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We study the construction of auxiliary functions likely to aid in
obtaining improved irrationality measures for cubic irrationali-
ties and thence for arbitrary algebraic numbers. Specifically, we
note that the construction of curves with singularities appropri-
ately prescribed for our purpose leads to a simultaneous Padé
approximation problem. The first step towards an explicit con-
struction appears to be the evaluation of certain determinants.
Our main task here is the computation of an example determi-
nant, which turns out indeed to be a product of a small num-
ber of factors each to high multiplicity —whence the adjective
‘powerful’. Our evaluation confirms a computational conjecture
of Bombieri, Hunt and van der Poorten.

1. INTRODUCTION

Our object is to construct curves with prescribed
singularities. To that end, we evaluate several de-
terminants. As expected on the basis of computa-
tions reported in [Bombieri et al. 1995], we find that
those determinants are products of a small number
of distinct factors, each to high multiplicity; thus
the adjective ‘powerful’ of the title.

Specifically, consider the easy problem of construct-
ing a one variable polynomial with just three distinct
zeros, say at aq, ap and asz, each of multiplicity k.
Plainly, multiples of (x—a;)*(z — az)*(z — as3)* will
do. Suppose that the a; are the three conjugates
of some cubic irrational o, and recall that the bino-
mial coefficients of order k& have logarithmic height
O(k). Then we see that the ‘easy problem’ has a
solution of degree 3k with coefficient vector of log-
arithmic height O(kh(c)), where h(a) is the loga-
rithmic height of a.

We might more clumsily have proved the existence
of such a solution by linear algebra. The required
zeros constitute 3k linear conditions on the 3k+1
coefficients of a polynomial of degree 3k. Thus,
solving by Cramer’s rule provides the coefficients as
3k +1 determinants each of dimension 3k by 3k. It
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is now not immediate just what the height of that
vector of coefficients is, given that it is appropriate
to view the vector as a point in projective space.
Clearly, each determinant is of logarithmic height
O(k*h(a)). However, the determinants are gener-
alised Vandermonde and are readily seen to have a
substantial common factor made up from powers of
the three differences a; — ;. Removing that com-
mon factor makes it plain that the vector of determi-
nants indeed is of logarithmic height O(kh(c)), as
already seen by more straightforward considerations
above.

The analogous problems for polynomials in two
variables are more complicated. The clutter caused
by studying the question at three arbitrary points
(i, B;) is already intolerable and quickly leads one
to recall that there is no loss in dealing with the
three points (0,0), (1,1), and (co,00), which are
more amenable. At the end, linear fractional trans-
formations in each variable retrieve generality. By
the way, dealing with the ‘more amenable’ points
trivialises the clumsy determinantal solution in the
one variable case. In two variables, however, the
analogues of the binomial coefficients remain diffi-
cult to tame.

Suppose one is to construct a polynomial F(z,y)
of bidegree (m,n) with prescribed vanishing at three
points. First, we need a generalisation of ‘multiplic-
ity’. A correct one is to specify a triangle {ko > k1 >
.-+ >k, = 0} of integers and to require vanishing
of all the partial derivatives

D;DyF(z,y)

with 0 <u <k, and v =0, 1, ..., n at each of the
points. The notation here is D¥* = (d“/dz")/u! and
Dy = (d/dy")/v! .

Dividing by the factorial is not just a frill. It is
essential to use only divided derivatives if our argu-
ments are to remain valid in positive characteristic.

There appears to be no alternative to solving for
the polynomial’s coefficients by some generalisation
of Cramer’s rule. We should therefore take

3) k< (m+1)(n+1)
b=0
and study the height of the resulting vector of 3 )" k;,
by 3>k, determinants. At a glance, each determi-
nant has logarithmic height O(m?n+mn?), which is

far too large — we hope for O(mn). Thus we need to
find that the determinants share a very substantial
common factor.

In the present paper we do no more than suggest
the likelihood of such a common factor. We do that
by studying the ‘degenerate’ case

Sikb = (m+1)(n+1).

There is now just one determinant; we call it A =
A(ko, ki, ... ky).

Below, we evaluate several such determinants, and
show in particular that each is a product of a small
number of distinct small factors, each factor there-
fore with high multiplicity. That property of a ‘mas-
ter’ determinant A is arguably necessary for its mi-
nors to share a very substantial common factor. We
expect that our evaluation method will readily gen-
eralise to the nondegenerate case and will eventually
show that our present techniques do suffice to prove
the existence of the required common factor.

The context of the present work is the study of ef-
fective diophantine approximation of algebraic num-
bers; see [Bombieri et al. 1995] for an introduction,
[Bombieri 1997] for an elegant summary and, for a
detailed instance, [Bombieri et al. 1996].

2. PADE APPROXIMATION

Consider first the problem of constructing polyno-
mials Q(z) of degree at most [ and P(z) of degree
at most [ —1 so that the power series

R(z,y) = (1-2)"Q(z) —yP(z)

satisfies R(z,1) = (1—z)™*Q(z) — P(z) = O(z*).

