(|ε̄kC| ∩Xκ(k)) + κ− kκ

(by stratified general position)

6 max(dim(|ε̄k(S−nξa1 ⊗ · · · ⊗ S−nξak
)| ∩Xκ(k))) + κ− kκ

6 (i+ kκ+
k∑

`=1

p̄`(n− κ)) + κ− kκ

= i+ κ+
k∑

`=1

p̄`(n− κ)

6 i+ κ+ r̄(n− κ),
where the maximum in the third line is over all S−nξa1 ⊗ · · · ⊗ S−nξak

with non-zero
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coefficient in C. Since3 r̄(n− κ) 6 n− κ− 2, it follows that

dim(∆−1(|ε̄kCI |) ∩ ΣX) 6 i+ n− 2.

Thus dim(∆−1(|ε̄kC|) ∩ ΣX) 6 i+ n− 2. The same argument with ∂C (which of
course must be broken up into a different sum of tensor products of chains) shows
that

dim(∆−1(|∂ε̄kC|) ∩ ΣX) 6 i+ n− 3.

Thus ε̄kC satisfies all the conditions of Definition 4.2 and so lies in S−nkC∆
∗ (X(k)).

It follows that µk(C) is well-defined in S−nC∗(X).
Moreover, since ε̄(C) is an i-chain in GP

k , the construction tells us that µk(C) will
be an i-chain in S−nC∗(X), and thus it is represented by S−nΞ for some i+ n chain
Ξ. The preceding calculation shows that

dim(|Ξ| ∩Xκ) = dim(|µk(C)| ∩Xκ)
6 i+ κ+ r̄(n− κ) = (i+ n)− (n− κ) + r̄(n− κ),

and thus Ξ is r̄-allowable. The same argument shows that ∂Ξ is r̄ allowable, so
µk(C) ∈ (S−nI r̄C∗(X))i. Note, however, that we cannot restrict the entire argument
to primitives in the tensor product, as these might not lie in GP

k ; cancellation of
boundary terms from different primitives is possible. Thus in considering ∂C, the
maximum occurring in the last set of inequalities must occur over primitives that
appear in ∂C altogether, not over boundary terms of individual primitives appearing
in C.

It is straightforward that µk is a chain map since ε̄ and ∆! are and since the
dimension conditions we have checked will hold for a sum of chains once they hold
for each summand individually.

Corollary 4.6. Suppose P = {p̄1, . . . , p̄k} is a sequence of traditional perversities and
that p̄1 + · · ·+ p̄k 6 r̄ for some traditional perversity r̄. Then there is a well-defined
product (of degree 0)

µk∗ : S−nI p̄1H∗(X)× · · · × S−nI p̄kH∗(X) // S−nI r̄H(X).

Proof. We can consider an element of

S−nI p̄1H∗(X)× · · · × S−nI p̄kH∗(X)

to be an element of

S−nI p̄1H∗(X)⊗ · · · ⊗ S−nI p̄kH∗(X).

The corollary then follows from the proposition since GP
k is quasi-isomorphic to

S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X)

by Theorem 3.5 and since

S−nI p̄1H∗(X)⊗ · · · ⊗ S−nI p̄kH∗(X)

3Observe that it is critical here that r̄ is a traditional perversity.
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is a subgroup of
H∗(S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X))

by the Künneth theorem.

Remark 4.7. Since ∆ is a proper map, these considerations may be extended to non-
compact oriented pseudomanifolds. In this case, if we continue to desire to study
chains with compact supports, we simply replace the cohomology groups that occur
in the above definition with the cohomology groups with compact supports, utilizing
that version of Poincaré duality. There is no problem with the map ∆∗ since ∆ is
proper. If we wish instead to consider locally-finite chains, we use the ordinary coho-
mology groups, but the Borel-Moore homology.4 Observe in this setting that if |C| is
not necessarily compact but ∆−1(|C|) is, then

Hc
i (∆−1(|C|) ∪ ΣX ,∆−1(|∂C|) ∪ ΣX) ∼= H∞

i (∆−1(|C|) ∪ ΣX ,∆−1(|∂C|) ∪ ΣX),

as follows from an excision argument. We also note that, in the case of locally-finite
chains, we can functorially restrict to open subsets U of X to get a map

S−nkH∞
∗ (|C| ∩ U(k), |∂C| ∩ U(k)) // S−nH∞

∗ (∆−1(|C|) ∩ U,∆−1(|∂C|) ∩ U).

Remark 4.8. The transfer map discussed here can also be generalized to appropriate
stratified maps f : X // Y between oriented stratified PL pseudomanifolds in order to
obtain a transfer f! from subcomplexes of intersection chain complexes of Y satisfying
appropriate stratified general position conditions to intersection chain complexes of
X. Since we do not need such generality here, we do not investigate the relevant
details.

4.3. Comparison with Goresky-MacPherson product
In this section, we study the compatibility between the intersection product µk and

the Goresky-MacPherson intersection product of [12] for those instances when our ele-
ment of GP

k can be written as a product of chains in stratified general position. Recall
that we have introduced a sign in the Poincaré-Whitehead-Goresky-MacPherson dual-
ity map; see Section 4.1. We first consider the case k = 2 and then generalize to more
terms. This will require us to demonstrate that iteration of the Goresky-MacPherson
product is well-defined.

We first show that, when k = 2, our product is the Goresky-MacPherson intersec-
tion product, in those cases where the Goresky-MacPherson product is defined, in
particular for two chain in appropriate stratified general position [12]. In order to
avoid confusion with the cap product, we denote the Goresky-MacPherson pairing by
t, though this symbol is used for a somewhat different, but related, purpose in [12].

Proposition 4.9. Suppose that C ∈ I p̄Ci(X) and D ∈ I q̄Cj(X) are two chains in
stratified general position, that ∂C and D are in stratified general position, and that
C and ∂D are in stratified general position. Suppose p̄+ q̄ 6 r̄, where r̄ is also a
traditional perversity. Then Snµ2(S−nC ⊗ S−nD) = C t D.

4See [24] for an exposition of the relevant duality theorems. These theorems are stated there for
manifolds, but we can adapt to the current situations by thickening the singular sets to their regular
neighborhoods and employing some excision arguments and standard manifold doubling techniques.
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Proof of Proposition 4.9. Let C and D be the indicated chains. We note that two
chains being in stratified general position is the same thing as their product under ε̄
being in stratified general position with respect to ∆: X //X ×X. We trace through
the definitions.

Recall the definition of the Goresky-MacPherson product: C ×D represents an
element of Hi(|C|, |∂C|)×Hj(|D|, |∂D|), which is taken to an element, represented
by the same pair of chains, of Hi(|C| ∪ J, J)×Hj(|D| ∪ J, J), where

J = |∂C| ∪ |∂D| ∪ ΣX .

Next one applies the inverse to the Poincaré-Whitehead-Goresky-MacPherson dual-
ity isomorphism represented by the (signed!) inverse to the cap product with the
fundamental class. Let Γ denote the fundamental class of X, and let Υ = (∩Γ)−1,
which acts on the right as for cap products. For a constructible pair (B,A) ⊂ X with
B −A ⊂ X − Σ, Υ is a well-defined isomorphismHi(X −A,X −B) //Hn−i(B,A);
see [12, Section 7]. The Goresky-MacPherson product is represented, up to excisions,
by the chain

(((−1)n(n−i)[C]Υ) ∪ ((−1)n(n−j)[D]Υ)) ∩ Γ(−1)n(n−i+n−j) = (([C]Υ) ∪ ([D]Υ)) ∩ Γ

in Hi+j−n(|C| ∩ |D|, (|∂C| ∩ |D|) ∪ (|C| ∩ |∂D|)) (see [12, Section 2.1]). Note that the
sign we have introduced in the Poincaré duality map does not affect the sign of the
Goresky-MacPherson product t.

Let Υ2 denote the inverse of ∩(Γ× Γ), which induces the Poincaré-Whitehead-
Goresky-MacPherson duality isomorphisms on the pseudomanifold X ⊗X. The
image of S−nC × S−nD under µ2, as defined above, is represented by

S−n(∆∗((ε̄(S−nC ⊗ S−nD))Υ2(−1)2n(2n−i−j)) ∩ Γ(−1)n(2n−i−j)

= S−n(∆∗((ε̄(S−nC ⊗ S−nD))Υ2)) ∩ Γ(−1)n(−i−j)

= (−1)n(−i−j)S−n(∆∗((−1)n2+niS−n(C ×D))Υ2)) ∩ Γ

= (−1)n(n−j)S−n(∆∗((S−n(C ×D))Υ2)) ∩ Γ.

The second equality comes from the definition of ε̄.
In order to make the comparison with the Goresky-MacPherson product more

precise, notice that, by excision isomorphisms, we can also describe µ2, by (−1)n(n−j)

times the composition

Hi+j(|C ×D|,|∂(C ×D)|) //Hi+j(|C ×D|, |∂(C ×D) ∩ ((J ×X) ∪ (X × J)))
∼= Hi+j(|C ×D| ∪ ((J ×X) ∪ (X × J)), ((J ×X) ∪ (X × J)))
Υ2∼= H2n−i−j(X ×X − ((J ×X) ∪ (X × J)),

X ×X − |C ×D| ∪ ((J ×X) ∪ (X × J)))
∆∗ //H2n−i−j(X − J,X − |C ∩D| ∪ J)
∩Γ∼= Hi+j−n(|C ∩D| ∪ J, J)
∼= Hi+j−n(|C ∩D|, |(|∂C| ∩ |D|) ∪ (|C| ∩ |∂D|)),

followed by the shift to put the associated chain in S−nCi+j(X).
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Ignoring the shifts, which we may do at this point without disrupting any signs, it
therefore suffices to compare ∆∗([C ×D]Υ2) with ([C]Υ) ∪ ([D]Υ) in

H2n−i−j(X − J,X − |C ∩D| ∪ J).

The usual formula for the cup product says that the latter is ∆∗([C]Υ× [D]Υ), where
this× denotes the cochain cross product. So we compare [C ×D]Υ2 with [C]Υ× [D]Υ
in

H2n−i−j(X ×X − ((J ×X) ∪ (X × J)), X ×X − |C ×D| ∪ ((J ×X) ∪ (X × J))).

Taking the cap product with Γ× Γ of the former gives

[C ×D] = [C]× [D] ∈ Hi+j(|C ×D| ∪ ((J ×X) ∪ (X × J)), ((J ×X) ∪ (X × J)))

(which corresponds to the homology cross product of C and D), while taking this cap
product with [C]Υ× [D]Υ gives

(−1)n(n−j)([C]Υ ∩ Γ)× ([D]Υ ∩ Γ) = (−1)n(n−j)[C]× [D]
∈ Hi+j(|C ×D| ∪ ((J ×X) ∪ (X × J)), ((J ×X) ∪ (X × J)))

(see [3, Theorem 5.4] ).
Thus the sign (−1)n(n−j) appears twice, so they cancel, completing the proof.

