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Abstract
Second cohomology groups of irreducible representations of

classical Lie algebras A2, B2 and G2 over an algebraically closed
field of characteristic p > h are calculated. Here h is the Cox-
eter number.

To Jan–Erik Roos on his sixty–fifth birthday

1. Formulation of the main result

Levi-Mal’cev theorem has cohomological origin. It states that any finite-dimen-
sional extension of a finite-dimensional simple Lie algebra over a field of charac-
teristic 0 is split. In case of characteristic p > 0 any Lie algebra has at least one
nonsplit extension and the number of irreducible modules with such a property
is finite [8]. For example, the 3-dimensional simple Lie algebra A1 = sl2 has ex-
actly one irreducible module, namely the (p − 1)-dimensional module Vp−2, with
H2(A1, Vp−2) 6= 0 [7].

The aim of our paper is to calculate second cohomology groups with coefficients
in an irreducible module for simple Lie algebras of rank 2: g = A2, B2 and G2. The
field K is algebraically closed and has characteristic p > h, where h is the Coxeter
number. An irreducible g-module V is called 2-peculiar, if H2(g, V ) 6= 0. Let κ2(g)
be the number of peculiar modules. From our results it follows that κ2(g) = 2, 3, 3,
for g = A2, B2, G2 respectively. Let L(λ) be an irreducible module with highest
weight λ.

The main result of this paper is the following

Theorem 1.1. Let g = A2, B2, G2, p > h and V be an irreducible g-module. Then
H2(g, V ) is trivial except in the following cases:

(a) g = A2, H2(g, L((p− 3)λi)) ∼= L(λi)(1), i = 1, 2;

(b) g = B2, H2(g, L((p− 3)λ1 + 2λ2)) ∼= L(λ1)(1),

H2(g, L(λ1 + (p− 4)λ2)) ∼= L(λ2)(1),

H2(g, L((p− 2)(λ1 + λ2))) ∼= L(λ2)(1);
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(c) g = G2, H2(g, L((p− 5)λ1 + 2λ2)) ∼= L(λ1)(1),

H2(g, L(4λ1 + (p− 3)λ2)) ∼= L(λ2)(1),

H2(g, L(3λ1 + (p− 2)λ2))) ∼= L(0)(1).

Here we use notations from [11]. Let g be a classical Lie algebra over the field K,
G an algebraic group of the Lie algebra g. Recall that the Frobenius map is defined
as the morphism G → G of the K-group functor G induced by the map x 7→ xp on
the function algebra K[G] [11]. The normal subgroup G1 is the scheme-theoretic
kernel of this map. Let T be the maximal torus on G, X(T ) be the character group
of T, R ⊂ X(T ) be the root system and R+ be the set of positive roots on R. The
simple roots α1, α2, . . . , αn corresponds to the Bourbaki table [3]. Let λ1, λ2, · · · , λn
be the fundamental weights, X(T )+ be the set of dominant weights, X1(T ) be the
set of restricted dominant weights, i.e., X1(T ) = {λ =

∑n
i=1 riλi ∈ X(T ) : ri ∈

Z, 0 6 ri < p, for all i}. Endow X(T ) by the usual order : λ 6 µ if and only if,
there exist integers ri > 0 such that µ − λ =

∑n
i=1 riαi. For any T -module V and

any µ ∈ X(T ) denote by Vµ its weight subspace in V.
There exists an algebra gZ over Z such that gZ ⊗K ∼= g. In gZ one can choose a

Chevalley basis, that coincides with a basis of the semi-simple complex Lie algebra.
To any root α there corresponds a basic vector eα of the Lie algebra gZ. If α, β ∈ R,
then [eα, eβ ] = Nα,βeα+β for some integer Nα,β . Identify eα with eα ⊗ 1. Note that
the p-map e 7→ e[p], defined on g, has the property e[p]

α = 0 for any α ∈ R.
Recall the definition of a Weyl module. Let gC be a Lie algebra over the field of

complex numbers C. Consider an irreducible gC-module V (λ)C with highest weight
λ. It is known that there exists a Z-submodule V (λ)Z of the gC-module V (λ)C. Then
V (λ) = V (λ)Z ⊗K is a g-module. The obtained module is called a Weyl module.

Let B be the Borel subgroup of G corresponding to the negative roots, U be
the unipotent radical of B and u be the Lie algebra of U . The Lie algebra u is a
nilpotent subalgebra of the Lie algebra g and it spans basic vectors e−α, α ∈ R+.
The Cartan subalgebra h of the Lie algebra g is a Lie algebra of the maximal torus
T of G. For any λ ∈ X(T ) one can define a one-dimensional module Kλ over B using
the isomorphism B/U ∼= T. The induced G-module H0(λ) = IndG

BKλ is non-zero
if and only if λ ∈ X(T )+. If so, the socle L(λ) of the induced module H0(λ) is a
simple G-module with highest weight λ. It can also be constructed as the unique
irreducible factor of the Weyl module V (λ).

If λ ∈ X1(T ), then L(λ) remains simple as a G1-module. Any simple G1-module
is defined uniquely by the highest weight λ ∈ X1(T ) and it is isomorphic to L(λ).
The theory of restricted representations of the restricted Lie algebra g is equivalent
to the theory of representations of the group G1.

A composition of a representation of G in a vector space V with the Frobenius
map gives us a new representation with trivial action of G1. Denote the obtained
module by V (1). Thus this module as a module over the Lie algebra g is a module
with a trivial action. To any weight µ ∈ X(T ) of the space V there corresponds the
weight pµ of the space V (1). On the other hand, if V1 is a G-module with trivial
action of G1 (or g ) then there exists a unique G-module V, such that V1 = V (1).
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Denote this G-module V by V (−1). For example, if L is a G-module, then any coho-
mology group Hi(G1, L) is a G-module with trivial action of G1 (or g). Therefore
the module Hi(G1, L)(−1) is a G-module with the above mentioned property.

Second cohomology groups of the adjoint representation of the Lie algebra B2

in characteristic 3 was studied in [13], [6]. In [16], [11] first cohomology groups
of modular Lie algebras with coefficients in irreducible modules are calculated. In
[16] the non-triviality of first cohomology groups with coefficients in irreducible
restricted modules with highest weights pλi − αi, i = 1, 2, . . . , n, are proved. Here
αi, λi, i = 1, 2, . . . , n are the simple roots and fundamental weights. In [17] a
connection between first cohomology groups of irreducible modules and second co-
homology groups of restricted Weyl modules are studied.

2. Connection between ordinary and restricted second coho-
mology groups

Consider the algebra g as a restricted Lie algebra with the p-map e 7→ e[p], e ∈ g.
Let U(g) be the universal enveloping algebra of g and U(g)+ be a two sided ideal in
U(g) such that U(g) is a direct sum of K and U(g)+. Let P (g) be the ideal generated
by the elements ep− e[p], e ∈ g. The factor-algebra U0(g) = U(g)/P (g) is called the
restricted universal enveloping algebra of g.

Restricted cohomology groups of restricted Lie algebras were introduced by
G.Hochschild in ([9]). The cohomology groups Hi(G1, V ) for a G1-module V are
equivalent to the restricted cohomology of the corresponding g-module ([11], I.9,
p.145 ). Let Hi

∗(g, V ) denote the i-th restricted cohomology group of the restricted
Lie algebra g with coefficients in a restricted g-module V. By definition Hi

∗(g, V ) =
ExtiU0(g)(K, V ).

The projection U(g) → K induces the projection U0(g) → K. Denote its kernel
by U0(g)+. Then U0(g)+ is the image of U(g)+ in U0(g) of the canonical map
U(g) → U0(g). A map of the corresponding cochain complexes is induced by the
homomorphism ψ 7→ ψ0, where ψ0(s1, s2, . . . , si) = ψ(s

′

1, s
′

2, . . . , s
′

i), sj ∈ U(g)+

and s
′

j are the canonical images in U0(g)+.
Let now C(V ) be the cochain complex for the universal enveloping algebra U(g)

of the Lie algebra g with coefficients in the g-module V.
Let C0(V ) stand for the subcomplex consisting of the cochains of the form ψ0,

where ψ is a cochain for U0(g)+ with coefficients in V. Then we have an exact
sequence of cochain complexes

0 → C0(V ) → C(V ) → C(V )/C0(V ) → 0.

