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CHICKEN OR EGG? A HIERARCHY OF HOMOTOPY
ALGEBRAS
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Abstract
We start by clarifying and extending the multibraces no-

tation, which economically describes substitutions of multilin-
ear maps and tensor products of vectors. We give definitions
and examples of weakly homotopy algebras, homotopy Ger-
stenhaber and Gerstenhaber bracket algebras, and homotopy
Batalin-Vilkovisky algebras. We show that a homotopy algebra
structure on a vector space can be lifted to its Hochschild com-
plex, and also suggest an induction method to generate some of
the explicit (weakly) homotopy Gerstenhaber algebra maps on
a topological vertex operator algebra (TVOA), their existence
having been indicated by Kimura, Voronov, and Zuckerman
in 1996 (later amended by Voronov). The contention that this
is the fundamental structure on a TVOA is substantiated by
providing an annotated dictionary of weakly homotopy BV al-
gebra maps and identities found by Lian and Zuckerman in
1993.

1. Introduction

The present paper originated from the author’s confusion about the proliferation
of G-objects, especially on a TVOA, and a desire to develop and clarify the multi-
braces language ([2], [3]) to the point that it effortlessly describes and advances
most homotopy algebra structures so far discovered. Pairs of braces { }{ }, as well
as { }{ , , . . . , } were introduced by Gerstenhaber [6], and much later revived in
more general form by Kadeishvili and Getzler. Our multibraces are a generalization
of these braces, allowing one to substitute any number of maps into each other.
Moreover, by defining the symbol {a1, . . . , an} to be the tensor product of the vec-
tors a1, . . . , an (as it should be), we extend the idea of substitutions of maps from
the tensor space TA to the vector space A, and of vectors into these maps, to sub-
stitutions and tensor products in Hom(TA, TA). Whenever multilinear maps are
defined on Hom(TA, A) (or Hom(TA, TA)) itself, we use the “second-level braces”
[2] with primes (see Subsection 2.4). Section 2 gives an arguably self-contained and
slightly improved account of the multibraces notation. In particular, substitution
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operators are now treated from the viewpoint of order-preserving maps between fi-
nite sets and of contractions of mixed tensors as well. A new insight into partitioned
maps is provided via finite ordered partitioned (FOP) sets and cell-order preserving
(COP) maps between them.

Following the work of Kimura, Voronov, and Zuckerman [13] in 1996, we were
able to reduce the defining identities of a certain weakly homotopy Gerstenhaber
algebra structure on a topological vertex operator algebra (TVOA) to a statement
about the vanishing of a composition of mega operators. Later, Voronov [28] made
some corrections to [13], and as a result, our construction was only partially appli-
cable to the TVOA (although the same mega identity continues to fit perfectly the
structure on the Hochschild complex of an associative algebra).

We will continue to regard the construction in [13] and [28] as a weakly homotopy
Gerstenhaber algebra. Unless specifically designated “strongly” homotopy algebras
(an operadic, or according to M. Markl, “God-given”, property), all homotopy al-
gebras mentioned in the article are “weakly” homotopy algebras. That is, they have
the algebraic property that some of the constituent maps descend to a classical
structure in the cohomology. Moreover, “Gerstenhaber” and “Batalin-Vilkovisky”
will be shortened to G and BV respectively, where appropriate.

We are finally in a position to tie the intriguing weakly homotopy Batalin-
Vilkovisky algebra structure on a TVOA, discovered several years earlier by Lian
and Zuckerman [19] and published in 1993, to weakly homotopy Gerstenhaber alge-
bras in an explicit manner. True to the chronological order, it has been conjectured
in [13] that the anti-symmetrization of the homotopy BV maps of Lian and Zuck-
erman (chicken) will lay some fresh homotopy Gerstenhaber maps (eggs). We refer
the reader to Huang and Zhao’s article [10] on a new operadic and geometric for-
mulation of a TVOA and the proof of the conjecture by Lian and Zuckerman and
Kimura et al. stating that a TVOA gives rise to a homotopy Gerstenhaber algebra.
It turns out that the egg is the parent of the chicken after all; we can now iden-
tify some components of the lower identities in [19] as bona fide weakly homotopy
G-operators in the sense of [13] and [28]. In fact, every explicit map introduced
by Lian and Zuckerman as part of the weakly homotopy BV structure is simply
the bracket of the anti-ghost operator b0 with the homotopy G-maps, and every
explicit identity is either homotopy Gerstenhaber, or can be obtained from one by
bracketing with b0: the correspondence becomes visible in [19] once each identity is
deciphered as “sums of compositions of maps equals zero”. (Lian and Zuckerman’s
work also gives us an idea as to how to construct some of the homotopy G-algebra
maps on a TVOA explicitly by induction.) Subsections 4.1.2, 4.2.2, and 4.2.3, as
well as Appendix B, are devoted to the properties of TVOA’s.

Then why not define a weakly homotopy BV algebra to be in general an alge-
bra obtained by bracketing homotopy G-maps with a suitable odd operator? (See
Tamarkin and Tsygan’s definitive work on BV∞ algebras [26].) Apart from estab-
lishing reasonable definitions of several types of weakly homotopy algebras (Subsec-
tions 3.2, 3.3, and 3.5, Section 5), we show that any generic homotopy algebra struc-
ture on a space A can be lifted to its Hochschild complex, C•(A,A) = Hom(TA, A),
in Subsection 4.2.1 (Getzler has a similar construction for A∞ algebras in [8]). The
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original homotopy G-algebra structure on the Hochschild complex is discussed in
Subsection 4.1.1, and the novel role of new symmetry operators (such as the one that
generates commutativity) in constructing self-contained mega identities is explored
in Subsection 2.3.

Throughout the paper we point to the dichotomy between mega maps that are
called “(weakly) homotopy” because the structure descends to the classical case in
the cohomology, and mega maps that should be called “homotopy” because they
satisfy identities similar to the classical case (and descend to it in the cohomology
as well). A familiar example of coexistence of these phenomena is that we regard an
A∞ algebra to be a homotopy associative algebra because the map m(2) descends
to an ordinary associative algebra map in the m(1)-cohomology, but also because its
mega map m satisfies the same identity as m(2), namely that m(2) composed with
itself is zero. Thus certain homotopy Gerstenhaber algebras are given that name
through the anti-symmetrization of their special bilinear maps m(1|1) descending
to a G-bracket; yet others could be called G-algebras because their mega maps
would be composed of higher brackets satisfying certain familiar identities, one
of which directly descends to a G-bracket. We will see that a TVOA becomes a
homotopy G-algebra in two different ways. Our notation m(1|1) will mostly refer to
the composition operator between two multilinear maps and occasionally to abstract
bilinear operators with similar properties.

Our goals are, then, (a) to improve and summarize the multibraces notation of
the author, in order to simplify language and engender new identities and proofs,
(b) to generate modified definitions of weakly homotopy algebras, involving maps
that correspond to symmetries, as well as mega maps that behave like their classical
counterparts, (c) to extend any generic homotopy algebra structure under the new
definition to the Hochschild complex of the underlying vector space, (d) to dissect
the homotopy BV maps in Lian-Zuckerman’s paper and show that they should
antecede the homotopy G maps, and (e) to hatch discussions of terminology and
inspirations for new examples of homotopy algebras.

We will not make many references to operads in the present article; the exposi-
tion by Jones in [11] is recommended for a very refined treatment of substitution
operators, and much more, in the context of operads. All our algebraic structures
will be defined on a real or complex vector space with one or more gradings to be
discussed later.

2. Composition operators and relations

2.1. Standard composition: 3 viewpoints
2.1.1. Original definition
The following is intended as a brief reminder of how to compose several multilinear
maps with one (using the notation of braces), an idea that goes back to Gersten-
haber’s seminal paper [6]. The expression [2]

{x}{y1, . . . , yk} · · · {z1, . . . zl}{a1, . . . , an}
where the ai’s are vectors in a vector space A and the remaining letters denote
specific multilinear maps, possibly vectors, means that every symbol except x is to
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be substituted into one on the left, in every possible way, but two vectors as well as
two symbols within the same pair of parentheses may not be substituted into one
another during this process. The resulting substitutions may not change the order
within any one pair of braces, either. The signed sum of all such expressions are
then formed, taking into consideration the bidegrees of the symbols that have been
interchanged with respect to the original above.

We define the plus/minus sign picked up in the exchange of maps (possibly
vectors) x and y to be

(−1)|x| |y|+d(x)d(y),

where |x| denotes the super degree of the object x (if any) and d(x) denotes the
number of arguments of x minus one. In particular, d(x) = 0 for a linear map x and
d(x) = −1 if x is a vector. Both degrees are preserved in compositions of all types.

Note that although we require there be enough combined arguments to accom-
modate all symbols to the right, we do not require an exact match. In other words,
there may be some free arguments (to the left of the string of ai’s) that would give
us the flexibility to slide the multilinear maps within the boundaries of the pecking
order. Also note that the ai’s are not an essential part of braces, just as the com-
position f ◦ g of ordinary functions is meaningful on its own without an argument.
If included, the ai’s are frequently used to display the number (and grouping) of
arguments of the composite multilinear functions to their left. Let us establish here
the convention of reserving the symbols ai (or a, b, c, . . .) for this exclusive purpose.

We also define the Gerstenhaber bracket (G-bracket) of two maps x and y by

[x, y] = {x}{y} − (−1)|x| |y|+d(x)d(y){y}{x},
as Gerstenhaber did in [6]. If, say, x is a vector, then {x}{y} will be zero. It is
possible to remove this condition and allow all compositions between mixed tensors
(with any number of covariant and contravariant factors).

Example 2.1. For a trilinear map x and linear and four-linear maps y, z respec-
tively, the substitution {x}{y, z} is given by

{x}{y, z}{a1, a2, a3, a4, a5, a6}
= −(−1)|a1| |z|x( y(a1), z(a2, a3, a4, a5), a6 )
+ (−1)( |a1|+|a2| )|z|x( y(a1), a2, z(a3, a4, a5, a6) )
+ (−1)|a1|( |y|+|z| )+|a2| |z|x( a1, y(a2), z(a3, a4, a5, a6) ).

Example 2.2. {x}{y}{z} means that y is substituted into x in all possible ways
and z may either go into y or straight into x. That is, we have

{x}{y}{z} = {x}{{y}{z}}+ {x}{y, z} ± {x}{z, y}.