For ‘general’ «, the requirement that R(x, 1) have
a zero of order at least 2l at « = 0 is 2! inde-
pendent linear conditions on the 241 coefficients
of ) and P and has a unique solution up to nor-
malisation. Set D' = (d/dx)/i!. Specifically, us-
ing Cramer’s Rule, we may display a solution for
which the leading coefficient of @ is the 2/ by 2[ de-
terminant whose first [ columns, with 1 < j < [,
have the entries D*"'(1—x) 2z !|,_, and whose
remaining [ columns, with [+1 < j < 2I, have en-
tries D'~lxi=17Y,_o; here the rows are indexed by
1<i <2l

(2-1)



The vanishing of the last [ rows of the second set of
columns suggests that in place of the approximation
problem (2-1) we study the problem of finding Q(z)
of degree at most [ so that

D'R(z,1) = D'(1—z) “Q(z) = O(z"). (2-2)

This ‘new’ problem constitutes ! conditions on the
[+ 1 coefficients of Q. As above, by Cramer’s Rule
there is a solution for which the leading coefficient
of Q) is the [ by [ determinant with entries

DM (1 — )oYy = (71)l+i—j<l+.a )
=7
_ (atl+i—j-1

Clearly, having determined @) by Cramer’s rule, as
just begun, one determines P trivially, simply by
requiring that it coincides with the first [ terms of
the power series (1—x)~“Q(z). Thus we have solved
the original problem. Because we are using divided
derivatives it follows that the latter determinant can
differ from the one we commenced to study at most
by multiplication by £1. Specifically,

ati—j—1 :
()
o+l+i—j—1 0
( l+i—j )

is the original determinant belonging to the system
(2-1). Note also the remarks on evaluating the de-
terminant at Useful Remark 5.8 below.

In the particular case @« = —2[ we name the deter-
minant A(2[,0) = A. The value of A is well known.
For example, recently Zeilberger [1996] recalls in a
quite delightful way that

a+i (a+D)1! (I=1)1! (a—b—1)!1 (b)!!
()

(@) (a=b+1-D)!! (b+D)! 7
(2-4)
where, [!! := 112!3!---]!l. We leave it as an exercise
for the bemused reader to verify that this includes

the evaluation of A mentioned in [Bombieri et al.
1995], namely, with [k] := (k—1)!!,

+A = [1]*[31]/[2]°.

1<id,5<1

Actually, the construction discussed in [Bombieri
et al. 1995] is not at all obviously equivalent to a
Padé approximation problem. That construction
is, given a ‘triangle’ m > kg > k; > --- > k, =
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-+ =k, = 0, to find a polynomial F(z,y) of bide-
gree (m,n) so that, with D* = (d*/dz")/u! and
Dy = (dfdy") ol

DiDyF(z,y)
vanishes at (z,y) = (0,0), (1,1), and (oo, 00) for
v=201, ..., nand u =0, 1, ... , k,—1. This
is 3) " 4 k; conditions on (m+1)(n+1) unknown

coeflicients.
Set

F(z,y) = ZAJ(QZ')@/J

The conditions at (0,0) entail that for each j we
must have A;(z) = z* B;(z), for some polynomial
B; of degree no more than m — k;; and those at
(00,00) mean that in fact B,_; has degree k; less
than its apparent m — k,_;. That, incidentally,
leaves us with a construction where the Z?:o k; lin-
ear conditions at (1,1) on

Z =% B;(z)y’, (2-5)
=0
with deg B; < m — k; — k,,_;, apply to a function
with (m + 1)(n 4+ 1) — 23°"_  k; unknown coeffi-
cients.

Put C;(z) = B;j(1—=). Then these conditions are
the particular case k; = —a; and

n

F(z,y) =) (1-2) " Cj(x)y’

=0

of the simultaneous approximation system

DyFGy)], =Y 4o (7)o
= O(z*) (2-6)

forv=0,1,...,n. Set T=>"_ k,, R=(m+1) x
(n+1), and suppose that R > 37. The matrix of
the preceding system is

((aj+::kk_1> (ZJ)) 0<u<ky; 0<v<n

0<k<m—kj—kn_;i 0<j<n

(2-7)

with its T" rows given by the triangle of derivatives,
while its R— 2T columns correspond to the coeffi-
cients of the polynomials C;. The set of maximal,
thus T'x T, minors of this matrix are the Grassmann
co-ordinates of the linear manifold determined by
the solutions to (2-6) and the goal is to estimate
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the height of that manifold; compare [Bombieri and
Vaaler 1983]. That seems to remain very difficult to
do, so a first step is to evaluate the one determinant
remaining in the degenerate case R = 37. We do
that below in a very special case for general n, and
in some generality for n = 2.

Elsewhere [van der Poorten 1991], I allude to the
present Padé approximation viewpoint without at
all suggesting that it might assist in evaluating de-
terminants. In [Bombieri et al. 1995], the coefficients
to be determined are those of the B; in (2-5). Thus,
there the matrix is

(.h) <j2>
il 7:2 0<i1<kiy; 0<iz<n

kj, <ji<m—k 0<j2<n

(2-8)
g}

with its 1" rows supported by the triangle of deriva-
tives (u = i1,v = iy), and its R— 27 columns sup-
ported by the lozenge of points (ji,j2) remaining in
the rectangle of coefficients after removal of its left
lower and right upper triangles, and of course with
the o left at their original —k;, compare [Kratten-
thaler 1999, Theorem 49].