Since the map ψ 7→ ψ0 is an isomorphism, we may identify Hi(C0(V )) with
Hi
∗(g, V ). This gives us the following exact sequence:

· · · → Hi
∗(g, V ) → Hi(g, V ) → Hi(C(V )/C0(V )) → Hi+1

∗ (g, V ) → · · ·

In [9] Hochschild shows that for i = 1, 2

Hi(C(V )/C0(V )) ∼= S(g,Hi−1(g, V )),
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where S(g,Hi−1(g, V )) is the space of p-semilinear maps
g → Hi−1(g, V ). In [11] it was proved that for i = 1, 2 there is an isomorphism of
G-modules

S(g,Hi−1(g, V )) ∼= Hi−1(g, V )⊗ g∗

(proposition 9.20, p. 160). It is evident that H0(C(V )/C0(V )) = 0. The identifica-
tion of Hi

∗(g, V ) with Hi(G1, V ) gives us the following exact sequence of G-modules:

0 → H1(G1, V ) → H1(g, V ) → H0(g, V )⊗ g∗ → H2(G1, V ) →

→ H2(g, V ) → H1(g, V )⊗ g∗ → H3(G1, V ). (1)

Lemma 2.1. Let V be a nontrivial irreducible g-module and
H1(g, V ) = 0. Then H2(g, V ) ∼= H2(G1, V ) as G-modules.

Proof. Since V is a nontrivial irreducible g-module, H0(g, V ) = 0. The isomorphism
follows from the exact sequence (1).

3. Peculiar irreducible modules

Call an irreducible g-module V peculiar, if H∗(g, V ) 6= 0. Let g be a simple
classical Lie algebra, p > 0, U0(g) its restricted universal enveloping algebra, Z0(g)
be the center of U0(g). The central character cV : Z(g) → K, maps each element
C ∈ Z0(g) to its unique eigenvalue cV (C) on V.

Let λ, µ ∈ X(T ). We will say, that λ and µ are connected, if λ = w(µ+ρ)−ρ for
some w ∈ W. If λ and µ are connected, then according to the linkage principal, L(µ)
is a composition factor of Weyl module V (λ) ([1], Corollary 3 of theorem 1). This
means that the maximal submodule of Weyl module V (λ) is generated by highest
vectors with weights connected with λ. If M(λ) is a maximal submodule of the Weyl
module V (λ), then the following sequence is exact

0 → M(λ) → V (λ) → V (λ)/M(λ) → 0.

The corresponding long exact cohomological sequence shows that the highest weights
of peculiar modules are connected.

Lemma 3.1. Let L(λ) be a peculiar module. Then λ ∈ X1(T ) and λ = w(ρ)−ρ+pν
where ν ∈ X(T ), w ∈ W.

Proof. According to ([10], theorem 2.1) two modules with connected highest weights
have just the same central characters. The trivial module is peculiar. It is ev-
ident that the central character of the trivial module is equal to zero. Accord-
ing to the linkage principle highest weights of peculiar modules are connected
with the highest weight 0. It is known that cohomologies of non-restricted mod-
ules are trivial ([7]). Thus, the highest weight of a peculiar module has the form
λ = w(ρ)− ρ + pν ∈ X1(T ), where ν ∈ X(T ) and w runs through elements of Weyl
group W.
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Corollary 3.2. The lists of possible highest weights of any peculiar module of a
simple classical Lie algebra g of rank two are given below

g = A2

0, (p− 2)λ1 + λ2, λ1 + (p− 2)λ2, (p− 3)λ1, (p− 3)λ2, (p− 2)(λ1 + λ2);

g = B2

0, (p− 2)λ1 + 2λ2, λ1 + (p− 2)λ2, (p− 3)λ1 + 2λ2,

λ1 + (p− 4)λ2, (p− 3)λ1, (p− 4)λ2, (p− 2)(λ1 + λ2);

g = G2

0, (p− 2)λ1 + λ2, 3λ1 + (p− 2)λ2, (p− 5)λ1 + 2λ2, 4λ1 + (p− 3)λ2,

(p− 6)λ1 + 2λ2, 4λ1 + (p− 4)λ2, (p− 6)λ1 + λ2,

3λ1 + (p− 4)λ2, (p− 5)λ1, (p− 3)λ2, (p− 2)(λ1 + λ2).

Proof. We show detailed calculations only in the case of A2. For other algebras
the calculations are similar. So, let g = A2. The Weyl group has 6 elements
1, s1, s2, s1s2, s2s1, s1s2s1. Here si corresponds to si(µ) = µ− 2(µ,αi)

(αi,αi)
αi. The half-

sum of positive roots is equal to ρ = α1 + α2. It is evident that, to the neutral
element 1 corresponds a peculiar highest weight λ = 0. For s1 we have

λ = s1(ρ)− ρ + pν =

s1(α1 + α2)− α1 − α2 + pν = −α1 + pν = −2λ1 + λ2 + pν.

Since λ is restricted and dominant, ν = λ1. So λ = s1(ρ)− ρ + pν = (p− 2)λ1 + λ2

may be a peculiar weight corresponding to s1. Similarly,

λ = s2(ρ)− ρ + pν = −α2 + pν = λ1 − 2λ2 + pν = λ1 + (p− 2)λ2,

λ = s1s2(ρ)− ρ + pν = −2α1 − α2 + pν = −3λ1 + pν = (p− 3)λ1,

λ = s2s1(ρ)− ρ + pν = −α1 − 2α2 + pν = −3λ2 + pν = (p− 3)λ2,

λ = s1s2s1(ρ)− ρ + pν = −2α1 − 2α2 + pν = −2λ1 − 2λ2 + pν =
(p− 2)(λ1 + λ2).

Lemma 3.3. Let g = A2. Then as G-modules,

H0(0) = L(0), H0((p− 3)λ1) = L((p− 3)λ1), H0((p− 3)λ2) =

L((p− 3)λ2);
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H0((p− 2)λ1 + λ2)/L((p− 2)λ1 + λ2) ∼= L((p− 3)λ1);

H0(λ1 + (p− 2)λ2)/L(λ1 + (p− 2)λ2) ∼= L((p− 3)λ2);

H0((p− 2)(λ1 + λ2))/L((p− 2)(λ1 + λ2)) ∼= L(0).

Proof. See [4], [14], [12].

Lemma 3.4. Let g = B2 and p > 3. Then

H0(0) = L(0), H0((p− 3)λ1) = L((p− 3)λ1), H0((p− 4)λ2) =

L((p− 4)λ2);

H0((p− 2)λ1 + 2λ2)/L((p− 2)λ1 + 2λ2) ∼= L((p− 3)λ1 + 2λ2);

H0(λ1 + (p− 2)λ2)/L(λ1 + (p− 2)λ2) ∼= L(λ1 + (p− 4)λ2);

H0((p− 3)λ1 + 2λ2)/L((p− 3)λ1 + 2λ2) ∼= L((p− 3)λ1);

H0(λ1 + (p− 4)λ2)/L(λ1 + (p− 4)λ2) ∼= L((p− 4)λ2);

H0((p− 2)(λ1 + λ2))/L((p− 2)(λ1 + λ2)) ∼= L(λ1 + (p− 2)λ1).

Proof. Recall that the element of maximal length of the Weyl group is w0 = −1 for
g = B2. Since in this case, V (λ) = H0(−w0(λ))∗ = H0(λ)∗, the maximal submodule
of the Weyl module is isomorphic to the factor-module H0(λ)/L(λ). Therefore it
is enough to prove that for any of the considered modules H0(λ), the maximal
submodule of the corresponding Weyl module V (λ) coincides with an irreducible
module mentioned in the lemma.

