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We study the construction of auxiliary functions likely to aid in

obtaining improved irrationality measures for cubic irrationali-

ties and thence for arbitrary algebraic numbers. Specifically, we

note that the construction of curves with singularities appropri-

ately prescribed for our purpose leads to a simultaneous Padé

approximation problem. The first step towards an explicit con-

struction appears to be the evaluation of certain determinants.

Our main task here is the computation of an example determi-

nant, which turns out indeed to be a product of a small num-

ber of factors each to high multiplicity — whence the adjective

‘powerful’. Our evaluation confirms a computational conjecture

of Bombieri, Hunt and van der Poorten.

1. INTRODUCTIONOur object is to construct curves with prescribedsingularities. To that end, we evaluate several de-terminants. As expected on the basis of computa-tions reported in [Bombieri et al. 1995], we �nd thatthose determinants are products of a small numberof distinct factors, each to high multiplicity; thusthe adjective `powerful' of the title.Speci�cally, consider the easy problem of construct-ing a one variable polynomial with just three distinctzeros, say at �1, �2 and �3, each of multiplicity k.Plainly, multiples of (x��1)k(x��2)k(x��3)k willdo. Suppose that the �i are the three conjugatesof some cubic irrational �, and recall that the bino-mial coe�cients of order k have logarithmic heightO(k). Then we see that the `easy problem' has asolution of degree 3k with coe�cient vector of log-arithmic height O�kh(�)�, where h(�) is the loga-rithmic height of �.We might more clumsily have proved the existenceof such a solution by linear algebra. The requiredzeros constitute 3k linear conditions on the 3k+1coe�cients of a polynomial of degree 3k. Thus,solving by Cramer's rule provides the coe�cients as3k+1 determinants each of dimension 3k by 3k. It
c
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is now not immediate just what the height of thatvector of coe�cients is, given that it is appropriateto view the vector as a point in projective space.Clearly, each determinant is of logarithmic heightO�k2h(�)�. However, the determinants are gener-alised Vandermonde and are readily seen to have asubstantial common factor made up from powers ofthe three di�erences �i��j . Removing that com-mon factor makes it plain that the vector of determi-nants indeed is of logarithmic height O�kh(�)�, asalready seen by more straightforward considerationsabove.The analogous problems for polynomials in twovariables are more complicated. The clutter causedby studying the question at three arbitrary points(�i; �i) is already intolerable and quickly leads oneto recall that there is no loss in dealing with thethree points (0; 0), (1; 1), and (1;1), which aremore amenable. At the end, linear fractional trans-formations in each variable retrieve generality. Bythe way, dealing with the `more amenable' pointstrivialises the clumsy determinantal solution in theone variable case. In two variables, however, theanalogues of the binomial coe�cients remain di�-cult to tame.Suppose one is to construct a polynomial F (x; y)of bidegree (m;n) with prescribed vanishing at threepoints. First, we need a generalisation of `multiplic-ity'. A correct one is to specify a triangle fk0 � k1 �� � � � kn = 0g of integers and to require vanishingof all the partial derivativesDuxDvyF (x; y)with 0 � u < kv and v = 0, 1, . . . , n at each of thepoints. The notation here is Dux = (du=dxu)=u! andDvy = (dv=dyv)=v! .Dividing by the factorial is not just a frill. It isessential to use only divided derivatives if our argu-ments are to remain valid in positive characteristic.There appears to be no alternative to solving forthe polynomial's coe�cients by some generalisationof Cramer's rule. We should therefore take3 nXb=0 kb < (m+1)(n+1)
and study the height of the resulting vector of 3P kbby 3P kb determinants. At a glance, each determi-nant has logarithmic height O(m2n+mn2), which is

far too large|we hope for O(mn). Thus we need to�nd that the determinants share a very substantialcommon factor.In the present paper we do no more than suggestthe likelihood of such a common factor. We do thatby studying the `degenerate' case
3 nXb=0 kb = (m+1)(n+1):

There is now just one determinant; we call it � =�(k0; k1; : : : ; kn).Below, we evaluate several such determinants, andshow in particular that each is a product of a smallnumber of distinct small factors, each factor there-fore with high multiplicity. That property of a `mas-ter' determinant � is arguably necessary for its mi-nors to share a very substantial common factor. Weexpect that our evaluation method will readily gen-eralise to the nondegenerate case and will eventuallyshow that our present techniques do su�ce to provethe existence of the required common factor.The context of the present work is the study of ef-fective diophantine approximation of algebraic num-bers; see [Bombieri et al. 1995] for an introduction,[Bombieri 1997] for an elegant summary and, for adetailed instance, [Bombieri et al. 1996].
2. PADÉ APPROXIMATIONConsider �rst the problem of constructing polyno-mials Q(x) of degree at most l and P (x) of degreeat most l�1 so that the power seriesR(x; y) = (1�x)��Q(x)�yP (x) (2–1)satis�es R(x; 1) = (1�x)��Q(x)�P (x) = O(x2l).For `general' �, the requirement that R(x; 1) havea zero of order at least 2l at x = 0 is 2l inde-pendent linear conditions on the 2l+1 coe�cientsof Q and P and has a unique solution up to nor-malisation. Set Di = (d=dx)i=i!. Speci�cally, us-ing Cramer's Rule, we may display a solution forwhich the leading coe�cient of Q is the 2l by 2l de-terminant whose �rst l columns, with 1 � j � l,have the entries Di�1(1�x)��xj�1jx=0, and whoseremaining l columns, with l+1 � j � 2l, have en-tries Di�1xj�1�ljx=0; here the rows are indexed by1 � i � 2l.
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The vanishing of the last l rows of the second set ofcolumns suggests that in place of the approximationproblem (2{1) we study the problem of �nding Q(x)of degree at most l so thatDlR(x; 1) = Dl(1�x)��Q(x) = O(xl): (2–2)This `new' problem constitutes l conditions on thel+1 coe�cients of Q. As above, by Cramer's Rulethere is a solution for which the leading coe�cientof Q is the l by l determinant with entriesDl+i�1(1�x)��xj�1jx=0 = (�1)l+i�j� ��l+i�j�= ��+l+i�j�1l+i�j �: (2–3)Clearly, having determined Q by Cramer's rule, asjust begun, one determines P trivially, simply byrequiring that it coincides with the �rst l terms ofthe power series (1�x)��Q(x). Thus we have solvedthe original problem. Because we are using dividedderivatives it follows that the latter determinant candi�er from the one we commenced to study at mostby multiplication by �1. Speci�cally,��+i�j�1i�j � ���� �I� � � � � � � � � � � � � � � � � � � � � � ���+l+i�j�1l+i�j � ���� 0is the original determinant belonging to the system(2{1). Note also the remarks on evaluating the de-terminant at Useful Remark 5.8 below.In the particular case � = �2l we name the deter-minant �(2l; 0) = �. The value of � is well known.For example, recently Zeilberger [1996] recalls in aquite delightful way that�����a+ib+j�����1�i;j�l= (a+l)!! (l�1)!! (a�b�1)!! (b)!!(a)!! (a�b+l�1)!! (b+l)!! ;
(2–4)where, l!! := 1!2!3! � � � l!. We leave it as an exercisefor the bemused reader to verify that this includesthe evaluation of � mentioned in [Bombieri et al.1995], namely, with [k] := (k�1)!!,�� = [l]3[3l]=[2l]3:Actually, the construction discussed in [Bombieriet al. 1995] is not at all obviously equivalent to aPad�e approximation problem. That constructionis, given a `triangle' m � k0 > k1 > � � � > ks =