Remark 4.10. In the computations that follow, for the sake of simplicity of notation,
we suppress the excisions and allow appropriate chains and cochains to stand for the
elements of the respective homology and cohomology groups such as those considered
in the preceding proof. Each computation could be performed in more detail by
modeling the above arguments more closely.

Corollary 4.11. Suppose P = {p̄1, . . . , p̄k} is a sequence of traditional perversities
and that p̄1 + · · ·+ p̄k 6 r̄ for some traditional perversity r̄. Then if Di ∈ I p̄iC∗(X)
and (⊗k

i=1S
−nDi) ∈ GP

k , the product Snµk(⊗k
i=1S

−nDi) ∈ I r̄C∗(X) is equal to the
iterated Goresky-MacPherson intersection product of the chains Di.

Before proving the corollary, we must first demonstrate that iterating the Goresky-
MacPherson intersection pairing is even possible in consideration of the necessary
perversity compatibilities. This is the goal of the following lemmas.

Definition 4.12. Let an n-perversity be a (traditional Goresky-MacPherson) per-
versity whose domain is restricted to integers 2 6 κ 6 n.

Lemma 4.13. Let p̄ and q̄ be two n-perversities such that there exists an n-perversity
r̄ with p̄(κ) + q̄(κ) 6 r̄(κ) for all 2 6 κ 6 n. There there exists a unique minimal
perversity s̄ such p̄(κ) + q̄(κ) 6 s̄(κ) for all 2 6 κ 6 n. (By minimal, we mean that
for any r̄ such that p̄(κ) + q̄(κ) 6 r̄(κ) for all 2 6 κ 6 n, r̄(κ) > s̄(κ).)

Proof. We construct s̄ inductively as follows: Let s̄(n) = p̄(n) + q̄(n). For each κ < n
(working backwards from n− 1 to 2): if p̄(κ) + q̄(κ) < s̄(κ+ 1), let s̄(κ) = s̄(κ+ 1)−
1 and if p̄(κ) + q̄(κ) = s̄(κ+ 1), let s̄(κ) = s̄(κ+ 1). We note that by construction we
must always have s̄(κ) > p̄(κ) + q̄(κ), and it is clear that s̄ is minimal with respect
to this property among all functions f̄ satisfying f̄(κ) 6 f̄(κ+ 1) 6 f̄(κ) + 1 (for all
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κ, s̄(κ) is as low as possible to still be able to “clear the jumps”). s̄ is certainly
a perversity, provided that s̄(2) = 0, but this must be the case since we know that
p̄+ q̄ 6 s̄ 6 r̄, and r̄(2) = p̄(2) = q̄(2) = 0.

Definition 4.14. Given the situation of the preceding lemma, we will call s̄ the
minimal n-perversity over p̄ and q̄.

Lemma 4.15. Let p̄ and q̄ be two n-perversities and let f̄ : {2, . . . , n} // N be a
non-decreasing function such that p̄(κ) + q̄(κ) + f̄(κ) 6 r̄(κ) for some n-perversity
r̄ and for all 2 6 κ 6 n. Let s̄(κ) be the minimal n-perversity over p̄ and q̄. Then
s̄(κ) + f̄(κ) 6 r̄(κ).

Proof. Since s̄(n) = p̄(n) + q̄(n) (see the proof of Lemma 4.13), we have

s̄(n) + f̄(n) 6 r̄(n).

Suppose now that s̄(κ+ 1) + f̄(κ+ 1) 6 r̄(κ+ 1) for some κ, 2 6 κ 6 n− 1. If p̄(κ) +
q̄(κ) < s̄(κ+ 1), then s̄(κ) = s̄(κ+ 1)− 1, and we must have s̄(κ) + f̄(κ) 6 r̄(κ) since
r̄(κ) > r̄(κ+ 1)− 1. If p̄(κ) + q̄(κ) = s̄(κ+ 1), then we have s̄(κ) = s̄(κ+ 1) = p̄(κ) +
q̄(κ), and so again s̄(κ) + f̄(κ) 6 r̄(κ), this time by hypothesis. The proof is complete
by induction, noting that we cannot have p̄(κ) + q̄(κ) > s̄(κ+ 1).

Proposition 4.16. Let P = {p̄j}kj=1 be a collection of n-perversities such that for
all 2 6 κ 6 n and for some n-perversity r̄,

∑k
j=1 p̄j(κ) 6 r̄(κ). Let X be an ori-

ented n-dimensional pseudomanifold. Let Dj ∈ I p̄jCij (X), 1 6 j 6 k be such that
⊗k

j=1S
−nDj ∈ GP

k . Then the iterated Goresky-MacPherson intersection product of
the Dj is a well-defined element of I r̄C−n(k−1)+

P
ij

(X), independent of arrangement
of parentheses. In particular, there is a well-defined product

k∏

j=1

I p̄jHij (X) // I r̄H−n(k−1)+
P

ij
(X)

independent of arrangement of parentheses.

Proof. By [12], if D1 ∈ I p̄Ca and D2 ∈ I q̄Cb are in stratified general position and the
boundary of D1 is in stratified general position with respect to D2 and vice versa,
then there is a well-defined intersection product D1 t D2 ∈ I ūCa+b−n(X) whenever
p̄+ q̄ 6 ū. It follows from the preceding lemma that for any pair Di`

×Di`+1 ∈
I p̄`Ci`

(X)× I p̄`+1Ci`+1(X) such that Di`
and Di`+1 satisfy the necessary general

position requirements, there is a well-defined pairing to I s̄Ci`+i`+1−n(X), where s̄ is
the minimal n-perversity over p̄ and q̄. Since, by the lemma, s̄(κ) +

∑
j 6=`,`+1 p̄j(κ) is

still 6 r̄(κ), we can iterate the Goresky-MacPherson intersection product to obtain
an m-fold intersection product so long as Di`

t Di`+1 is in stratified general position
(including the general position conditions on the boundaries) with whichever chain
it will be intersected with next. But the condition ⊗S−nDi ∈ GP

k precisely guaran-
tees that such general position will be maintained, even amongst combined sets of
intersection (for any given surjective R and any i 6= j, the intersection of the chains
indexed by R−1(i) and the intersection of the chains indexed by R−1(j) will be in
stratified general position by definition of GP

k ). Thus iteration is allowed.
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The claim that this gives an iterated pairing on IH follows immediately given
that any two intersection cycles can be pushed into stratified general position within
their homology classes; see [12]. The claim concerning independence of ordering of
parentheses is the claim that the the Goresky-MacPherson pairing is associative when
the iterated pairing is well-defined. But this follows directly from the definition of the
Goresky-MacPherson pairing and the associativity of the cup product: As noted in
the proof above of Proposition 4.9, C t D is represented by ([C]Υ ∪ [D]Υ) ∩ Γ (we
drop the signs in the duality isomorphisms since they cancel in the definition of t;
see the proof of Proposition 4.9). So the iterated product of C, D, and E looks like

([C] t [D]) t [E] = ((([C]Υ ∪ [D]Υ) ∩ Γ)Υ ∪ [E]Υ) ∩ Γ
= (([C]Υ ∪ [D]Υ) ∪ [E]Υ) ∩ Γ
= ([C]Υ ∪ ([D]Υ ∪ [E]Υ) ∩ Γ
= ([C]Υ ∪ (([D]Υ ∪Υ[E]) ∩ Γ)Υ ∩ Γ
= [C] t ([D] t [E]).

Note that in defining any of these products, we may use J = |∂C| ∪ |∂D| ∪ |∂E| ∪ Σ
(see the proof of Proposition 4.9). Enlarging J in this way will not interfere with the
necessary excisions since, for example, having S−nC ⊗ S−nD ⊗ S−nE ⊂ GP

3 implies
that S−n∂E is in general position with respect to S−nC ∩ S−nD. Thus

dim(|∂E| ∩ |C| ∩ |D|) < dim(|C|) + dim(|D|)− n.
Corollary 4.17. µ2 satisfies

µ2(µ2(S−nA⊗ S−nB)⊗ S−nC) = µ2(S−nA⊗ µ2(S−nB ⊗ S−nC))

when these expressions are all well-defined.

Proof. This follows from the preceding proposition and Proposition 4.9.

Next, we compare how µk relates to the iteration of two products µk1 and µk2 with
k1 + k1 = k.

Lemma 4.18. Let k = k1 + k2. Let p̄a, 1 6 a 6 k1, and p̄k1+b, 1 6 b 6 k2 be col-
lections of n-perversities such that

∑k1
a=1 p̄a 6 q̄1 and

∑k2
b=1 p̄k1+b 6 q̄2 for perversi-

ties q̄1, q̄2. Suppose q̄1 + q̄2 6 r̄ for a perversity r̄. Let P = (p̄1, . . . , p̄k). Suppose C =
S−nD1 ⊗ · · · ⊗ S−nDk is an element of GP

k , and let C1 = S−nD1 ⊗ · · · ⊗ S−nDk1

and C2 = S−nDk1+1 ⊗ · · · ⊗ S−nDk. Then µk(C) = µ2(µk1(C1)⊗ µk2(C2)). In par-
ticular, µk(C) = µ2(µk−1(S−nD1 ⊗ · · · ⊗ S−nDk−1)⊗ S−nDk).

Proof. We first note that the right-hand side of the desired equality is well-defined
since the stratified general position requirements for any element of GP

k imply that
for any S−nD1 ⊗ · · · ⊗ S−nDk ∈ GP

k and any disjoint subcollection I, J ⊂ {1, . . . , k}
then ∩i∈I |Di| and ∩j∈J |Dj | are in stratified general position with respect to each
other (and similarly for the necessary collections involving the ∂Di). This can be
seen by using the function R : k̄ ³ k − |I| − |J |+ 2 that takes I to 1, J to 2, and
maps all other indices injectively. (Of course, we cannot in general split an element of
GP

k into an element of GP1
k1
⊗GP2

k2
, but the element C has an especially simple form.)
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Let ∆k : X ↪→ X(k) be the diagonal embedding, let Γ be the orientation class
of X, let Γk = εk(Γ⊗ · · · ⊗ Γ) = Γ× · · · × Γ, and let Υk be the inverse Poincaré-
Whitehead-Goresky-MacPherson duality isomorphism to the cap product with Γk.
Let ` =

∑
i dim(Di). Then by definition, µk(C) is represented by

S−n(∆∗
k([ε̄kC]Υk(−1)nk(nk−`)) ∩ Γ(−1)n(nk−`).