Let { e1, e2, e3, e4, h1, h2, f1, f2, f3, f4 } be the Chevalley basis of the Lie algebra
g. Vectors in the module V (λ) can be presented as linear combinations of monomials
like

vi,j,k,s :=
fs
4fk

1 f j
3f i

2

s!k!j!i!
⊗ vλ,

where vλ is the highest vector and { f1, f2, f3, f4 } is the basis of u. The actions of
the elements e1, e2 on the monomials vi,j,k,s are defined by

e1vi,j,k,s = (s + 1)vi,j−2,k,s+1 − (i + 1)vi+1,j−1,k,s + (m1 + 1 + i− j − k)vi,j,k−1,s,

e2vi,j,k,s = 2(k + 1)vi,j−1,k+1,s − (j + 1)vi,j+1,k,s−1 + (m2 + 1− i)vi−1,j,k,s,

where λ = m1λ1 + m2λ2.
Let

vm1,m2
i,k =

∑

06j+s6k, 06j+2s6i

aj,svi−j−2s,j,k−j−s,s

be the vector in the space V (λ) with weight λ−kα1−iα2. Call it normal, if a0,0 6= 0.
It is known that highest vectors of proper submodules of V (λ) are normal ([15]).

It is evident that normal vectors of the modules V ((p−3)λ1), V ((p−4)λ2) cannot
serve as highest vectors. So, the modules V ((p−3)λ1), V ((p−4)λ2) have no proper
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submodules. Therefore, they are irreducible and are equal to the corresponding
induced modules.

Suppose now that λ = (p−3)λ1 +2λ2. Then highest vectors can be found among
the normal vectors vp−3,2

i,k , i 6 2, k 6 p− 3.
We now show that vp−3,2

1,1 , vp−3,2
2,2 cannot serve as a highest vector. Suppose that

vp−3,2
1,1 = a1v1,0,1,0 + b1v0,1,0,0,

vp−3,2
2,2 = a2v2,0,2,0 + b2v1,1,1,0 + c2v2,0,2,0 + d2v1,1,1,0

are highest vectors. Then

e1v
p−3,2
1,1 = e1(a1v1,0,1,0 + b1v0,1,0,0) = 0 ⇒ −2a1 − b1 = 0,

e2v
p−3,2
1,1 = e2(a1v1,0,1,0 + b1v0,1,0,0) = 0 ⇒ 2a1 + 2b1 = 0;

e1v
p−3,2
2,2 = e1(a2v2,0,2,0 + b2v1,1,1,0 + c2v2,0,2,0 + d2v1,1,1,0) = 0 ⇒

c2 = b2 = a2 = 0;

e2v
p−3,2
2,2 = e2(a2v2,0,2,0 + b2v1,1,1,0 + c2v2,0,2,0 + d2v1,1,1,0) = 0 ⇒

a2 + 4b2 = 0, 2b2 + 2c2 − d2 = 0.

Therefore, a1 = b1 = 0, a2 = b2 = c2 = d2 = 0.
From the condition e1v

p−3,2
2,k = 0 it follows that k 6 2. Since the normal vector

vp−3,2
2,2 cannot be a highest vector, we have that k = 1. Since

e1v
p−3,2
2,1 = 2(p− 1)v2,0,0,0 + 2v0,0,0,0 = 0,

e2v
p−3,2
2,1 = 2v1,0,1,0 − 2v0,1,0,0 − 2v0,1,0,0 + 2v0,1,0,0 = 0,

we obtain the unique (up to scalar) highest vector vp−3,2
2,1 = 2v2,0,1,2 − v1,1,0,0 −

2v0,0,0,1.
Since the module V ((p− 3)λ1 + 2λ2) has no other highest vectors except vp−3,2

2,1 ,
the submodule generated by this vector is irreducible. The weight of the highest
vector vp−3,2

2,1 is (p − 3)λ1 + 2λ2 − α1 − 2α2 = (p − 3)λ1. Therefore, the maximal
submodule of V ((p−3)λ1 +2λ2) is a module isomorphic to L((p−3)λ1). Analogous
calculations show that the vectors

vp−2,2
1,1 = v1,0,1,0 − v0,1,0,0,

v1,p−2
2,1 = 2v2,0,1,0 + 3v1,1,0,0 − 6v0,0,0,1,

v1,p−4
1,1 = v1,0,1,0 + 2v0,1,0,0,

vp−2,p−2
p−3,p−3 = vp−3,0,p−3,0+

∑

16j+2s6p−2

(−1)s(p− 3− j − s)!(p− 1) · · · (p− j − s)vp−3−j−2s,j,p−3−j−s,s
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are unique (up to scalar) highest vectors of the modules V ((p−2)λ1 +2λ2), V (λ1 +
(p− 2)λ2), V (λ1 + (p− 4)λ2), V ((p− 2)(λ1 + λ2)) correspondingly.

Therefore, the submodules generated by one of these vectors are irreducible.
Their highest weights are respectively (p − 3)λ1 + 2λ2, λ1 + (p − 4)λ2, (p − 4)λ2,
λ1+(p−2)λ2. Thus maximal submodules of the following modules V ((p−2)λ1+2λ2),
V (λ1 +(p−2)λ2), V (λ1 +(p−4)λ2), V ((p−2)(λ1 +λ2)) are the irreducible modules
L((p− 3)λ1 + 2λ2), L(λ1 + (p− 4)λ2), L((p− 4)λ2), L(λ1 + (p− 2)λ2). The lemma
is proved completely.

By analogous methods the following lemma can be proved.

Lemma 3.5. Let g = G2 and p > 5. Then

H0(0) = L(0), H0((p− 5)λ1) = L((p− 5)λ1), H0((p− 3)λ2) =

L((p− 3)λ2);

H0((p− 2)λ1 + λ2)/L((p− 2)λ1 + λ2) ∼= L((p− 5)λ1 + 2λ2);

H0(3λ1 + (p− 2)λ2)/L(3λ1 + (p− 2)λ2) ∼= L(4λ1 + (p− 3)λ2);

H0((p− 5)λ1 + 2λ2)/L((p− 5)λ1 + 2λ2) ∼= L((p− 6)λ1 + 2λ2);

H0(4λ1 + (p− 3)λ2)/L(4λ1 + (p− 3)λ2) ∼= L(4λ1 + (p− 4)λ2);

H0((p− 6)λ1 + λ2)/L((p− 6)λ1 + λ2) ∼= L((p− 5)λ1);

H0(4λ1 + (p− 4)λ2)/L(4λ1 + (p− 4)λ2) ∼= L((p− 3)λ2);

H0((p− 2)(λ1 + λ2))/L((p− 2)(λ1 + λ2)) ∼= L((2p− 6)λ1 + 2λ1).

4. G1-cohomology

Let S(u∗) be the symmetric algebra of the Lie algebra u∗, w an element of
Weyl group W, l(w) length of the element w, ρ the half sum of positive roots
and w(ρ) − ρ + pν ∈ X1(T ). Below we use the following known facts about first
cohomology groups of G1 ([12], proposition 4.9(b) and 4.3) and Andersen-Jantzen
general formula ([2], corollary 3.7(a),(b)):

H1(G1, L(pλi − αi))(−1) ∼= H0(λi), i = 1, 2, . . . , n, (2)

H1(G1, L(λ))(−1) ∼= (H0(λ)/L(λ))G1 ,

where λ 6= pλi − αi , i = 1, 2, . . . , n, (3)

Hi(G1,K)(−1) ∼= H0(Si/2(u∗)). (4)

Hi(G1,H0(Kw(ρ)−ρ+pν))(−1) ∼= H0(S(i−l(w))/2(u∗)⊗Kν). (5)
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Proposition 4.1. Let g = A2, B2, G2 and p > h. Then
H2(G1,H0(λ)) = 0, except in the following cases

(a) g = A2

H2(G1, H0(0))(−1) ∼= g∗ ∼= H0(λ1 + λ2) = L(λ1 + λ2),

H2(G1,H0((p− 3)λ1))(−1) ∼= H0(λ1),

H2(G1, H0((p− 3)λ2))(−1) ∼= H0(λ2);

(b) g = B2

H2(G1,H0(0))(−1) ∼= H0(λ1)⊕H0(2λ2),

H2(G1,H0((p− 3)λ1 + 2λ2))(−1) ∼= H0(λ1),

H2(G1,H0(λ1 + (p− 4)λ2))(−1) ∼= H0(λ2);

(c) g = G2

H2(G1,H0(0))(−1) ∼= H0(λ1)⊕H0(λ2),

H2(G1,H0((p− 5)λ1 + 2λ2))(−1) ∼= H0(λ1),

H2(G1,H0(4λ1 + (p− 3)λ2))(−1) ∼= H0(λ2).

Proof. follows from (4) and (5) .

