Homology, Homotopy and Applications, vol.3, No.4, 2001, pp.87-100
TEISI IN Ab
SJOERD E. CRANS
(communicated by James Stasheff)

Abstract

Teisi are certain higher-dimensional categorical structures
proposed for doing non-abelian homotopical and homologi-
cal algebra. I give a partial justification for this proposal
by showing that in the abelian case teisi indeed reduce to
chain complexes. I also show that the result holds for a much
wider class of weaker higher-dimensional categorical structures,
which however need to have strict identities. The main step in
the proof is an elegant Eckmann-Hilton type argument.

1. Introduction

In 1987 Street, following Roberts, suggested that that n-cohomology should be
developed using (weak) n-categories as coefficient objects [19, 18]. Part of this
development will be by clarifying the notion of n-stack [12, 14, 3, 4]. In 1995,
Gordon, Power and Street made significant progress by proving a coherence theorem
for tricategories, showing that they are triequivalent to Gray-categories [13]. For
higher dimensions, I introduced teisi and I conjectured that weak 4-categories are
weak equivalent to 4-dimensional teisi [10].

Teisi also come into the picture on the homotopical side. In 1977 Brown and
Higgins introduced crossed complexes, generalizing crossed modules, and proved a
generalized Van Kampen theorem for them [5, 6]. Crossed complexes don’t model
all homotopy types, but Carrasco and Cagarra’s hypercrossed complexes, from 1991,
do [8]. Now teisi are to hypercrossed complexes what categories are to groupoids:
the former are the directed version of the latter. Alternatively, teisi are to (strict) w-
categories what hypercrossed complexes are to crossed complexes: the former allow
non-trivial Whitehead products whereas the latter don’t, but nothing more.

In 1998, during one of my talks in Sydney [11], George Janelidze asked what teisi
are in the category of abelian groups. This paper answers that question by showing
that in Ab, teisi reduce to w-groupoids, and hence to chain complexes. This gives a
useful and practical gauge point for future developments in non-abelian homological
and homotopical algebra: one can now reasonably expect the abelian version of non-
abelian methods to reduce to known methods, such as derived functors, resolutions,
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spectral sequences, etc., or to trivialize, if they deal with inherently non-abelian
issues. I think that the third alternative, that of a non-abelian method which gives
something new even in the abelian case, is highly unlikely, though not entirely
impossible.

The main step in the proof that teisi in Ab are w-groupoids is an Eckmann-
Hilton type argument. This is not surprising as teisi ultimately generalize groups,
although the argument is a little bit more involved because not all identities are
units. The argument expresses composition in terms of the group operations, with
the consequence that composition must be dimension preserving. In fact, abelianness
of the group operations is only needed to prove the interchange axiom, so teisi in
the category of groups reduce to no interchange w-groupoids. Also, the proof only
needs the elementary axioms for teisi: that n-source and n-target of an n-composite
are the n-source of the first one and n-target of the second one respectively, which
makes teisi a categorical structure, and that composing something with an identity
results in (the identity on) the same thing. In this paper I call structures satisfying
these elementary axioms pre-teisi. Thus, pre-teisi in Ab also reduce to w-groupoids.

In order to formulate a generalization of the result to weaker structures, I in-
troduce what I call diagrammatic globular sets. I show that they are precisely well-
formed loop-free pasting schemes [16] in which every cell is a globe, which makes
that I can talk about composites of globular diagrams, and I show that diagrammatic
globular sets are precisely globular cardinals [20], which means that they occur as
arities of operations in weak w-categories [2]. Another advantage of diagrammatic
globular sets is that the conditions are more efficient than for globular cardinals
or for simple w-graphs [17], that is, it costs less time to check them in practical
examples.

I show that for any w-groupoid in Ab an extra operation of arity a diagrammatic
globular set A is trivial if it satisfies the following condition: if all cells except one
of A are realized by identities then the result of the operation is equal to (the
identity on) the realization of that single cell. The main step in the proof is again
an Eckmann-Hilton type argument, using the above condition to express the new
operation in terms of the group operations. The previous result is then used to
relate it to composition. Calling a weak w-category normalized if all its operations
satisfy this condition, the conclusion is that normalized weak w-categories in Ab
also reduce to w-groupoids.

Interestingly, the condition of having strict identities is also what makes the
many-sorted and one-sorted definitions of w-categories equivalent. This suggests
that it could be relevant for a higher-dimensional structure’s usefulness for non-
abelian homotopical and homological algebra to be definable one-sorted. In partic-
ular, it might be useful to start considering a one-sorted version of weak w-categories.