Similarly, letting `1 =
∑k1

i=1 dim(Di) and `2 =
∑k

i=k1+1Di, then

µ2(µk1(C1)⊗ µk2(C2))

is represented by

S−n(∆∗
2((ε̄2(S

−n((∆∗
k1

([ε̄k1C1]Υk1(−1)nk1(nk1−`1))) ∩ Γ(−1)n(nk1−`1))

⊗ S−n((∆∗
k2

([ε̄k2C2]Υk2(−1)nk2(nk2−`2)))

∩ Γ(−1)n(nk2−`2))))Υ2(−1)2n(nk−`))) ∩ Γ(−1)n(nk−`). (5)

Working mod 2, the total power of the sign in this expression becomes −1 to the

nk1(nk1 − `1) + n(nk1 − `1) + nk2(nk2 − `2)
+ n(nk2 − `2) + 2n(nk − `) + n(nk − `)

≡ nk1 − nk1`1 + nk1 + n`1 + nk2 + nk2`2 + nk2 + n`2 + nk + n`

≡ nk1`1 + nk2`2 + nk

since `1 + `2 = `.
Since both of the formulas have the form S−n(·) ∩ Γ, we can compare

∆∗
2((ε̄2(S

−n((∆∗
k1

([ε̄k1C1]Υk1)) ∩ Γ)⊗ S−n((∆∗
k2

([ε̄k2C2]Υk2)) ∩ Γ)))Υ2)

with ∆∗
k([ε̄C]Υk).

We compute

∆∗
2((ε̄2(S

−n((∆∗
k1

([ε̄k1C1]Υk1)) ∩ Γ)⊗ S−n((∆∗
k2

([ε̄k2C2]Υk2)) ∩ Γ)))Υ2) (6)

= (−1)n2+n(n+`1−nk1)∆∗
2((S

−2n((∆∗
k1

([ε̄k1C1]Υk1)) ∩ Γ)
× ((∆∗

k2
([ε̄k2C2]Υk2)) ∩ Γ))Υ2) by def. of ε̄2

= (−1)n2+n(n+`1−nk1)+n(nk2−`2)∆∗
2((S

−2n((∆∗
k1

([ε̄k1C1]Υk1))
× (∆∗

k2
([ε̄k2C2]Υk2))) ∩ Γ2Υ2)) pulling ∩Γ across

= (−1)n2+n(n+`1−nk1)+n(nk2−`2)∆∗
2(((∆

∗
k1

([ε̄k1C1]Υk1))× (∆∗
k2

([ε̄k2C2]Υk2))))
cancellation of Υ2 and ∩Γ2

= (−1)n2+n(n+`1−nk1)+n(nk2−`2)∆∗
2(∆

∗
k1
×∆∗

k2
)(([ε̄k1C1]Υk1)× ([ε̄k2C2]Υk2))

= (−1)n2+n(n+`1−nk1)+n(nk2−`2)∆∗
k(([ε̄k1C1]Υk1)× ([ε̄k2C2]Υk2)),

since (∆k1 ×∆k2) ◦∆2 = ∆k. The total sign here is −1 to the

n2 + n(n+ `1 − nk1) + n(nk2 − `2) ≡ n`+ nk mod 2.

So it suffices to compare ([ε̄k1C1]Υk1)× ([ε̄k2C2]Υk1) with [ε̄C]Υk. Now suppose
we include the signs that make Υ the inverse to the Poincaré duality morphism. In
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other words, we look at ([ε̄k1C1]Υk1)(−1)nk1(nk1−`1) × ([ε̄k2C2]Υk1)(−1)nk2(nk2−`2).
Then by Lemma A.2 in Appendix A, this is equivalent to the cochain product of
the individual inverse Poincaré duals of the individual chains. In other words, this is
equal to (S−nD1)Υ1(−1)n(n−|D1|) × · · · × (S−nDk)Υ1(−1)n(n−|Dk|), which, again by
Lemma A.2, is equal to ε̄k(C)Υk(−1)nk(nk−`). Thus

([ε̄k1C1]Υk1)× ([ε̄k2C2]Υk1) = (−1)nk1(nk1−`1)+nk1(nk2−`2)+nk(nk−`)[ε̄kC]Υk. (7)

This sign simplifies to −1 to the nk1`1 + nk2`2 + nk`.
Now, the total power of −1 in the expression (5) for µ2(µk1(C1)⊗ µk2(C2)) is

nk1`1 + nk2`2 + nk, the power of −1 from the computation (6) is n`+ nk, and the
power of −1 from equation (7) is nk1`1 + nk2`2 + nk`. Mod 2, these add to nkl + nl,
which is indeed equivalent mod 2 to the power of −1 in the expression for µk(C) with
which we started. The lemma follows.

Lemma 4.19. Given chains Di as in the previous lemma, the iterated product

µ2(µ2(· · ·µ2(S−nD1 ⊗ S−nD2)⊗ S−nD3)⊗ · · ·S−nDk)

= µk(S−nD1 ⊗ · · · ⊗ S−nDk).

Proof. This follows directly from the preceding lemma and induction.

Proof of Corollary 4.11. Let Ci = S−nDi. Since the Goresky-MacPherson pairing is
associative, as noted in the proof of Proposition 4.16, the arrangement of parentheses
is immaterial, and we can use the grouping of the last lemma to consider

((· · · ((D1 t D2) t D3) t · · · ) t Dk−1) t Dk.

By using Proposition 4.9, repeatedly, this is equal to

Snµ2(µ2(· · ·µ2(C1 ⊗ C2)⊗ C3)⊗ · · ·Ck),

which, by the preceding lemma, is equal to Snµk(C1 ⊗ · · · ⊗ Ck).

5. The Leinster partial algebra structure

In this section, we collect the technical definitions concerning partial commutative
DGAs and partial restricted commutative DGAs. Then we show that this is what we
have, proving Theorem 1.1, which was described in the introduction.

The following definition without perversity restrictions originates from Leinster
in [18, Section 2.2], where the structures are referred to as homotopy algebras. We
follow McClure in [20], where they are called partially defined DGAs or Leinster
partial DGAs.

We continue to let k̄ = {1, . . . , k} for k > 1 and 0̄ = ∅. Let Φ be the full subcat-
egory of Set consisting of the sets k̄, k > 0. Note that disjoint union gives a functor
q : Φ× Φ // Φ determined by k̄ q l̄ = k + l. Given a functor A with domain category
Φ, we denote A(k̄) by Ak.
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Definition 5.1. (Leinster-McClure) A Leinster partial commutative DGA is a func-
tor A from Φ to the category Ch of chain complexes together with chain maps

ξk,l : Ak+l
//Ak ⊗Al

for each k, l and

ξ0 : A0
// Z[0],

where Z[0] ∈ Ch is the chain complex with a single Z term in degree 0, such that the
following conditions hold:

1. The collection ξk,l is a natural transformation from A ◦ q to A⊗A, considered
as functors from Φ× Φ to Ch.

2. (Associativity) The diagram

Ak ⊗Al+n Ak ⊗Al ⊗An

1⊗ξl,n //

Ak+l+n

Ak ⊗Al+n

ξk,l+n

²²

Ak+l+n Ak+l ⊗An

ξk+l,n // Ak+l ⊗An

Ak ⊗Al ⊗An

ξk,l⊗1

²²

commutes for all k, l, n.

3. (Commutativity) If τ : k + l // k + l is the block permutation that transposes
{1, . . . , k} and {k + 1, . . . , k + l}, then the following diagram commutes for all
k, l:

Ak+l Al ⊗Ak

ξl,k. //

Ak+l

Ak+l

τ∗

²²

Ak+l Ak ⊗Al

ξk,l // Ak ⊗Al

Al ⊗Ak

∼=

²²

(Note that the usual Koszul sign convention is in effect for the right-hand iso-
morphism.)

4. (Unit) The diagram

Ak A0 ⊗Ak

ξ0,k //Ak

Z[0]⊗Ak

∼=
ÂÂ?

??
??

??
??

? A0 ⊗Ak

Z[0]⊗Ak

ξ0⊗1

²²

commutes for all k.

5. ξ0 and each ξk,l are quasi-isomorphisms.

The main theorem of McClure in [20] is that, given a compact oriented PL manifold
M , there is a Leinster partial commutative DGA G such that Gk is a quasi-isomorphic
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subcomplex of the k-fold tensor product of PL chain complexes

S−nC∗(M)⊗ · · · ⊗ S−nC∗(M)

and such that elements of Gk represent chains in sufficient general position so that
Gk constitutes the domain of a k-fold intersection product. Notice the slightly subtle
point that the intersection product itself is encoded in the fact that G is a functor.
Thus, for example, we have a map Gk

//G1 = S−nC∗(M), and this is precisely the
intersection product coming from the umkehr map ∆k!.

For the intersection of intersection chains in a PL pseudomanifold, we must gen-
eralize to the notion of a partial restricted commutative DGA. In this setting, the
intersection pairing requires not just general position but compatibility among per-
versities. The appropriate generalized definition was suggested by Jim McClure and
refined by Mark Hovey.

Fix a non-negative integer n, we define a perverse chain complex to be a functor
from the poset category Pn of n-perversities to the category Ch of chain complexes.
The objects of Pn are n-perversities as defined in Definition 4.12, and there is a
unique morphism q̄ // p̄ if q̄(k) 6 p̄(k) for all k, 2 6 k 6 n. We denote a perverse
chain complex by {D?

∗}. The ? is meant to indicate the input variable for perversities,
and we write evaluation as {D?

∗}p̄ = Dp̄
∗ or {D?

∗}p̄i = Dp̄
i

This yields a category PChn of n-perverse chain complexes whose morphisms
consist of natural transformations of such functors. Explicitly, given two perverse
chain complexes {D?

∗} and {E?
∗}, a morphism of perverse chain complexes consists of

chain maps Dp̄
∗ // Ep̄

∗ for each perversity p̄ together with commutative diagrams

Dp̄
∗ Ep̄

∗//

Dq̄
∗

Dp̄
∗
²²

Dq̄
∗ E q̄

∗// E q̄
∗

Ep̄
∗
²²

whenever q̄ 6 p̄.
We let {Z[0]} ∈ PChn denote the perverse chain complex that at each perversity

consists of a single Z term in degree 0.
By [14], a symmetric monoidal product £ is obtained by setting

({D?
∗}£ {E?

∗})r̄ = lim−→
p̄+q̄6r̄

Dp̄
∗ ⊗ E q̄

∗ .

Definition 5.2. A Leinster partial restricted commutative DGA is a functor A from Φ
to the category PChn of n-perverse chain complexes (with images of objects denoted
by A(k̄) := {A?

k,∗}), or simply {A?
k} when we will not be working with individual

degrees and no confusion will result, together with morphisms

ζk,l : {A?
k+l} // {A?

k}£ {A?
l }

for each k, l and
ζ0 : {A?