For any λ ∈ X1(T ) \ {0} the following exact sequence holds

0 → L(λ) → H0(λ) → H0(λ)/L(λ) → 0. (6)

Consider the corresponding long exact sequence of G1-cohomology groups

· · · → Hi(G1, L(λ)) → Hi(G1,H0(λ)) → Hi(G1, H0(λ)/L(λ)) →

Hi+1(G1, L(λ)) → Hi+1(G1,H0(λ)) → Hi+1(G1,H0(λ)/L(λ)) → · · ·

The triviality of H0(G1, L(λ)) is evident. The module H0(G1,H0(λ)) is an invariant
space for G1 and a submodule of the G-module H0(λ). If it is non-zero, it contains
the simple socle L(λ) of the G-module H0(λ). Furthermore, G1 acts on L(λ) in a
trivial way if and only if, λ ∈ pX(T ). For the restricted weight λ ∈ X1(T ) this is
possible only in the case λ = 0. Therefore,

H0(λ)G1 = 0 (7)

for any λ ∈ X1(T ) \ {0}. Then the exact sequence of G1-cohomology groups looks
like

0 → H0(G1,H0(λ)/L(λ)) → H1(G1, L(λ)) → H1(G1,H0(λ)) →
H1(G1,H0(λ)/L(λ)) → H2(G1, L(λ)) → H2(G1, H0(λ)) →

H2(G1,H0(λ)/L(λ)) → H3(G1, L(λ)) → H3(G1,H0(λ)) → · · ·

(8)
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Proposition 4.2. Let g = A2, B2, G2 and p > h. Then
H1(G1, L(λ)) = 0, except in the following cases

(a) g = A2

H1(G1, L((p− 2)(λ1 + λ2)))(−1) ∼= L(0),

H1(G1, L((p− 2)λ1 + λ2))(−1) ∼= L(λ1),

H1(G1, L(λ1 + (p− 2)λ2))(−1) ∼= L(λ2);

(b) g = B2

H1(G1, L((p− 2)λ1 + 2λ2))(−1) ∼= L(λ1),

H1(G1, L(λ1 + (p− 2)λ2))(−1) ∼= L(λ2);

(c) g = G2

H1(G1, L((p− 2)λ1 + λ2))(−1) ∼= L(λ1),

H1(G1, L(3λ1 + (p− 2)λ2))(−1) ∼= L(λ2).

Proof. As we mentioned above, the first ordinary cohomology groups and the corre-
sponding cohomology groups for G1 coincide. Statement (a) was proved in ([5],(3.6),
p.112) and ([12], 6.10, p.314).

We now prove (b) and (c). We will use (2) and (3). Let us consider the induced
modules H0(λ) corresponding to the weights from the list of corollary 3.2.

By lemmas 3.4 and 3.5 the factor-modules H0(λ)/L(λ) for the Lie algebras g =
B2, G2 are simple and the highest weight of H0(λ)/L(λ) is not an element of pX(T ),
therefore (H0(λ)/L(λ))G1 = 0 for peculiar modules. So, nontrivial first cohomology
groups can appear only for modules of the form L(pλi − αi) and they are given by
(2).

Let g = B2. We have pλ1 − α1 = pλ1 − 2λ1 + λ2 = (p − 2)λ1 + λ2, pλ2 − α2 =
pλ2 + λ1 − 2λ2 = λ1 + (p− 2)λ2. So, according to (2) we obtain (b).

If g = G2, then pλ1 − α1 = pλ1 − 2λ1 + λ2 = (p − 2)λ1 + λ2, pλ2 − α2 =
pλ2 + 3λ1 − 2λ2 = 3λ1 + (p− 2)λ2. So, by (2) we obtain (c).

Proposition 4.3. Let g = A2, B2, G2 and p > h. Then
H2(G1, L(λ)) = 0, except in the following cases

(a) g = A2

H2(G1, L(0))(−1) ∼= g∗ ∼= H0(λ1 + λ2) = L(λ1 + λ2),

H2(G1, L((p− 3)λ1))(−1) ∼= L(λ1),

H2(G1, L((p− 3)λ2))(−1) ∼= L(λ2);

(b) g = B2

H2(G1, L(0))(−1) ∼= L(λ1)⊕ L(2λ2),

H2(G1, L((p− 3)λ1 + 2λ2))(−1) ∼= L(λ1),

H2(G1, L(λ1 + (p− 4)λ2))(−1) ∼= L(λ2);
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H2(G1, L((p− 2)(λ1 + λ2))(−1) ∼= L(λ2);

(c) g = G2

H2(G1, L(0))(−1) ∼= L(λ1)⊕ L(λ2),

H2(G1, L((p− 5)λ1 + 2λ2))(−1) ∼= L(λ1),

H2(G1, L(4λ1 + (p− 3)λ2))(−1) ∼= L(λ2).

Proof. (a) follows from the exact sequence (8), lemma 3.3 and propositions 4.1, 4.2,
part (a).

(b) follows from the exact sequence (8), lemma 3.4 and propositions 4.1 and 4.2,
part (b).

(c) follows from the exact sequence (8), lemma 3.5 and propositions 4.1 and 4.2,
part (c).

5. g-cohomology

To prove theorem 1.1 we need some lemmas.

Lemma 5.1. Let g be a Lie algebra, V be a restricted g-module. For an associative
2-cocycle ψ, let ψ′ be the function defined by ψ′x(y) = ψ(xp−x[p], y)−ψ(y, xp−x[p]).
Then the map ψ → ψ′ induces a K-linear map of H2(g, V ) into S(g,H1(g, V )).

Proof. [9], Theorem 3.1.

Lemma 5.2. Let g = A2, B2, G2. Suppose that V is a restricted irreducible
g−module and H1(g, V ) 6= 0. Then the lists of possible weights of the G-module
H2(g, V ) and the lists of possible dominant weights are the following

g V weights of H2(g, V ) dominants

A2 L((p− 2)λ1 + λ2) pλ1, p(−λ1 + λ2), p(−λ2) pλ1

A2 L(λ1 + (p− 2)λ2) pλ2, p(λ1 − λ2), −pλ1 pλ2
A2 L((p− 2)(λ1 + λ2)) 0, p(2λ1 − λ2), p(−λ1 + 2λ2), p(λ1 + λ2)

p(λ1 + λ2), p(−2λ1 + λ2),
p(λ1 − 2λ2), p(−λ1 − λ2)

B2 L((p− 2)λ1 + 2λ2) 0, pλ1, −pλ1, p(−λ1 + 2λ2), 0, pλ1
p(λ1 − 2λ2)

B2 L(λ1 + (p− 2)λ2) pλ2, −pλ2, p(λ1 − λ2) 0, pλ2

p(−λ1 + λ2)
G2 L((p− 2)λ1 + λ2) 0, pλ1, −pλ1, p(−λ1 + λ2), 0, pλ1

p(2λ1 − λ2), p(λ1 − λ2),
p(−2λ1 + λ2)

G2 L(3λ1 + (p− 2)λ2) 0, pλ2, −pλ2, p(2λ1 − λ2), 0, pλ1, pλ2

p(−3λ1 + 2λ2), p(−λ1 + λ2),
p(3λ1 − λ2), pλ1, p(−2λ1 + λ2),
p(3λ1 − 2λ2), p(λ1 − λ2),
p(−3λ1 + λ2), −pλ1
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Proof. It follows from lemma 5.1 and proposition 4.2.

Lemma 5.3. Let g = B2 and p > 5. Then

H3(G1, L((p− 3)λ1 + 2λ2)) = H3(G1, L(λ1 + (p− 4)λ2)) = 0.

Proof. By lemma 3.4 the following sequence is exact

0 → L((p− 3)λ1 + 2λ2) → H0((p− 3)λ1 + 2λ2) → L((p− 3)λ1) → 0.

The corresponding exact sequence of G1-cohomology groups gives us that the
following sequence is exact

H2(G1, L((p− 3)λ1)) → H3(G1, L((p− 3)λ1 + 2λ2)) →
H3(G1,H0((p− 3)λ1 + 2λ2))

(9)

By (5) H3(G1,H0((p− 3)λ1 + 2λ2)) = 0, since i = 3, l(w) = 2. By proposition 4.3
we have H2(G1, L((p−3)λ1)) = 0. Therefore, from the exact sequence (9) we obtain
H3(G1, L((p− 3)λ1 + 2λ2)) = 0.