2. Preliminaries

Definition 2.1 (Brown-Higgings [7, p. 372-373]) An w-category consists of a
set C together with operations sg,t; : C — C, also written d,:,d;f, for0<k<w
and %, : C' 4 X, C = C for 0 < m < w, such that:

Sm



Homology, Homotopy and Applications, vol. 3, No. 4, 2001 89

(i) dedl = {dg ifk<?

& k>0
for o, 3 = & and all k, ¢,
(i) dp(c' *mc) = (d (¢ fk=mand a=—
di () ifk=mand a=+

dg(c') *m di(c) fk#m
for all ¢,¢' € C, « = £ and all k,m,
(iii) df(¢)*me=c=cx*pd, (c) forallce C,alm,
(iv) (associativity) ¢ #m, (¢ *m ¢) = (¢ % ) % e for all ¢,c’,¢" € C, all m,
(v) (interchange) (d'*nd) %y (¢'%pc) = (d *m ') %p (dxpc) foralle, d,d,d € C,
all m < n,

(vi) there exists k such that dj (¢c) = ¢ =dj (¢) for allc € C. o

Street omits condition (vi) [19, p. 305], and Brown and Higgins use ‘co-category’
having used ‘w-category’ for something else; categorical usage has now firmly settled
on the terminology given here.

Lemma 2.2 (Brown-Higgings [7, p. 376-377]) An w-category is a reflexive
globular set ((C’i)iew,{d;,d;f : O = Crlies, {ldo © C; = Ciya}i) together with
operations #m 2 C; 5., %t,, C; = C; for m < i, such that:

(i) dg(c #mec)= (d(c) ifk=m and o = —
df () ifk=mand o = +
dg(c') #m di(c) ifk>m

foralle,d € C, a = £ and all k,m,
(ii idfly("'c) H#mc=c=cH#m idzg("'c) for all c € Cy, all m,
ideg,.=idy #mide foralle,d € C,

)
)

(iv) (associativity) ¢ #m (¢! #mc) = (" #m ) #me  foralle,d, " € C, all m,
)

(v) (interchange) (d'#nd)Fm (' Fnc) = (A #m ) Fn(d#tme)  foralle,d,d,d €
C, alm<n. O

(iii

The relation with the one-sorted definition is obtained by identifying elements
with their identities.

In an w-category it is possible to define composition of elements of different
dimension by taking the appropriate identity on one of them. However, it is better
to see this ‘whiskering’ as basic operation, and to introduce an extra axiom saying
it can be obtained in the way just described.

Lemma 2.3 An w-category is a reflexive globular set ((Cy)icw,{dy,df : Ci —
Crlrcir {id— : C; = Ciqr}s) together with operations #p, : Cyq s, X¢,, Cp —
Cmax{p,q} for m < min{p, q}, such that:
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(i) dp(d #mec) = (dg(c ifk=m and o = —
di (") ifk=m and v =+
dy(c') #m di(c) if min{p,q} >k >m
¢ #m di (c) ifp>k>q
di (') #mc ifg>k>p

forallce Cp, ¢ € Cy, o =% and all k,m, p,q,

(i) iddi(c) #mc=c=c#mnm idd;(c) forallc€ C, allm,
(i) ¢ #mide =idpg,.. foralle,d € C and
idy #me=1ideg,,. foralled €C,
(iv) (associativity) ¢’ #m (¢ #mc) = (" #m ) F#Fme  foralle,d,c”" € C, all m,

(v) (interchange) (d'#nd)#m (c'#nc) = (d' #m)Fn(d#me)  foralle,cd.d,d' €
C, alm<n. O

Thus, there are more identity axioms, but they do have a simpler form.

Definition 2.4 An w-groupoid is an w-category C such that:
for every ¢ € C; there is a ¢* € C; satisfying ¢* #;-1 ¢ = id,,_,(,) and c #; " =
ids,_y(0)- <

For the purposes of this paper,

Definition 2.5 A pre-tas consists of a reflexive globular set ((Ci)icw, {dy,di :
C; = Crlress {1d- : €3 = Ciq1}y) together with operations #,, : Cys,, X¢,, Cp —
Cptg—m—1 for m < min{p, ¢}, such that:
(i) d2(c' #me)= [d(¢) La=-
dt(d) ifa=+
for all ¢ € Cp, ¢ € Cy, @ = £ and all m,p,q,
(i) iddi(c) H#mc=c=cH#m idd;(c) for all ¢ € C;, all m,

(i) '#mide =ide g, foralle,c’ € Candidy #me=1idpg,,. foralle,c € C.
<&

A tas furthermore has a myriad of axioms, like naturality, functoriality, associa-
tivity, and more. A complete list of axioms has been given up to dimension 4 and
partially up to dimension 6 [10], but not yet for general n. This does not matter
for the purposes of this paper, though, as the result is true no matter what the pre-
cise axioms will turn out to be, and also for many higher-dimensional categorical
structures that are not teisi.