0} // {Z[0]},
such that the following conditions hold:
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1. The collection ζk,l is a natural transformation from {A?} ◦ q to {A?}£ {A?},
considered as functors from Φ× Φ to PChn.

2. (Associativity) The diagram

{A?
k}£ {A?

l+n} {A?
k}£ {A?

l }£ {A?
n}

1£ζl,n //

{A?
k+l+n}

{A?
k}£ {A?

l+n}

ζk,l+n

²²

{A?
k+l+n} {A?

k+l}£ {A?
n}

ζk+l,n // {A?
k+l}£ {A?

n}

{A?
k}£ {A?

l }£ {A?
n}

ζk,l£1

²²

(8)

commutes for all k, l, n.

3. (Commutativity) If τ : k + l // k + l is the block permutation that transposes
{1, . . . , k} and {k + 1, . . . , k + l}, then the following diagram commutes for all
k, l:

{A?
k+l} {A?

l }£ {A?
k}.

ζl,k //

{A?
k+l}

{A?
k+l}

τ∗

²²

{A?
k+l} {A?

k}£ {A?
l }

ζk,l // {A?
k}£ {A?

l }

{A?
l }£ {A?

k}.

∼=
²²

4. (Unit) The diagram

{A?
k} {A?

0}£ {A?
k}

ζ0,k //{A?
k}

{Z[0]}£ {A?
k}

∼=
""DD

DD
DD

DD
DD

D
{A?

0}£ {A?
k}

{Z[0]}£ {A?
k}

ζ0£1

²²

commutes for all k.

5. ζ0 and each ζk,l are quasi-isomorphisms.

We can now restate Theorem 1.1 from the introduction and have it make some
sense:

Theorem 5.3 (Theorem 1.1). For any compact oriented PL stratified pseudomanifold
Y , the partially-defined intersection pairing on the perverse chain complex of inter-
section chains {S−nI?C∗(Y )} extends to the structure of a Leinster partial restricted
commutative DGA.

So we must define an appropriate functor A such that {A?
1} ∼= {S−nIC?

∗ (Y )} and
maps ζk,l and show that the conditions of the definition are satisfied. Furthermore,
the {A?

n} should be domains for appropriate intersection pairings, which which will
be encoded within the functoriality.

To proceed, let us say that a collection of n-perversities P = {p̄1, . . . , p̄k} satisfies
P 6 r̄ if

∑k
i=1 p̄i(j) 6 r̄(j) for all j 6 n. Then we define a functor G : Φ // PChn
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by letting G0 = {Z[0]} and {G?
k}(r̄) = lim−→P6r

GP
k , with GP

k as defined above in Sec-
tion 3. This will be our functor “A”. The fact that G is functorial on maps will be
demonstrated below in the proof of the theorem.

For the definition of the ζk,l, we will show in Proposition 5.4, deferred to below,
that for two collections of perversities P1 = {p̄1, . . . , p̄k}, P2 = {p̄k+1, . . . , p̄k+l}, the
inclusion GP1qP2

k+l into the appropriate tensor product of terms S−nI p̄iC∗(X) has its
image in GP1

k ⊗GP2
l . Thus

GP1qP2
k+l ⊂ GP1

k ⊗GP2
l . (9)

Furthermore, as observed by Hovey [14], the symmetric monoidal product on perverse
chain complexes is associative in the strong sense that

{{D?}£ {E?}£ {F ?}}r̄ ∼= lim−→
p̄1+p̄2+p̄36r̄

Dp̄1 ⊗ Ep̄2 ⊗ F p̄3 ,

independent of arrangement of parentheses, and similarly for products of more terms;
the upshot of this is that any time we take a limit over tensor products of lim-
its, it is equivalent to taking a single limit over tensor products all at once. Thus,
applying lim−→Pi p̄i6r̄

to (9) and recalling that direct limits are exact functors, we

obtain the inclusion of {G?
k+l}r̄ in {{G?

k}£ {G?
l }}r̄. Together, these give an inclusion

ζk,l : {G?
k+l} ↪→ {{G?

k}£ {G?
l }}.

We now prove that G, together with the maps ζk,l, is a Leinster partial restricted
commutative DGA.

Proof of Theorem 1.1. Assuming condition (1) of the definition for the moment as
well as continuing to assume Proposition 5.4, in order to check the other conditions
of the definition, it is only necessary to check what happens for a specific set of
perversities, since we can then apply the direct limit functor, which is exact. For
example, given collections of perversities P1, P2, P3 of length k, l, and n, condition
(2) holds in the form

GP1
k ⊗GP2qP3

l+n GP1
k ⊗GP2

l ⊗GP3
n .//

GP1qP2qP3
k+l+n

GP1
k ⊗GP2qP3

l+n

²²

GP1qP2qP3
k+l+n GP1qP2

k+l ⊗GP3
n

// GP1qP2
k+l ⊗GP3

n

GP1
k ⊗GP2

l ⊗GP3
n .

²²
(10)

This is clear from Proposition 5.4 and the usual properties of tensor products. Now,
to verify condition (2), we need only verify commutativity of diagram (8) at each
perversity r̄, but the evaluation at r̄ is simply the direct limit of diagram (10) over all
collections P1, P2, P3 with P1 q P2 q P3 6 r̄, using again Hovey’s associativity prop-
erty of the monoidal product.

Conditions (3) and (4) follow similarly from standard properties of tensor products,
while condition (5) follows from Theorem 3.7 and the exactness of the direct limit
functor.

Now, for condition (1), we must first demonstrate the functoriality of G, which
means describing how G acts on maps R : k̄ // l̄. We abbreviate G(R) by R∗. Once
again, we can start at the level of a specific GP

k : Given R and GP
k , we must define
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R∗ : GP
k

//GP ′
l for some collection P ′ of perversities such that if P 6 r̄ then P ′ 6 r̄.

For each GP
k with P 6 r̄, this gives us a legal composite map

GP
k

//GP ′
l

// lim−→
P ′6r̄

GP ′
l .

Once we do this in a way that is compatible with the inclusions GP
k ↪→ GQ

k when
P 6 Q 6 r̄ (meaning each perversity in P is 6 the corresponding perversity in Q),
then R∗ : {G?

k} // {G?
l } can be obtained by taking appropriate direct limits.

Consider a set map R : k̄ // l̄. In [20], McClure defines the morphism

R∗ : Gk
//Gl

on the groups associated to a manifold by proving that the composition (R∗! )ε̄k has its
image in ε̄lGl so that defining R∗ by ε̄−1

l (R∗! )ε̄k makes sense. Here R∗! is the transfer
map associated to the generalized diagonal R∗; see [20] or Sections 3 and 4, above.
McClure’s proof that we have well-defined maps R∗ : Gk

//Gl (from [20, Section
10]) continues to hold in our setting so far as general position goes, so that for
pseudomanifolds and stratified general position, ε̄−1

l (R∗! )ε̄k is well-defined. However,
we need next to take the perversities into account.

Any such R : k̄ // l̄ factors into a surjection, an injection, and permutations, so
we can treat each of these cases separately. For permutations, R = σ ∈ Sk, we define
R∗ on GP

k ⊂ S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X) by the (appropriately signed) per-
mutation of terms as usual for tensor products. Since the defining stratified general
position condition for GP

k is symmetric in all terms, the image will lie in GσP
k , where

σP denotes the appropriately permuted collection of perversities. It is clear that if
P 6 r̄ then so is σP and also that this is functorial with respect to the inclusion maps
in the poset of collections of perversities, and so σ induces a well-defined homomor-
phism Gk

// Gk.
Next, suppose that R is an injection. Without loss of generality (since we have

already considered permutations), we assume that R(i) = i for all i, 1 6 i 6 k. In
this case, R∗ : X l //Xk is the projection onto the first k factors. Given an element

ξ ∈ GP
k ⊂ S−nC∗(X)⊗ · · · ⊗ S−nC∗(X),

it is easy to check that, up to possible signs,

R∗(ξ) = ξ ⊗ S−nΓ⊗ · · ·S−nΓ,

with l − k copies of the shift of the fundamental orientation class Γ. But Γ ∈ I p̄C∗(X)
for any perversity, in particular for p̄ = 0. So

R∗(ξ) ∈ S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X)⊗ S−nI 0̄C∗(X)⊗ · · · ⊗ S−nI 0̄C∗(X).

Furthermore, since we have noted that stratified general position continues to hold
under R∗, this must be an element ofGPql−k0̄

l , where P ql−k 0̄ = {p̄1, . . . , p̄k, 0̄, . . . , 0̄}
adjoins l − k copies of the 0̄ perversity. Clearly, P ql−k 0̄ 6 r̄ if and only if P 6 r̄,
so indeed R∗ induces a map of G. This is also clearly functorial with respect to the
poset maps P 6 Q.

Finally, we have the case where R is a surjection. All surjections can be writ-
ten as compositions of permutations and surjections of the form R(1) = R(2) = 1,
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R(k) = k − 1 for k > 2, so we will assume we have a surjection of this form. In
this case, R∗(x1, x2, . . . , xl) = (x1, x1, x2, . . . , xl), and the intuition is that R∗ should
correspond to the intersection product in the first two terms and the identity on
the remaining terms. However, we must be careful to remember that the trans-
fer R! does not necessarily give us a well-defined intersection map on primitives
of the tensor product, only for chains in the tensor product satisfying the general
position requirement, which may occur only due to certain cancellations amongst
sums of primitives. So we must be careful to make sense of our intuition. Nonethe-
less, by Proposition 5.4, GP

k ⊂ Gp̄1,p̄2
2 ⊗Gp̄3,...,p̄(k)

k−2 , so that ξ ∈ GP
k can be written as∑

i,j ηj ⊗ µi, where ηj ∈ Gp̄1,p̄2
2 . Writing R = R2 × id, where R2 : 2̄ // 1̄ is the unique

function, it now makes sense that R∗ = R2∗ × id∗ when applied to ξ, so that we obtain
R∗(ξ) =

∑
R2∗(ηj)⊗ µi. Furthermore, each R2∗(ηj) will live in S−nI s̄C∗(X), where

s̄ is the minimal perversity over p̄1 and p̄2 (see Section 4.3). So,

R∗(ξ) ∈ S−nI s̄C∗(X)⊗ S−nI p̄3C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X).

Applying Lemma 4.15, if P 6 r̄ then s̄+
∑

i>3 p̄i 6 r̄. The image of R∗ is already
known to satisfy the requisite stratified general position requirements (see above),
and so R∗ induces a map from GP

k to Gs̄,p̄3,...,p̄k

k−1 , which induces a map on G.
We conclude that G is a functor.
The naturality of the ζk,l follows immediately: the only thing to check is compatible

behavior between ζk,l and ζk′,l′ given two functions R1 : k̄ // k̄′ and R2 : l̄ // l̄′. But
this is now easily checked since the ζ are inclusions and since the definitions of the
maps G(R) = R∗ are built precisely upon these inclusions and the ability to separate
tensor products into different groupings, which is allowed by Proposition 5.4.