� � � = kn = 0, to �nd a polynomial F (x; y) of bide-gree (m;n) so that, with Dux = (du=dxu)=u! andDvy = (dv=dyv)=v!, DuxDvyF (x; y)vanishes at (x; y) = (0; 0), (1; 1), and (1;1) forv = 0, 1, : : :, n and u = 0, 1, : : : , kv� 1. Thisis 3Pnj=0 kj conditions on (m+1)(n+1) unknowncoe�cients.Set F (x; y) = nXj=0 Aj(x)yj :The conditions at (0; 0) entail that for each j wemust have Aj(x) = xkjBj(x), for some polynomialBj of degree no more than m � kj ; and those at(1;1) mean that in fact Bn�j has degree kj lessthan its apparent m � kn�j . That, incidentally,leaves us with a construction where thePnj=0 kj lin-ear conditions at (1; 1) onnXj=0 xkjBj(x)yj ; (2–5)

with degBj � m � kj � kn�j, apply to a functionwith (m + 1)(n + 1) � 2Pnj=0 kj unknown coe�-cients.Put Cj(x) = Bj(1�x). Then these conditions arethe particular case kj = ��j andF (x; y) = nXj=0(1�x)��jCj(x)yjof the simultaneous approximation systemDvyF (x; y)��y=1 =Xnj=v(1�x)��j� jv�Cj(x)= O(xkv) (2–6)for v = 0; 1; : : : ; n. Set T =Pnv=0 kv, R = (m+1)�(n+1), and suppose that R � 3T . The matrix ofthe preceding system is���j+u�k�1u�k �� jv�� 0�u<kv; 0�v�n0�k�m�kj�kn�j ; 0�j�n (2–7)

with its T rows given by the triangle of derivatives,while its R�2T columns correspond to the coe�-cients of the polynomials Cj. The set of maximal,thus T�T , minors of this matrix are the Grassmannco-ordinates of the linear manifold determined bythe solutions to (2{6) and the goal is to estimate
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the height of that manifold; compare [Bombieri andVaaler 1983]. That seems to remain very di�cult todo, so a �rst step is to evaluate the one determinantremaining in the degenerate case R = 3T . We dothat below in a very special case for general n, andin some generality for n = 2.Elsewhere [van der Poorten 1991], I allude to thepresent Pad�e approximation viewpoint without atall suggesting that it might assist in evaluating de-terminants. In [Bombieri et al. 1995], the coe�cientsto be determined are those of the Bj in (2{5). Thus,there the matrix is��j1i1 ��j2i2 �� 0�i1<ki2 ; 0�i2�nkj2�j1�m�kn�j2 ; 0�j2�n (2–8)

with its T rows supported by the triangle of deriva-tives (u = i1; v = i2), and its R�2T columns sup-ported by the lozenge of points (j1; j2) remaining inthe rectangle of coe�cients after removal of its leftlower and right upper triangles, and of course withthe �j left at their original �kj , compare [Kratten-thaler 1999, Theorem 49].The two matrices (2{7) and (2{8) are not thesame. One is obtained from the other by column op-erations induced by the transformation x 7! 1�x ,and the substitutions �j = �kj .
3. A SURPRISING EVALUATIONThe computation in [Bombieri et al. 1995] to be ex-plained here is the simplest case of the construc-tion sketched above, namely the notional construc-tion of the sequence of polynomials Fn(x; y) of bide-gree (m;n), where m = 3nl� 1, and where thevanishing is respectively de�ned by the `triangles'f2nl; 2(n�1)l; : : : ; 2l; 0g. Then the shape of thetriangle yields kj+kn�j = 2nl for each j = 0, 1, : : : ,n so, as just explained, the construction is a matterof �nding polynomials Cj;nl each of degree at mostnl�1 so that with

Fn(x; y) = nXj=0(1�x)��(n�j)Cj;nl(x)yj ;
DvyFn(x; y)��y=1 =Xnj=v(1�x)��(n�j)� jv�Cj;nl(x)= O�x2l(n�v)� (3–1)

for v = 0, 1, : : : , n; here � = �2l. It is now easyto notice that the Cj;nl provide just nl(n+1) co-e�cients which are to satisfy 2l(1+2+ � � �+n) =ln(n+1) conditions; thus the construction is indeedonly notional. In the sequel we denote the determi-nant �(�; 2nl; 2(n�1)l; : : : ; 2l; 0) =����(�1)u�k��(n�j)+u�k�1u�k �� jv�����0�u<2l(n�v); 0�v�n0�k<nl; 0�j�n
(3–2)of this system by �n(�). In the special case � =�2l, where �j = ��(n�j) becomes kj = 2l(n�j),we write �n = �n(�2l).If n = 1, m = 3l�1 and the triangle de�ning theconditions is f2l; 0g we have F1(x; y) = (1�x)���C0;l(x)+C1;l(x) with both degC0;l < l and degC1;l <l; as suggested by the notation. The resulting `sys-tem' (1�x)��C0;l(x)+C1;l(x) = O(x2l) (3–3)of course has no solution in general|there are 2lconditions and just 2l unknown coe�cients. Thefact that there is indeed no nontrivial solution ingeneral is given precisely by the nonvanishing ofthe determinant �(�) = �(�; 2l; 0) discussed atSection 2 above. Indeed we might `pretend that'degC0;l = l, that is, study the problem(1�x)��D0;l+1(x)+D1;l(x) = O(x2l); (3–4)with degD0;l+1 < l+1, and degD1;l < l, so return-ing to the Pad�e approximation problem (2{1). Wesaw that in general this has a unique solution up tonormalisation, moreover with �(�) the coe�cientof xl in D0;l+1. We might now choose to notice that�(�) is a polynomial in � of degree l2 and deter-mine those `non-general' � for which �(�) vanishesso that there is a nontrivial solution to (3{3) afterall. Whatever, we refer to �(�) as the determinantof the system (3{3).In [Bombieri et al. 1995] we numerically evaluatedfor n = 1, 2, : : : the determinant �n = �(�2l; 2nl;2(n�1)l; : : : ; 0) of the system (3{1) with � = �2land discovered to our surprise that