Weak(er) n-categories and weak(er) teisi have some or all of the axioms replaced
by coherence constraints, with further coherence constraints relating them, etcetera.

3. The main argument

For C to be a pre-tas in Ab means that all C; are abelian groups and all sources,
targets, identities and compositions are group homomorphisms. Thus, the source
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(target) of a sum is the sum of the respective sources (targets), and the following
diagrams commute:

id_ xid_

s x C; Cix1 % Cip1
4—l l4— (3.1
Ci id_ Cita
FHm X#Hm

(Cq Sm Xtm CP) X (Cq Sm Xtm CP)
7
(Cy X Cf) 50 x5 Xt xtm (Cp X Cp)

+x+l

Cq S X tm Cp

Cptg—m—1 X Cprg-m—1

Cptg—m—1

#m

In (3.2), the isomorphism together with the arrow on the left sends two m-composable
pairs to the pair of their sums, which is again m-composable by the condition on
source and target above.

It follows that the source (target) of an additive inverse is the additive inverse
of the source (target), that the source (target) of a unit is a unit, and that the
following diagrams commute:

id_

Cita

C;
_l l_ (3.3)
C Cita

id_

#m
Cysm Xtm Op Cptg—m-1

Sl

Cq s, %t Cp Cotg—m—1
* *
el le (3.5)
Ci —q—> Cim
* *
el le (3.6)
Cq s, %t Cp Cotg—m—1
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In (3.6), the unit of the group Cy ., Xy, Cp is the pair (e, e), which is indeed a
composable pair, again by the conditions on the source and target.

I will now investigate the composite of two elements in a pre-tas in Ab. For
convenience, I will assume that the dimension of intersection is 0. This is without loss
of generality because one can always achieve this by renumbering the dimensions,
noting that the lower dimensions will take care of themselves. Also without loss of
generality is to assume that both elements are of the same dimension. The general
case would amount to almost the same calculations, but these assumptions avoid
the necessity to consider various cases, and make keeping track of the dimensions
somewhat simpler.

So consider an é-arrow f and an i-arrow g with so(f) = A, to(f) = B = s0(g),
to(g) = C. I will picture this information as

g

A—f>B—>C' ,

remembering that f and g need not be 1-dimensional. Now g #¢ f is equal to

F—idg +idj +
A-B+B s . e+B S e+C

where e € C; is equal to id’ by repeated application of diagram (3.5). By (3.2), this
is equal to

B B c

idy g

Carrying out these composites, this gives

idit —idgh Tt

A-B e
+
B — C
idy,
because
id #o(f —idjy) =
SRyt . .
ldi. d. #o(f—idi,) by repeated application of axiom (iii)
id}__li a, by axiom (if)
= id}_1 - idj;r’_1 by repeated application of diagram (3.1)
i }_1 - id’__iili by repeated application of diagram (3.3),
B

and a similar but simpler calculation for g. So

g#o f=id5" —idiF T +id) "
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Similarly, putting g first one also gets that g #¢ f = idf]_1 - idj!;,”_1 +id§c_1.

So, although horizontal composition lands, by definition, in Cjy;_1, the result is
an (¢ — 1)-identity, i.e., composition factors through d=t o = Ci+i—1, and so
one can say that composition in a pre-tas in Ab is dimension preserving.

It remains to be shown that this does give an w-groupoid. More precisely, given
a pre-tas in Ab, take the same reflexive globular set but with new composition
operations C; ,_x¢, Ci = Cj, given by g#, f = f —id% 4¢. It is obvious that this
satisfies the axioms for sources and targets.