Example 2.3. Let m be an even bilinear map. The identity {m}{m} = 0 is nothing
but the associativity of m:

{m}{m}{a1, a2, a3} = m(m(a1, a2), a3 )−m( a1,m(a2, a3) ) = 0.
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Example 2.4. By definition, {m}{a1}{a2}{a3} denotes the anti-symmetrization
of the expression {m}{a1, a2, a3} for a trilinear map m:

{m}{a1}{a2}{a3} =
∑

σ∈S3

sgn(σ)m(aσ(1), aσ(2), aσ(3)),

where S3 denotes the symmetric group on three letters. If there is a super degree, a
factor of (−1)|ai| |aj | is to be inserted for every crossing of symbols ai, aj.

The single composition { }{ } gives a right pre-Lie product on the Hochschild
space. Gerstenhaber proved this result in detail in [6], but see [2] for a very brief
proof based on the new braces notation. As a result, the Gerstenhaber bracket
makes the Hochschild complex into a bigraded Lie algebra, with respect to the
super grading mentioned above (if any) and the d-grading. (A bilinear product ?
on a super graded vector space is called right pre-Lie if

(a ? b) ? c− a ? (b ? c) = (−1)|b| |c|((a ? c) ? b− a ? (c ? b))

holds for all homogeneous a, b, c.)
We finally note that there is an associative, commutative product defined by

(n) ∗ (k) = (n + k − 1)

on multilinear function types: the symbol (n) refers to an n-linear map and the
product gives us the type of the composite map. The notation x(n) will denote an
n-linear map x from now on, hence the composition of x(n) and y(k) will result
in some z(n + k − 1) in accordance with the above rule. We will later extend this
multiplication to ordered partitions, also to be considered as function types.

2.1.2. Order preserving maps between finite ordered sets
The notion that substitutions of many multilinear maps into one correspond to
order-preserving functions between finite sets is not a new one (see [11] and [14]).

Example 2.5. The function

f : {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4, 5}
given by

f(1) = f(2) = 1, f(3) = 4, f(4) = f(5) = f(6) = 5

is an order-preserving map that has the inverse images

{1, 2}, ∅, ∅, {3}, {4, 5, 6}
for the five elements in the range respectively. Then f , as the unique disjoint union of
five constant maps (some of which are missing a domain), represents the substitution
of a bilinear map into the first argument of a five-linear map, together with the
substitution of a linear map into the fourth argument and of a trilinear map into
the fifth argument.

We hereby devise the following notation to denote substitutions without resorting
to balloon diagrams and arrows:
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Example 2.6. The arrangement

( (2), 2, (1), (3) ) (or ( (2), 1, 1, (1), (3) ) )

shows a certain rigid placement of multilinear maps (say) y(2), z(1), and w(3)
into some x(5), the loose integer 2 denoting the two arguments of x(5) that remain
unoccupied. The resulting composite map is 8-linear, or of type (8), as can be seen
by removing inner parentheses and replacing commas by plus signs.

Example 2.7. The symbol ( (2), (1), 4, (3), (0) ) denotes the substitution of a bilinear
map and a linear map into the first two arguments of an 8-linear map, followed by
four blank spaces, a trilinear map, and a specific vector. The final map has room
for 2 + 1 + 4 + 3 + 0 = 10 vectors.

Braced compositions are nothing but sums of the rigid substitutions described
here, where the leftmost map is represented by outer parentheses and spaces between
commas in the new notation, and more than two nested substitutions are left out
for simplicity (but the notation makes it very clear as to how to proceed in case
of additional nesting). Let us call each of these rigid substitutions a composition
operator.

Example 2.8. If we wanted to describe the entire composition

{x(5)}{y(2), z(1), w(3)},
then we would have to write the sum

( (2), (1), (3), 2 ) + ( (2), (1), 2, (3) ) + ( (2), 2, (1), (3) ) + ( 2, (2), (1), (3) )
+ ( (2), (1), 1, (3), 1 ) + ( (2), 1, (1), (3), 1 ) + ( 1, (2), (1), (3), 1 )
+ ( (2), 1, (1), 1, (3) ) + ( 1, (2), (1), 1, (3) ) + ( 1, (2), 1, (1), (3) )

of specific composition operators.

The meta-composition of two composition operators (equivalently, of two order-
preserving functions) gives us another composition operator, and has a simple rule.
First consider two operators S = ( (n1), . . . , (nk) ) and T = ( (m1), . . . , (ml) ), where
all entries are within parentheses, and n1 + · · ·+ nk = l. Their composition is given
by the new operator

S ◦ T =

( (
n1∑

i=1

mi

)
,

(
n2∑

i=1

mn1+i

)
, . . . ,

(
nk∑

i=1

mn1+···+nk−1+i

))
,

that is, we add up the first n1 entries on the right, then the next n2, and so on.
When ni = 0 we have an empty sum and the resulting entry is (0).

Example 2.9.

( (2), (1), (3), (0) ) ◦ ( (1), (0), (3), (0), (2), (4) ) = ( (1), (3), (6), (0) ).

In case the composition operator on the left involves positive integers r with-
out parentheses, these numbers are to be copied as is, since they correspond to
unoccupied arguments.
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Example 2.10.

( (2), (1), 3 ) ◦ ( (1), (5), (4) ) = ( (6), (4), 3 ).

Similar numbers r > 1 on the right should be converted to r 1’s separated by
commas, and then the usual rules should be applied, as if all entries are surrounded
by parentheses.

Example 2.11.

( (1), (3) ) ◦ ( (2), (4), 2 ) = ( (1), (3) ) ◦ ( (2), (4), 1, 1 ) = ( (2), (6) ).

We should note here that the convention of drawing arrows representing functions
from left to right in diagrams is the opposite of the braces convention as well as the
usual f ◦ g notation. In [14], for example, the notation for substitutions is changed
from fx to xf to match arrow directions in the pictures.

In the subsections on partitioned maps, we will denote the meta-type of any
substitution operator of n maps into one by (1|n) (regardless of the types of the
little argument-maps inside) and underline the composition of two such operators
by a product (1|n) ∗ (1|k).

2.1.3. Contractions
Just as a linear map f : A → A is an element of A∗⊗A, a substitution f(a) is the
contraction of the previous tensor with a. Let us expand this idea to all substitutions.
For demonstration purposes -all our definitions will be basis free- fix a basis {ai} for
a finite dimensional vector space A and let {a∗i } denote the dual basis for A∗ (this
amounts to endowing A with a Frobenius algebra structure; see [14]). The notion of
composition, or multiple compositions, on the Hochschild space

T 1
•A =

⊕

q>0

T 1
q A =

⊕

q>0

(A∗)⊗q ⊗A =
⊕

q>0

Hom(A⊗q; A)

is naturally extended to the space

T ••A =
⊕

p,q>0

T p
q A =

⊕

p,q>0

(A∗)⊗q ⊗A⊗p =
⊕

p,q>0

Hom(A⊗q; A⊗p)

of tensors of all types on A as described below. The notational convention is
borrowed from [27].

The space of mixed tensors of type (p, q), denoted by T p
q A, is spanned by basis

elements of the form
a∗i1 ⊗ · · · ⊗ a∗iq

⊗ aj1 ⊗ · · · ⊗ ajp .

Let us denote the corresponding elements in the isomorphic space Hom(A⊗q; A⊗p)
by

T
j1...jp

i1...iq
,

where

T
j1...jp

i1...iq
(an1 ⊗ · · · ⊗ anq ) = a∗i1(an1) · · · a∗iq

(anq )aj1 ⊗ · · · ⊗ ajp

= δi1n1 · · · δiqnqaj1 ⊗ · · · ⊗ ajp . (1)
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The latter (map) form is useful in depicting multilinear maps with values in A,
whereas the former (tensor) notation will provide the best framework to extend
substitution to the space T ••A. In fact, given the previous usage of multibraces, let
us use the notation

{a∗i1 , . . . , a∗iq
; aj1 , . . . , ajp

}
for the tensor version of the general basis element. If the contravariant or covariant
factors are completely missing, then we will substitute the symbol ∅ for that part
and still separate the two sets by a semicolon: for example, we will have

a⊗ b = {∅; a, b} ∈ T 2
0 A

for a, b ∈ A. We will occasionally use general elements of the algebra (denoted by
a, b, c, etc.) instead of the basis elements and general functionals (f , g, h, etc.)
instead of the dual basis elements. For example, a linear map on A is a finite sum
of irreducible tensors F = {f ; a} where

F (b) = f(b)a.

A bilinear map with values in A is similarly a finite sum of tensors G = {f, g; a}
where

G(b, c) = f(b)g(c)a.

Example 2.12. In tensor notation, it suffices to show the substitution of one tri-
linear map x(3) into a bilinear map m(2) for irreducible tensors

m(2) = {f, g; u} and x(3) = {h, k, l; v}.
We claim that

{f, g; u} ◦ {h, k, l; v} = f(v){h, k, l, g;u} ± g(v){f, h, k, l;u},
with

({f, g; u} ◦ {h, k, l; v})(a, b, c, d)
= (f(v){h, k, l, g; u} ◦ {∅; a, b, c, d} ± g(v){f, h, k, l; u} ◦ {∅; a, b, c, d}
= f(v)h(a)k(b)l(c)g(d){∅; u} ± g(v)f(a)h(b)k(c)l(d){∅; u}.

Note that the first (covariant) part of the first tensor is contracted with the second
(contravariant) part of the second tensor. In fact, the composition operator will turn
out to be nothing but contraction among all types of tensors. The equivalence of the
above expression to the original definition can be seen from

m(2)(x(3)(a, b, c), d)±m(2)(a, x(3)(b, c, d))
= m(2)(h(a)k(b)l(c)v, d)±m(2)(a, h(b)k(c)l(d)v)
= h(a)k(b)l(c)m(2)(v, d)± h(b)k(c)l(d)m(2)(a, v)
= h(a)k(b)l(c)f(v)g(d)u± h(b)k(c)l(d)f(a)g(v).

The contraction rule we have used in the composition operator ◦ = M(1|1), defined
on the Hochschild space of multilinear maps on A with values in A, is as follows



Homology, Homotopy and Applications, vol. 7(2), 2005 13

(note the usage of a bar that separates the composed multilinear maps, mimicking
the bar in “type” (1|1)):

M(1|1)({f1, . . . , fm; b}|{g1, . . . , gn; c})

=
m∑

i=1

±fi(c){f1, . . . , fi−1, g1, . . . , gn, fi+1, . . . , fm; b}.