The two matrices (2-7) and (2-8) are not the
same. One is obtained from the other by column op-
erations induced by the transformation z — 1—x,
and the substitutions o; = —k;.

3. A SURPRISING EVALUATION

The computation in [Bombieri et al. 1995] to be ex-
plained here is the simplest case of the construc-
tion sketched above, namely the notional construc-
tion of the sequence of polynomials F),(z,y) of bide-
gree (m,n), where m = 3nl—1, and where the
vanishing is respectively defined by the ‘triangles’
{2nl, 2(n—1)I, ..., 2], 0}. Then the shape of the
triangle yields k;+k,_; = 2nl foreach j =0, 1, ...,
n S0, as just explained, the construction is a matter
of finding polynomials C;,,; each of degree at most
nl—1 so that with

n

Fn (iU, y) = Z(l - x)ia(nij) Cj,nl(x)yja

Jj=0

e (D)ot
=0 (x2l(n—v))

DiF,(z,y)|, =

3-1)

forv =0, 1, ..., n; here « = —2[. It is now easy
to notice that the C;,, provide just nl(n+1) co-
efficients which are to satisfy 2l(1+2+---+n) =
In(n+1) conditions; thus the construction is indeed
only notional. In the sequel we denote the determi-
nant A(a;2nl,2(n—1)I,...,2[,0) =

(—1)u <a(n—j)+u—k—1) <J>
u—=k v/ | 0<u<2l(n—v); 0<v<n

0<k<nl; 0<j<n

(3-2)
of this system by A,(a). In the special case a =
—2l, where a; = —a(n—j) becomes k; = 2l(n—j),
we write A, = A, (—2I).

If n =1, m = 3l—1 and the triangle defining the
conditions is {2[,0} we have Fi(z,y) = (1—z)"* x
Co,(x)+C1,(x) with both deg Cp; < [ and deg Cy; <
l; as suggested by the notation. The resulting ‘sys-
tem’

(1—2) “Cou(z)+Cy,(x) = O(z*) (3-3)

of course has no solution in general —there are 2[
conditions and just 2/ unknown coeflicients. The
fact that there is indeed no nontrivial solution in
general is given precisely by the nonvanishing of
the determinant A(a) = A(a;2[,0) discussed at
Section 2 above. Indeed we might ‘pretend that’
deg Cy,; = [, that is, study the problem

(1—z) *Dgy1(z)+ Dyy(z) = O(z*), (3-4)

with deg Dy ;41 < I+1, and deg D;, < [, so return-
ing to the Padé approximation problem (2-1). We
saw that in general this has a unique solution up to
normalisation, moreover with A(«) the coefficient
of ' in Dy 4, We might now choose to notice that
A(a) is a polynomial in o of degree [ and deter-
mine those ‘non-general’ a for which A(«) vanishes
so that there is a nontrivial solution to (3-3) after
all. Whatever, we refer to A(«a) as the determinant
of the system (3-3).

In [Bombieri et al. 1995] we numerically evaluated
for n =1, 2, ... the determinant A,, = A(—2[;2nl,
2(n—1)l,...,0) of the system (3-1) with a = —2I
and discovered to our surprise that

("4?)

A, =A :

with A = A; as above.



At the time, we neither understood why the A,
should be powers of A, nor why —if the A,, are such

powers— the power should be (";2)

4. SOME PARTIAL EXPLANATIONS

Observation 4.1. If A, is a power of A it’s no surprise
that that power is ("H).

3
Idea of argument. Consider both A(a) and A, («) as
polynomials in «. Recall that the entries of A, ()
are of the shape

di—l 5 b )
(n—b)a j—1
dxi~ 1(1 2 <v>m =0

- ()

and thus of respective degree i —j in a. One might
therefore guess that A, (a) is of degree > (i—j),
where the sum runs over all relevant pairs ¢, j. More
specifically,

> i=(n+1) Zj = I(n+1)n(ln+1)

= in*(n+1)?+in(n+1)l
and
n 2l(n—v)
ZZ—Z ZZ—Z n—v)%%+(n—v)l)
v=0 =1 -0

n(n+1)(2n+1)1> 4+ tn(n+1)I.

W= d

So, presumably,

deg An(a) = (i—j) =1

(e

Specifically, for n =1 one guesses that deg A(a) =1°.
This is confirmed by (2—4), whence—comparing pre-
sumed degrees—the inappropriateness of any sur-
prise. Il

n(n+1)(4n+2—3n)l?

Observation 4.2. A, (a) vanishes if A(a) vanishes.

Proof. If A(a) vanishes, there is a nontrivial solution
to the approximation system (3-3), say correspond-
ing to a solution Fi(x,y) to (3-1) withn =1, a = a.
But then, for every n, (Fi(z,y))" is a solution for
the system (3-1) with @ = a. There being a solu-
tion, A,,(a) must vanish. O
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Observation 4.3. It is reasonable to believe that A, (a)
vanishes only if A(a) vanishes.