The second statement H3(G1, L(λ1 + (p− 4)λ2)) = 0 can be proved in an anal-
ogous way.

Lemma 5.4. Let g = G2 and p > 5. Then

H3(G1, L((p− 5)λ1 + 2λ2)) = 0.

Proof. By lemma 3.5 the following sequence is exact

0 → L((p− 5)λ1 + 2λ2) → H0((p− 5)λ1 + 2λ2) → L((2p− 6)λ1 + 2λ2) → 0.

Therefore, the following sequence of G1-cohomology groups is exact

H2(G1, L((2p− 6)λ1 + 2λ2)) → H3(G1, L((p− 5)λ1 + 2λ2)) →

H3(G1,H0((p− 5)λ1 + 2λ2)) (10)

By (5) H3(G1,H0((p− 5)λ1 + 2λ2)) = 0, since i = 3, l(w) = 2. By proposition 4.3
H2(G1, L((2p− 6)λ1 +2λ2)) = 0. Then from the exact sequence (10) it follows that
H3(G1, L((p− 5)λ1 + 2λ2)) = 0.

Proof of theorem 1.1. The proof is divided into two parts. In the first part we prove
all isomorphisms mentioned in theorem 1.1. In the second part we establish that for
all other weights given in corollary 3.2 the second cohomology groups are trivial.

Part 1. By lemma 2.1 all isomorphisms, except the case g = G2 and V =
L(3λ1 + (p− 2)λ2), follow from proposition 4.3.

Let us prove the last isomorphism of (c) . If H2(G1, L(λ)) = 0, then from the
exact sequence (1) it follows that H2(g, L(λ)) is isomorphic to the kernel of the map

f : H1(g, L(λ))⊗ g∗ → H3(G1, L(λ)). (11)

By proposition 4.3 H2(G1, L(3λ1 + (p− 2)λ2)) = 0. Hence
H2(g, L(3λ1 + (p− 2)λ2)) is isomorphic to ker f. By (5)

H3(G1,H0(3λ1 + (p− 2)λ2))(−1) ∼=
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H0(2λ1)⊕H0(2λ2)⊕H0(3λ1)⊕H0(λ1 + λ2). (12)

By lemma 3.5 H0(3λ1 + (p − 2)λ2)/L(3λ1 + (p − 2)λ2) ∼= L(4λ1 + (p − 3)λ2) and
by proposition 4.3 H2(G1, L(4λ1 +(p−3)λ2))(−1) ∼= L(λ2). Therefore, by the exact
sequence (8), H3(G1, L(3λ1 +(p−2)λ2)) as a G-module has (possible) composition
factors H0(2λ1), H0(2λ2), H0(3λ2), H0(λ1 + λ2) and H0(λ2).

By proposition 4.2 H1(g, L(3λ1 + (p− 2)λ2)) ∼= L(λ2). Therefore,

H1(g, L(3λ1 + (p− 2)λ2))⊗ g∗ ∼= L(λ2)⊗ g ∼=

H0(2λ1)⊕H0(2λ2)⊕H0(3λ1)⊕H0(λ2)⊕H0(0). (13)

From the decompositions of H1(g, L(3λ1 + (p− 2)λ2))⊗ g∗ and H3(G1, L(3λ1 +
(p− 2)λ2)) we obtain that H0(0) = L(0) ⊆ ker f.

If ker f contains some of the G-modules H0(2λ1), H0(2λ2),
H0(3λ1) and H0(λ2), then the G-module H2(g, L(3λ1 + (p− 2)λ2)) has nontrivial
elements with weights 2pλ1, 2pλ2, 3pλ1, or pλ2. We will prove that this is impossi-
ble.

For g = G2 the list of dominant weights of adjoint G-module is {0, pλ1, pλ2}
(see lemma 5.2). Therefore, the only non-zero dominant weights of the G-module
H2(g, L(3λ1 +(p−2)λ2)) are pλ1 or pλ2. Thus cocycles in Z2(g, L(3λ1 +(p−2)λ2))
with weights 2pλ1, 2pλ2,
3pλ1 are coboundaries.

Now we prove that the classes of cocycles with weights pλ2 are also trivial. To
do it we use the realization of the g-module L(3λ1 + (p− 2)λ2) as a factor-module
of the Weyl module.

Let fi, hj , ei : i = 1, . . . , 6, j = 1, 2 be a Chevalley basis of g, where fi =
e−αi , ei = eαi for i = 1, 2 i f3 = e−α1−α2 , f4 = e−2α1−α2 , f5 = e−3α1−α2 , f6 =
e−3α1−2α2 , e3 = eα1+α2 , e4 = e2α1+α2 , e5 = e3α1+α2 , e6 = e3α1+2α2 . The Weyl
module V (m1λ1 + m2λ2) can be defined on the vector space

vi,j,k,l,s,t :=
f t
6f

s
5f l

4f
k
3 f j

2f i
1

t!s!l!k!j!i!
⊗ vm1λ1+m2λ2 ,

where vm1λ1+m2λ2 is the highest weight, by

e1vi,j,k,l,s,t = (l + 1)vi,j,k+1,l,s−1,t − 3(t + 1)vi,j,k,l−2,s,t+1 −
2(k + 1)vi,j,k+1,l−1,s,t − 3(j + 1)vi,j+1,k−1,l,s,t + (m1 + 1− i)vi−1,j,k,l,s,t,

e2vi,j,k,l,s,t = (s + 1)vi,j,k,l,s+1,t−1 − (l + 1)vi,j,k−2,l+1,s,t +

(i + 1)vi+1,j,k−1,l,s,t − 2(t + 1)vi,j,k−3,l,s,t+1 +

(m2 + 1 + i− j − k)vi,j−1,k,l,s,t,

f1vi,j,k,l,s,t = −3(s + 1)vi,j,k,l−1,s+1,t − 3(t + 1)vi,j,k−2,l,s,t+1

−2(l + 1)vi,j,k−1,l+1,s,t − (k + 1)vi,j−1,k+1,l,s,t + (i + 1)vi+1,j,k,l,s,t,
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f2vi,j,k,l,s,t = −(t + 1)vi,j,k,l,s−1,t+1 + (j + 1)vi,j+1,k,l,s,t.

If some cocycle ψ of the module L(3λ1 + (p− 2)λ2) has weight pλ2, then

ψ(e1, f3) = x1v0,0,0,0,0,0, ψ(e5, f6) = x2v0,0,0,0,0,0,

ψ(f1, f2) = x3v1,0,0,0,0,0, ψ(e1, f4) = x4v1,0,0,0,0,0,

ψ(e4, f6) = x5v1,0,0,0,0,0, ψ(f1, f3) = x6v2,0,0,0,0,0,

ψ(e1, f5) = x7v2,0,0,0,0,0, ψ(e3, f6) = x8v2,0,0,0,0,0,

ψ(f1, f4) = x9v3,0,0,0,0,0, ψ(e2, f6) = x10v3,0,0,0,0,0,

ψ(f2, f3) = x11v1,1,0,0,0,0 + x12v0,0,1,0,0,0,

ψ(f1, f6) = x13v3,0,1,0,0,0 + x14v2,0,0,1,0,0 + x15v1,0,0,0,1,0,

ψ(e1, f6) = x16v2,1,0,0,0,0 + x17v1,0,1,0,0,0 + x18v0,0,0,1,0,0,

ψ(f2, f4) = x19v2,1,0,0,0,0 + x20v1,0,1,0,0,0 + x21v0,0,0,1,0,0,

ψ(f2, f5) = x22v3,1,0,0,0,0 + x23v2,0,1,0,0,0 + x24v1,0,0,1,0,0 + x25v0,0,0,0,1,0,

ψ(f3, f4) = x26v3,1,0,0,0,0 + x27v2,0,1,0,0,0 + x28v1,0,0,1,0,0 + x29v0,0,0,0,1,0,