The rule, generalized to all tensor types, can be grouped into four types for conve-
nience:

M(1|1)({f1, . . . , fm; b1, . . . , bk}|{g1, . . . , gn; c1, . . . , cl})
is given by

f1(c1) · · · fm(cm){g1, . . . , gn; b1, . . . , bk}
if m = l (the strings of f ’s and c’s have the same nonzero length);

m−l+1∑

i=1

fi(c1) · · · fi+l−1(cl){f1, . . . , fi−1, g1, . . . , gn, fi+l, . . . , fm; b1, . . . , bk}

if m > l > 1 (there are more f ’s than c’s); and
l−m+1∑

i=1

f1(ci) · · · fm(ci+m−1){g1, . . . , gn; c1, . . . , ci−1, b1, . . . , bk, ci+m . . . , cl}

if l > m > 1 (there are more c’s than f ’s). If either m = 0 or l = 0, then the result
is understood to be zero. That is, purely contravariant tensors on the left do not
accept substitutions and purely covariant tensors on the right cannot be substituted
into anything. These rules are in perfect harmony with our previous definitions.

In short, the contraction is achieved by sliding the shorter of the strings f , c
along the longer one and adding up. The empty sum is zero. When writing the
nonconstant portion of the result, the part of the longer string (e.g. f ’s) that is
used in the contraction is replaced by its counterpart (e.g. g’s) in the other tensor.
Order is important!

Example 2.13. Using the third one of these four rules, it is easy to check that, for
example,

{m(2)}{a, b, c}
is given by

m(2)(a, b)⊗ c± a⊗m(2)(b, c) = f(a)g(b)u⊗ c± a⊗ f(b)g(c)u.

Substitution of more arguments than what the left-hand map can take (as a block)
is now allowed. Indeed, if we take m(2) to be {f, g;u}, then we have

M(1|1)({f, g; u}|{∅; a, b, c}) = f(a)g(b){∅; u, c} ± f(b)g(c){∅; a, u}
according to the generalized definition of substitution.

The preservation of the d-grading is even more obvious in contraction form. For
an element of T p

q A, d is equal to q − p, or the “degree of covariance” of the tensor.
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With each contraction, equal numbers of covariant and contravariant factors are
lost, which does not affect the sum of the d-gradings.

2.2. Partitioned composition
2.2.1. Original definition
The algebra of partitions and substitutions by partitioned braces first came up in
the author’s work describing a master identity for homotopy Gerstenhaber algebras
[3] (later shown to be inadequate except for lower identities as a result of Voronov’s
amendment [28] to [13]). They were the algebraic equivalent of the construction of
the boundary (differential) in the pictures of Fox-Neuwirth cells in [13] and [28].
We will not demonstrate the brute-force way of composing “partitioned maps” Mπ

of type π = (n1|n2| · · · |nk) (ni > 0) in the text (it would be painful), but we do give
some examples in Appendix A. We note the use of capital M and the resemblance to
the composition operators of type (1|1), but do not assume yet that these partitioned
maps are really composition operators with arguments in the Hochschild complex
or its extension.

A partitioned map Mπ, where π is the generic partition described above, is first
and foremost a multilinear map on some vector space A with n =

∑
ni arguments.

By itself, we do not attach any deeper meaning to the partition that is the type
of M . But how do we compose a partitioned map (on the left) with another (on
the right), or several others? Unfortunately, unlike compositions of maps of plain
types, the multilinear maps that denote the results of all possible rigid substitutions
will possibly have more than one type, and will have to be grouped according to
these types (partitions). That is, if some Mπ is composed with some Nτ , then we
will end up with a sum of maps Xσ of varying partition types σ, and necessarily
subject to different substitution rules when composed with their ilk. Soon we will
define precisely a product π ∗ τ = σ + · · · on partitions that extends the product
(n) ∗ (k) = (n+k− 1) and underlies the composition rule (see next subsection). We
want to emphasize that this product, which governs types of maps resulting from
partitioned compositions, is pre-Lie ([3]).

Partitions with 0’s will be used to write the symmetries of a map. For example,
a multilinear map of type (1|0) is in fact a linear map that only acts on the first
slot and ignores the slot immediately to the right. Since this notion deserves its own
space, we will revisit it in Subsection 2.3.

2.2.2. Cell-order preserving (COP) maps between finite ordered partitioned (FOP)
sets

We have replaced the notation (n) denoting the type, or number of arguments, of
a multilinear map by a partition π = (j1|j2| · · · |js) (s > 1), where the “parts”, or
“slots”, j1, j2, ..., js add up to n. This change, as we have noted, affects only the
composition or substitution properties of the function.

We define, as we did in [3], the product between a single-slot partition and a
general partition as follows:

(k) ∗ (n1| · · · |nj) =
∑

t1,...,tj>0,
P

ti=k−1

(n1 + t1| · · · |nj + tj).
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That is, we distribute the number k − 1 among all slots and add the parts to the
slots, in all possible ways.

Example 2.14.

(4) ∗ (1|2) = (1 + 0|2 + 3) + (1 + 1|2 + 2) + (1 + 2|2 + 1) + (1 + 3|2 + 0)
= (1|5) + (2|4) + (3|3) + (4|2).

If the partition on the left has several slots, then we multiply each slot separately
by the partition on the right, as described above, while leaving the remaining slots
as they are and expanding linearly. Thus,

(k1| · · · |kl) ∗ π ≈
l∑

t=1

(k1| · · · |(kt) ∗ π| · · · |kl),

where the sign ≈ as opposed to = means that any repetitions of the same term have
to be ignored.

Example 2.15. We have

(2|4) ∗ (1|2) ≈ (2|2|4) + (1|3|4) + (2|4|2) + (2|3|3) + (2|2|4) + (2|1|5),

so the actual value of the product is

(2|4) ∗ (1|2) = (2|2|4) + (1|3|4) + (2|4|2) + (2|3|3) + (2|1|5).

This means we may choose to treat the composition of a (2|4)-linear map with
a (1|2)-linear map as (2|2|4)-linear, or (1|3|4)-linear, etc., and substitute suitably
partitioned elements. In Appendix A we show how to expand the substitution as a
(2|2|4)-linear map.

We will now construct a new and simpler device to study the partitioned com-
position operators introduced in [3], modeled after the category of finite ordered
sets and order-preserving maps. Let us take a unique representative of every finite,
ordered, partitioned (FOP) set, such as {1|2, 3, 4|5, 6}. These sets can be arranged
vertically, ordered from bottom to top, say, and certain functions between them
easily visualized. We will call these functions cell-order preserving (COP), where a
cell of a FOP set, similar to a “slot” or “part” in a partition, will simply mean the
ordered set of elements between two bars. COP functions will have the following
properties by definition, which can easily be checked to hold under compositions:
1. The function will preserve the order within each cell, but not necessarily within
the entire domain.
2. The image of any cell in the domain will lie within only one cell in the range.
3. The pre-image of any full subset of a string of vertically adjacent cells in the
range will either be the empty set or again a full subset of a string of adjacent cells
in the domain.

(Here full subset is a term we have made up for the limited scope of describing
a nonempty subset of a FOP set that lies within a string of adjacent cells and has
nonempty, connected intersection with each of these cells. For example, {2, 3|6} is a
full subset of {1, 2, 3, 4|5, 6, 7} but not of {1, 2, 3|4, 5|6, 7}. A partial ordering can be
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imposed on the set of all full subsets of a FOP set. The phrase subset I is higher than
subset II means all numerals in the first set are larger in value than the numerals
in the second one.)
4. Arrows going to different cells in the range may not cross. That is, if cell I is
higher than cell II in the range, then their pre-images will have the same ordering.

(For example, the function f : {1|2} → {1|2} defined by f(1) = 2 and f(2) = 1
is not COP.)

Additional properties that follow from the above are:
5. The pre-image of any singleton will be either the empty set or a full subset of a
string of adjacent cells.
6. The pre-image of any string of adjacent cells (possibly one) will be either the
empty set or a string of adjacent cells.

Disjoint unions of COP functions can be taken, as in the plain case, by vertically
concatenating domains and ranges. It is clear that any COP function is in a unique
way the disjoint union of a number of COP functions obtained by restricting the
original function to the pre-image of each cell in the range. In particular, a COP
function from one cell to another is a plain order-preserving (POP?) function. COP
functions are then in one to one correspondence with all possible substitution types
of several partitioned maps into one partitioned map: each cell in the range repre-
sents a plain multilinear map, whereas the pre-image of any singleton in that cell
represents a partitioned multilinear map that is to be substituted into the argument
marked by the singleton.

2.3. Symmetries as funny composition operators
Partitions with 0-slots may be used to obtain the symmetries among the gener-

ating identities of algebras in the following manner. It is our hope that this new
approach will inspire fellow homotopicians to reconsider their favorite identities!

What is a symmetry? In our context, any generating identity that involves terms
differing from each other only by permutations of the arguments (vectors) may
be called a symmetry; in our experience, the permutations tend to occur within
one map and not a composition of two or more maps (we know one when we see
one!). For example, in a commutative associative algebra with bilinear map m(2),
the commutativity identity m(2)(a, b) −m(2)(b, a) = 0 is a symmetry, whereas the
associativity identity m(2)(m(2)(a, b), c) − m(2)(a,m(2)(b, c)) = 0 is not, since it
exhibits no change of order in the arguments (also, there are two levels of maps in
each term). We claim that this is only a superficial distinction. What if we define,
in addition to m(2), a linear map m(1|0) that simply sends a vector to itself and is
composed in the way indicated by the partition (1|0)? Then

{m(2)}{m(1|0)}{a|b}
is evaluated by placing m(1|0) into the first slot of m(2) only (the other possibility
gives rise to the partitioning (2|0) of the vectors, instead of (1|1)), and not choosing
b for substitution into the second slot of m(1|0) (some reading of Appendix A may
be in order). We do not have many options as to how to substitute a into the first
slot, but in how many ways can we not substitute b into the second? Let us split
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the b-slot into three sets in all possible manners:

{b} ∅ ∅, or ∅ ∅ {b}.
Thus b appears both as a left and a right leftover vector, and the evaluation is given
by

m(2)(m(1|0)(a|∅), b)−m(2)(b,m(1|0)(a|∅)) = m(2)(a, b)−m(2)(b, a) = 0

(it is much easier to visualize through diagrams of FOP sets and COP maps; left as
an exercise!).