Idea of argument. We suppose, for convenience, that
Co,n1(0) does not vanish. Given a solution F,(z,y)
o (3-1) with a = a, observe that the conditions

=3 1= (D)0 ute)

j=v
_O( 2l(n— u)) (4-1)

forv=0,1, ..., n, may be viewed as reporting that,
in particular, F,(z,y) has an n-tuple zero mod z?
at y = 1. It follows there are power series ¥4(z) so
that

Fu(z,y) = Co(x) [T (1
d=1

where (1—xz)7 —4(z) = O(x?) respectively for
each d. We may then replace the 14(z) by rational
approximants — Py(x)/Qq(z) where,

—z) “Qa(z) + Fy(x).

DyFu(z,y)|,_,

—1/1d($)y)

r?  divides (1

Indeed, we obtain

n
) [[(a=a)
d=1

+y(Pa(2)/Qa(x) + Oz /Qu(z)))),

suggesting that we could choose the Padé approx-
imants so that the product of the Qu(z)s divides
Co,ni(z). But, adding degrees, and recalling that
deg C; i(x) < nl for all j, we then find that for some
d we must have both deg P;(z) < I and deg Qq(z) <
[, entailing that A(a) = 0. O

F ( CO nl

5. AN EXPLANATION

Main Theorem. A(«) is some constant multiple of

-1

H (a— a)lf‘”l

a=—(1-1)
+1, and

n(n+1)(n+2)/6
+A,(a) = (A(a)) .

Remark 5.1. It might seem preferable to set [!! =
112131 .. Il and [k] = (k—1)!! and then to claim that

o ffa+1] [u?)“"*”("“)/‘*
[of?21] |

so that A(—1) =

£A,(—a) = <
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This formulation of the result seems tidy and evoca-
tive, and it makes sense for o = 2. However, the
meaning of the notation [3], other than for integers
B, is not obvious, and in any case the formulation
hides the clearer statement we make in the Theo-
rem. If that’s no problem, a formulation that might
be preferred is
1 . .
a+i—1 I+i—1
8@ =I1(% )/ (oit)
(@) lj[l 2i—1 2i—1
and
n(n+1)(n+2)/6
+A,(a) = (A(a)) .

Proof of for the ‘trivial’ case. ~ We deal first with the
easy case n = 1. Consider the system (3-3) with
a = —a, some integer ¢ =0, 1, ..., [—1. It is then
plain that the [ —a conditions DL ((1—z)® x
CO,I“‘CIJ)L:O =0 withs =1, 2, ..., I —a are
redundant, seeing that (1—x)*Cy,;+C1 is of degree
less than [+a, so those conditions are automatically
satisfied and of course the rank of the determinant
is at least [ —a less than its potential 2] when a =
—a (perhaps in better phrasing, the ‘co-rank’ of the
system is at least [ —a). It follows that (a+a)'~®
divides A;(«). By symmetry —we may multiply by
(1—z)* and reindex the C;; — also (a—a)'~* divides
A;(a). Given that the degree of A;(«) is bounded
by [?, as noticed above, it follows that A;(«) is a
constant multiple of

o H(a2 _a2)l—a‘
a=1
Glancing at (2-3), we see immediately that £A;(—1)
equals 1, allowing us to nominate the leading coef-
ficient of A;(«), as we had claimed. O

To deal with the general case we will need to in-
troduce some convenient notation and to announce
various useful facts. Accordingly, we set

flwsa) = (1=2) 3" (1) 12y (@)

In this notation, our given task is the evaluation
of the determinant belonging to the approximation

system
(1—z)~ "=V f (2: ) = O(2>=V, (5-1)

for b =0, 1, ..., n. In the sequel a always denotes
one of the integers 0, 1 ..., [1—1.

We follow the spirit of our argument for the case
n = 1. Thus, we approach the task of evaluat-
ing A, (a) by endeavouring to discern the row rank
of certain n(n+1)l by n(n+ 1)l matrices; and we
achieve that by considering the rank of certain si-
multaneous approximation systems. However, we
expect to discover that o —a divides A, (a) with
multiplicity $n(n+1)(n+2)(l—a). Plainly, we can-
not do that by discovering that high a co-rank of the
system at a = a, given that the system consists of
only n(n+1)l conditions. It must therefore be that
certain linear combinations of the conditions vanish
to high order at a = a.

We arrange matters so as to make the required
vanishing as obvious as possible. To that end we
begin with some guiding remarks.

Useful Remark 5.2. For arbitrary (3, the set of condi-
tions fy(z;a) = O(z™) is equivalent to the m con-

ditions (1—z)? fy(z; ) = O(z™).

Proof. Said in this manner, a mildly painful com-
binatorial argument —at least to write in detail —
can be displaced by the remark ‘obvious’. O

We therefore see immediately that we can replace
study of the approximation system (5-1) by study
of the system

folx; @) = O(z* =9 b=0,1,... ,n. (5-2)

That’s very useful, because the f,(z;a) are polyno-
mials in z, moreover of degree less than n(l+a)—ba.
Indeed, as we see below at Useful Remark 5.4, given
other conditions comprising our simultaneous ap-
proximation system their implied degree is less than
n(l+a)—2ba.