Finally, we turn to the deferred proposition showing that the maps ζ are induced
by well-defined inclusions.

Proposition 5.4. Consider the ordered sets of perversities P = {p̄1, . . . , p̄k+l}, P1 =
{p̄1, . . . , p̄k}, and P2 = {p̄k+1, . . . , p̄k+l}. Then GP

k+l ⊂ GP1
k ⊗GP2

l .

We first need a lemma.
Let

ξ ∈ GP
k+l ⊂ S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄k+lC∗(X).

We can write ξ =
∑
ξi1 ⊗ · · · ⊗ ξik+l

, and we can fix a triangulation of X with re-
spect to which all possible ξij are simplicial chains. (Note: we assume that ξi ∈
S−nI p̄iC∗(X) rather than taking ξi ∈ I p̄iC∗(X) and then having to work with shifted
chains S−nξ for the rest of the argument; this leads to some abuse of notation in what
follows, but this is preferable to dragging hordes of the symbol S−n around even more
than necessary). Next, using that each ξij is a sum ξij =

∑
bijk

σk, where the σk are
simplices of the triangulation, we rewrite ξ as

ξ =
∑

ai1···ik+l
ξi1 ⊗ · · · ⊗ ξik

⊗ σik+1 ⊗ · · · ⊗ σik+l
.

In order to do this, we must of course consider ξ as an element of

S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X)⊗ S−nC∗(X)⊗ · · · ⊗ S−nC∗(X).

To help with the notation, we let I be a multi-index of k components, and we let J
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be a multi-index of l components. Then we can write ξ =
∑

I,J aI,JξI ⊗ σJ , where
aI,J ∈ Z,

ξI ∈ S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X)

and each σJ is a specific tensor product of simplices σik+1 ⊗ · · · ⊗ σik+l
.

Now, we fix a specific multi-index J such that
∑

I aI,JξI ⊗ σJ 6= 0. Let ηJ =∑
I aI,JξI (so ξ =

∑
J ηJ ⊗ σJ).

Lemma 5.5. ηJ ∈ GP1
k .

Proof. On the one hand, it is clear that each ηJ is a sum of tensor products of
intersection chains, allowable with respect to the appropriate perversities. This is
because in defining the ηJ , we only split apart ξ in the last l slots, so that each ηJ is
an appropriate sum of tensor products of chains ξij , 1 6 j 6 k.

On the other hand, GP
k+l ⊂ Gk+l, and, by [20, Lemma 11.1], Gk+l ⊂ Gk ⊗Gl (that

argument is for manifolds, but works just as well here). So, as an element of Gk+l, ξ
can be rewritten as

∑
µI ⊗ νJ , where µI ∈ Gk and νJ ∈ Gl. But now rewriting again

by splitting all the νJ up into tensor products of simplices, we recover ξ =
∑

J ηJ ⊗ σJ ,
but we now see that each ηJ can also be written as a sum of µIs, each of which is
in Gk. Hence each ηJ is in both Gk and S−nI p̄1C∗(X)⊗ · · · ⊗ S−nI p̄kC∗(X). Thus
each is in GP1

k .

Proof of Proposition 5.4. Consider the inclusions i1 : GP1
k ↪→ ⊗k

i=1S
−nC∗(X) and

i2 : GP2
l ↪→ ⊗l

i=1S
−nC∗(X). Let q1 be the projection ⊗k

i=1S
−nC∗(X) // cok(i1) and

similarly for q2. Note that cok(i1), cok(i2) are torsion free, since if any multiple of a
chain ξ is in stratified general position, then ξ itself must also be in stratified gen-
eral position and similarly for the allowability conditions defining the intersection
chain complexes. Now, by basic homological algebra (see, e.g., [20, Lemma 11.3]),
GP1

k ⊗GP2
l is precisely the kernel of

q1 ⊗ id + id⊗ q2 :
k⊗

i=1

S−nC∗(X)⊗
l⊗

i=1

S−nC∗(X)

//

(
cok(i1)⊗

l⊗

i=1

S−nC∗(X)

)
⊕

(
l⊗

i=1

S−nC∗(X)⊗ cok(i2)

)
.

So, if ξ ∈ GP
k+l, we need only show that ξ is in the kernel of this homomorphism,

and it suffices to show that it is in the kernels of q1 ⊗ id and id⊗ q2 separately. We
will show the first; the argument for the second is the same.

So, we consider ξ ∈ GP
k+l ⊂

⊗k
i=1 S

−nC∗(X)⊗⊗l
i=1 S

−nC∗(X) and consider the
image in cok(i1)⊗

⊗l
i=1 S

−nC∗(X) under q1 ⊗ id. As above, we can rewrite ξ here
as

∑
ηJ ⊗ σJ . But now it follows from the preceding lemma that ηJ ∈ GP1

k and thus
represents 0 in cok(i1). So ξ ∈ ker(q1 ⊗ id).

By analogy, ξ ∈ ker(id⊗ q2), and we are done.
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6. The intersection pairing in sheaf theoretic intersection
homology

In [12], Goresky and MacPherson defined the intersection homology intersection
pairing geometrically for compact oriented PL pseudomanifolds. They used McCrory’s
theory of stratified general position [22] to show that any two PL intersection cycles
are intersection homologous to cycles in stratified general position. The intersection
of cycles is then well-defined, and if C ∈ I p̄C∗(X) and D ∈ I q̄C∗(X) are in stratified
general position, then the intersection C t D is in I r̄C∗(X) for any r̄ with r̄ > p̄+ q̄.
By [13], however, intersection homology duality was being realized on topological
pseudomanifolds as a consequence of Verdier duality of sheaves in the derived category
Db(X), and the intersection pairing was constructed via a sequences of extensions of
morphisms from X − Σ to all of X (see also [2]). The resulting morphism in

MorDb(X)(I p̄C∗
L⊗ I q̄C∗, I r̄C∗)

indeed yields a pairing I p̄Hi(X)⊗ I q̄Hj(X) // I r̄Hi+j−n(X), but it is not com-
pletely obvious that this pairing should agree with the earlier geometric one on PL
pseudomanifolds. In this section, we demonstrate that these pairings do, indeed, coin-
cide. While this is no doubt “known to the experts”, I know of no prior written proof.
Furthermore, using the domain G constructed above, we provide a “roof” in the cat-
egory of sheaf complexes on X that serves as a concrete representative of the derived
category intersection pairing morphism.

We first recall that, as noted in Remark 3.8, our general position theorems of
Section 3 hold just as well if we consider instead the complexes C∞∗ (X) and I p̄C∞∗ (X).
In fact, the definitions of stratified general position carry over immediately, and all
homotopies constructed in the proof of Theorems 3.5 and 3.7 are proper so that they
yield well-defined maps on these locally-finite chain complexes. The proofs that Gk

and GP
k are quasi-isomorphic to the appropriate tensor products is the same. We can

also consider “mixed type” Gks that are quasi-isomorphic to

S−nI p̄1C∞∗ (X)⊗ · · · ⊗ S−nI p̄jC∞∗ (X)⊗ S−nI p̄j+1Cc
∗(X)⊗ · · · ⊗ S−nI p̄kCc

∗(X).

For an open U ⊂ X, let GP
k (U) denote GP

k with respect to the pseudomanifold U .
Then GP,∞

k is a contravariant functor from the category of open subsets of X and
inclusions to the category of chain complexes and chain maps. This is immediate, since
if C ∈ S−nI p̄1C∞∗ (X)⊗ · · · ⊗ S−nI p̄kC∞∗ (X) is such that ε̄k(C) is in general position
with respect to the appropriate diagonal maps, then certainly ε̄k(C)|U(k) = ε̄k(C|U )
maintains its general position, where C|U is the restriction of C to

S−nI p̄1C∞∗ (U)⊗ · · · ⊗ S−nI p̄kC∞∗ (U).

It is also clear that such restriction is functorial. Let GP
k,∗ be the sheafification of the

presheaf GP,∞
k,∗ : U //GP,∞

k,∗ (U). Note that the k here denotes the number of terms
in the tensor product, while ∗ is the dimension index.

Let IPC∗ be the sheafification of the presheaf

IPC∗ : U // S−nI p̄1C∞∗ (U)⊗ · · · ⊗ S−nI p̄kC∞∗ (U).



ON THE CHAIN-LEVEL INTERSECTION PAIRING FOR PL PSEUDOMANIFOLDS 303

This is the tensor product of the sheaves I p̄iC∗ with I p̄iC∗(U) = S−nI p̄iC∞∗ (U), which
are the (degree shifted) intersection chain sheaves of [13] (see also [2, Chapter II]).

Remark. N.B. We build the shifts into the definitions of all sheaves and of the presheaf
IPC∗ (which, after all, is not unusual in intersection cohomology with certain indexing
schemes; see [13]). However, for chain complexes of a single perversity, I p̄C∗(X)
continues to denote the unshifted complex, and we write in any shifts as necessary.

Lemma 6.1. The inclusion GP,∞
k,∗ ↪→ IPC∞∗ induces a quasi-isomorphism of sheaves

GP
k,∗ // IPC∗.

Proof. By the results of Section 3, each inclusion GP,∞
k,∗ (U) ↪→ IPC∞∗ (U) is a quasi-

isomorphism. Taking direct limits over neighborhoods of each point x ∈ X therefore
yields isomorphisms of stalk cohomologies.

Corollary 6.2. For any system of supports Φ, the sheaf map of the lemma induces
a hyperhomology isomorphism for each U , HΦ

∗ (U ;GP
k,∗) //HΦ

∗ (U ; IPC∗).
Proposition 6.3. If

∑
i p̄i 6 r̄, then the intersection product µk induces a sheaf map

m : GP
k,∗ // I r̄C∗.

Proof. We need only note that the intersection product

µk : GP,∞
k (U) // S−nI r̄C∞∗ (U)

behaves functorially under restriction. Thus, it induces a map of presheaves, which
induces the map of sheaves.

Lemma 6.4. On X − Σ, the sheaf map m of the preceding proposition is quasi-
isomorphic to the standard product map φ : Z|X−Σ ⊗ · · · ⊗ Z|X−Σ

// Z|X−Σ.

Proof. We first observe that GP
k,∗|X−Σ ∼q.i. Z|X−Σ ⊗ · · · ⊗ Z|X−Σ:

GP
k,∗|X−Σ ∼q.i. IPC∗|X−Σ

= I p̄1C∗|X−Σ ⊗ · · · ⊗ I p̄kC∗|X−Σ

∼q.i. Z|X−Σ ⊗ · · · ⊗ Z|X−Σ.