This manifestation of symmetry makes it possible for us to write all-quadratic
expressions and use mega identities in a compact way. In particular, (weakly) ho-
motopy Gerstenhaber algebras will be distinguished among all homotopy algebras
by the inclusion of m(1|0) as the identity map described above. Thus we will be able
to generalize the description of homotopy associativity of A∞ algebras to that of
homotopy commutativity and associativity within the same identity.

2.4. Isomorphism between Hochschild space and the space of coderiva-
tions on the tensor coalgebra

The use of multibraces, being very visual, simplifies the statements and proofs of
many results. For future reference, and to see the effects of our notation in expanded
settings, let us look into the isomorphism in the subsection heading. A primitive
version of the following proof/explanation techniques first appeared in [2].

The second-level braces, namely those denoting tensor products and substitutions
in the tensor algebra T (TA), were also introduced in [2]. We distinguish this level by
putting primes on the braces and the tensor product symbols. (In fact, we will use
primed objects whenever multilinear maps are defined on the Hochschild complex
itself.) Since we want to study coderivations and the comultiplication, it makes sense
to consider maps from TA = T 1(TA) into T (TA). Let us now denote the tensor
product a1 ⊗ · · · ⊗ an inside T 1(TA) by

{ {a1, . . . , an} }′.
For example, the basis element

(a1 ⊗ · · · ⊗ an)⊗′ (b1 ⊗ · · · ⊗ bk)

of T 2(TA) will be written as

{ {a1, . . . , an}, {b1, . . . , bk} }′.
Similarly, an old multilinear map m will be denoted by { {m} }′, and substitutions
between symbols of the first level will still take place even if they are in different
pairs of primed braces: we have

{ {m} }′{ {a1, . . . , an} }′ = {{m}{a1, . . . , an} }′

by definition. One such map we will use is the identity map

i = i(0) + i(1) + i(2) + · · ·+ i(n) + · · · : TA → TA

where i(n)(a1⊗· · ·⊗an) = a1⊗· · ·⊗an. “Primed” maps will be given capital letter
names to distinguish them from the first-level maps.
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The standard associative bilinear product M on TA,

M : T 1(TA)⊗ T 1(TA) → T 1(TA),

is defined via i:

{M}′{ {a1, . . . , an}, {b1, . . . , bk} }′
= { {i} }′{ {a1, . . . , an}, {b1, . . . , bk} }′
= { {i(n+k)} }′{ {a1, . . . , an}, {b1, . . . , bk} }′
= { {a1, . . . , an, b1, . . . , bk} }′.

Meanwhile, the coassociative coproduct ∆ on TA,

∆ : T 1(TA) → T 1(TA)⊗ T 1(TA),

has a similar definition:

{∆}′{ {a1, . . . , an} }′
= { {i}, {i} }′{ {a1, . . . , an} }′
=

∑
u+v=n

{ {i(u)}, {i(v)} }′{ {a1, . . . , an} }′

=
n∑

u=0

{ {a1, . . . , au}, {au+1, . . . , an} }′.

Then in accordance with the usual rules, we define derivations and coderivations of
the bialgebra TA as

Der(TA) = {X ∈ Hom(T 1(TA), T 1(TA)) : [X, M ]′ = 0}
and

Coder(TA) = {X ∈ Hom(T 1(TA), T 1(TA)) : [X, ∆]′ = 0}.
It is now easy to see why C•(A,A) and Coder(TA) are naturally isomorphic.

Given
m = m(1) + m(2) + · · ·m(n) + · · · ∈ Hom(TA, A),

define δ(m) ∈ Coder(TA) by

{δ(m)}′{ {a1, . . . , an} }′
= { {m} }′{ {a1, . . . , an} }′

=
n∑

k=1

{ {m(k)} }′{ {a1, . . . , an} }′

=
n∑

k=1

n−k+1∑

j=1

±{{a1, . . . , m(k)(aj , . . . , aj+k−1), . . . , an} }′.

Why is δ(m) a coderivation? We have

{∆}′{δ(m)}′{ {a1, . . . , an} }′
= { {i}, {i} }′{ {m} }′{ {a1, . . . , an} }′.
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and

{δ(m)}′{∆}′{ {a1, . . . , an} }′
= { {m} }′{ {i}, {i} }′{ {a1, . . . , an} }′

In the first case, the first n summands of the mega operator m are applied in all
possible ways to {a1, . . . , an}, then the resulting product is split into two in all
possible ways as tensor products in T 2(TA). In the second case, first {a1, . . . , an}
is split into two in all possible ways as tensor products in T 2(TA), then the same
summands of m are applied in all possible ways to the split product. The end result
is the same!

Going backwards from Coder(TA), we take any coderivation and compose it with
the projection TA → A, which gives a map in Hom(TA,A). Note that coderivations
on TA are uniquely determined by this projection, just as derivations would be
uniquely determined by the restriction to A.

Note. The reason why Gerstenhaber’s bracket on Hom(TA, A) is the same as
the bracket of coderivations as linear maps is simply the following: both are written
as {x}{y} ± {y}{x}, and are subject to the multibraces rules.

3. Homotopy algebras

3.1. Strongly homotopy associative, pre-Lie, and Lie algebras
3.1.1. The suspended degree
Let m be again a formal sum of infinitely many homogeneous maps in the Hochschild
space C•(A,A). We define another similar map, m̃, by changing each summand by
a factor of ±1. This factor will depend not only on the degree of homogeneity of
the summand but also on the arguments of the map:

m̃(k){a1, . . . , ak} = (−1)(k−1)|a1|+(k−2)|a2|+···+1·|ak−1|+ k(k−1)
2 {m(k)}{a1, . . . , ak}.

We will also note that

| ˜m(k)| = |m(k)|+ k − 1 = |m(k)|+ d(m(k)).

The reasoning is amply explained in, say, Getzler and Jones [9] as well as the au-
thor’s earlier papers. This well-known trick is often employed to make all summands
of m odd with respect to the new (suspended) degree, so that m̃ can be manipulated
as one entity. For example, in the definition of A∞ algebras in the next subsection,
we have |m(k)| ≡ k (mod 2), therefore |m̃(k)| is odd.

3.1.2. A∞ algebras
We will use the terms “A∞” and “strongly homotopy associative” interchangeably.
Introduced by Stasheff in [24] and [25], and by now a well-known construct, an A∞
algebra structure on a super graded vector space A is defined by a mega operator
m = m(1) +m(2) + · · ·m(n) + · · · ∈ Hom(TA, A), with |m(k)| having the same parity
as k, and satisfying

{m̃}{m̃} = 0.
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This identity is split into sub-identities

{m̃}{m̃}{a1, . . . , an} = 0 for all n > 1,

each of which has finitely many terms, namely,
∑

j+k=n+1

{m̃(j)}{m̃(k)}{a1, . . . , an} = 0.

In [2], we showed that these are equivalent to
∑

j+k=n+1

(−1)j{m(j)}{m(k)}{a1, . . . , an} = 0.

Example 3.1. [2] It is easily checked using the last equation that given any asso-
ciative algebra A with bilinear product m, the maps m(n) : A⊗n → A, defined by
zero if n is odd and the unambiguous (n−1)-iterated product if n is even, constitute
a nontrivial A∞ structure on A.

Stasheff’s statement [25] (see also [9], [11]) that an A∞ structure on A corre-
sponds to a square zero coderivation (of degree −1) on T (sA) now follows in one
easy step: on both sides, the statement amounts to {m̃}{m̃} = 0 in our notation.

It has been pointed out to us by Stasheff that physicists use the term “weak A∞”
to refer to similar algebras with nonzero element m(0) so that m(1) is no longer
square-free; our use of the traditional phrase “weakly homotopy” is not intended to
revoke this condition.

3.1.3. Pre-L∞ and L∞ algebras
Strongly homotopy Lie algebras were introduced by Schlessinger and Stasheff in
[23]. Given an A∞ algebra, one may consider the effects of anti-symmetrizing each
map m(n). In [2], we showed that the new structure ` = `(1) + `(2) + · · ·+ `(n) + · · ·
satisfies the usual L∞ identities ([18],[17]) because

{m̃}{m̃}{a1} · · · {an} = 0

holds for all n. Of course, this particular L∞ construction had been in the literature
for some time. But then, the new formulation of the L∞ identities led to a simple
definition of a pre-L∞ algebra: although a map m need not satisfy the identities

{m̃}{m̃}{a1, . . . , an} = 0 for all n,

it is enough to find the right pre-L∞ condition

{m̃}{m̃}{a1, . . . , {an−1}{an} } = 0 for all n

in order to conclude that the anti-symmetrization is L∞ (the additional braces
around an−1 and an indicate, by definition of multibraces, that the signed sum over
the permutations of these two elements is taken). For m = m(2) and n = 3 this is
indeed the usual definition of a right pre-Lie algebra. Similarly, one may look for
the left pre-L∞ identities

{m̃}{m̃}{ {a1}{a2}, . . . , an} = 0 for all n,
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or any identity of this type which falls short of A∞ but leads to the L∞ condition
above (after being summed over permutations).

Example 3.2. The anti-symmetrization of the map in the example of Subsec-
tion 3.1.2 will lead to an L∞ algebra structure on any associative algebra.

Example 3.3. [13, 28, 3] The maps m(1), m(1|1), m(1|1|1),... of the homotopy
G-algebra structure described in Section 4 form a pre-L∞ algebra.

Example 3.4. [1, 16] The operators Φ1
B, Φ2

B, Φ3
B,... introduced by the author

that measure the order of a differential operator B were shown to constitute an
L∞ algebra by Kravchenko in case of a super commutative associative base algebra.
Here B is an odd, linear, square-zero map that is not necessarily a second-order
differential operator.

We note that an L∞ algebra structure on a vector space A corresponds to a
square-zero codifferential on the exterior coalgebra Λ(sA) (see e.g. [17]).

3.2. Generic (weakly) homotopy algebras
Instead of the usual definition of a “weakly homotopy algebra” structure on the

underlying vector space A as a set of maps that reduce to a classical structure in
the m(1)-cohomology, we will adopt one that is given by the almost obvious mega
identity

{m̃}{m̃, m̃, . . .} = 0,

where
m̃ =

∑
π

m̃π.