First, notice that the approximation system

fl@sa) = 0@y b=0,1,... n,

sequentially implies the following. The conditions
on fy(z;a) entail that the a leading coefficients of
C), n vanish. We see that immediately because those
a leading coefficients of fy(z;a) are isolated. The
said conditions also entail that a combination of each
of the a leading coefficients of C,,_; ,,; and of the next
a coefficients of C,, ,,; vanishes. But the conditions
on fi(z;a) entail that an independent linear combi-
nation of those sets of coeflicients vanishes. Thus,
the sets of conditions on both fy(z;a) and on f;(z;a)



entail that those two pairs of collections of a coefhi-
cients vanish. And so on. I report such entailments
by saying that, in f;(x;a) the implied degree of C,,
is less than nl—a; and then in fy(z;a) the implied
degree of C,,_1; is less than nl—a whilst that of
C,mi is less than nl —2a; and so on.

Second, I speak below of conditions being satisfied
automatically. For example, because deg, fi(z;a)
has implied degree less than n(l+a)— 2ba, it makes
sense to say, for those b so that n(l4a)—2ba is less
than 2(n —b)l, that (n—2b)(I—a) of the conditions
fo(x;a) = O(x2 YY) are automatically satisfied.

Third, I speak below of implied conditions. In
particular, if some of the system’s conditions are
implied by other conditions already taken into ac-
count then those implied conditions are redundant.
That redundancy displays a reduction in the sys-
tem’s rank.

Useful Remark 5.3. Recall that D! denotes (d/dz)"/1!.
Given any power series h(z) in z, a set of condi-
tions D! (h(z)fy(z;a)) = O(z™) is entailed by the
set fy(z;a) = O(x™*!). This generalises the pre-
ceding Useful Remark. Moreover, if, say, all but r
of the latter m+1[ conditions are known to be sat-
isfied then the former m conditions by implication
comprise at most r independent conditions. That is,
m—r of those conditions are satisfied by implication
at @ = a.

The point in saying this is to signal a sufficient con-
dition which our argument can show to be satisfied.
Supposing m > r, our ‘moreover’ is an example of
implied vanishing of m —r conditions at a = a.

Useful Remark 5.4. It is easy to see that, once given
the conditions fy(z;a) = O(z"!*%), for example,
we may amongst other things suppose in fi(z;a),
fa(z;a), ... that deg C), .y < nl—a. It follows that
fi(z;a) has implied degree less than n(l+a)—2a.
But there’s more. The conditions

folz;a) = O(a:"(““’))

do not just control the leading a coefficients of C), ,,;.
Moreover, (5-1) entails fi(z;a) = O(z»=DHa)
which together with the implied degrees just re-
marked upon, yields in fy(z;a), fz(x;a), ...both
degC, i < nl—2a and degC,_1,m < nl—a. It
follows that f(z;a) has implied degree less that
n(l+a)—4a. And so on.
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In summary, we see sequentially that each set of
conditions

fo(zya) = O(z" D) p=0,1,...,k—1,

allows us to speak as if deg(fi(z;a)) < n(l+a)—2ka.

Proof. Our remark here emphasises the opportunity
to see a decrease in the implied degree of the poly-
nomials we study.

We might have done better to speak of, say, the
‘rank’ of those polynomials— whereby a polynomial
of rank r is, in the first instance, one of degree at
most 7 — 1. Generally, though, a polynomial of rank
r is one with no more than r unspecified coefficients.
We might then recognise that preceding conditions
assist in implying that the implied rank of succeed-
ing polynomials is decreased. In the present argu-
ments it is happenstance that this decrease in rank
manifests itself as a decrease in implied degree. [J

Useful Remark 5.5.
12 if n is odd,

<n+2
22 if n is even.

5 ) :n2+(n—2)2+---+{

This is a core observation, because it provides the
guide on what to aim for in the argument. It’s an
embarrassment that it is too easy to be misguided
by the more seductive identity

YYD 1=tin(n+1)(n+2),

b=1 j=1 i=1
which somehow seems ‘more true’.

Useful Remark 5.6. Having discovered that some con-
dition is satisfied, whether automatically, or by im-
plication —thus that it plainly depends linearly on
other conditions of the system — we must next en-
deavour to notice its vanishing to higher multiplicity.
To that end, we divide vanishing conditions by a—a
and study the resulting conditions. We obtain

ilgi D: (fb(ﬂU; a) — fo(z; a))/(a—a)|x:0
= (b+1)- DL ((1—2)*log(1—2) fos1 (3 )], -

The useful miracle is the appearance of f,1(z;a),
albeit multiplied by a power series.

Proof. We are to satisfy conditions

fb(m;a) — O(Z'Q(n_b)l),
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whilst we know by implication that the degree of

fo(z;a) is less than n(l+a)— 2ba. Note that
2(n—b)l— (n(l+a)—2ba) = (n—2b)(I—a).

It follows, for each b with 2b < n, that (n—2b)(l—a)

conditions vanish automatically when a = a, ex-
hibiting the presence of (n—2b)(l—a) factors a—a
of A, ().