Now, for each point x ∈ X − Σ, let U ∼= Rn be a euclidean neighborhood. Then
a generator of ZU ⊗ · · · ⊗ ZU corresponds to S−nO ⊗ · · · ⊗ S−nO, where O is the
n-dimensional orientation cycle for Rn in C∞n (U). But ε̄k(S−nO ⊗ · · ·S−nO) is auto-
matically in stratified general position with respect to the diagonal ∆ by dimen-
sion considerations; thus S−nO ⊗ · · · ⊗ S−nO is in GP,∞

k,0 . Furthermore, the image of
S−nO ⊗ · · · ⊗ S−nO under µk is again S−nO ∈ S−nC∞n (U), which corresponds to
a generator of ZU ∼q.i. S

−nI r̄C∗ | U . This can be seen by considering O t · · · t O,
which is classically equal to O, and by using the results of the preceding Section.

Since all of the above is compatible with restrictions and induces isomorphisms
on the restrictions from Rn to Bn (for any open ball Bn in Rn), and since it is this
map of presheaves that induces the map of sheaves we are considering, the lemma
follows.
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Lemma 6.5. IC∗ is a flat sheaf.

Proof. For each i and each open U ⊂ X, IC∞i (U) is torsion free. Thus tensor product
of abelian groups with IC∞i (U) is an exact functor, and thus IC∗ is flat as a presheaf.
Taking direct limits shows that tensor product with IC∗ is exact as a functor of
sheaves. So IC∗ is flat.

We now limit ourselves to considering GP
2 with various supports.

Let P p̄
∗ be the perversity p̄ Deligne sheaf (see [2, 13]), reindexed to be compatible

with our current homological notation. According to [2, Proposition V.9.14], there

is in Db(X) a unique morphism Φ: P p̄
∗

L⊗P q̄
∗ // P r̄

∗ that extends the multiplication
morphism φ : ZX−Σ ⊗ ZX−Σ

// ZX−Σ. Since I p̄C∗ is quasi-isomorphic to P p̄
∗ by [13]

and flat by Lemma 6.5, the tensor complex I p̄C∗ ⊗ I q̄C∗ represents P p̄
∗

L⊗ P q̄
∗ inDb(X),

and we can represent morphisms P p̄
∗

L⊗ P q̄
∗ // P r̄

∗ in Db(X) by roofs in the category
of sheaf complexes

I p̄C∗ ⊗ I q̄C∗ s←− S∗ f−→ I r̄C∗, (11)

where f is a sheaf morphism and s is a sheaf quasi-isomorphism. For the duality
product morphism, we set S∗ equal to GP

2,∗, and let f be the sheaf map m of Proposi-
tion 6.3 and s the quasi-isomorphism of Lemma 6.1. We will show that the restriction
of this roof to X − Σ is equivalent to φ : ZX−Σ ⊗ ZX−Σ

// ZX−Σ in Db(X − Σ).

Proposition 6.6. Under the isomorphism

MorDb(X−Σ)((I p̄C∗ ⊗ I q̄C∗)|X−Σ, I r̄C∗|X−Σ) ∼= MorDb(X−Σ)(ZX−Σ ⊗ ZX−Σ,ZX−Σ),

the restriction of the roof

GP
2,∗I p̄C∗ ⊗ I q̄C∗

∼q.ioo GP
2,∗ I r̄C∗m // (12)

to X − Σ corresponds to the standard multiplication morphism

φ : ZX−Σ ⊗ ZX−Σ
// ZX−Σ.

Proof. φ is represented in MorD(X−Σ)(ZX−Σ ⊗ ZX−Σ,ZX−Σ) by the roof

ZX−Σ ⊗ ZX−ΣZX−Σ ⊗ ZX−Σ
=oo ZX−Σ ⊗ ZX−Σ ZX−Σ.

φ //

To identify this with an element of

MorDb(X−Σ)((I p̄C∗ ⊗ I q̄C∗)|X−Σ, I r̄C∗|X−Σ), (13)

which is isomorphic to MorDb(X−Σ)(ZX−Σ ⊗ ZX−Σ,ZX−Σ) because of the quasi-
isomorphisms of the sheaves involved, we must pre- and post-compose in Db(X − Σ)
with the appropriate Db(X − Σ) isomorphisms. These can be represented as roofs

(I p̄C∗ ⊗ I q̄C∗)|X−Σ
F ′←− ZX−Σ ⊗ ZX−Σ

= // ZX−Σ ⊗ ZX−Σ

and

ZX−Σ
=←− ZX−Σ

F // (I r̄C∗)|X−Σ.

The map F is induced by taking z ∈ Γ(X − Σ;ZX−Σ) ∼= Z to z times the orientation
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class O, and F ′ takes y ⊗ z to yz times the image of O ×O in the sheaf

(I p̄C∗ ⊗ I q̄C∗)|X−Σ.

Some routine roof equivalence arguments yield that φ, together with the pre- and
post-compositions of isomorphisms, is equivalent to the roof

ZX−Σ ⊗ ZX−Σ(I p̄C∗ ⊗ I q̄C∗)|X−Σ
F ′oo ZX−Σ ⊗ ZX−Σ (I r̄C∗)|X−Σ,

H //

where H is the composition of φ and F .
To see that this last roof is equivalent to the restriction of (12) to X − Σ, we need

only note that F ′ factors through GP
k,∗|X−Σ, since O is in general position with respect

to itself, and that the composition

F ′′ : ZX−Σ ⊗ ZX−Σ
// GP

k,∗|X−Σ
// (I r̄C∗)|X−Σ

is precisely the same multiple of the orientation class that we get from F ◦ φ.
Thus we have demonstrated the proposition.

Corollary 6.7. The morphism in MorDb(X)(I p̄C∗ ⊗ I q̄C∗, I r̄C∗) represented by the
roof (12) must be the unique extension from

MorDb(X−Σ)((I p̄C∗ ⊗ I q̄C∗)|X−Σ, I r̄C∗|X−Σ)

of the image of the multiplication φ under the isomorphism

MorDb(X−Σ)(ZX−Σ ⊗ ZX−Σ,ZX−Σ)

i // MorDb(X−Σ)((I p̄C∗ ⊗ I q̄C∗)|X−Σ, I r̄C∗|X−Σ).

Proof. From the proposition, the roof (12) restricts to a morphism corresponding to
φ on X − Σ. The uniqueness follows as in [2, Proposition V.9.14].

Finally, we can show that the geometric intersection pairing is isomorphic to the
sheaf-theoretic pairing.

Theorem 6.8. If p̄+ q̄ 6 r̄, then the pairings

I p̄H∞
i (X)⊗ I q̄H∞

j (X) // I r̄H∞
i+j−n(X)

I p̄Hc
i (X)⊗ I q̄Hc

j (X) // I r̄Hc
i+j−n(X)

I p̄Hc
i (X)⊗ I q̄H∞

j (X) // I r̄Hc
i+j−n(X)

determined by sheaf theory are isomorphic to the respective pairings determined by
geometric intersection.

Proof. From [2, Section V.9], the sheaf theoretic pairing is induced by the unique
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extension of the morphism

φ : ZX−Σ ⊗ ZX−Σ
// ZX−Σ

in
MorDb(X−Σ)(ZX−Σ ⊗ ZX−Σ,ZX−Σ)

to

MorDb(X)(I p̄C∗
L⊗ I q̄C∗, I r̄C∗).

Given this unique extension, which we shall denote π, the intersection homology pair-
ings can be described as follows. Since the intersection chain sheaves are soft (see [2,
Chapter II]), a generating element s⊗ t ∈ IHΦ

i (X)⊗ IHΨ
j (X) (where Φ and Ψ rep-

resent c or ∞) is represented by sections s ∈ ΓΦ(X; I p̄Ci−n) and t ∈ ΓΨ(X; I q̄Cj−n)
such that ∂s = ∂t = 0 as sections. Since

(I p̄Ci−n ⊗ I q̄Cj−n)x
∼= (I p̄Ci−n)x ⊗ (I p̄Cj−n)x,

s⊗ t determines a section of Γ(X; I p̄Ci−n ⊗ I q̄Cj−n), which by Lemma 6.5 is isomor-

phic to Γ(X; I p̄Ci−n

L⊗ I q̄Cj−n). If either s or t has compact support, so does s⊗ t.
This section then maps to a cycle in any injective resolution of I p̄C∗

L⊗ I q̄C∗ and thus

represents an element z in the hyperhomology Hi+j−2n(X; I p̄C∗
L⊗ I q̄C∗). If s⊗ t has

compact support, z also represents an element of Hc
i+j−2n(X; I p̄C∗

L⊗ I q̄C∗).
Now, due to Corollary 6.7, the morphism π is represented by the roof

I p̄C∗ ⊗ I q̄C∗ q.i.← GP
2,∗

m // I r̄C∗,
which induces hyperhomology morphisms

HΦ
∗ (X; I p̄C∗ ⊗ I q̄C∗)

∼=← HΦ
∗ (X;GP

2,∗) //HΦ
∗ (X; I r̄C∗).

Making the desired choices of supports and applying to z the composition of the
inverse of the left-hand isomorphism and the right-hand morphism gives the pairings
as defined via sheaf theory.

Now, consider the following diagram. For the moment, we take Φ = Ψ, which can
be either c or ∞.

HΦ
∗ (X; I p̄C∗ ⊗ I q̄C∗) HΦ

∗ (X;GP
2,∗)oo ∼=

H∗(S−nI p̄CΦ
∗ (X)⊗ S−nI q̄CΨ

∗ (X))

HΦ
∗ (X; I p̄C∗ ⊗ I q̄C∗)

²²

H∗(S−nI p̄CΦ
∗ (X)⊗ S−nI q̄CΨ

∗ (X)) H∗(G
P,Φ
2,∗ )oo ∼=

H∗(G
P,Φ
2,∗ )

HΦ
∗ (X;GP

2,∗)
²²

HΦ
∗ (X;GP

2,∗) HΦ
∗ (X;I r̄C∗).//

H∗(G
P,Φ
2,∗ )

HΦ
∗ (X;GP

2,∗)

H∗(G
P,Φ
2,∗ ) H∗(S−nI r̄CΦ

∗ (X))// H∗(S−nI r̄CΦ
∗ (X))

HΦ
∗ (X;I r̄C∗).