�n = ��n+23 � ;with � = �1 as above.
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At the time, we neither understood why the �nshould be powers of �, nor why| if the �n are suchpowers| the power should be �n+23 �.
4. SOME PARTIAL EXPLANATIONS

Observation 4.1. If �n is a power of � it's no surprisethat that power is �n+23 �.
Idea of argument. Consider both �(�) and �n(�) aspolynomials in �. Recall that the entries of �n(�)are of the shapedi�1dxi�1 (1�x)�(n�b)�� bv�xj�1 ���x=0= (�1)i�j� bv���(n�b)�i�j �
and thus of respective degree i�j in �. One mighttherefore guess that �n(�) is of degree P(i� j),where the sum runs over all relevant pairs i; j. Morespeci�cally,X j = (n+1) lnXj=1 j = 12(n+1)ln(ln+1)

= 12n2(n+1)l2+ 12n(n+1)landX i = nXv=0 2l(n�v)Xi=1 i = nXv=0(2(n�v)2l2+(n�v)l)= 13n(n+1)(2n+1)l2+ 12n(n+1)l:So, presumably,deg�n(�) =X(i�j) = 16n(n+1)(4n+2�3n)l2= �n+23 �l2:Speci�cally, for n=1 one guesses that deg�(�)= l2.This is con�rmed by (2{4), whence|comparing pre-sumed degrees|the inappropriateness of any sur-prise. �
Observation 4.2. �n(a) vanishes if �(a) vanishes .
Proof. If �(a) vanishes, there is a nontrivial solutionto the approximation system (3{3), say correspond-ing to a solution F1(x; y) to (3{1) with n = 1, � = a.But then, for every n, (F1(x; y))n is a solution forthe system (3{1) with � = a. There being a solu-tion, �n(a) must vanish. �

Observation 4.3. It is reasonable to believe that �n(a)vanishes only if �(a) vanishes .
Idea of argument. We suppose, for convenience, thatC0;nl(0) does not vanish. Given a solution Fn(x; y)to (3{1) with � = a, observe that the conditionsDvyFn(x; y)��y=1 =Xnj=v(1�x)�a(n�j)� jv�Cj;nl(x)= O�x2l(n�v)�; (4–1)for v = 0, 1, . . . , n, may be viewed as reporting that,in particular, Fn(x; y) has an n-tuple zero mod x2lat y = 1. It follows there are power series  d(x) sothat Fn(x; y) = C0;nl(x) nYd=1�(1�x)�a� d(x)y�where (1�x)�a� d(x) = O(x2l) respectively foreach d. We may then replace the  d(x) by rationalapproximants �Pd(x)=Qd(x) where,x2l divides (1�x)�aQd(x)+Pd(x):Indeed, we obtainFn(x; y) = C0;nl(x) nYd=1�(1�x)�a+y�Pd(x)=Qd(x)+O(x2l=Qd(x))��;suggesting that we could choose the Pad�e approx-imants so that the product of the Qd(x) s dividesC0;nl(x). But, adding degrees, and recalling thatdegCj;nl(x) < nl for all j, we then �nd that for somed we must have both degPd(x) < l and degQd(x) <l, entailing that �(a) = 0. �
5. AN EXPLANATION

Main Theorem. �(�) is some constant multiple ofl�1Ya=�(l�1)(��a)l�jajso that �(�l) = �1, and��n(�) = ��(�)�n(n+1)(n+2)=6:
Remark 5.1. It might seem preferable to set l!! =1!2!3! � � � l! and [k] = (k�1)!! and then to claim that

��n(��) = � [�� l][�+ l][l]2[�]2[2l] �n(n+1)(n+2)=6 :
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This formulation of the result seems tidy and evoca-tive, and it makes sense for � = 2l. However, themeaning of the notation [�], other than for integers�, is not obvious, and in any case the formulationhides the clearer statement we make in the Theo-rem. If that's no problem, a formulation that mightbe preferred is
��(�) = lYi=1��+i�12i�1 �.� l+i�12i�1 �and ��n(�) = ��(�)�n(n+1)(n+2)=6:

Proof of for the ‘trivial’ case. We deal �rst with theeasy case n = 1. Consider the system (3{3) with� = �a, some integer a = 0, 1, . . . , l�1. It is thenplain that the l�a conditions Dl+a+i�1x �(1�x)a�C0;l+C1;l���x=0 = 0 with i = 1, 2, . . . , l� a areredundant, seeing that (1�x)aC0;l+C1;l is of degreeless than l+a, so those conditions are automaticallysatis�ed and of course the rank of the determinantis at least l�a less than its potential 2l when � =�a (perhaps in better phrasing, the `co-rank' of thesystem is at least l�a). It follows that (�+a)l�adivides �1(�). By symmetry|we may multiply by(1�x)� and reindex the Cj;l|also (��a)l�a divides�1(�). Given that the degree of �1(�) is boundedby l2, as noticed above, it follows that �1(�) is aconstant multiple of
�l l�1Ya=1(�2�a2)l�a:

Glancing at (2{3), we see immediately that��1(�l)equals 1, allowing us to nominate the leading coef-�cient of �1(�), as we had claimed. �To deal with the general case we will need to in-troduce some convenient notation and to announcevarious useful facts. Accordingly, we setfb(x;�) = (1�x)�b�Xnj=b�jb�(1�x)j�Cj;nl(x)In this notation, our given task is the evaluationof the determinant belonging to the approximationsystem(1�x)�(n�b)�fb(x;�) = O(x2(n�b)l); (5–1)for b = 0, 1, . . . , n. In the sequel a always denotesone of the integers 0, 1 . . . , l�1.