This useful remark tells us that a set of conditions
fo(z;0) = O(x*™~ ') yields, for each a, a total of
(n—2b)(I—a) factors a—a of the determinant and
leaves the sets of conditions

s a) = O (a0 -),
D;‘(H“)_Qb“ ((1 —z)%log(1—2) foy1(z; a))
= O(z"=200=9))  (54)

(5-3)

The presence of the first set (5-3) of conditions ex-
plains their use in Useful Remark 5.4. Notice that,
by Useful Remark 5.3, the second set 5—4 of (n—
2b)(1 — a) conditions is implied by the conditions
fori(x;a) = O(x2=01),

Iteration of our present remarks, and application
of Useful Remark 5.3, will show that ultimately the
conditions fy(z;a) = O(z*™ ') allow us to dis-
cover, for each a, and each b such that 2b < n, a
factor ao—a to multiplicity (n—2b)?(I—a). Thus,
the relevance of Useful Remark 5.5. O

Useful Remark 5.7. Our approximation system is sym-
metric; it is unchanged by the transformation o —
—a.

Proof. We deal with the vanishing of certain partial
derivatives of the function
(1 _x)naFn(xa Y; a) = Z(l - x)jacjynl(x)yj

=0

at (0,1). It is then just a variant of Useful Re-
mark 5.2 that it is no change to replace y by y~!,
nor, therefore, to deal with the same collection of

partial derivatives at (0, 1) of

n

Y Fo(z,y i —a) =Y (1-2)*Cpju(z)y’. O

J=0

Useful Remark 5.8. There’s no need to study the de-
terminant itself; one can see, say in the case n =1
that A(l) = £1, by pure thought.

Proof. First, certainly A(a) is not identically zero.
Thus A(l) # 0, and so (3—4) with o = [ has a unique
solution, up to normalisation. But

1-z)"(1—z)—1=0(=") (5-5)

displays that unique solution.

Now suppose that A(l) = 0 (mod p), for some
prime p. Then the approximation problem fy(z;[) =
O(z?) has a nontrivial solution over the finite field
F, and that nontrivial solution will lift to a solution
of

Doji1+(1— I)lDl,l = O(z*)

in characteristic zero. In that solution though, the
leading coefficient of Dy ;1 must vanish modulo p,
contradicting the uniqueness of the solution (5-5).
In summary, our noticing a solution, in this exam-
ple as at (5-5), allows us to conclude that the only
primes dividing the determinant are those dividing
the ‘extra’ coefficient in that solution. O

Proof of the Theorem. Qur strategy is to fix a, and
then to discover the multiplicity of the factor a—a of
A, (). We will find that the factor &« —a appears as
N groups of [ —a factors, with N independent of a.
Given Observations 4.2 and 4.3, that would of itself
suffice to show that A, («) is an N th power of A(«),
as we wish to show; and that N = in(n+1)(n+2).
However, those are just remarks, so as suggested by
Useful Remark 5.5, we find that value of NV directly.

We discover the groups of factors sequentially, as
suggested by Useful Remark 5.5. Our primary tool
is Useful Remark 5.4 whereby the implied degree
of fy(z;a)—thus, in the presence of the rest of the
system —is less than n(l+a)— 2ba.

It is helpful to distinguish the cases n = 2m+1,
odd, and n = 2m, even. We will deal with the case
n =2m+1 odd in detail.

That leads us to view the system we are studying

as the sets of conditions
fr—i(z;a) = ORI =m, m—1,...,0,

from which we discover the required factors of the

determinant; and the sets of conditions
Frnar(z; ) = O(x2mHI=RI) k=1,2,...,m,

which assist in implying the required reductions in
rank of the system at a = a.



The reader should fasten her seatbelt before speed-
ing through the following compacted proof. A test
drive of the argument in the cases m =0, 1, 2, ...is
recommended before the general journey.

We start an argument by induction on k£ by notic-
ing that, because f,,(z;a) has implied degree less
than (2m+1)(I4+a)—2ma = 2(m+1){—(I—a), it
follows that [ —a of the conditions

fm(x;a) — O(x2(m+1)l)

are automatically satisfied; the remaining conditions
play a role in reducing the implied degree of the
fmik(z;a) in the sets of conditions ‘below’. We
suppose we have divided the automatically vanish-
ing conditions by their factor o —a leaving us—see
Useful Remark 5.6 — with [ —a conditions made up
from the set of conditions f,, 1 (z;a) = O(z2m+1h);
in brief, with ‘[ —a conditions implied by that set’.

Now suppose, as an induction assumption, that
fork=0,1, ..., s—1 we have found that ultimately
each of the conditions f,,_j(z;a) = O(x2(m+1+hl)
yields (2k+1)?(I —a) factors o —a of the determi-
nant A, («), with the vanishing conditions leaving
(2k+1)(I—a) conditions implied by the set

Friira(z;a) = O 0N,

We then show, given this context, that also the
set of conditions f,,_,(z;a) = O(x2(m+1+9)) yields
(2s+1)%(I—a) factors.