Since there are occasional examples where the identity does not hold (such as the
TVOA, whose weak G∞ structure is yet to be described), we may want to call the
above property a construction, rather than a definition, that routinely gives rise
to homotopy algebras. The mega map m is best thought of as a formal sum of
partitioned multilinear maps mπ, one for each partition π, some of which may be
identically zero. Then the “algebra of partitions”, introduced in [3] and denoted by
P, determines the sub-identities. For every π, we find all expressions in P of the
form π′ ∗ [π1, . . . , πk], necessarily finitely many, that exhibit π as a summand in the
final product (partitions have coefficient one or zero in all products of basis elements
by definition). These products correspond to the substitutions of partitioned maps
in Subsections 2.2.1 and 2.2.2. Then we sum over the compositions modeled after
these products, and set the result equal to zero (some degree restrictions apply).
For example, the partition (1|1) occurs as a term only in the partition products
(1) ∗ (1|1), (1|1) ∗ (1), (2) ∗ (1|0), and (2) ∗ (0|1), but nowhere else. Therefore, the
sub-identity corresponding to the partition (1|1) is written as
[{m(1)}{m(1|1)} ± {m(1|1)}{m(1)} ± {m(2)}{m(1|0)} ± {m(2)}{m(0|1)}

] {a|b} = 0.

The mega map and the mega identity above were proposed by the author [3]
as the “strongly homotopy Gerstenhaber algebra” or “G∞ algebra” structure on a
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super graded vector space, following the terminology of the articles [7], [13], and
[28]. However, we now propose that this identity be known as a generic “homotopy
algebra” structure, whereas the term “(weakly) homotopy G algebra” be reserved
for homotopy algebras with m(1|0) as the identity map that chooses one element from
one slot of vectors and nothing from the very next (there may be several ways of
choosin’ nuttin’) and m(0|1) as the zero map. In particular, the anti-symmetrization
of m(1|1) becomes the G-bracket and the bilinear product m(2) becomes the super
commutative associative map of the G-algebra. The main reason is the simplicity
and all-encompassing quality of the more general identity: almost all structures
studied under the homotopy umbrella are defined by identities comprising sums of
compositions of multilinear maps (there are NO new identities!). Although we are
mostly concerned with compositions of one mega map with itself, the necessity of
composing such a map with several copies of itself has naturally arisen (again see
[7], [13], and [28]).

Due to its simplicity, the identity easily lends itself to modifications and general-
izations. Substructures are easy to identify (examples will follow), symmetries can
be arranged at will, and the partition algebra as well as the depth of the composi-
tions (currently two) may be replaced.

A note on the suspended grading: we define [3]

|m̃π| = d(π) + d̄(π) + |mπ|+ 1,

at least up to congruence modulo two, where d̄(π) denotes the number of slots in
the partition minus two. In other words, we add the super degree of |mπ| to the
number of arguments and slots of π, and adopt the resulting parity. The d̄-degree
will resurface in the study of topological vertex operator algebras.

3.3. Classical and (weakly) homotopy Gerstenhaber algebras
A (classical) Gerstenhaber algebra is a super graded vector space A with a super

commutative, associative bilinear product (suppressed) and an odd bracket [ , ]G
satisfying
(i) [a, b]G = −(−1)(|a|−1)(|b|−1)[b, a]G (antisymmetry with suspended grading),
(ii) [a, [b, c]G]G = [[a, b]G, c]G + (−1)(|a|−1)(|b|−1)[b, [a, c]G]G (Leibniz property with
suspended grading), and
(iii) [a, bc]G = [a, b]Gc + (−1)(|a|−1)|b|b[a, c]G (Poisson rule with mixed grading).

The name comes from the original construction of Gerstenhaber [6] on the co-
homology of the Hochschild algebra of a super commutative associative algebra.
Namely, the super anti-symmetrization of the braces { }{ } mentioned earlier, and
the “dot product” of multilinear maps, descend to a G-bracket and a commutative
associative product with the above properties respectively.

We defined a homotopy Gerstenhaber algebra in Section 3.2 loosely as a homo-
topy algebra with a specific operator m(1|0) that makes the cohomology into a
commutative associative algebra and therefore can be thought of as an A∞ alge-
bra with additional structure. (There are already such structures in the literature.
For example, in [21], Markl mentions “strongly homotopy associative commutative
algebras”, a.k.a. C∞ or balanced A∞ algebras, citing [20] and [12].) Note that we
anti-symmetrize m(1|1) to obtain a G-bracket in the m(1)-cohomology.
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Besides the homotopy G-algebra structure described in Section 3.2, another nat-
ural way to define a homotopy Gerstenhaber algebra would be via higher brackets
g =

∑
gπ (plus some homotopy G-algebra map m in the first sense, to take the

place of the super commutative and associative product), one of which directly
descends to a G-bracket on the m(1)-cohomology. The brackets need not be anti-
symmetrized. This not only resonates with the way L∞ algebras are defined, but
also happens to be the structure on a topological vertex operator algebra (as a ho-
motopy BV-algebra) as we will see. In this new definition, we may want to use the
term homotopy Gerstenhaber bracket algebra, or homotopy GB-algebra, to underline
the difference (apart from the switch from “map” to “bracket” in terminology, and
the anti-symmetrization issue, the difference will be mostly philosophical). Depend-
ing on example, some general identities resembling those of the classical G-algebras
may be imposed on g and m. We do not have this problem of “looking like a classi-
cal algebra” versus “descending to a classical algebra” in A∞ algebras, for example,
because these structures both “look like” and “descend to” associative algebras.
Speaking of A∞ algebras, it is our observation that maps of plain types commonly
arise from some inner structure of a vector space A, whereas most partitioned maps
behave like substitution operators on some higher structure (like endomorphisms,
mixed tensor space, Hochschild complex...) on A and do not refer to the algebra
structure on A, if any. The Hochschild complex of an associative algebra (A,m) is
a good example. The maps of types (1) and (2) are defined in terms of the multipli-
cation m (and also in terms of substitution operators), but maps of partition type
(1|n) are substitution operators for multilinear maps on A.

Two substructures of homotopy G-algebras (A,m) were mentioned in [3], namely
the A∞ subalgebra

m(1) + m(2) + m(3) + · · ·
and the pre-L∞ algebra

m(1) + m(1|1) + m(1|1|1) + · · · .
For the first, the mega identity is reduced to the usual

{m̃}{m̃} = 0,

and for the second, it is replaced by the right pre-L∞ condition

{m̃}{m̃}{a1, . . . , {an−1}{an} } = 0 for all n.

3.4. Higher order differential operators
The notion of a higher order differential operator B ∈ Hom(A,A) for a noncom-

mutative, nonassociative algebra (A,m(2)) was introduced by the author in [1]. The
definition was modeled after Koszul’s [15] for commutative, associative algebras.
We include the definition for reference (m(2) suppressed). Let

Φ1
B(a) = B(a)

Φ2
B(a, b) = Φ1

B(ab)− Φ1
B(a)b− (−1)|B| |a|aB(b)
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Φr+2
B (a1, . . . , ar, b, c) = Φr+1

B (a1, . . . , ar, bc)− Φr+1
B (a1, . . . , ar, b)c

−(−1)|b|(|B|+|a1|+···+|ar|)bΦr+1
B (a1, . . . , ar, c), r > 1.

Each bracket measures the previous one’s failure to be a derivation of m(2) in
the last argument; then we say B is a differential operator of order (at most) r if
Φr+1

B identically vanishes. For a partitioned-map presentation of the formula see [3].
Later, Kravchenko showed in [16] that the higher brackets Φr

B form an L∞ algebra
structure in case A is super commutative. A generalization of the maps B and m(2)

in the Φ-operators to arbitrary multilinear maps is given in [2].

3.5. Classical and weakly homotopy Batalin-Vilkovisky algebras
The usual definition of a (classical) Batalin-Vilkovisky algebra (or BV-algebra)

is a Gerstenhaber algebra (with a super commutative associative bilinear product
m(2)) that is obtained by taking the G-bracket of the bilinear map m(2) with an
odd, linear map β, which is also required to be a second order differential operator
with respect to m(2). More precisely, we construct

[a, b]β = (−1)|a|[β, m(2)]{a, b} = (−1)|a|Φ2
β(a, b),

where the bracket in the middle is the Gerstenhaber bracket of two multilinear
maps, and prove that the result is a classical G-algebra (see [6, 2]).

A weakly homotopy Batalin-Vilkovisky algebra (or differential BV-algebra, as it
has been called in literature) should be a super graded vector space with a number
of higher multilinear maps, in particular an odd, square-zero operator m(1) that is a
derivation of some even, bilinear product m(2), and an odd, linear, square-zero oper-
ator B that is a second-order differential operator with respect to m(2). We require
m(2) be super commutative and associative up to homotopy (although homotopy
associativity is needed only to fill out the definition of the classical algebra in the
cohomology), and the commutator [B,m(1)] be a diagonalizable operator L (pos-
sibly zero) that commutes with the two degree operators. Under these conditions,
it was shown in [1] that all these maps collapse to a classical BV-algebra structure
on the m(1)-cohomology. (Kosmann-Schwarzbach commented to us that there are
examples of homotopy BV-algebras where the commutator L is not diagonalizable.)

We may, and indeed will, define a stronger notion of a homotopy BV-algebra
based on the two prominent examples to be discussed at the end of the article. We
will require a homotopy G-algebra structure and a map B with all the trimmings
described above. (Homotopy G-algebras generalize super commutative associative
algebras.) How many classical G-algebra structures does this set-up generate? As we
have mentioned above, there is the G-algebra on the m(1)-cohomology, coming from
the anti-symmetrization of m(1|1), and also the one induced directly by the bracket
[B, m(2)] on the same space. This is exactly the situation in a topological vertex
operator algebra. In the meantime, we will be freely using the G-bracket notation
with no indices on the Hochschild complex to denote the usual anti-symmetrization
of simple composition. Too many G’s? We also use the name “Gerstenhaber” occa-
sionally to refer to a certain mathematician with vast contributions to the field!
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Definition 3.1. A weakly homotopy Batalin-Vilkovisky algebra is a graded vector
space A together with a homotopy G-map m =

∑
π mπ and an odd, linear, square-

zero, second-order differential operator B with respect to m(2) such that the even
linear operator

L = [B,m(1)]

is diagonalizable. As in vertex operator algebra theory, we will call the eigenvalues of
L weights, and note that they produce a third grading on the Hochschild complex of
A, by definition commuting with the other two. (In many examples, L will be zero.)