We follow the spirit of our argument for the casen = 1. Thus, we approach the task of evaluat-ing �n(�) by endeavouring to discern the row rankof certain n(n+1)l by n(n+1)l matrices; and weachieve that by considering the rank of certain si-multaneous approximation systems. However, weexpect to discover that �� a divides �n(�) withmultiplicity 16n(n+1)(n+2)(l�a). Plainly, we can-not do that by discovering that high a co-rank of thesystem at � = a, given that the system consists ofonly n(n+1)l conditions. It must therefore be thatcertain linear combinations of the conditions vanishto high order at � = a.We arrange matters so as to make the requiredvanishing as obvious as possible. To that end webegin with some guiding remarks.
Useful Remark 5.2. For arbitrary �, the set of condi-tions fb(x;�) = O(xm) is equivalent to the m con-ditions (1�x)�fb(x;�) = O(xm).
Proof. Said in this manner, a mildly painful com-binatorial argument|at least to write in detail|can be displaced by the remark `obvious'. �We therefore see immediately that we can replacestudy of the approximation system (5{1) by studyof the systemfb(x;�) = O(x2(n�b)l) b = 0; 1; : : : ; n: (5–2)That's very useful, because the fb(x; a) are polyno-mials in x, moreover of degree less than n(l+a)�ba.Indeed, as we see below at Useful Remark 5.4, givenother conditions comprising our simultaneous ap-proximation system their implied degree is less thann(l+a)�2ba.First, notice that the approximation systemfb(x;�) = O(x2(n�b)l) b = 0; 1; : : : ; n;sequentially implies the following. The conditionson f0(x; a) entail that the a leading coe�cients ofCn;nl vanish. We see that immediately because thosea leading coe�cients of f0(x; a) are isolated. Thesaid conditions also entail that a combination of eachof the a leading coe�cients of Cn�1;nl and of the nexta coe�cients of Cn;nl vanishes. But the conditionson f1(x; a) entail that an independent linear combi-nation of those sets of coe�cients vanishes. Thus,the sets of conditions on both f0(x; a) and on f1(x; a)
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entail that those two pairs of collections of a coe�-cients vanish. And so on. I report such entailmentsby saying that, in f1(x; a) the implied degree of Cn;nlis less than nl�a; and then in f2(x; a) the implieddegree of Cn�1;nl is less than nl�a whilst that ofCn;nl is less than nl�2a; and so on.Second, I speak below of conditions being satis�edautomatically . For example, because degx fb(x; a)has implied degree less than n(l+a)�2ba, it makessense to say, for those b so that n(l+a)�2ba is lessthan 2(n�b)l, that (n�2b)(l�a) of the conditionsfb(x; a) = O(x2(n�b)l) are automatically satis�ed.Third, I speak below of implied conditions . Inparticular, if some of the system's conditions areimplied by other conditions already taken into ac-count then those implied conditions are redundant.That redundancy displays a reduction in the sys-tem's rank.
Useful Remark 5.3. Recall that Dlx denotes (d=dx)l=l!.Given any power series h(x) in x, a set of condi-tions Dlx�h(x)fb(x; a)� = O(xm) is entailed by theset fb(x; a) = O(xm+l). This generalises the pre-ceding Useful Remark. Moreover, if, say, all but rof the latter m+ l conditions are known to be sat-is�ed then the former m conditions by implicationcomprise at most r independent conditions. That is,m�r of those conditions are satis�ed by implicationat � = a.The point in saying this is to signal a su�cient con-dition which our argument can show to be satis�ed.Supposing m > r, our `moreover' is an example ofimplied vanishing of m�r conditions at � = a.
Useful Remark 5.4. It is easy to see that, once giventhe conditions f0(x; a) = O�xn(l+a)�, for example,we may amongst other things suppose in f1(x; a),f2(x; a), . . . that degCn;nl < nl�a. It follows thatf1(x; a) has implied degree less than n(l+a)�2a.But there's more. The conditionsf0(x; a) = O�xn(l+a)�do not just control the leading a coe�cients of Cn;nl.Moreover, (5{1) entails f1(x; a) = O�x(n�1)(l+a)�,which together with the implied degrees just re-marked upon, yields in f2(x; a), f3(x; a), . . . bothdegCn;nl < nl� 2a and degCn�1;nl < nl� a. Itfollows that f2(x; a) has implied degree less thatn(l+a)�4a. And so on.

In summary, we see sequentially that each set ofconditionsfb(x; a) = O�x(n�b)(l+a)�; b = 0; 1; : : : ; k�1;allows us to speak as if deg�fk(x; a)� < n(l+a)�2ka.
Proof. Our remark here emphasises the opportunityto see a decrease in the implied degree of the poly-nomials we study.We might have done better to speak of, say, the`rank' of those polynomials|whereby a polynomialof rank r is, in the �rst instance, one of degree atmost r�1. Generally, though, a polynomial of rankr is one with no more than r unspeci�ed coe�cients.We might then recognise that preceding conditionsassist in implying that the implied rank of succeed-ing polynomials is decreased. In the present argu-ments it is happenstance that this decrease in rankmanifests itself as a decrease in implied degree. �
Useful Remark 5.5.�n+23 � = n2+(n�2)2+ � � �+� 12 if n is odd,22 if n is even.This is a core observation, because it provides theguide on what to aim for in the argument. It's anembarrassment that it is too easy to be misguidedby the more seductive identitynXb=1 bXj=1 jXi=1 1 = 16n(n+1)(n+2);
which somehow seems `more true'.
Useful Remark 5.6. Having discovered that some con-dition is satis�ed, whether automatically, or by im-plication|thus that it plainly depends linearly onother conditions of the system|we must next en-deavour to notice its vanishing to higher multiplicity.To that end, we divide vanishing conditions by ��aand study the resulting conditions. We obtainlim�!aDix�fb(x;�)�fb(x; a)�=(��a)��x=0= (b+1) �Dix�(1�x)a log(1�x)fb+1(x; a)���x=0:The useful miracle is the appearance of fb+1(x; a),albeit multiplied by a power series.
Proof. We are to satisfy conditionsfb(x; a) = O�x2(n�b)l�;
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whilst we know by implication that the degree offb(x; a) is less than n(l+a)�2ba. Note that2(n�b)l��n(l+a)�2ba� = (n�2b)(l�a):It follows, for each b with 2b < n, that (n�2b)(l�a)conditions vanish automatically when � = a, ex-hibiting the presence of (n�2b)(l�a) factors ��aof �n(�).This useful remark tells us that a set of conditionsfb(x;�) = O�x2(n�b)l� yields, for each a, a total of(n�2b)(l�a) factors ��a of the determinant andleaves the sets of conditionsfb(x; a) = O�xn(l+a)�2ba�; (5–3)Dn(l+a)�2bax �(1�x)a log(1�x)fb+1(x; a)�= O�x(n�2b)(l�a)�: (5–4)The presence of the �rst set (5{3) of conditions ex-plains their use in Useful Remark 5.4. Notice that,by Useful Remark 5.3, the second set 5{4 of (n�2b)(l� a) conditions is implied by the conditionsfb+1(x; a) = O(x2(n�b)l).Iteration of our present remarks, and applicationof Useful Remark 5.3, will show that ultimately theconditions fb(x; a) = O�x2(n�b)l� allow us to dis-cover, for each a, and each b such that 2b < n, afactor ��a to multiplicity (n�2b)2(l�a). Thus,the relevance of Useful Remark 5.5. �
Useful Remark 5.7. Our approximation system is sym-metric; it is unchanged by the transformation � !��.
Proof. We deal with the vanishing of certain partialderivatives of the function(1�x)n�Fn(x; y;�) = nXj=0(1�x)j�Cj;nl(x)yj
at (0; 1). It is then just a variant of Useful Re-mark 5.2 that it is no change to replace y by y�1,nor, therefore, to deal with the same collection ofpartial derivatives at (0; 1) of