We have already done the case s = 0. In general,
observe that the first (s+1)(2s+1)(I—a) factors arise
sequentially by noticing that, to begin, (2s+1)(l—a)
of the given conditions are satisfied automatically,
and by Useful Remark 5.6 leave us with (2s+1)(I—a)
conditions implied by the set

fm—s-i—l(w; CL) — O(xz(erlJrs)l).
However, for t =1, ..., s, each set of conditions
fm—s+t($; a) — O($2(m+1+s)l)

is plainly satisfied by implication. Indeed, the im-
plied degree of f,, si+(x;a) must be less than the
quantity 2(m+14s—t)l. So the conditions

fm—s+t(.’L'; a) = O(x2(m+1+s—t)l)’

elsewhere part of our system, in fact coincide with
(5-6). Thus it suffices to recall that, now that we
have noticed that the (2s+1)(l —a) conditions im-
plied by (5-6) are satisfied, we may extract the

(5-6)
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(2s+1)(l—a) corresponding factors a—a and be led
by Useful Remark 5.6 to consider the (2s+1)(l—a)
conditions implied by

fmfs+t+1 (l‘; a) = O(xz(m-l‘l-i-s)l)‘

Doing that for each ¢ yields (s+1)(2s+1)(l—a) fac-
tors in all, and also leaves us with (2s+1)(l—a)
conditions implied by the set

fm+1($; a) = O(xQ(erlJrs)l).

We find the remaining s(2s+1)(l—a) factors in
much the same manner, by verifying that each set

frge(z30) = O(22 AN =12 ... s (5-7)

is satisfied by implication. As above, we note that
our system includes the set

Frsa(30) = O(a2m 101,

and that the implied degree of f,,.+(x;a) is less than
(2m+1)(I+a)—2(m+t)a. However, that is just
(2m+1)l— (2t —1)a, so not all, but all except

2m+1)l—(2t—1)a—2(m+1—-t)l = (2t—1)(l—a)
of the conditions
Fse(3 ) = O+

can be immediately seen to vanish by implication.
Fortunately —it’s here that we use the induction
assumption — the original conditions f,, ;1(z;a) =
O(z*m+H1) have left us with (2¢—1)(l—a) conditions
implied by the set

fmii(z;0) = O($2(m+t)l)-

Thus the remaining (2¢—1)(l—a) conditions do also
vanish by implication, verifying our claim to be able
to extract an additional s(2s+1)(I—a) factors a—a
from the determinant of the approximation system.

In summary, the factor (a—a)'=® divides the de-
terminant A, («) to multiplicity at least

P+32+---+(2m+1)? = in(n+1)(n+2).

The argument for n = 2m, even, is now an exer-
cise almost fully effected by replacing m—+1—wher-
ever it appears above as such—by m, and then un-
doing that ‘correction’ at the few places where it is
inappropriate.

That argument shows that the factor (a—a)'~* di-
vides the determinant A, («) to multiplicity at least

0?+2°4+4°+---+(2m)? = in(n+1)(n+2).
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It remains to invoke Useful Remark 5.7 to see that
the factors (a+a)'™® also appear with that same
multiplicity.

It follows, from the computation reported at Ob-
servation 4.1, that A, («) differs from that power of
the said product only by multiplication by a con-
stant.

We may now apply Observations 4.2 and 4.3 to
point out that £A,(c) is indeed the in(n+1)(n+
2) th power of +A(«). Those remarks hold regard-
less of field of definition, so that for all primes p we
must have A, (1) =0 (mod p) if and only if A(l) =0
(mod p).

However, we cannot rely on those Observations,
and it is in any case more instructive to spell out
some details and to prove +A,, (1) = 1 more directly,
in the spirit of Useful Remark 5.8.

We first note, by Observation 4.1 on the degree
of A, (a), and the main argument just completed,
that A, (I) = 0 if and only if A, (a) = 0 identically.
But the latter is absurd; consider o transcendental.

Next, given that A, (I) # 0, if

—ba " J j o
go(@ia) = (1=2) Y (1) (1=2) " Dyrss;, (@),
then the system
(1-2)" " gy(x; @) = O(*" ),

for b = 0, 1, ..., n, has a unique solution up to
normalisation with A, (I) the coefficient of z™ in
Dy s, ,(x). Moreover, a solution is given by

) n .

Dj7nl+5j,o (:C) = (_l)J <n—]> (1 _x)n Ja
forj =0,1, ..., n. Because the ‘extra’ coefficient —
that of ™ in Dy ;41— is £1 we may conclude that
A, (1) is not divisible by any prime. In other words,
A, (l) = £1. O

6. THE GENERAL TRIANGLE FOR n = 2

The preceding argument deals with a very special
case of the general construction problem that in-
spired it, and moreover with a seemingly irrelevant
case, in that the Observations at Section 4 provide
a complete solution to the approximation problem,
without any appeal to the evaluation of determi-
nants. Nonetheless, we now show that precisely

the ideas we employed — particularly the Useful Re-
marks of Section 5—readily suffice to give a suc-
cinct evaluation of the determinant A(b, ¢, 0) for the
general triangle defined by kg = b, k; = ¢, k; =0 in
the case n = 2. That is, we evaluate the determinant
of the system

(1 — .’E)bC()VC + (1 — .T)CCLI,_C + 0276 = O(.’L‘b),

(]. - x)CCLb,C—I—ZCZC = O(QTC)
Krattenthaler and Zeilberger [1997] provided a de-
tailed evaluation of the determinant A(b,¢,0), con-

firming a ‘computational guess’ reported in [Bombi-
eri et al. 1995] to the following effect:

Principal Motivation. (i) A(b,¢,0) = 0 if b is even and
¢ is odd.
(ii) If one of these conditions does not hold, and 2¢ <
b, then,
+A(b,c,0)
[5(2b—)’[b—2¢][5(b+)?[5(b—c)]°[5¢]°
[b—c]3[50]9(5 (b—2¢)]?[c]? ’

where [s] = Z;E k! if s is an integer, and [s]* =
(s+3)(s—)Nif se Z+1.
(iii) Otherwise, if 2¢ > b, then

+A(b,c,0) = 2°"2°A(b,b—c,0).