For three 0-composable ¢-arrows,

A-t.p ¢

c—".p

say, either way of composing these gives f — id% +g— idic +h, proving associativity.
Consider now four elements

/U'f\ /Ug\
A—p B— C
where A, B, C are 0-dimensional, f, f', g, ¢’ are i-dimensional, and b,b' are j-dimen-

sional (which is general enough). Then obviously ¢'#;,¢ and f'#; f are 0-composable,
and

(9 #5 9) #o (f #; ) = F —idy 7 +f' —id}s +g —idy 7 +9'.
On the other hand, obviously ¢’ #¢ f' and g #¢ f are j-composable, and

(g #of)#i(g#o ) = ‘
= f-idg+g-id"?,;,  +f —idz+g
. b—idy +b/ . .
= f-idzg+g—id, 7 +idg —id;,? +f —idz+¢' by (3.1) and (3.3),
which is quickly seen to give the same as above by abelianness of Cj.
Given
A—f>B ,
define f* = id% —f+idi1, which has 0-source B—A+A = B and 0-target B—B+A =
A. Then f* 4o f = f —idy +idy —f +idYy =idY, and similarly f #¢ f* = id}.
All this proves

Theorem 3.1 A pre-tas in Ab, and so a fortiori a tas in Ab, is an w-groupoid. O

4. Remarks

The proof does not work for monoids nor for semigroups with unit — trivially
80, because it uses substraction.

I have not used (3.4) and (3.6), but they come for free with (3.2) anyway. In
fact, this uses associativity of the group operation, which is needed at several other
points in the proof too.
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The only place I do need abelianness is in interchange. Not even in that it is
an w-groupoid! So pre-teisi in Gp are no interchange w-groupoids, which are to
w-groupoids what sesqui-categories are to 2-categories.

The crucial thing really is that composing something with an identity results
in (the identity on) the same thing, which follows from (ii) and (iii). In Ab, this
extended form of (ii) implies (iii) because all compositions are addition, but in
general there need not be relations between the compositions and identities.

With this modified (ii), the argument above shows that for any operation # :
Cgsm Xt Cp = Cy(m,p,q for m < min{p,q} with d(m,p,q) > max{p,q}, one
has that for f € Cp and g € C; with t,,(f) = B = sn(g) it is the case that
g# [ =id}POTP _iq Ui PO jqPm P04 T will extend this further, but for
that I need to do something else first.

5. Intermezzo

Before extending theorem 3.1 to other higher-dimensional categorical structures,
I need two results about certain globular sets.

Let A be a globular set. Write s,t for all the maps d,:_l,d;r_l A = Ay
respectively. Define s and ¢ also for k = 0 by defining, for z € Ay, s(z) = t(z) = *.

For a,b € Ay, say that a < b if £(a) = s(b). Let <1 be the transitive closure of <
on A.

Definition 5.1 A globular set A is diagrammatic if
(i) A is finite,
(ii) (no direct loops) there is no z € A with z < z,

(iii) (well formed) if s(x) = s(y) or t(z) = t(y) then x = y or there exist w such
that t(w) = z or t(w) = y. o

Proposition 5.2 A diegrammatic globular set is precisely a well-formed loop-free
pasting scheme [16] in which for every n any n-cell begins and ends in only one
(n — 1)-cell respectively. a

Proof. Most of this is straightforward; the only interest lies in the dual form of
well-formedness: if s(z) = s(y) or t(z) = t(y) and x # y then there also exists a w’
with s(w') = z or s(w') = y.

If s(z) = s(y) and ¢ # y then well-formedness gives an a with t(a) = z say.
Repeating for s(a) and y and so on gives a’ <a and possibly also b’ b with ¢(b) = y.
Because A is finite and has no direct loops this must stop, by having s(a’) = s(b') =
v say. By globularity, then ¢(z) = t(v) = t(y). Take @’ and b’ the first such, and
apply the same process to ¢’ and b, which have s(a’) = s(b'), and conclude that
t(a') = t(b'). But then the process for x and y stopped one step earlier, contradicting
minimality of ¢’ and b, which can only be resolved when s(a’) = y say, i.e., when
y is a source. O



Homology, Homotopy and Applications, vol. 3, No. 4, 2001 95

Definition 5.3 A globular diagram in an w-category C is a diagrammatic globular
set A together with a morphism of globular sets f: A — C. <&

Say that for a globular diagram (A, f) in C, it has shape A. Denote the collection
of globular diagrams in C with shape A by C4.

Corollary 5.4 A globular diagram in an w-category C determines a unique element
of C, the composite of the diagram.

Proof. This is just a special case of Johnson’s pasting theorem [16], with the mor-
phism giving an appropriate realization of the pasting scheme A. O

The composite of a globular diagram (A, f) will be denoted by f(A).
For a € Ag, b € Ag_1, say that a < b if a = s(b) or b = t(a). Let 4 be the
transitive closure of < on A.