Example 3.5. A topological vertex operator algebra has a homotopy BV-algebra
structure: Subsection 4.2.2.

This definition will give us a higher BV bracket

[ , ]πB = [B,mπ]

for every partition π, collectively giving us a homotopy GB-algebra as a formal sum
of brackets that satisfy certain identities, just as an L∞ algebra structure is a sum
of brackets satisfying identities.

4. The homotopy algebra structures of the Hochschild space
and topological vertex operator algebra

4.1. The homotopy G-algebra structures
4.1.1. On the Hochschild complex
We will review the information in [7] and [3] about the homotopy G-algebra struc-
ture on C•(A,A) for an associative algebra (A,m(2)). The nonzero operators are as
follows:
{M(1)}{x} = [m(2), x]
{M(2)}{x, y} = ±{m(2)}{x, y}
{M(1|0)} = identity map on the left slot (for symmetry)
{M(1|1)}{x|y} = {x}{y} (shown by Gerstenhaber in [6] to be right pre-Lie; see[2])
{M(1|n)}{x|y1, . . . , yn} = ±{x}{y1, . . . , yn} for n > 1

Therefore, the mega map M can be written as the infinite sum

M = M(1) + M(2) + M(1|0) + M(1|1) +
∑
n>1

M(1|n),

satisfying the mega identity

{M̃}{M̃, M̃ , . . .} = 0.

Note that the map M(1|1) is the composition operator described earlier under “stan-
dard composition”. The following individual identities were observed by Gersten-
haber and Voronov in [7] and rewritten in the following form in [3]:
(i) M2

(1) = 0
(ii) ({M(1)}{M(2)} ± {M(2)}{M(1)})(2) = 0
(iii) ({M(2)}{M(2)})(3) = 0
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(iv) ({M(1)}{M(1|n+1)} ± {M(1|n+1)}{M(1)}
±{M(2)}{M(1|n)} ± {M(1|n)}{M(2)})(1|n + 1) = 0 (n > 1)

(v) ({M(2)}{M(1|n)} ± {M(1|n)}{M(2)}
+

∑

16i6n−1

±{M(2)}{M(1|i),M(1|n−i)})(2|n) = 0

(vi) ({M(1)}{M(1|1)} ± {M(1|1)}{M(1)} ± {M(2)}{M(1|0)})(1|1) = 0
One powerful example of the efficiency of the partitioned-braces language is the

newly acquired meaning of the formerly stray identity (v). This represents the sub-
identity corresponding to the partition (2|n), and has terms arising from the com-
positions of all partitioned maps whose composites contain multilinear maps of type
(2|n). Note the substitution of two M ’s into one as a change from the previous ex-
amples. This is in fact why the author decided to try a different mega identity from
that of A∞ in [3]. If substitutions of more complicated types arise in examples in
the future, we will easily amend the mega-identity, now that we know more of the
mechanism behind it.

4.1.2. On a TVOA
The homotopy G-algebra structure on a TVOA was revealed by Kimura, Voronov,
and Zuckerman in [13, 28], albeit without any explicitly constructed maps. (For
a complete set of defining properties of a TVOA and some that follow from the
definition, see Appendix B.) The pictures and the lower identities in [13] were
translated into the mega identity {m̃}{m̃, m̃, . . .} = 0 in [3]. The similarities between
Lian and Zuckerman’s earlier explicit maps and relations [19] of homotopy-BV type
and the ones studied by Kimura et al. led the author to seek the connections between
the two structures and wonder which, if either, was the fundamental one.

The operators constructed in [13] were of all partition types with no zeros, m(1|0)
being the single exception. After Voronov’s corrections in [28], it turned out that our
generic homotopy algebra mega-identity was an inadequate model for the particular
weakly homotopy G-algebra structure on TVOA’s. Namely, only the infinitely many
identities that correspond to partitions π where there is no zero slot, and at most
two slots are greater than or equal to two, survived. Unfortunately, such maps plus
m(1|0) do not form a G-substructure, solely because of m(1|0) (maps of forbidden
partition types appear in valid identities). A compact algebraic description of the
whole weakly homotopy G-algebra structure on a TVOA is so far nonexistent.

In [13], multibraces denote the equivalent of our partitioned maps. In order
to preserve the useful braces notation from earlier work, and to emphasize the
importance of the partitions, we have changed the notation of Kimura et al.

4.2. The homotopy BV-algebra structures
4.2.1. On the Hochschild complex
We will prove in general that any weakly homotopy algebra structure on A, in-
cluding that of a homotopy BV-algebra, can be lifted naturally to the Hochschild
complex, by simplifying Getzler’s construction in [8] for A∞ algebras (see also the
interpretation in [2], p.157).
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Theorem 4.1. Let (A,m) be a weakly homotopy algebra (possibly with an additional
BV operator β). Then its structure can be lifted to the Hochschild complex C•(A,A)
by defining

{Mπ}′{ {xπ} }′ = { {mπ}{xπ} }′.
In case of a BV operator β on A, we define a BV operator B on C•(A,A) by

{B}′{ {x} }′ = { {β}{x} }′.
Proof. With the braces notation, there really isn’t much to prove.

{M}′{M, M, M, . . .}′{ {xπ} }′
=

∑

product = π

{Mπ′}′{Mπ′1 ,Mπ′2 ,Mπ′3 , . . .}′{ {xπ} }′

=
∑

product = π

{ {mπ′}{mπ′1 ,mπ′2 ,mπ′3 , . . .}{xπ} }′

= { {m}{m,m, m, . . .}{xπ} }′
= 0.

Clearly, B is odd and square-zero if β is. Finally, we can easily show that

{Φ3
B}′{ {x, y, z} }′ = { {Φ3

β}{x, y, z} }′ = 0,

that is, B is also a second order differential operator (the first φ operator is con-
structed with respect to M(2), and the second one with respect to m(2)).

Our construction differs from that of Getzler in that we did not define M(1) by

{M(1)}′{ {x} }′ = {[m,x]}′,
because it would not have worked: the identity {m}{m} = 0 (or the m̃ version) is
not valid in general, and we would have needed it to prove that M(1) is square-zero.

4.2.2. On a TVOA
The observation of Lian and Zuckerman [19] (also see [22]) that a homotopy Batalin-
Vilkovisky structure exists in the cohomology of a topological vertex operator al-
gebra (see Appendix B for full description) predates the discovery of a certain
homotopy G-structure on the TVOA itself ([13, 28, 3]). We will put forth strong
evidence, with the help of the unifying braces notation, that the former is in fact
a consequence of the latter in spite of the chronology. In particular, the homotopy
BV-algebra structure on a TVOA, maps, relations, and all, is obtained from the ho-
motopy G-algebra structure by G-bracketing (in the sense of “anti-symmetrization
of composition”) all maps and relations with an odd, square-zero, second-order
differential operator B. Again, what is the meaning of a higher order differential
operator on a noncommutative, nonassociative algebra? In [1], we were able to de-
fine higher order differential operators in the most general fashion, and show that
“half” of the modes un for each vertex operator u(z) constituted a sequence of dif-
ferential operators on the TVOA of orders (at most) 1,2,3,..., while the rest satisfied
the properties of multiplication operators. Under this novel definition, the mode b0
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utilized in [19] as the BV operator turned out to be a second-order differential op-
erator with respect to the Wick product, resulting in the vanishing of the higher
bracket Φ3

b0
(u, v, t). We then defined “generalized ” and “differential” BV algebras,

on the strength of the existence of second-order differential operators, and gave
several examples.

Theorem 4.2. All explicit multilinear maps on a TVOA described by Lian and
Zuckerman [19] as part of the homotopy BV algebra structure are either part of a
certain weakly homotopy G algebra structure or else can be obtained by taking the
G-bracket (composition bracket) of b0 with homotopy G algebra maps.

Dictionary of maps. The following table exhibits the multilinear operators listed
in the Lian-Zuckerman article [19] versus our interpretation of them with 100%
hindsight.

Lian and Zuckerman call it... In our language, up to ±...
b0 B
Q (BRST differential) m(1)

· (dot product, Wick product) m(2)

n = n(u, v, t) m(3)

m = m(u, v) m(1|1)
[b0, Q] = L0 [B, m(1)] = L
{ , } (BV bracket) [B, m(2)] = [ , ]B
? [B, m(3)]
m′ = m′(u, v) [B, m(1|1)]
n′′ = n′′(u, v, t) (appears in Poisson-type identity) [m(2), [B, m(1|1)] ]

For the rest of this subsection we will mostly write maps and identities in our
own symbols. It is to be understood that “homotopy G-algebra” in this subsection
simply means “weakly homotopy G-algebra” and nothing else. As we have remarked
several times earlier, there is no good explicit, algebraic definition of the complete
structure on a TVOA, and the generic homotopy algebra identity proposed in this
paper is not valid because of deficiencies in higher maps.
Identities or definitions that were known before Lian-Zuckerman.
1. [m(1),m(2)] = 0 (Q is a derivation of the Wick, or normal-ordered, product)
2. {m(1)}2 = 0 (Q2 = 0)
3. B2 = 0 (b2

0 = 0)
4. L = [B,m(1)] (the commutator of b0 with Q is the (Virasoro) degree operator
L0, commuting with all homogeneous maps)
Explicit maps/identities found by Lian-Zuckerman. For simplicity we will
not always specify the sign changes due to crossing of symbols.
5. {m(2)}sym = {m(2)}{m(1|0)} = [m(1),m(1|1)]
Fundamental homotopy G-identity: Wick is super commutative up to homotopy.
First explicit appearance in literature was in [19].
6. {m(2)}{m(2)} ± [m(1),m(3)] = 0
Fundamental homotopy G-identity: Wick is associative up to homotopy. First ex-
plicit appearance in literature again in [19].



Homology, Homotopy and Applications, vol. 7(2), 2005 29

7. [m(1), [B, m(2)] ] = 0
Q is a derivation of the BV-bracket. Why?

[m(1), [B,m(2)] ]
= [ [m(1), B],m(2)]± [B, [m(1),m(2)] ]
= [L,m(2)]± [B, 0] = 0.