∼=
²²

(14)
The groups on the top row are simply the homology groups of the sections of pre-
sheaves with supports in Φ. The vertical homology maps are induced by taking
presheaf sections to sheaf sections to sections of injective resolutions. Since sheafifica-
tion and injective resolution are natural functors, the diagram commutes. Applied to
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the tensor product of two chains in stratified general position, the composition of the
left-hand vertical map with the maps of the bottom row is exactly the sheaf theoretic
pairing as described above. Meanwhile, the composition of maps along the top row
is the geometric pairing µ2 defined above using the domain GP,∞

2 . The theorem now
follows in this case from the commutativity of the diagram and the results of the
previous sections, in which we demonstrated that, for a pair of chains in stratified
general position, µ2 agrees with the Goresky-MacPherson product.

When Φ = c and Ψ =∞, we must be a bit more careful. Here we replace H∗(G
P,Φ
2,∗ )

with the homology of the subcomplex ĜP
2,∗(X) ⊂ GP,∞

2,∗ (X) defined as follows. Recall
that GP,∞

2,∗ (X) is a subcomplex of S−nI p̄C∞∗ (X)⊗ S−nI q̄C∞∗ (X). Thus any element
e ∈ GP

2,∗(X) can be written as a finite sum of the form e =
∑
S−nξi ⊗ S−nηi, where

ξi ∈ I p̄C∞∗ (X) and ηi ∈ I q̄C∞∗ (X). We let ĜP
2,∗(X) consist of such sums for which each

ξi has compact support. This is clearly a subcomplex, and the general position proof
of Section 3 shows that ĜP

2,∗(X) is quasi-isomorphic to S−nI p̄Cc
∗(X)⊗ S−nI q̄C∞∗ (X).

We also observe that the image of each such element of ĜP
2,∗(X) in the sheaf GP

2,∗(X)
has compact support. Indeed, if x /∈ ∪|ξi|, which is compact, then the restriction of e
to a neighborhood U of x must have the form

∑
S−n0⊗ S−nηi|U = 0.

Now we can take diagram (14) with Φ = c, Ψ =∞ and with GP,∞
2,∗ (X) replaced by

ĜP
2,∗(X) in the middle of the top row. The diagram continues to commute, and the

correspondence between the geometric and sheaf-theoretic pairings follows as for the
preceding cases.

As a result of the theorem, several common practices become easily justified.
For example, we can demonstrate that the sheaf theoretic product has a symmet-
ric middle-dimensional pairing for oriented Witt spaces of dimension 0 mod 4 and
an anti-symmetric middle-dimensional pairing for oriented Witt spaces of dimension
2 mod 4. To see this, we note that, if C ∈ I p̄Ci(X) and D ∈ I q̄Cj(X) with p̄+ q̄ 6 r̄
for some r̄ and C and D in stratified general position, then

Snµ2(S−nC, S−nD) = C t D

= (−1)(n−i)(n−j)D t C

= (−1)(n−i)(n−j)Snµ2(S−nD,S−nC).

The second equality here uses the well-known graded symmetry of geometric intersec-
tion products. So, in particular, if X is a Witt space and p̄ = q̄ = m̄, the lower middle
perversity, and if n = 4w and i = j = 2w, then the product is symmetric. Similarly,
if n = 2w ≡ 2 mod 4 and i = j = w, then the pairing is anti-symmetric.

Of course this is well-known for geometric intersection products, but it is not
completely obvious from Verdier duality (see, e.g., [1, Appendix]).

Appendix A. Sign issues

In this appendix we collect some technical lemmas, especially those that correct
the sign issues in the original version of [20]. We refer the reader to the main text
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above for some of the definitions and also to the erratum [21]. The sign corrections
necessary to perform these computations are due to McClure.

Recall that for complexes Ai
∗, we define

Θ: Sm1A1
∗ ⊗ · · · ⊗ SmkAk

∗ // S
P

mi(A∗1 ⊗ · · · ⊗Ak
∗)

by

Θ(Sm1x1 ⊗ · · · ⊗ Smkxk) = (−1)
Pk

i=2(mi
P

j<i |xj |)S
P

mi(x1 ⊗ · · · × xk).

Lemma A.1. Θ: Sm1A1
∗ ⊗ · · · ⊗ SmkAk

∗ // S
P

mi(A∗1 ⊗ · · · ⊗Ak
∗) is a chain iso-

morphism.

Proof. We compute

∂Θ(Sm1x1 ⊗ · · · ⊗ Smkxk) = ∂(−1)
Pk

i=2(mi
P

j<i |xj |)S
P

mi(x1 ⊗ · · · × xk)

=
∑

l

(−1)
Pk

i=2(mi

P
j<i |xj |)+

P
miS

P
mix1 ⊗ · · · ⊗ (−1)

P
a<l |xa|∂xl ⊗ · · · ⊗ xk

=
∑

l

(−1)
Pk

i=2(mi
P

j<i |xj |)+
P

mi+
P

a<l |xa|S
P

mix1 ⊗ · · · ⊗ ∂xl ⊗ · · · ⊗ xk,

while

Θ∂(Sm1x1 ⊗ · · · ⊗ Smkxk)

= Θ(
∑

l

Sm1x1 ⊗ · · · ⊗ (−1)
P

a<l |xa|+
P

b6l mbSml∂xl ⊗ · · · ⊗ Smkxk)

=
∑

l

(−1)
P

a<l |xa|+
P

b6l mb(−1)
P

r6l(mr(
P

j<r |xj |))+
P

s>l(ms(−1+
P

j<s |xj |))

· S
P

mix1 ⊗ · · · ⊗ ∂xl ⊗ · · · ⊗ xk.

It is not difficult to compare the two signs and see that they agree. Therefore Θ is
a chain map. It is clearly an isomorphism.

Recall from Section 3 that

ε̄ : S−m1C∗(M1)⊗ · · · ⊗ S−mkC∗(Mk) // S−
P

miC∗(M1 × · · · ×Mk)

is defined to be (−1)e2(m1,...,mk) times the composition of Θ with the S−
P

mi shift
of McClure’s chain product ε.

Lemma A.2. ε̄k is dual to the iterated cochain cross product under the (signed)
Poincaré duality morphism. In other words, letting PXi be the Poincaré duality map
on the oriented mi-pseudomanifold Xi, given by the appropriately signed cap product
with the fundamental class ΓXi and shifted to be a degree 0 chain map, there is a
commutative diagram

S−m1C∗(X1)⊗ · · · ⊗ S−mkC∗(Xk) S−
P

miC∗(X1 × · · · ×Xk).
ε̄k //

C−∗(X1)⊗ · · · ⊗ C−∗(Xk)

S−m1C∗(X1)⊗ · · · ⊗ S−mkC∗(Xk)

PX1⊗···⊗PXk

²²

C−∗(X1)⊗ · · · ⊗ C−∗(Xk) C−∗(X1 × · · · ×Xk)
×···× // C−∗(X1 × · · · ×Xk)

S−
P

miC∗(X1 × · · · ×Xk).

PX1×···×Xk

²²
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Proof. Let xi ∈ C−∗(Xi) be homogeneous elements of degree |xi|. Then

(PX1 ⊗ · · · ⊗ PXk
)(x1 ⊗ · · · ⊗ xk)

= (−1)
P |xi|miS−m1(x1 ∩ ΓX1)⊗ · · · ⊗ S−mk(xk ∩ ΓXk

)

∈ S−m1X∗(M1)⊗ · · · ⊗ S−mkC∗(Xk).

Notice that if |xi| is the degree of Xi in C−∗(Xi) (making it a degree −|xi| cochain),
then each xi ∩ ΓXi is an mi + |xi| chain, so that the element S−mi(xi ∩ ΓXi) lives in
(S−miC∗(Xi))|xi| as desired. Applying ε̄, this gets taken to

S−
P

mi((x1 ∩ ΓX1)× · · · × (xk ∩ ΓXk
))

times −1 to the power
∑

i

|xi|mi +
∑

i>2

(mi

∑

j<i

(|xj |+mj)) + e2(m1, . . . ,mk).

The first term of this power is carried over from the Poincaré duality maps, the second
comes from Θ, and the last is the second symmetric polynomial on m1, . . . ,mk from
the definition of ε̄. Note that we can consider the second sum to be over all i by
defining the null sum

∑
j<1 to be 0.

Pulling out the Γs gives

S−
P

mi(x1 × · · · × xk) ∩ (ΓX1 × · · · × ΓXk
) = S−

P
mi(x1 × · · · × xk) ∩ ΓX1×···×Xk

at the cost of an additional factor of −1 to the
∑

l<k

ml(
∑

a>l

|xa|),

by [7, VII.12.17]. This gives a total sign of −1 to the
∑

i

|xi|mi +
∑

i

(mi

∑

j<i

(|xj |+mj)) + e2 +
∑

i

mi(
∑

a>i

|xa|). (15)

To simplify this, notice that for each fixed mi, the terms involving mi and |x|’s are

mi|xi|+mi

∑

j<i

|xj |+
∑

a>i

|xa| = mi(
∑

j

|xj |).

Summing over i gives all of the terms of (15) that involve an |x| factor. Looking at
the terms that involve only m’s, we have

∑
imi

∑
j<imj + e2 ≡ 0 mod 2, since these

terms are identical. Thus the sign is (
∑

imi)(
∑

j |xj |).
On the other hand, the top map of the diagram simply takes the tensor product

x1 ⊗ · · · ⊗ xk to x1 × · · · × xk, while the right-hand map takes this to

S−
P

mi(x1 × · · · × xk) ∩ ΓX1×···×Xk

with a sign of (−1) to the

(
∑

i

|xi|)(
∑

j

mj).

This completes the proof.
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The next lemma demonstrates that our umkehr map ∆! (see Section 4.2) is a
chain map of the appropriate degree. The same proof works for a PL map between
manifolds f : Xn // Y m and the ensuing transfer f! defined on the complex Cf

∗ (Y ) of
chains in general position with respect to f ; see [20]. We state and prove the lemma
for both cases at once. For the case of ∆, we take Y = X(k).

Lemma A.3. Suppose f : Xm // Y n is either a PL map of manifolds or f =
∆: X //X(k). Suppose C ∈ Cf

i (Y ), as defined for manifolds in [20] or for f = ∆
as defined in Definition 4.2. Then f!∂C = ∂f!C. Thus f! is a degree 0 chain map.