ynFn(x; y�1;��) = nXj=0(1�x)j�Cn�j;nl(x)yj : �
Useful Remark 5.8. There's no need to study the de-terminant itself; one can see, say in the case n = 1that �(l) = �1, by pure thought.

Proof. First, certainly �(�) is not identically zero.Thus �(l) 6= 0, and so (3{4) with � = l has a uniquesolution, up to normalisation. But(1�x)�l �(1�x)l�1 = O(x2l) (5–5)displays that unique solution.Now suppose that �(l) � 0 (mod p), for someprime p. Then the approximation problem f0(x; l) =O(x2l) has a nontrivial solution over the �nite �eldF p and that nontrivial solution will lift to a solutionof D0;l+1+(1�x)lD1;l = O(x2l)in characteristic zero. In that solution though, theleading coe�cient of D0;l+1 must vanish modulo p,contradicting the uniqueness of the solution (5{5).In summary, our noticing a solution, in this exam-ple as at (5{5), allows us to conclude that the onlyprimes dividing the determinant are those dividingthe `extra' coe�cient in that solution. �
Proof of the Theorem. Our strategy is to �x a, andthen to discover the multiplicity of the factor ��a of�n(�). We will �nd that the factor ��a appears asN groups of l�a factors, with N independent of a.Given Observations 4.2 and 4.3, that would of itselfsu�ce to show that �n(�) is an N th power of �(�),as we wish to show; and that N = 16n(n+1)(n+2).However, those are just remarks, so as suggested byUseful Remark 5.5, we �nd that value of N directly.We discover the groups of factors sequentially, assuggested by Useful Remark 5.5. Our primary toolis Useful Remark 5.4 whereby the implied degreeof fb(x; a)| thus, in the presence of the rest of thesystem| is less than n(l+a)�2ba.It is helpful to distinguish the cases n = 2m+1,odd, and n = 2m, even. We will deal with the casen = 2m+1 odd in detail.That leads us to view the system we are studyingas the sets of conditionsfm�k(x;�) = O(x2(m+1+k)l); k = m, m�1, . . . , 0,from which we discover the required factors of thedeterminant; and the sets of conditionsfm+k(x;�) = O(x2(m+1�k)l); k = 1, 2, . . . , m,which assist in implying the required reductions inrank of the system at � = a.
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The reader should fasten her seatbelt before speed-ing through the following compacted proof. A testdrive of the argument in the cases m = 0, 1, 2, . . . isrecommended before the general journey.We start an argument by induction on k by notic-ing that, because fm(x; a) has implied degree lessthan (2m+1)(l+a)�2ma = 2(m+1)l� (l�a), itfollows that l�a of the conditionsfm(x; a) = O(x2(m+1)l)are automatically satis�ed; the remaining conditionsplay a role in reducing the implied degree of thefm+k(x; a) in the sets of conditions `below'. Wesuppose we have divided the automatically vanish-ing conditions by their factor ��a leaving us|seeUseful Remark 5.6|with l�a conditions made upfrom the set of conditions fm+1(x; a) = O(x2(m+1)l);in brief, with ` l�a conditions implied by that set'.Now suppose, as an induction assumption, thatfor k = 0, 1, . . . , s�1 we have found that ultimatelyeach of the conditions fm�k(x; a) = O(x2(m+1+k)l)yields (2k+1)2(l�a) factors ��a of the determi-nant �n(�), with the vanishing conditions leaving(2k+1)(l�a) conditions implied by the setfm+k+1(x; a) = O(x2(m+1+k)l):We then show, given this context, that also theset of conditions fm�s(x; a) = O(x2(m+1+s)l) yields(2s+1)2(l�a) factors.We have already done the case s = 0. In general,observe that the �rst (s+1)(2s+1)(l�a) factors arisesequentially by noticing that, to begin, (2s+1)(l�a)of the given conditions are satis�ed automatically,and by Useful Remark 5.6 leave us with (2s+1)(l�a)conditions implied by the setfm�s+1(x; a) = O(x2(m+1+s)l):However, for t = 1, . . . , s, each set of conditionsfm�s+t(x; a) = O(x2(m+1+s)l) (5–6)is plainly satis�ed by implication. Indeed, the im-plied degree of fm�s+t(x; a) must be less than thequantity 2(m+1+s� t)l. So the conditionsfm�s+t(x; a) = O(x2(m+1+s�t)l);elsewhere part of our system, in fact coincide with(5{6). Thus it su�ces to recall that, now that wehave noticed that the (2s+1)(l�a) conditions im-plied by (5{6) are satis�ed, we may extract the