8. [ , ]sym
B = [B, m(2)]sym = [m(1), [B,m(1|1)] ]

The BV-bracket is symmetric up to homotopy. Can be obtained as follows:

[m(1), [B, m(1|1)] ]
= [ [m(1), B],m(1|1)]± [B, [m(1),m(1|1)] ]
= [L, m(1|1)]± [B,msym

(2) ]

= ±[B,m(2)]sym.

9. [u, [v, t]B ]B = [ [u, v]B , t]B ± [v, [u, t]B ]B
Leibniz property. In [2] (pp. 154-155), we showed that this is equivalent to the
vanishing of the operator

Φ3
B2 − [B, Φ3

B ].

Since B is a square-zero, second-order differential operator, we are done.
10. [u, {m(2)}{v, t}]B = {m(2)}{[u, v]B , t} ± {m(2)}{v, [u, t]B}
Poisson property for left BV-bracketing with respect to the Wick product. Again
in [2] (p.155) we showed that this identity is exactly the condition for the operator
Φ3

B to be identically zero.
11. [{m(2)}{u, v}, t]B = {m(2)}{u, [v, t]B} ± {m(2)}{[u, t]B , v}
±[m(1), [m(2), [B, m(1|1)] ] ]{u, v, t}
Poisson property for right BV-bracketing up to homotopy. We do not have a pre-
cooked identity that corresponds to this one (due to the lopsided way we have
defined our Φ-operators).
Two more related identities.
12. {m(2)}{{u}{v}, t} = 0
Found in [3]: Wick is left pre-Lie, hence its G-bracket is Lie. The Lie property of
the G-bracket was also in dependently observed by Dong, Li, and Mason in [5].
13. [B, {m(2)}{m(2)}] = [B, [m(1),m(3)]] = [m(1), [B, m(3)]]
This identity is obtained by B-bracketing the homotopy associativity statement, and
could easily have been discovered by Lian and Zuckerman. The operator [B, m(3)]
was similarly within their scope.
One more homotopy BV structure. By the Theorem in Subsection 4.2.1, there
is also a homotopy BV-algebra structure on the Hochschild complex defined on any
TVOA.

4.2.3. Explicit construction?
How do we construct an explicit homotopy G-map m on a generic TVOA, now that
the mystery behind its homotopy BV structure is explained? The key may be found
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in Lian and Zuckerman’s construction of the “BV∞” maps in [19], using the relation

Qb−1 + b−1Q = L−1

several times. We will show alternative brute-force constructions of the same maps
based on the VOA properties displayed in Appendix B and especially utilizing
the important identity above. (We urge the reader to consult the Appendix for
notation.) This work is yet unfinished, but completion may become technically
possible, due to the existence of an induction argument. The induction is on the d+d̄-
degree of the multilinear maps we are to construct (that is, the sum of the numbers
of arguments and slots minus three). This particular grading is not preserved under
composition; in fact, d is preserved but d̄ is decreased by one. With the exception of
(1) every partition has a nonnegative d + d̄-degree, and the lower maps are already
known (see the nontrivial ones below). Now we always have the terms

{m(1)}{mπ′} ± {mπ′}{m(1)}
in the sub-identity corresponding to type π′. Since (d + d̄)(m(1)) = −1, we observe
that the d + d̄-degree of mπ′ (say n) is one more than the sum of the two d + d̄-
degrees in the remaining terms (total n−1) of the sub-identity, or at least one more
than the d+ d̄-degree of every remaining map (at most n−1). That is, all the other
partitioned maps that appear will have been constructed prior to our mπ′ ! Then
we start with the terms in the rest of the identity and try to put their sum into the
form {m(1)}{mπ′} ± {mπ′}{m(1)}.

First, let us investigate the “G-bracket” map m(1|1). It appears in the sub-identity

{ {m(1)}{m(1|1)} ± {m(1|1)}{m(1)} ± {m(2)}{m(1|0)} }{u|v} = 0.

We then start with the last term and note that, after cancelations, the expression
is in the image of the “differentiation” operator L−1 = Qb−1 + b−1Q:

{m(2)}{m(1|0)}{u|v}
= u−1v − v−1u

= [u−1, v−1]1

=
∑

i>0

(−1)i(uiv)−2−i1

=
∑

i>0

(−1)i 1
−1− i

[L−1, (uiv)−1−i]1

=
∑

i>0

(−1)i+1

i + 1
L−1(uiv)−1−i1

=
∑

i>0

(−1)i+1

i + 1
(Qb−1 + b−1Q)(uiv)−1−i1

= Q


∑

i>0

(−1)i+1

i + 1
b−1(uiv)−1−i1



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+
∑

i>0

(−1)i+1

i + 1
b−1( (Qu)iv)−1−i1±

∑

i>0

(−1)i+1

i + 1
b−1(ui(Qv) )−1−i1

= [Q,m(1|1)]{u|v},
where

{m(1|1)}{u|v} =
∑

i>0

(−1)i+1

i + 1
b−1(uiv)−1−i1 =

∑

i>0

(−1)i+1

i + 1
(b−1uiv)−1−i1.

Similarly, the partition (3) gives rise to the identity

{ {m(1)}{m(3)} ± {m(3)}{m(1)} ± {m(2)}{m(2)} }{u, v, w} = 0.

We start again from the term that has already been defined, i.e.

{m(2)}{m(2)}{u, v, w}
= (u−1v)−1w − u−1(v−1w)

=


∑

i>0

u−1+iv−1−i + v−2−iui


w − u−1v−1w

=
∑

i>1

u−1+iv−1−iw +
∑

i>0

v−2−iuiw

=
∑

i>0

uiv−2−iw +
∑

i>0

v−2−iuiw

=
∑

i>0

1
i + 1

(L−1u)i+1v−i−2w +
∑

i>0

1
−i− 1

(L−1v)−i−1uiw

=
∑

i>0

1
i + 1

( (Qb−1 + b−1Q)u)i+1v−i−2w +
∑

i>0

1
−i− 1

( (Qb−1 + b−1Q)v)−i−1uiw

=
∑

i>0

1
i + 1

[Q, (b−1u)i+1]v−i−2w +
∑

i>0

1
i + 1

(b−1Qu)i+1v−i−2w

−
∑

i>0

1
i + 1

[Q, (b−1v)−i−1]uiv −
∑

i>0

1
i + 1

(b−1Qv)−i−1uiw

=
∑

i>0

1
i + 1

Q(b−1u)i+1v−i−2w ±
∑

i>0

1
i + 1

(b−1u)i+1Qv−i−2w

±
∑

i>0

1
i + 1

(b−1Qu)i+1v−i−2w −
∑

i>0

1
i + 1

Q(b−1v)−i−1uiw

±
∑

i>0

1
i + 1

(b−1v)−i−1Quiw ±
∑

i>0

1
i + 1

(b−1Qv)−i−1uiw

= {Q}{m(3)}{u, v, w} ± {m(3)}{Q}{u, v, w},
with

{m(3)}{u, v, w} =
∑

i>0

1
i + 1

(b−1u)i+1v−i−2w −
∑

i>0

1
i + 1

(b−1v)−i−1uiw.
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In order to extend the construction to m, it remains to show that every “com-
puted expression” that we start with is in fact in the image of L−1. Or, we need to
ascertain that every such expression starts with some mode un with n 6= −1, as we
have

un =
1

n + 1
[L−1, un+1].

We would like to emphasize that the existence and the types of these maps (if they
do exist) have not been determined.

5. Summary of proposed classification

We have defined a general weakly homotopy algebra on a super graded vector
space A by the relation

{m̃}{m̃, m̃, . . .} = 0

where

m =
∑

π

mπ ∈ C•par(A,A),

and there are no conditions on the partitioned maps mπ except possibly for the
super degrees. In order to obtain a super commutative, associative algebra in the
m(1)-cohomology, we impose the restriction

m(1|0) = identity and m(0|1) =zero

on the homotopy algebra and obtain a weakly homotopy Gerstenhaber alge-
bra. Most explicit examples discussed in this article fall into this class. If there is a
homotopy G-algebra structure on A as well as an odd, linear, square-zero, second-
order differential operator B (with respect to the bilinear map m(2)), then we call
the resulting form a weakly homotopy Batalin-Vilkovisky algebra. But since
G-bracketing m with B yields a sum g =

∑
[ , ]πB of higher BV brackets on A,

descending to a classical BV algebra bracket on the cohomology, we also introduce
the concept of a weakly homotopy Gerstenhaber bracket algebra having a
homotopy G-map m and a bracket map g. The classical G-algebra structure that
exists on the cohomology in both cases is induced by the anti-symmetrization of
m(1|1) and the product m(2), but in the second case, we also have the G-bracket
g(2) or the BV-algebra bracket [B, m(2)] that descends to the cohomology, together
with m(2).

A strongly homotopy associative algebra (A∞ algebra) is a homotopy al-
gebra with only nonzero maps of partition type (n), satisfying

{m̃}{m̃} = 0,

and its anti-symmetrization leads to an L∞ algebra, or strongly homotopy Lie
algebra, of brackets. In fact, any algebra (A,m) that produces L∞ under anti-
symmetrization may be called pre-L∞ and may possibly satisfy

{m̃}{m̃}{a1, . . . , an−2, {an−1}{an} } = 0 or {m̃}{m̃}{ {a1}{a2}, . . . , an} = 0
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(the right and left pre-L∞ identities respectively). An L∞ algebra obtained by anti-
symmetrization of some m satisfies the relation

{m̃}{m̃}{a1} . . . {an} = 0.

We hope to bring about a new wave of discussions of names and definitions, even
though our nomenclature may not be accepted as is.

Acknowledgments. I am indebted to Yvette Kosmann-Schwarzbach, Martin Markl,
Jim Stasheff, Sasha Voronov, and the referees for numerous helpful comments and
corrections. Any remaining errors are mine, as the saying goes.

Appendix A: Expansion of a partitioned substitution

In order to understand the mechanics of the generic substitution

{Mπ}{M (1)
π1

, . . . ,M (l)
πl
}{a(1)

1 · · · a(1)
n1
| · · · |a(k)

1 · · · a(k)
nk
},

we first consider the simplest case of

{M(n)}{N(i1|···|ik)}{a(1)
1 · · · a(1)

n1
| · · · |a(k)

1 · · · a(k)
nk
}.