Definition 5.5 (Street [20]) A globular cardinal is a finite globular set for which
« is a total order. <&

‘Globular’ has been used for pasting schemes in a slightly different meaning [9,
Section 2-8].

Proposition 5.6 A diagrammatic globular set is precisely a globular cardinal.

Proof. Given a diagrammatic globular set A, the same argument as in the proof of
proposition 5.2 applied to 0-cells totally «4-orders them. Then, inductively, apply it
to the collection of i-cells with same source, which, again by the same argument,
also have the same target. This gives a total order because if x 4 = via lowest
dimension j say then if & has dimension higher than j then s;41(x) <s;41(x) and if
x has dimension lower than j there is a w with t(w) = z and for which w < w, both
cases contradicting A having no direct loops.

For the converse, ¢ < « implies 4 z, and if s(z) = s(y) then «-between = and
y there are no elements of lower dimension, so one of z and y must be a target. O

6. Extensions

Weak n- or w-categories, of whatever kind, are not pre-teisi as they do not have
strict identities. For kinds of weak n-categories which are not defined algebraically
[1, 15] it even makes no sense to ask for strict identities; for Batanin’s weak w-
categories, which are defined using operads [2], it does.

Say that an element of a diagrammatic globular set A is high if y is not a source
nor a target: there is no z with y = s(z) or y = t(2). Say it is low if it is both a
source and a target: there are z, 2’ with s(z') = y = t(2).

Definition 6.1 Let A be an n-dimensional diagrammatic globular set. An A-w-
category consists of an w-category C together with an operation #4 : C* — Cj
with 7 > n such that:
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(i) if (4, f) is a globular diagram in C and there is one high cell y € A; such that
for any x € A with k > 0 and with = # sg(y) and = # t;(y) and there exist
no u q v with s(u) = & and t(v) = s(y) or with s(u) = tx(y) and t(v) =
one has f(z) = idy(¢(a)), then #a(f) = id;?y’). <

This condition extends the identity axioms for a pre-tas to compositions of other
arities. It basically says that if all cells except one are realized by identities then
the A-composite is equal to (the identity on) the realization of that single cell.
The condition together with globularity determines f from f(y): if x = sx(y) then
f(z) = sp(f(y)) and if there exist v < v with s(u) = x and t(v) = sg(y) then also it
must be that f(x) = sk(f(y)) because w,...,v are identities, and similarly on the
other side of y. In an A-w-category condition (i) holds also for non-high y: if y is
not high it is the face of a high cell which must be realized by the identity on y,
and then the A-composite of this realization must be the identity on that, so the
identity on y.

I will want to relate the A-composite of a globular diagram of shape A in an
A-w-category in Ab to its composite, so I first calculate the latter.

Lemma 6.2 Let C be an w-category in Ab, and let (A, f) be an n-dimensional
globular diagram in C. Then

_ . yn—dim(y) - an—dim(y)
f@= > gyt 30 g e

y€EA, y high y€A, y low

Proof. By corollary 5.4, I can calculate the composite of (A4, f) in any way I like.
Take a lowest-dimensional low element uw of A, then the collection A, of elements
of A «-before u together with u is again a globular cardinal hence a diagrammatic
globular set by proposition 5.6, and similarly the collection A, of elements of A
<«-after u together with u. The statement follows by induction, from the formula
f4) = id?(f;)m Ar _jqn-dimu id?(_f:;n Ar and the fact that if A does not contain
low elements it contains a unique high element v and f(A) = f(v). ad

In order to calculate the A-composite of a globular diagram of shape A in an
A-w-category in Ab I will follow the main argument above closely.

For C to be an A-w-category in Ab means that A-composition is a group ho-
momorphism too. Thus, #4(f + g) = #a(f) + #a(g) for all f,g: A — C, where
(f + 9)(a) = f(a) + g(a), this again being a morphism of globular sets because
source and target are group homomorphisms.

Consider a morphism of globular sets f: A — C. The first step is to write f(x)
as a sum involving identities. I will use the convention that id’;(*) =e.

For high y, define m(y) to be the greatest m for which t,,(y) is a source, if such
m exists, and —1 otherwise. Obviously, there is only one high y with m(y) = —1,
namely the «-last one. For z € Ay and high y for which z # si(y) and m(y) = -1
OF Spy(y)—1(y) €4 2 4y, define m'(z,y) to be the greatest m' for which spy_1(z) =
smv—1(y). Obviously, m'(z,y) > 0, and k > m/(z,y) > m(y).
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For x € Ay and high y, define

fu(@) = (f(z) - 1dkm$((y)(y)) if k > m(y) and = = t;(y) or
k> m(y) and © = sg(y)

sqk—m'(ey) o gk—m(y) ;
1dsm/(z,y)(f(y)) 1dtm(y)(f(y)) if © # s5(y) and

m(y) =-lor Sm(y)—l(y) 4z 4y
e otherwise.