Proof. The lemma is a consequence of the following diagram:

Hm−i(Y − |∂C| ∪ ΣY , Y − |C| ∪ ΣY )

S−mHi(|C| ∪ ΣY , |∂C| ∪ ΣY )

∼=

OO

Hm−i+1(Y − ΣY , Y − |∂C| ∪ ΣY )

S−mHi−1(|∂C| ∪ ΣY , ΣY )

∼=

OO

Hm−i(Y − |∂C| ∪ ΣY , Y − |C| ∪ ΣY ) Hm−i+1(Y − ΣY , Y − |∂C| ∪ ΣY )
δ∗ //

S−mHi(|C| ∪ ΣY , |∂C| ∪ ΣY )

Hm−i(Y − |∂C| ∪ ΣY , Y − |C| ∪ ΣY )

OO

(−1)(m−i)m(·∩ΓY )

S−mHi(|C| ∪ ΣY , |∂C| ∪ ΣY ) S−mHi−1(|∂C| ∪ ΣY , ΣY )
∂∗ // S−mHi−1(|∂C| ∪ ΣY , ΣY )

Hm−i+1(Y − ΣY , Y − |∂C| ∪ ΣY )

OO

(−1)(m−i+1)m(·∩ΓY )

Hm−i(X − |∂C|′ ∪ ΣX , X − |C|′ ∪ ΣX) Hm−i+1(X − ΣX , X − |∂C|′ ∪ ΣX)
δ∗ //

Hm−i(Y − |∂C| ∪ ΣY , Y − |C| ∪ ΣY )

Hm−i(X − |∂C|′ ∪ ΣX , X − |C|′ ∪ ΣX)

f∗

²²

Hm−i(Y − |∂C| ∪ ΣY , Y − |C| ∪ ΣY ) Hm−i+1(Y − ΣY , Y − |∂C| ∪ ΣY )
δ∗ // Hm−i+1(Y − ΣY , Y − |∂C| ∪ ΣY )

Hm−i+1(X − ΣX , X − |∂C|′ ∪ ΣX)

f∗

²²

S−nHn−m+i(|C|′ ∪ ΣX , |∂C|′ ∪ ΣX) S−nHn−m−1(|∂C|′ ∪ ΣX , ΣX)
∂∗ //

Hm−i(X − |∂C|′ ∪ ΣX , X − |C|′ ∪ ΣX)

S−nHn−m+i(|C|′ ∪ ΣX , |∂C|′ ∪ ΣX)

(−1)(m−i)n(·∩ΓX )

²²

Hm−i(X − |∂C|′ ∪ ΣX , X − |C|′ ∪ ΣX) Hm−i+1(X − ΣX , X − |∂C|′ ∪ ΣX)
δ∗ // Hm−i+1(X − ΣX , X − |∂C|′ ∪ ΣX)

S−nHn−m−1(|∂C|′ ∪ ΣX , ΣX)

(−1)(m−i+1)n(·∩ΓX )

²²

S−nHn−m+i(|C|′, |∂C|′) S−nHn−m−i(|∂C|′).∂∗ //

S−nHn−m+i(|C|′ ∪ ΣX , |∂C|′ ∪ ΣX)

S−nHn−m+i(|C|′, |∂C|′)

OO

∼=

S−nHn−m+i(|C|′ ∪ ΣX , |∂C|′ ∪ ΣX) S−nHn−m−1(|∂C|′ ∪ ΣX , ΣX)
∂∗ // S−nHn−m−1(|∂C|′ ∪ ΣX , ΣX)

S−nHn−m−i(|∂C|′).

OO

∼=

S−nHn−m+i(|C|′ ∪ ΣX , |∂C|′ ∪ ΣX)

Hm−i(X − |∂C|′ ∪ ΣX , X − |C|′ ∪ ΣX)

∼=

OO

S−nHn−m−1(|∂C|′ ∪ ΣX , ΣX)

Hm−i+1(X − ΣX , X − |∂C|′ ∪ ΣX)

∼=

OO

The second and forth square commute by the naturality of δ∗ and ∂∗. Using the for-
mula, ∂S−m(dp ∩ cp+q) = (−1)m(δdp ∩ cp+q + (−1)pdp ∩ ∂cp+q) (see [7, p. 243] and
recall that shifting by m adds a sign of (−1)m to the boundary map), the first
square (−1)m+(m−i)m+(m−i+1)m = +1 commutes, while, similarly, the third square
commutes. Thus, overall, the outer rectangle commutes.

Now, the composition along the sides of this diagram represent f!, so the proof is
completed by observing that the association of homology classes with chains is also
natural; see [20, Lemma 4.1] or [12, Section 1.2].

The following lemma corrects the commutativity of Lemma 10.5b from the original
version of [20]. We do not need this lemma directly in this paper, though the special
case where all maps are generalized diagonals seems to be implicit in the proofs of
Section 4.3. Here we leave the lemma stated for manifolds rather than define the
appropriate general position and stratified map notions for pseudomanifolds.
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Lemma A.4. Given PL maps of manifolds fi : Xni
i

// Y mi
i , the following diagram

commutes:

S−n1C∗(X1)⊗ · · · ⊗ S−nkC∗(Xk) S−
P

niCf1×···×fk∗ (X1 × · · · ×Xk).
ε̄k

//

S−m1Cf1∗ (Y1)⊗ · · · ⊗ S−mkCfk∗ (Yk)

S−n1C∗(X1)⊗ · · · ⊗ S−nkC∗(Xk)

f1!⊗···⊗fk!

²²

S−m1Cf1∗ (Y1)⊗ · · · ⊗ S−mkCfk∗ (Yk) S−
P

miCf1×···×fk∗ (Yk × · · · × Yk)
ε̄k // S−

P
miCf1×···×fk∗ (Yk × · · · × Yk)

S−
P

niCf1×···×fk∗ (X1 × · · · ×Xk).

(f1×···×fk)!

²²

Proof. Let S−m1x1 ⊗ · · · ⊗ S−mkxk be a generator of

S−m1Cf1∗ (Y1)⊗ · · · ⊗ S−mkCfk∗ (Yk).

The left-hand vertical map takes this to S−n1χ1 ⊗ · · · ⊗ S−nkχk, where χi is the chain
represented by the Poincaré dual in Xi of the pullback by f∗i of the Poincaré dual
in Yi of xi (see the definition of ∆! in Section 4.2 and of f! in [20]). Here we take
the Poincaré duals with the appropriate signs as discussed in that section. If xi has
degree |xi|, then χi has degree ni −mi + |xi|.

By definition of ε̄, the bottom map takes the tensor S−n1χ1 ⊗ · · · ⊗ S−nkχk to
S−

P
ni(χ1 × · · · × χk) times −1 to the

e2(n1, . . . , nk) +
∑

i

ni(
∑

j<i

(nj −mj + |xj |)).

Here χ1 × · · · × χk is the cross product of chains.
On the other hand, ε̄(S−m1x1 ⊗ · · · ⊗ S−mkxk) equals S−

P
mix1 × · · · × xk times

−1 to the

e2(m1, . . . ,mk) +
∑

i

mi(
∑

j<i

|xj |).

The right-hand map then applies the transfer (f1 × · · · × fk)! to this.
To resolve these signs, we must compare how the Poincaré duality maps on prod-

ucts compare to the Poincaré duals in the individual spaces. In particular, looking only
at the signs that arise within the transfer (and ignoring for the moment those that
have already come into the formulas above from the definition of ε̄ and from the shift
isomorphisms), we have that each χi = (−1)mi(mi−|xi|)+ni(mi−|xi|)(f∗i (xiΥYi)) ∩ ΓXi .
Here we recall that Υ simply refers to the inverse of the cap product (recall that our
chains are actually represented by homology classes; see Section 4.2), the first sum-
mand in the power of −1 comes from the Poincaré duality map associated with Υ,
and the second summand in the power of −1 comes from the Poincaré duality map
associated with ∩ΓXi .

Thus

χ1 × · · · × χk

= (−1)
P

i(mi(mi−|xi|)+ni(mi−|xi|))((f∗1 (x1ΥY1)) ∩ ΓX1)× · · · × ((f∗1 (xkΥYk
)) ∩ ΓXk

)

= (−1)
P

i(mi(mi−|xi|)+ni(mi−|xi|))+
P

i ni(
P

j>i(mj−|xj |)

· (f∗1 (x1ΥY1)× · · · × f∗k (xkΥYk
)) ∩ (ΓX1 × · · · × ΓXk

)
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from pulling out the cap products; see [7]

= (−1)
P

i(mi(mi−|xi|)+ni(mi−|xi|))+
P

i ni(
P

j>i(mj−|xj |)

· (f1 × · · · × fk)∗(x1ΥY1 × · · · × xkΥYk
) ∩ ΓX1×···×Xk

= (−1)
P

i(mi(mi−|xi|)+ni(mi−|xi|))+
P

i ni(
P

j>i(mj−|xj |)+
P

i mi(
P

j>i(mj−|xj |)

· (f1 × · · · × fk)∗((x1 × · · · × xk)ΥY1×···Yk
) ∩ ΓX1×···×Xk

.

Finally, the power of −1 arising from the two Poincaré duality maps in the defini-
tion of (f1 × · · · × fk)! is

(
∑

i

mi)(
∑

j

mj −
∑

j

|xj |) + (
∑

i

ni)(
∑

j

mj −
∑

j

|xj |).

Altogether, we now have four sets of signs that we need to have cancel out:

e2(n1, . . . , nk) +
∑

i

ni(
∑

j<i

(nj −mj + |xj |)),

e2(m1, . . . ,mk) +
∑

i

mi(
∑

j<i

|xj |),
∑

i

(mi(mi − |xi|) + ni(mi − |xi|)) +
∑

i

ni(
∑

j>i

(mj − |xj |) +
∑

i

mi(
∑

j>i

(mj − |xj |),

(
∑

i

mi)(
∑

j

mj −
∑

j

|xj |) + (
∑

i

ni)(
∑

j

mj −
∑

j

|xj |).

To see that these powers of −1 indeed do cancel each other (for which we only
need to work mod 2), first observe that for each fixed ni, if we only look at terms
involving ni and the various xj , then the first expression gives us ni

∑
j<i |xj |, the

second gives no such term, the third gives ni(|xi|+
∑

j>i |xk|), and the last provides
ni

∑
j |xj |, so these all cancel. Similarly, looking at terms involving only mi and some

|xj |, the first expression provides none of these, the second provides mi

∑
j<i |xj |,

the third provides mi(|xi|+
∑

j>i |xj |), and the last provides mi

∑
j |xj |, so these all

cancel. For terms involving just the various ni, the first equation has e2(n1, . . . , nk)
and

∑
i

∑
j<i ninj , which cancel. For terms involving just mis, the second expression

gives e2(m1, . . . ,mk), the third has
∑

imi(mi +
∑

j>imj), and the last expression
has

∑
i

∑
j mimj . To see that these all cancel out, notice that e2(m1, . . . ,mk) =∑

i

∑
j>imj , that all of the cross terms in

∑
i

∑
j mimj are repeated and are thus 0

mod 2, and that the remaining terms in
∑

i

∑
j mimj are precisely

∑
imimi. Finally,

we examine terms of the form minj . For each fixed ni, the first expression contributes
ni

∑
j<imj , the third contributes nimi and ni

∑
j>imj , and the last contributes

ni

∑
j mj , which all cancel.
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