ψ(f2, f6) = x30v3,2,0,0,0,0 + x31v2,1,1,0,0,0 + x32v1,0,2,0,0,0 + x33v1,1,0,1,0,0+

x34v0,0,1,1,0,0 + x35v0,1,0,0,1,0 + x36v0,0,0,0,0,1,

ψ(f3, f5) = x37v3,0,1,0,0,0 + x38v2,0,0,1,0,0 + x39v1,0,0,0,1,0,

ψ(f3, f6) = x40v3,1,1,0,0,0 + x41v2,0,2,0,0,0 + x42v2,1,0,1,0,0 + x43v0,0,0,2,0,0+

x44v1,0,1,1,0,0 + x45v1,1,0,0,1,0 + x46v0,0,1,0,1,0 + x47v1,0,0,0,0,1,

ψ(f4, f5) = x48v3,0,0,1,0,0 + x49v2,0,0,0,1,0,

ψ(f4, f6) = x50v3,0,2,0,0,0 + x51v3,1,0,1,0,0 + x52v1,0,0,2,0,0 + x53v2,0,1,1,0,0+

x54v2,1,0,0,1,0 + x55v1,0,1,0,1,0 + x56v0,0,0,1,1,0 + x57v2,0,0,0,0,1,

ψ(f5, f6) = x58v3,0,1,1,0,0 + x59v2,0,0,2,0,0 + x60v3,1,0,0,1,0 + x61v0,0,0,0,2,0+

x62v2,0,1,0,1,0 + x63v1,0,0,1,1,0 + x64v3,0,0,0,0,1,

for some xi ∈ K (i = 1, . . . , 64). Non-written components of ψ(X,Y ) are equal to
0 (sums of weights of X and Y can not be a weight of the module).

The conditions

dψ(hi, f2, f6) = 0, dψ(hi, f2, f5) = 0, dψ(hi, e1, f3) = 0, i = 1, 2,
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gives us a system of linear equations. Solving this system (we omit the standard
but long calculations) gives us that

ψ(hi, f2) = ψ(hi, f3) = ψ(hi, f4) = ψ(hi, f5) = ψ(hi, f6) = 0, i = 1, 2.

Furthermore, from the following system of linear equations with 16 conditions

dψ(f4, f5, f6) = 0, dψ(f3, f5, f6) = 0, dψ(f3, f4, f5) = 0,

dψ(f2, f4, f5) = 0, dψ(f2, f5, f6) = 0, dψ(f1, f4, f6) = 0,

dψ(e1, f5, f6) = 0, dψ(e2, f5, f6) = 0, dψ(e3, f5, f6) = 0,

dψ(e4, f5, f6) = 0, dψ(e5, f4, f5) = 0, dψ(e6, f5, f6) = 0,

dψ(e2, f4, f6) = 0, dψ(e3, f3, f4) = 0, dψ(e1, f3, f4) = 0,

dψ(e1, f4, f6) = 0

we obtain that ψ should have the following form

ψ(f1, f2) = x3v1,0,0,0,0,0, ψ(f1, f3) = x6v2,0,0,0,0,0,

ψ(f2, f3) = x11v1,1,0,0,0,0 + x12v0,0,1,0,0,0.

Then from the equation dψ(e1, f1, f2) = 0 we obtain that x3 = 0. Since ψ(f1, f2) =
0, then the condition dψ(e1, f1, f3) = 0 gives us that x6 = 0. Finally, from the
condition dψ(f2, f3, f6) = 0, we have that ψ(f2, f3) = 0. Therefore, any cocycle
with weight pλ1 is trivial.

So, in the case L(λ) = L(3λ1 + (p − 2)λ2), the kernel of f is isomorphic to the
G-module H0(0) = L(0). Thus,

H2(G2, L(3λ1 + (p− 2)λ2)) ∼= L(0)(1).

Part 2. We now prove that the second cohomology groups of irreducible peculiar
modules which are not mentioned in the formulation of theorem 1.1 are trivial.

The lists of highest weights of peculiar modules are given in corollary 3.2. By
proposition 4.3 the second cohomology groups of G1 for these modules are trivial.
Therefore, it is enough to show that ker f = 0 for any of these modules. We will do
it by considering each case of algebras separately.

The case (a). By proposition 4.2 only the following 3 modules have nontrivial
first cohomology groups L((p− 2)(λ1 + λ2)), L((p− 2)λ1 + λ2), L(λ1 + (p− 2)λ2).
By (4) and (5) we have

H3(G1, H0((p− 2)(λ1 + λ2)))(−1) ∼= H0(λ1 + λ2), (14)

H3(G1,H0((p− 2)λ1 + λ2))(−1) ∼= H0(2λ2)⊕H0(2λ1 + λ2), (15)

H3(G1,H0(λ1 + (p− 2)λ2))(−1) ∼= H0(2λ1)⊕H0(λ1 + 2λ2). (16)

H3(G1, H0(λ))(−1) = 0 if λ = 0, (p− 3)λ1, (p− 3)λ2. (17)
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According to (14)–(17), lemma 3.3 and proposition 4.3 the exact sequence (8) gives
us the following exact sequences

0 → H0(λ1 + λ2) → H3(G1, L((p− 2)(λ1 + λ2))) → H0(λ1 + λ2) → 0, (18)

0 → L(λ1) → H3(G1, L((p− 2)λ1 + λ2)) →

H0(2λ2)⊕H0(2λ1 + λ2) → 0, (19)

0 → L(λ2) → H3(G1, L(λ1 + (p− 2)λ2)) →

H0(2λ1)⊕H0(λ1 + 2λ2) → 0. (20)

On the other hand, according to proposition 4.2, we have

H1(g, L((p− 2)(λ1 + λ2))⊗ g∗ ∼= L(0)⊗ g ∼= g ∼= H0(λ1 + λ2), (21)

H1(g, L((p− 2)λ1 + λ2))⊗ g∗ ∼= L(λ1)⊗ g ∼=

H0(2λ2)⊕H0(2λ1 + λ2)⊕H0(λ1), (22)

H1(g, L(λ1 + (p− 2)λ2))⊗ g∗ ∼=

L(λ2)⊗ g ∼= H0(2λ1)⊕H0(λ1 + 2λ2)⊕H0(λ2). (23)

Consider each case of these modules.
Let V = L((p − 2)(λ1 + λ2)). From (14) and (21) we see that H3(G1, L((p −

2)(λ1 + λ2)) contains a composition factor H0(λ1 + λ2) isomorphic to H1(g, L((p−
2)(λ1 + λ2)))⊗ g∗.

If ker f contains H0(λ1 + λ2), then the second cohomology group H2(g, L((p −
2)(λ1 + λ2))) as a G-module contains classes of cocycles of weights p(λ1 + λ2). The
highest weight p(λ1 + λ2)− 2α1 − 2α2 can not be presented as a sum of p(λ1 + λ2)
and two roots. Therefore, such a case is impossible. Therefore, H0(λ1 + λ2) can
not be in ker f. Then the exact sequence (1) for L((p − 2)(λ1 + λ2)) gives us that
ker f = 0.

Let fi, hj , ei : i = 1, 2, 3, j = 1, 2 be the Chevalley basis of g, where fi =
e−αi , ei = eαi for i = 1, 2 and f3 = e−α1−α2 , e3 = eα1+α2 . The Weyl module
V (m1λ1 + m2λ2) can be defined on the vector space with basis

vi,j,k :=
fk
3 f j

2f i
1

k!j!i!
⊗ vm1λ1+m2λ2 ,

where vm1λ1+m2λ2 is the highest weight.
The action of g is given by

e1vi,j,k = −(j + 1)vi,j+1,k−1 + (m1 + 1− i)vi−1,j,k,
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e2vi,j,k = (i + 1)vi+1,j,k−1 + (m2 + 1 + i− j − k)vi,j−1,k,

f1vi,j,k = −(k + 1)vi,j−1,k+1,

f2vi,j,k = (j + 1)vi,j+1,k.

Let now V = L((p − 2)λ1 + λ2). From (19) and (22) we see that H1(g, L((p −
2)λ1 +λ2))⊗g∗ and H3(G1, L((p−2)λ1 +λ2)) have isomorphic composition factors
H0(2λ1 + λ2), H0(2λ2), H0(λ1).

By lemma 5.2 any nontrivial cocycle of Z2(g, L((p − 2)λ1 + λ2)) must have a
dominant weight of the form pλ1. Therefore, cocycles of Z2(g, L((p − 2)λ1 + λ2))
with weights p(2λ1 + λ2), 2pλ2 are 0. Thus H0(2λ1 + λ2), H0(2λ2) can not be in
ker f. We now prove that H0(λ1) also can not be in ker f . To do this, we prove that
cocycles with weight pλ1 are coboundaries.