Lemma 6.3 f(z) = ZyeA, o high ful2).

Proof. The only y’s that contribute to the sum in the statement are those for which
m(y) = —10r 8py()—1(¥) 4 T A tpy(y)(y). Thereis only one such for which z = s (y)
or ¢ = t(y), namely the <«-first one. Indeed, let y « y' both contributing, then
@ = t(y') contradicts & € ty(y)(y), and & = s;(y") implies sp,(y)—1(y) € sk(y') <
tm(y)(¥) €4y, again a contradiction. So the «-first y takes care of f(x).

For any high y with s,,(,)_1(y) €4 & €ty (¥) and = # si(y) and @ # tx(y),
one has that & € spy/(q,y)(¥) because 8,5 1) (T) 7# Smr(2,y) (U)- AlSO, Spyr (4,1 (¥) =
S/ (2,y)—1(T) €T, 80 Spy(4,4)(¥) i8 & source, and I can consider the «-last high y'
before 8,5,y (y). For this y', m(y') = m'(z,y) and ty,(yn(¥') = Smr(a,y)(y), and
hence also Sp(y)—1(y') = Sm(y)—1(T) € T Qtpy)(y'). Moreover, y' is the «-last
high y' before y having this property because any y” « y with sp.(5 ) (y) < y"
has m(y"') > m'(z,y) by definition of m'(x,y), and hence x 4 8p,(y—1(y"). So for

every contributing y, the «-next contributing one cancels 1dt s )((y)(y)).

The <«-last contributing y is the one with m(y) = —1; and for this one has

k—m(y) _
tmiy (F1)) — & O

The second step is to split up f using the sum just obtained.

Lemma 6.4 For high y, f, is a globular diagram of shape A.

Proof. If x = t(y) or © = sk(y) then the calculations are easy.

If m(y) = —1 or Sp)-1(y) 4« 2 €4 y and k& > m'(z,y) then also m(y) =
=1 or spm)—1(y) < s(z) €y with m/(s(z),y) = m/(z,y), and m(y) = -1 or
Sm(y)—1(y) € t(z) <4y with m'(t(x),y) = m'(x,y), except when k — 1 = m/(z,y)
and t(z) = Spy(a,y)(y), in which case f(t(2)) = sp () (f(¥)), as required.

If m(y) = =1 or spy)—1(y) 4= 4y and k = m'(z,y) then s(x) = sy (a,9)-1(¥)
which presents no problem, and t(z) = tx—1(y); when m/(x,y) = m(y) the calcula-
tion is easy, and when m/(z,y) > m(y) then f(t(z)) = t(8p(a,y)(f(¥))), as required.
O

The third step is to calculate the A-composites of the f,’s.

N . j—i j—m(y)
Lemma 6.5 For high y € A;, #a(fy) = 1d o) —id, N IE

Proof. f, satisfies condition (i) of definition 6.1, and f,(y) = f(y) — 1dlm:z)(§’) -
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Now there is one more high element than there are low elements, so the low
elements are precisely the #,,(,y(f(y)) for the high y with m(y) # —1. So

#a(f) = Tyea ynigh #A(fy)( ) . by lemma 6.3
s 1j—dim . j—m
= ZyeA, yhigh(d5g) 0 — 1d§m(y)(l}(y))) by lemma 6.5
= idg” —dim n—dim
ZyeA, v high id?(y()i @ _ e, ylow idf(y()i “
- id;al) by lemma, 6.2.

This proves

Theorem 6.6 Let A be ¢ diagrammatic globular set. An A-w-category in Ab is an
w-groupoid. O

Say that a weak w-category [2] is normalized if all its operations satisfy condition
(i) of definition 6.1.

Corollary 6.7 A normalized weak w-category in Ab is an w-groupoid.

Proof. First, the main argument above applies to any operation Cy,,, X4, Cp —
Cafp,g) With a(p,q) > max(p,q), which takes care of the binary operations in a
normalized weak w-category. Condition (i) of definition 6.1 takes care of unary
operations, and the theorem shows that operations of higher arity are in fact trivial.
O
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