(2s+1)(l�a) corresponding factors ��a and be ledby Useful Remark 5.6 to consider the (2s+1)(l�a)conditions implied byfm�s+t+1(x; a) = O(x2(m+1+s)l):Doing that for each t yields (s+1)(2s+1)(l�a) fac-tors in all, and also leaves us with (2s+1)(l� a)conditions implied by the setfm+1(x; a) = O(x2(m+1+s)l):We �nd the remaining s(2s+1)(l�a) factors inmuch the same manner, by verifying that each setfm+t(x; a) = O(x2(m+1+s)l) t = 1, 2, . . . , s (5–7)is satis�ed by implication. As above, we note thatour system includes the setfm+t(x; a) = O(x2(m+1�t)l);and that the implied degree of fm+t(x; a) is less than(2m+1)(l+ a)� 2(m+ t)a. However, that is just(2m+1)l�(2t�1)a, so not all, but all except(2m+1)l�(2t�1)a�2(m+1� t)l = (2t�1)(l�a)of the conditionsfm+t(x; a) = O(x2(m+1+s)l)can be immediately seen to vanish by implication.Fortunately| it's here that we use the inductionassumption|the original conditions fm�t+1(x; a) =O(x2(m+t)l) have left us with (2t�1)(l�a) conditionsimplied by the setfm+t(x; a) = O(x2(m+t)l):Thus the remaining (2t�1)(l�a) conditions do alsovanish by implication, verifying our claim to be ableto extract an additional s(2s+1)(l�a) factors ��afrom the determinant of the approximation system.In summary, the factor (��a)l�a divides the de-terminant �n(�) to multiplicity at least12+32+ � � �+(2m+1)2 = 16n(n+1)(n+2):The argument for n = 2m, even, is now an exer-cise almost fully e�ected by replacing m+1|wher-ever it appears above as such|by m, and then un-doing that `correction' at the few places where it isinappropriate.That argument shows that the factor (��a)l�a di-vides the determinant �n(�) to multiplicity at least02+22+42+ � � �+(2m)2 = 16n(n+1)(n+2):
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It remains to invoke Useful Remark 5.7 to see thatthe factors (�+a)l�a also appear with that samemultiplicity.It follows, from the computation reported at Ob-servation 4.1, that �n(�) di�ers from that power ofthe said product only by multiplication by a con-stant.We may now apply Observations 4.2 and 4.3 topoint out that ��n(�) is indeed the 16n(n+1)(n+2) th power of ��(�). Those remarks hold regard-less of �eld of de�nition, so that for all primes p wemust have �n(l) � 0 (mod p) if and only if �(l) � 0(mod p).However, we cannot rely on those Observations,and it is in any case more instructive to spell outsome details and to prove ��n(l) = 1 more directly,in the spirit of Useful Remark 5.8.We �rst note, by Observation 4.1 on the degreeof �n(�), and the main argument just completed,that �n(l) = 0 if and only if �n(�) = 0 identically.But the latter is absurd; consider � transcendental.Next, given that �n(l) 6= 0, ifgb(x;�) = (1�x)�b�Xnj=i�jb�(1�x)j�Dj;nl+�j;0(x);then the system(1�x)�(n�b)�gb(x;�) = O(x2(n�b)l);for b = 0, 1, . . . , n, has a unique solution up tonormalisation with �n(l) the coe�cient of xnl inD0;nl+�j;0(x). Moreover, a solution is given byDj;nl+�j;0(x) = (�1)j� nn�j�(1�x)n�j ;for j = 0, 1, . . . , n. Because the `extra' coe�cient|that of xnl in D0;nl+1|is �1 we may conclude that�n(l) is not divisible by any prime. In other words,�n(l) = �1. �
6. THE GENERAL TRIANGLE FOR n = 2The preceding argument deals with a very specialcase of the general construction problem that in-spired it, and moreover with a seemingly irrelevantcase, in that the Observations at Section 4 providea complete solution to the approximation problem,without any appeal to the evaluation of determi-nants. Nonetheless, we now show that precisely

the ideas we employed|particularly the Useful Re-marks of Section 5|readily su�ce to give a suc-cinct evaluation of the determinant �(b; c; 0) for thegeneral triangle de�ned by k0 = b, k1 = c, k2 = 0 inthe case n = 2. That is, we evaluate the determinantof the system(1�x)bC0;c+(1�x)cC1;b�c+C2;c = O(xb);(1�x)cC1;b�c+2C2;c = O(xc):Krattenthaler and Zeilberger [1997] provided a de-tailed evaluation of the determinant �(b; c; 0), con-�rming a `computational guess' reported in [Bombi-eri et al. 1995] to the following e�ect:
Principal Motivation. (i) �(b; c; 0) = 0 if b is even andc is odd.
(ii) If one of these conditions does not hold, and 2c <b, then,��(b; c; 0)= [ 12(2b�c)]2[b�2c][12(b+c)]2[ 12(b�c)]6[ 12c]6[b�c]3[ 12b]6[ 12(b�2c)]2[c]3 ;

where [s] = Qs�1k=0 k! if s is an integer, and [s]2 =(s+ 12)!! (s� 12)!! if s 2 Z + 12 .
(iii) Otherwise, if 2c > b, then��(b; c; 0) = 2b�2c�(b; b�c; 0):The present work is, as it were, a reaction to thisresult, my motive being to prove it, and much more,in considerably fewer pages and with very much lesse�ort. To that end we set � = 12(b� 2c), and toemphasise the symmetry as at Useful Remark 5.7,we study the simultaneous approximation problem(1�x)��C0;c+(1�x)��C1;c+2�+(1�x)�C2;c=O(x2c+2�);(1�x)��C1;c+2�+2(1�x)�C2;c=O(xc):The determinant �(�; b; c; 0) of this system yieldsthe �(b; c; 0) required by the Principal Motivationon setting � = � 12b = �(c+�).More precisely, much as here we actually evaluate�(�; b; c; 0) and get �(b; c; 0) from it, Krattenthalerand Zeilberger [1997] also detail the evaluation of amore general determinant with one additional pa-rameter. Indeed, without introduction of those re-spective extra parameters, the two evaluations couldnot be done at all. That issue is usefully discussed in
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the survey [Krattenthaler 1999]. However, the pa-rameter x cleverly found in [Krattenthaler and Zeil-berger 1997] is di�erent from the rather more natu-ral parameter � introduced here, and the values ofthe two determinants are not related in an obviousway, except that they coincide and yield the Princi-pal Motivation for x = 0 and respectively � = � 12b.We show, as a corollary of the Useful Remarksleading to our Main Theorem:
Example Application. (i) �(�; b; c; 0) = 0 if b is evenand c is odd .(ii) If one of these conditions does not hold , and2c < b, then �(�; b; c; 0) is a constant multipleofYj2aj�b�2c(��a)c Y0<j2aj<c(��a)c�2a Yb�2c<j2aj<b�c(��a)b�c�2a:(iii) Otherwise, if 2c > b, it is some constant multi-ple of �(�; b; b� c; 0). That is , �(�; b; c; 0) is aconstant multiple of the polynomial above with creplaced by b�c, to wit ofYj2aj�2c�b(��a)b�c Y0<j2aj<b�c(��a)b�c�2a Y2c�b<j2aj<c(��a)c�2a:Here, thus in the two preceding expressions , theindex a is such that 2a ranges over even integerswhen b, and thus also c, is even. If b is odd , the2a are odd integers .
Proof. Set � = 12(b�2c). To emphasise the symmetryas at Useful Remark 5.7, it will be convenient tostudy the simultaneous approximation problem(1�x)��C0;c+(1�x)��C1;c+2�+(1�x)�C2;c=O(x2c+2�);(1�x)��C1;c+2�+2(1�x)�C2;c=O(xc);where �(�; b; c; 0), the determinant of this system,yields the �(b; c; 0) required by the Principal Mo-tivation on setting � = � 12b = �(c+ �). It's notdi�cult to see| in the spirit of the explanationssketched at Section 4|that the degree of the poly-nomial �(�; b; c; 0) is at mostX(i�j) = 12b(b+1)+ 12c(c+1)�2 � 12c(c+1)� 12(b�c)(b�c+1)= (b�c)c:We �rst suppose that � is nonnegative. It willalso be convenient to proceed as if b is even|sothat � is an integer. Given that, it is plain that for