Let ψ be some cocycle of weight pλ1. Then

ψ(h1, f1) = x1v0,0,0, ψ(h2, f1) = x2v0,0,0, ψ(e2, f3) = x3v0,0,0,

ψ(h1, f3) = x4v0,1,0, ψ(h2, f3) = x5v0,1,0,,

ψ(f1, f2) = x6v0,1,0, ψ(f1, f3) = x7v0,0,1,

for some xi ∈ K (i = 1, . . . , 7). Non-written components are zero.
From the cocyclicity conditions we obtain one cocycle of weight pλ1 with the

following non-zero components

ψ(e2, f3) = v0,0,0, ψ(f1, f2) = v0,1,0, ψ(f1, f3) = v0,0,1.

It is easy to see that, ψ is a coboundary dω, where ω(f1) = v0,0,0. So, any cocycle
of the weight pλ1 is trivial. Thus L(λ1) 6⊂ ker f. The case of the dual module
V = L(λ1 + (p− 2)λ2) may be treated in a similar way.

The case (b). According to proposition 4.2 the first cohomology groups are non-
zero only for the following two modules L((p− 2)λ1 + 2λ2), L(λ1 + (p− 2)λ2). By
(5) we have

H3(G1,H0((p− 2)λ1 + 2λ2))(−1) ∼= H0(2λ1)⊕H0(2λ2)⊕H0(λ1 + 2λ2), (24)

H3(G1,H0(λ1 + (p− 2)λ2))(−1) ∼= H0(3λ2)⊕H0(λ1 + λ2). (25)

According to (24), (25), lemma 3.4, 5.3 and proposition 4.3 the exact sequence (8)
can be rewritten as follows

0 → L(λ1) → H3(G1, L((p− 2)λ1 + 2λ2)) →

H0(2λ1)⊕H0(2λ2)⊕H0(λ1 + 2λ2) → 0, (26)

0 → L(λ2) → H3(G1, L(λ1 + (p− 2)λ2)) →

H0(3λ2)⊕H0(λ1 + λ2) → 0. (27)
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By proposition 4.2,

H1(g, L((p− 2)λ1 + 2λ2))⊗ g∗ ∼= L(λ1)⊗ g ∼=

H0(2λ2)⊕H0(λ1 + 2λ2)⊕H0(λ1), (28)

H1(g, L(λ1 + (p− 2)λ2))⊗ g∗ ∼= L(λ2)⊗ g ∼=

H0(3λ2)⊕H0(λ1 + λ2)⊕H0(λ2). (29)

Let V = L((p−2)λ1+2λ2). From (26) and (28) we see that all composition factors
H0(λ1 +2λ2), H0(2λ2), H0(λ1) of the G-module H1(g, L((p−2)λ1 +2λ2))⊗g∗ are
in the module H3(G1, L((p − 2)λ1 + 2λ2)). By lemma 5.2 cocycles have dominant
weights equal to pλ1. Therefore, Z2(g, L((p − 2)λ1 + 2λ2)) has no cocycles with
weights p(λ1+2λ2), 2pλ2. Therefore, ker f has no submodules isomorphic to H0(λ1+
2λ2) or H0(2λ2). We now prove that H0(λ1) 6⊆ ker f. We prove that any cocycle ψ
with weight pλ1 is a coboundary.

For any cocycle ψ with weight pλ1

ψ(h1, f1) = x1v0,0,0,0, ψ(h2, f1) = x2v0,0,0,0, ψ(e2, f3) = x3v0,0,0,0,

ψ(h1, f3) = x4v1,0,0,0, ψ(h2, f3) = x5v1,0,0,0, ψ(f1, f2) = x6v1,0,0,0,

ψ(e2, f4) = x7v1,0,0,0, ψ(h1, f4) = x8v2,0,0,0, ψ(h2, f2) = x9v2,0,0,0,

ψ(f2, f3) = x10v2,0,0,0, ψ(f1, f3) = x11v0,1,0,0,

ψ(f1, f4) = x12v1,1,0,0 + x13v0,0,0,1, ψ(f3, f4) = x14v1,0,0,1,

for some xi ∈ K (i = 1, . . . , 14). Non-written components are 0.
From the cocyclicity conditions we obtain that such cocycles are linear combina-

tions of the following two cocycles

ψ1(e2, f3) = 2v0,0,0,0, ψ1(f1, f2) = v1,0,0,0,

ψ1(f1, f3) = v0,1,0,0, ψ1(f1, f4) = v0,0,0,1;

ψ2(e2, f4) = −v1,0,0,0, ψ2(f2, f3) = −2v2,0,0,0,

ψ2(f1, f4) = v0,0,0,1, ψ2(f3, f4) = v1,0,0,1.

Both cocycles are coboundaries: ψ1 = dω1 and ψ2 = dω2, where non-zero compo-
nents of ω1 and ω2 are given by ω1(f1) = −v0,0,0,0 and ω2(f4) = −v2,0,0,0. So, any
cocycle of weight pλ1 is a coboundary. Therefore, L(λ1) 6⊆ ker f.

Consider now the case V = L(λ1 + (p− 2)λ2).
From (27) and (29) we see that H1(g, L(λ1 +(p−2)λ2))⊗g∗ and H3(G1, L(λ1 +

(p− 2)λ2)) have equal composition factors H0(3λ2), H0(λ2 + λ2), H0(λ2) = L(λ2).
By lemma 5.2 a non-trivial 2-cocycle has dominant weight equal to pλ2. Therefore,
all cocycles of Z2(g, L(λ1 +(p− 2)λ2)), with G-weights 3pλ2, p(λ1 +λ2) are trivial.
Thus, the modules H0(3λ2), H0(λ1 + λ2) are not in ker f.
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We now prove that H0(λ2) is also not in ker f. So, we need to prove that any
2-cocycle with weight pλ2 is trivial.

Let ψ be some cocycle of weight pλ2. Then all components ψ(X, Y ) are zero
except the following components

ψ(h1, f2) = x1v0,0,0,0, ψ(h2, f2) = x2v0,0,0,0, ψ(e1, f3) = x3v0,0,0,0,

ψ(e3, f4) = x4v0,0,0,0, ψ(h1, f3) = x5v0,0,1,0, ψ(h2, f3) = x6v0,0,1,0,

ψ(f1, f2) = x7v0,0,,0, ψ(e2, f4) = x8v0,0,1,0,

ψ(h1, f4) = x9v1,0,1,0 + x10v0,1,0,0,

ψ(h2, f4) = x12v1,0,1,0 + x12v0,1,0,0, ψ(f2, f3) = x13v1,0,1,0 + x14v0,1,0,0,

ψ(f2, f4) = x15v1,1,0,0 + x16v0,0,0,1, ψ(f1, f4) = x17v0,1,1,0,

ψ(f3, f4) = x18v1,1,1,0 + x19v0,0,1,1, ψ(e1, f4) = x20v1,0,0,0,

for some xi ∈ K (i = 1, . . . , 20).
We have

dψ(e1, f1, f4) = 0 ⇒ x10 = 0, x9 − x17 − x20 = 0.

Then the equations dψ(h1, e1, f3) = 0, dψ(h1, e3, f4) = 0,
dψ(h1, f2, f3) = 0 gives us x1 = x5 = x9 = 0.

Furthermore, from

dψ(f2, f3, f4) = 0, dψ(e1, f3, f4) = 0, dψ(f1, f3, f4) = 0,

dψ(e1, f1, f4) = 0, dψ(e1, f2, f4) = 0, dψ(e3, f2, f4) = 0

we have x4 = x16 = x14 = −x3 and x18 = x13 = x15 = x20 = x17 = 0.
From dψ(e2, f2, f4) = 0, dψ(e2, f3, f4) = 0, dψ(e3, f3, f4) = 0 we obtain x8 =

x11 = x12 = x16 = x14 = x13 = 0. Finally, from dψ(e1, f1, f2) = 0, dψ(e3, f2, f3) = 0
we obtain x7 = x2 = 0. So, ψ = 0, if it has weight pλ2. Thus H0(λ2) 6⊆ ker f.