That is, only one partitioned map is to be substituted into M(n) (hence l = 1),
and the number of slots in the partition defining the substitution properties of this
inner map matches that of the partitioning of the vectors, namely k. If each slot of
N(i1|···|ik) is at most equal to the number of vectors in the corresponding slot of the
ordered vector set, then we are in business (otherwise substitution is not possible).
In the notation of the last Eq., we want ij 6 nj for all 1 6 j 6 k.

Example 5.1. Let us start working on an example that we will keep revisiting
throughout this Appendix. Consider the substitution

{M(4)}{N(1|3)}{a1, a2, a3|b1, b2, b3, b4}.
Both the middle map and the set of arguments sport two slots (k = 2), and in each
vector slot there are more vectors than N(1|3) can hold.

In the general case, we want to split each slot of vectors into three pieces, some
of which may be ∅, in all possible ways. The only condition is that the middle piece
be as long as the number in the corresponding slot for {m(i1|···|ik)}. That is, we are
getting ready to plug in the middle set in each slot into its designated place inside
{N(i1|···|ik)}. We may denote this splitting process by

{a(1)} = {b(1), c(1), d(1)}
...

{a(k)} = {b(k), c(k), d(k)},
where letters with superscripts only denote blocks of consecutive vectors. In par-
ticular, the c’s have the exact number of vectors to fit in the corresponding slot of
m(i1|···|ik).
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Example 5.2. The first slot of vectors in the previous example can be split as

∅ {a1} {a2, a3} or {a1} {a2} {a3} or {a1, a2} {a3} ∅.
Similarly, the second slot offers the possibilities

∅ {b1, b2, b3} {b4} and {b1} {b2, b3, b4} ∅.
Therefore, there are altogether six different ways (splittings) in which we may choose
to apply N(1|3) to the partitioned vector set.

The next step is, for each overall choice of splittings, to permute the “left left-
overs” in all slots of vectors in such a way that inner orders are preserved. In the same
manner we permute all “right leftovers” so that their inner orders are preserved, and
apply {m(i1|···|ik)} to the c’s in such a way that the left leftovers precede, and the
right leftovers follow, the output vector (inside m(n)). After forming the signed sum
that reflects all possible permutations, we go ahead and follow the same procedure
for all of the other possible splittings.

Example 5.3. For example, the splitting

{a1} {a2} {a3} | {b1} {b2, b3, b4} ∅
gives rise to the following two terms,

±M(4)(a1, b1, N(1|3)(a2|b2, b3, b4), a3)

and
±M(4)(b1, a1, N(1|3)(a2|b2, b3, b4), a3).

Note that the inner order of the a’s and the b’s are preserved. In order to complete
the substitution

{M(4)}{N(1|3)}{a1, a2, a3|b1, b2, b3, b4},
the summands coming from each of the remaining five splittings need to be added.

Example 5.4. This is the expansion promised in the second example of Subsec-
tion 2.2.2. We have

{X(2|4)}{Y(1|2)}{a, b|c, d|e, f, g, h}
= ±X(2|4)(Y(1|2)(a|c, d), b|e, f, g, h)±X(2|4)(a, Y(1|2)(b|c, d)|e, f, g, h)
±X(2|4)(a, b|Y(1|2)(c|e, f), d, g, h)±X(2|4)(a, b|Y(1|2)(c|e, f), g, d, h)
±X(2|4)(a, b|Y(1|2)(c|e, f), g, h, d)±X(2|4)(a, b|e, Y(1|2)(c|f, g), d, h)
±X(2|4)(a, b|e, Y(1|2)(c|f, g), h, d)±X(2|4)(a, b|e, f, Y(1|2)(c|g, h), d)
±X(2|4)(a, b|c, Y(1|2)(d|e, f), g, h)±X(2|4)(a, b|c, e, Y(1|2)(d|f, g), h)
±X(2|4)(a, b|e, c, Y(1|2)(d|f, g), h)±X(2|4)(a, b|c, e, f, Y(1|2)(d|g, h))
±X(2|4)(a, b|e, c, f, Y(1|2)(d|g, h))±X(2|4)(a, b|e, f, c, Y(1|2)(d|g, h)).

The number of terms in a certain composition is easy to compute. We assume
that the set of tri-partitions

{u1, i1, v1}, . . . , {uk, ik, vk}
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of n1, . . . , nk given above is fixed, where k > 1 and all numbers are nonnegative
integers. First let us find the number of permutations of left (or right) leftovers.

Lemma 5.1. Let S1, . . . , Sk be ordered sets with u1, . . . , uk elements respectively,
with k > 1, and uj > 0 for all 1 6 j 6 k. Then the number of permutations of the
elements of S1∪ · · · ∪Sk that preserve the inner order of each Sj (called unshuffles)
is given by the product

(
u1 + · · ·+ uk

u1

)(
u2 + · · ·+ uk

u2

)
· · ·

(
uk−1 + uk

uk−1

)(
uk

uk

)
.

Once we count all possible values of uj in the jth slot, then the vj ’s will fall into
place, since the middle value in the tri-partition is ij and the total is nj . Then

Lemma 5.2. The total number of terms in the substitution

{M(n)}{N(i1|···|ik)}{a(1)
1 · · · a(1)

n1
| · · · |a(k)

1 · · · a(k)
nk
},

where n =
∑

nj −
∑

ij + 1 =
∑

uj +
∑

vj + 1, is

n1−i1∑
u1=0

· · ·
nk−ik∑
uk=0(

u1 + · · ·+ uk

u1

)(
u2 + · · ·+ uk

u2

)
· · ·

(
uk−1 + uk

uk−1

) (
uk

uk

)

·
(

v1 + · · ·+ vk

v1

)(
v2 + · · ·+ vk

v2

)
· · ·

(
vk−1 + vk

vk−1

)(
vk

vk

)

(we are given only the ij’s and nj’s; note that vj = nj − uj − ij in the formula).

When the type (n) of the leftmost map is replaced by a generic partition π,
things get a bit more complicated. We will simply stop here and refer the reader to
the source, [3], as a much more precise method for this procedure is described in
Subsection 2.2.2. So far, the reason for finer partitioning among the arguments of
a multilinear map is not apparent. When barred braces are used for substitution,
though, the types of multilinear functions that are produced play a prominent role
in writing homotopy algebra identities.

Appendix B: Properties of VOA’s and TVOA’s

A vertex operator algebra (VOA) is a Z-weighted (possibly with additional
super Z-grading, denoted by superscripts; not assumed here) module

V =
⊕

n

Vn

of the Virasoro algebra that satisfies the following properties:
P1. Vn = 0 for n << 0.
P2. There exists a linear map

V → End(V )[ [z, z−1] ], v 7→ v(z) =
∑

vnz−n−1,
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where z is a formal variable, v is called a state, and v(z) is called a vertex operator
(or a field). The linear map vn is called a mode of the vertex operator v(z). We will
sometimes denote the product vnw by v ×n w.
P3. For all v, w ∈ V , we have vnw = 0 for n >> 0.
P4. There exists an element 1∈ V0 such that

1(z) = id · z0.

P5. There exists ω ∈ V2 such that

ω(z) =
∑

Lnz−n−2,

where Ln denotes both an element of V ir and the corresponding mode in End(V ).
P6. For all v ∈ V , we have

v(z)1 ∈ V [ [z] ]

and
lim
z→0

v(z)1 = v.

P7. The operator L0 is diagonalizable, with

L0v = (wt v)v for all v ∈ Vn

(the eigenvalues are called weights).
P8. We have

d

dz
v(z) = (L−1v)(z) for all v ∈ V .

P9. Bracketing with L0 results in

[L0, v(z)] = (L0v)(z) + z(L−1v)(z) for all v ∈ V .

P10. For all v, w ∈ V , there exists an integer t >> 0 such that

[v(z1), w(z2)](z1 − z2)t = 0.

Some additional properties that follow from the definition are:

? (umv)n =
∑

i>0

(−1)i

(
m
i

)
[um−ivn+i − (−1)mvm+n−iui]

? [um, vn] =
∑

i>0

(−1)i(uiv)m+n−i

?

(
0
i

)
=

{
1 if i = 0
0 if i > 1

?

( −1
i

)
= (−1)i (i > 0)

?

(
m
i

)
=

{
1 if i = 0
m(m− 1)(m− 2) · · · (m− i + 1)/i! if i > 1

for m ∈Z
? L0 − (n + 1) · id is a derivation of ×n (L0 is a derivation of Wick)
? [L0, un] = (wtu− n− 1) · un

? (u0v)(z) = [u0, v(z)] =
∑

[u0, vn]z−n−1
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?
d

dz

∑
unz−n−1 = (L−1u)(z) =

∑
[L−1, un]z−n−1 = −

∑
nun−1z

−n−1

(L−1 is also a derivation of Wick)
? The mode un is a differential operator of order 6 n + 1 with respect to Wick for
n > 0
? Wick is left pre-Lie, or u−1v−1 − v−1u−1 − (u−1v)−1 + (v−1u)−1 = 0
? (um1)n has at most two terms:

(−1)−n−1

(
m

−n− 1

)
um+n+1 if n 6 −1 and (−1)n

(
m

m + n + 1

)
um+n+1 if m+

n > −1
? For a VOSA with nonnegative weights, V0 is a (super) commutative, associative
algebra under Wick
? For wtu = m and wt v = n, all expressions utv are zero for t > m + n−minimal
weight
? A residue (charge) u0 is a derivation of all binary products ×n:
[u0,×n](v, w) = u0(vnw)± (u0v)nw ± vn(u0w) = 0
? Again if u0 is a residue, we have
u0vn1 = [u0, vn]1 = (u0v)n1 and u0vmwn1 = (u0v)mwn1± vm(u0w)n1

? un =
1

n + 1
[L−1, un+1] for n 6= −1.

A topological vertex operator algebra (TVOA) is a super graded VOA with
the following additional properties:
P11. There exists an even vertex operator F (z) ∈ V1 whose residue F0 is the
fermion (ghost) number operator, or the super degree operator
P12. There exists a weight-one primary (Virasoro-singular) vertex operator J(z)
with fermion number one and a square-zero residue Q = J0

P13. There exists a weight-two primary operator b(z) =
∑

bnz−n−2 with fermion
number −1, satisfying

[Q, b(z)] = ω(z)
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