each integer a so that 0 � a � � precisely c of theconditions in the set(1�x)���C0;c+C1;c+2�+(1�x)�+�C2;c = O(x2c+2�)
(6–1)are satis�ed automatically. That reveals the factor(��a)c of �(�; b; c; 0) for each 0 � a � �. Then,on dividing the automatically satis�ed conditions by��a, and again setting � = a, we haveC1;c+2�+2(1�x)�+aC2;c = O(xc) (6–2)and, recall Useful Remark 5.3, a set of c conditionsimplied by the setg1(x; a) = �(1�x)��aC0;c+(1�x)�+aC2;c= O(x2c+2�):It is plain by subtracting (6{2) from (6{1) that, inthe context, (6{2) is equivalent tog1(x; a) = �(1�x)��aC0;c+(1�x)�+aC2;c = O(xc):Since (1�x)a��g1(x; a) has degree less than c+2a,and given that the original system contains the setg1(x; a) = O(xc), the conditions g1(x; a) =O(x2c+2�)clearly comprise at most 2a conditions neither van-ishing automatically nor by implication. That en-tails, provided of course that 0 � 2a < c, the im-plied vanishing of c�2a conditions, thus revealingthe additional factor (��a)c�2a of the determinant.If � < a < �+ 12c, the setf0(x;�) = C0;c+(1�x)���C1;c+2�+(1�x)2�C2;c= O(x2c+2�)displays c+2��2a automatically vanishing condi-tions, revealing for each of those a the factor(��a)2�+c�2a:Moreover, if 0 � a < �+ 12c then the conditionsf0(x; a) = O(xb) entail that f0(x; a) vanishes iden-tically. For 0 � a � �, above, that does not en-tail a reduction in the implied degree of C2;c, butif � < a < �+ 12c we see that the implied degree ofC2;c(x) must be less than c+a��.Much as above, we are next led to study the 2�+c�2a derived conditions implied by the setf1(x; a) = C1;c+2�+2(1�x)a+�C2;c = O(x2c+2�)in the presence of the original set of conditionsf1(x; a) = C1;c+2�+2(1�x)a+�C2;c = O(xc):
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However, as just remarked, the implied degree off1(x; a) is less than c+2�, and we have f1(x; a) =O(xc). Thus the set f1(x; a) = O(x2c+2�) comprisesat most 2� conditions neither vanishing automat-ically nor by implication. That entails, providedthat � < a < 12c, the implied vanishing of (2�+c�2a)�2� = c�2a conditions, revealing therefore theadditional factor (��a)c�2a of the determinant. Bythe way, we note that if c � 2� then there were noadditional factors to be found in the present mannerfor a > �.Finally, we acknowledge that by symmetry it fol-lows that for a 6= 0, each factor ��a we have noticedis partnered by a corresponding factor �+a.It is clear that �+� must be an integer in order forour arguments to make sense. Thus if b is not eventhe a must di�er by half from integers; other thanfor that change our argument remains the same.It is now convenient to count the number of fac-tors of �(�; b; c; 0) thus far discovered.We recall that on the �rst pass we found c factorscorresponding to each a so that 0 � a � �, and2�+ c�2a factors corresponding to each a so that2� < 2a < 2�+c. On the second pass we found c�2afactors corresponding to each a so that 0 � 2a < c.Suppose we �rst count those `second pass' factors.If b is even there are c corresponding to a = 0 andfor a = 1, 2, . . . , a total of
(c�2)+(c�4)+ � � �+( 1 = 14(c�1)2 if c is odd,2 = 14(c�2)c if c is even.If b is odd, then for a = 12 , 112 , . . . , we have found anumber of factors equal to
(c�1)+(c�3)+ � � �+( 1 = 14c2 if c is even,2 = 14(c2�1) if c is odd.Similarly, we see that the number of `�rst pass'factors corresponding to a so that 2� < 2a < 2�+ctotals(c�2)+(c�4)+ � � �+( 1 = 14(c�1)2 if c is odd,2 = 14(c�2)c if c is even.The point is that 2a�2� is even regardless of theparity of b.We now also recall that for positive a each factor��a is accompanied by a factor �+a. Hence thetotal number of factors counted thus far is