The case (c). By proposition 4.2 only the following two modules have non-zero
first cohomology groups, L((p− 2)λ1 +λ2) and L(3λ1 +(p− 2)λ2). We have proved
above that H2(g, L(3λ1 + (p − 2)λ2)) ∼= L(0)(1). Therefore, it is enough to check
that ker f = 0 for the module L((p− 2)λ1 + λ2). According to (5),

H3(G1,H0((p− 2)λ1 + λ2))(−1) ∼= H0(λ2)⊕H0(2λ1)⊕H0(λ1 + λ2). (30)

So, (30), lemma 3.5, 5.4 and proposition 4.3 and the exact sequence (8), gives us
the following exact sequence

0 → L(λ1) → H3(G1, L((p− 2)λ1 + λ2)) →

H0(λ2)⊕H0(2λ1)⊕H0(λ1 + λ2) → 0. (31)

By proposition 4.2, we have

H1(g, L((p− 2)λ1 + λ2))⊗ g∗ ∼= L(λ1)⊗ g ∼=
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H0(2λ1)⊕H0(λ1 + λ2)⊕H0(λ1). (32)

By (31), (32) all composition factors of the G−module H1(g, L((p−2)λ1 +λ2))⊗
g∗ appear as a composition factors of H3(G1, L((p− 2)λ1 + λ2)). If ker f has such
a composition factor, then H2(g, L((p − 2)λ1 + λ2)) has non-trivial cocycles with
weights 2pλ1, p(λ1 + λ2), pλ1. We will prove that this is impossible.

By lemma 5.2 the dominant weight of a non-trivial cocycle in
Z2(g, L((p− 2)λ1 +λ2)) is pλ1. Therefore, cocycles in Z2(g, L((p− 2)λ1 +λ2)) with
weights 2pλ1, p(λ1 +λ2) are 0. we now prove that any cocycle ψ with weight pλ1 is
0. All components ψ(X, Y ) of such a cocycle except the following components are
0:

ψ(e2, f3) = x1v0,0,0,0,0,0, ψ(e3, f4) = x2v0,0,0,0,0,0,

ψ(e4, f5) = x3v0,0,0,0,0,0, ψ(f1, f2) = x4v0,1,0,0,0,0,

ψ(e1, f4) = x5v0,1,0,0,0,0, ψ(e4, f6) = x6v0,1,0,0,0,0,

ψ(f1, f3) = x7v1,1,0,0,0,0 + x8v0,0,1,0,0,0,

ψ(e1, f5) = x9v1,1,0,0,0,0 + x10v0,0,1,0,0,0,

ψ(e3, f6) = x11v1,1,0,0,0,0 + x12v0,0,1,0,0,0, ψ(e2, f4) = x13v1,0,0,0,0,0,

ψ(e3, f5) = x14v1,0,0,0,0,0, ψ(e2, f5) = x15v2,0,0,0,0,0,

ψ(f2, f4) = x16v0,1,1,0,0,0, ψ(f2, f6) = x17v0,1,2,0,0,0,

ψ(e1, f6) = x33v0,1,1,0,0,0,

ψ(f1, f4) = x18v2,1,0,0,0,0 + x19v1,0,1,0,0,0 + x20v0,0,0,1,0,0,

ψ(e2, f6) = x21v2,1,0,0,0,0 + x22v1,0,1,0,0,0 + x23v0,0,0,1,0,0,

ψ(f2, f5) = x24v1,1,1,0,0,0 + x25v0,0,2,0,0,0 + x26v0,1,0,1,0,0,

ψ(f3, f4) = x27v1,1,1,0,0,0 + x28v0,0,2,0,0,0 + x29v0,1,0,1,0,0,

ψ(f1, f5) = x30v2,0,1,0,0,0 + x31v1,0,0,1,0,0 + x32v0,0,0,0,1,0,

ψ(f1, f6) = x34v2,1,1,0,0,0 + x35v1,0,2,0,0,0 + x36v1,1,0,1,0,0+

x37v0,0,1,1,0,0 + x38v0,1,0,0,1,0 + x39v0,0,0,0,0,1,

ψ(f3, f5) = x40v2,1,1,0,0,0 + x41v1,0,2,0,0,0 + x42v1,1,0,1,0,0+

x43v0,0,1,1,0,0 + x44v0,1,0,0,1,0 + x45v0,0,0,0,0,1,

ψ(f3, f6) = x46v1,1,2,0,0,0 + x47v0,0,3,0,0,0 + x48v0,1,1,1,0,0 + x49v0,1,0,0,0,1,

ψ(f4, f5) = x50v3,1,1,0,0,0 + x51v2,0,2,0,0,0 + x52v2,1,0,1,0,0+
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x53v0,0,0,2,0,0 + x54v1,0,1,1,0,0 + x55v0,0,1,0,1,0,

ψ(f4, f6) = x56v2,1,2,0,0,0 + x57v1,0,3,0,0,0 + x58v0,1,0,2,0,0 + x59v1,1,1,1,0,0+

x60v0,0,2,1,0,0 + x61v1,1,0,0,0,1 + x62v0,0,1,0,0,1 + +x63v0,1,1,0,1,0,

ψ(f5, f6) = x64v3,1,2,0,0,0 + x65v2,0,3,0,0,0 + x66v1,1,0,2,0,0 + x67v2,1,1,1,0,0+

x68v1,0,2,1,0,0 + x69v0,0,1,2,0,0 + x70v1,1,1,0,1,0 + x71v0,0,2,0,1,0+

x72v0,1,0,1,1,0 + x73v2,1,0,0,0,1 + x74v1,0,1,0,0,1 + x75v0,0,0,1,0,1,

where xi ∈ K (i = 1, . . . , 75).
From dψ(hi, f1, f6) = 0, dψ(hi, f1, f5) = 0, dψ(hi, e2, f3) = 0, i = 1, 2, it follows

that

ψ(hi, f1) = ψ(hi, f3) = ψ(hi, f4) = ψ(hi, f5) = ψ(hi, f6) = 0, i = 1, 2.

From

dψ(f4, f5, f6) = 0, dψ(f3, f5, f6) = 0, dψ(f2, f5, f6) = 0,

dψ(f3, f4, f6) = 0, dψ(f3, f4, f5) = 0, dψ(f1, f2, f6) = 0,

dψ(f,f2, f5) = 0, dψ(e2, f,f6) = 0, dψ(e4, f5, f6) = 0,

it follows that the following components ψ(f5, f6), ψ(f3, f6), ψ(f3, f5), ψ(f2, f6),
ψ(f2, f5), ψ(f1, f6), ψ(f1, f5), ψ(f1, f2), ψ(e4, f6),
ψ(e4, f5), ψ(e2, f6) are zero and ψ(f4, f6) = x62v0,0,1,0,0,1,
ψ(f4, f5) = x62v0,0,1,0,1,0, ψ(f3, f4) = −2x62v0,0,2,0,0,0.

From the conditions

dψ(e4, f3, f4) = 0, dψ(e3, f4, f6) = 0, dψ(e1, f4, f5) = 0,

dψ(e1, f4, f6) = 0

we see that the following components

ψ(e1, f4), ψ(f4, f6), ψ(f1, f6), ψ(f3, f4), ψ(e1, f5), ψ(f2, f4), ψ(e3, f6)

are zero. Finally, from the equations

dψ(f1, f2, f4) = 0, dψ(e3, f2, f4) = 0, dψ(e1, e2, f4) = 0,

dψ(e1, e3, f5) = 0, dψ(e6, f3, f5) = 0, dψ(e3, f3, f4) = 0

we have

ψ(f1, f4) = ψ(e2, f4) = ψ(e3, f5) = ψ(f1, f3) = ψ(e3, f4) =

ψ(e2, f3) = 0.

Therefore, any cocycle in Z2(g, L((p − 2)λ1 + λ2)) with weight pλ1 is zero. Thus
ker f = 0.

Theorem 1.1 is proved completely.
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to our results and INTAS foundation and the Royal Swedish Academy of Sciences
for support.

References
[1] H.H. Andersen, The strong linkage principle, J. Reine Angew. Math., 315

(1980), 53-59.

[2] H.H. Andersen, J.C. Jantzen, Cohomology of induced representations for al-
gebraic groups, Math. Ann., 269 (1984), 487-525.
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