� if b is odd and c is odd:2 � 14(c2�1)+2 � 14(c�1)2 = c2�c;� if b is odd and c is even:2 � 14c2+2 � 14(c�2)c = c2�c;� if b is even and c is odd:c+2 � 14(c�1)2+2 � 14(c�1)2 = c2�c+1;� if b is even and c is even:c+2 � 14(c�2)c+2 � 14(c�2)c = c2�c:Finally, if b is even the number of `�rst pass' factorsfor a in the range 0 � a � � is c corresponding toa = 0 and for a = 1, 2, . . . , a total of c�. Recallingalso the factors corresponding to negative a, we havehere a total of c+2c� factors. If b is odd the numberof �rst pass factors for a in the range �� � a � �corresponding to a = �12 , �112 , : : :, �� is also c+2c�.That is, the number of additional factors in eachcase is c+c(b�2c).One now sees that, in summary, we have founda total of (b� c)c factors unless b is even and c isodd, in which case we have discovered (b�c)c+1factors! However, we commenced by noticing thatthe degree of the polynomial �(�; b; c; 0) is at most(b�c)c. Thus, if b is even and c is odd we must have�(�; b; c; 0) = 0 identically.In the other cases we have shown that �(�; b; c; 0)is some constant multiple of the polynomialYj2aj�b�2c(��a)c Y0<j2aj<c(��a)c�2a Yb�2c<j2aj<b�c(��a)b�c�2a:(6–3)The 2a are even integers if b is even and thus also cis even. If b is odd, the 2a are odd integers.We now suppose that � is negative. We've doneless than half our work because, with � = 12(2c�b)positive, study of the determinant �(�; b; c; 0) of thesystemf0(x;�) = C0;c+(1�x)�+�C1;c�2�+(1�x)2�C2;c= O(xb);f1(x;�) = (1�x)�C1;c�2�+2(1�x)�C2;c = O(xc)seems somewhat di�erent from our discussion above.It will again be convenient to conduct our principaldiscussion as if b is even. As before, when b is evena denotes a nonnegative integer.
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Suppose �rst that 0 � 2a < b�c. Then b�c�2aof the conditions f0(x;�) = O(xb) are automaticallysatis�ed, revealing a factor (��a)b�c�2a of the de-terminant �(�; b; c; 0).Therefore at the second pass we have for 0 � 2a �b�c a collection of b�c�2a conditions implied bythe set f1(x; a) = O(xb), as well as the set f1(x; a) =O(xc) of conditions.Moreover, the conditions f0(x; a) = O(xb) entailthat f0(x; a) vanishes identically. It follows that,when 0 � � � �, the implied degree of C2;c isless than c�2a; and then also the implied degreeof (1�x)�af1(x; a) is less than c�2a. However, if� � a, the implied degree of C2;c is less than c���a,and the implied degree of (1�x)��f1(x; a) is lessthan c�2�.Thus if 0 � a � �, then because the implied de-gree of (1�x)�af1(x; a) is less than c�2a, the con-ditions f1(x; a) = O(xc) themselves yield 2a factors��a. Further that implied degree also implies thatthe set f1(x; a) = O(xb) is satis�ed, yielding an ad-ditional b� c� 2a such factors. In all, we see anadditional factor (��a)b�c of �(�; b; c; 0).However, if � � a then, because the implied de-gree of (1�x)��f1(x; a) is less than c�2�, the con-ditions f1(x; a) = O(xc) themselves yield 2� factors��a and the set f1(x; a) = O(xb) is satis�ed. Since(b�c�2a)+2� = c�2a, this shows the additionalfactor (��a)c�2a of �(�; b; c; 0).We now turn to the cases b� c � 2a. Here weuse the advice appended to Useful Remark 5.4. Inthis case none of the conditions f0(x; a) = O(xb) isautomatically satis�ed. However, if 0 � a � �, thenc � �+a+ b� c so the set of conditions f0(x; a) =O(xb) implies b�c linear conditions on (1�x)2aC2;c,speci�cally, the set Dcx�(1�x)2aC2;c� = O(xb�c). Itfollows that b�c of the conditions (1�x)��f1(x; a) =O(xc) are satis�ed by implication, revealing a factor(��a)b�c of the determinant �(�; b; c; 0).Further, if � � a then �+a+b�c � c and the setof conditions f0(x; a) = O(xb) implies just c�a��linear conditions on (1�x)2aC2;c, namely, the setDc+a��x �(1�x)2aC2;c� = O(xc�a��). It follows that(c�a��)�(a��) = c�2a of the conditions(1�x)��f1(x; a) = O(xc)are satis�ed by implication, and this reveals a factor(��a)c�2a of �(�; b; c; 0).

We may now count the factors of �(�; b; c; 0) thusfar obtained, once again remarking that 2a is oddif b is odd. Fortunately, there is little new workfor us to do. We recall that if 0 � 2a < b� c wehave (b� c�2a)+(b� c), or (b� c�2a)+(c�2a),factors according as 0 � a � �, or � � a. Whereasif b�c < 2a, we have just b�c, or c�2a, factors.The terms b�c�2a yield (b�c�2)+(b�c�4)+� � �or (b�c�1)+(b�c�3)+ � � � factors according as bis even or odd, and the c�2a, which have a > �,so 0 < c�2a < b� c, provide (c�2)+(c�4)+ � � �factors.Again we recall that by symmetry it follows thatfor a 6= 0, each factor ��a we have noticed is part-nered by a corresponding factor �+a. In particularthe multiplicities b�c provide a total of (b�c)+(2c�b)(b�c) factors.Happily, it is now evident that we are about torepeat our calculations for the case b � 2c, otherthan that c is everywhere replaced by b� c. Thus,unless b is even and b� c is odd, we see we havefound �b�(b�c)�(b�c) = c(b�c)factors. If b is even and c is odd, we have foundc(b� c)+1 factors, and it follows that �(�; b; c; 0)must vanish identically. In summary, we see that inthe other cases the determinant �(�; b; c; 0) is someconstant multiple of the polynomialYj2aj�2c�b(��a)b�c Y0<j2aj<b�c(��a)b�c�2a Y2c�b<j2aj<c(��a)c�2a(6–4)with the 2a even integers if b is even, and odd inte-gers if b is odd. �
7. REMARKS AND ACKNOWLEDGEMENTSThis work had its genesis in the early eighties; thatstory is recounted in extenso in [Bombieri et al.1995]. Given that, it does seem some sort of achieve-ment to �nally be able to prove the Main Theorem.More to the point, it seems encouraging to have beenable to do it by the use of ideas which are likely to becapable of application to the more general construc-tions alluded to in [Bombieri et al. 1995]. For anapplication of the implicit constructions see [Bom-bieri et al. 1996].Nonetheless this draft of the argument is pollutedby several disgraceful scandals. The worst of these
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surely is my inability to add an incidental remark tothose in Section 4 making it immediately plain that�n(�) is a power of �(�). That, however, is mit-igated by the contribution of the `Useful Remarks'of Section 5. I am therefore more outraged by thescandal whereby I can see only indirectly that thereis a symmetry causing �(�; b; c; 0) to be a constantmultiple of �(�; b; b�c; 0).Moreover, that defect in my arguments helped tohold me back from sketching an elegant normalisa-tion for �(�; b; c; 0), as I had expected to be ableto do. In the event, I am forced to rely on [Krat-tenthaler and Zeilberger 1997] by equating the cases� = � 12b of this paper and x = 0 of [Krattenthalerand Zeilberger 1997]. I had expected to be able toe�ect the normalisation by evaluating the polyno-mials (6{3) and (6{4) at � = 0, or � = 12 , accordingas b is odd, or even.I am very much indebted to Christian Kratten-thaler and Doron Zeilberger for motivating me �-nally to produce the present e�orts, and acknowl-edge the assistance of Paula Cohen in reading earlierdrafts of these remarks. This paper has been a ben-e�ciary of the unusually detailed and very helpfulremarks of its referee.
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