The present work is, as it were, a reaction to this
result, my motive being to prove it, and much more,
in considerably fewer pages and with very much less
effort. To that end we set § = 2(b—2¢), and to
emphasise the symmetry as at Useful Remark 5.7,
we study the simultaneous approximation problem

(1=2)~*Co,c+(1—2) "0 C1 e 25+ (1—2)* Ca . =O(z> ),
(1- x)idcl,c-m& +2(1—2z)%Cs,.=0(z°).

The determinant A(a;b,c,0) of this system yields
the A(b,c,0) required by the Principal Motivation
on setting a = —2b = —(c+9).

More precisely, much as here we actually evaluate
A(a;b,¢,0) and get A(b, ¢, 0) from it, Krattenthaler
and Zeilberger [1997] also detail the evaluation of a
more general determinant with one additional pa-
rameter. Indeed, without introduction of those re-
spective extra parameters, the two evaluations could
not be done at all. That issue is usefully discussed in



the survey [Krattenthaler 1999]. However, the pa-
rameter z cleverly found in [Krattenthaler and Zeil-
berger 1997] is different from the rather more natu-
ral parameter « introduced here, and the values of
the two determinants are not related in an obvious
way, except that they coincide and yield the Princi-
pal Motivation for x = 0 and respectively a = —%b.

We show, as a corollary of the Useful Remarks
leading to our Main Theorem:

Example Application. (i) A(a;b,¢,0) = 0 if b is even
and c s odd.

(ii) If one of these conditions does not hold, and
2¢ < b, then A(w;b,c,0) is a constant multiple

of
H (a—a)c H (a_a)cfza H (a_a)bfcfm.
[2a|<b—2c 0<|2al<c b—2c<|2a|<b—c
(i) Otherwise, if 2¢ > b, it is some constant multi-
ple of A(a;b,b—¢,0). That is, A(a;b,¢,0) is a
constant multiple of the polynomial above with c
replaced by b—c, to wit of

H (Oé—a)bic H (a_a)b7c72a H (a_a)c72a‘
|2a|<2¢c—b 0<|2a|<b—c 2¢c—b<|2a|<c

Here, thus in the two preceding expressions, the
index a is such that 2a ranges over even integers
when b, and thus also c, is even. If b is odd, the
2a are odd integers.

Proof. Set § = 1(b—2c). To emphasise the symmetry
as at Useful Remark 5.7, it will be convenient to
study the simultaneous approximation problem
(1—.T)7a00764-(1—$)76017c+25+(1—$)a0276:O($2c+26),
(1-2)"°C1,er25+2(1=2)*C,e =O(z°),
where A(a;b,c,0), the determinant of this system,
yields the A(b,c,0) required by the Principal Mo-
tivation on setting o = —3b = —(c+0d). It’s not
difficult to see—in the spirit of the explanations

sketched at Section 4 —that the degree of the poly-
nomial A(a;b,c,0) is at most

> (i—4) = Lb(b+1)+te(c+1) =2 Le(c+1)
—2(b—c)(b—c+1)
= (b—c)c.
We first suppose that 6 is nonnegative. It will

also be convenient to proceed as if b is even—so
that § is an integer. Given that, it is plain that for
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each integer a so that 0 < a < § precisely c of the
conditions in the set

(1—2)°"Co o+ Oy oo+ (1—2)°TCy . = O(2*1?°)

(6-1)
are satisfied automatically. That reveals the factor
(e —a)® of A(e;b,c,0) for each 0 < a < §. Then,
on dividing the automatically satisfied conditions by
a—a, and again setting o = a, we have

Cler2s+2(1—2)°"Co . = O(a°) (6-2)

and, recall Useful Remark 5.3, a set of ¢ conditions
implied by the set

gi(z;a) = —(1 —a:)‘s_“Co7c+ (1 —QIJ)(H_GCQ’C
— O(.’E2C+25).

It is plain by subtracting (6-2) from (6-1) that, in
the context, (6-2) is equivalent to

gi(z;a) = —(1—2)°*Co .+ (1 —2)°T*Cy . = O(2°).

Since (1—z)"%g;(z;a) has degree less than ¢+ 2a,
and given that the original system contains the set
g1(z;a) = O(z¢), the conditions g, (z;a) = O(z*+%)
clearly comprise at most 2a conditions neither van-
ishing automatically nor by implication. That en-
tails, provided of course that 0 < 2a < ¢, the im-
plied vanishing of ¢— 2a conditions, thus revealing
the additional factor (a—a) 2* of the determinant.
Ifo<acx< (5—1—%0, the set

fo(z;a) = Co e+ (1—2)*°C chas+ (1—)**Cye
— O ($2(3+26)
displays ¢+ 20 — 2a automatically vanishing condi-

tions, revealing for each of those a the factor

(Oé _ a)26+c72a‘

Moreover, if 0 < a < §+ %c then the conditions
fo(x;a) = O(2”) entail that fo(z;a) vanishes iden-
tically. For 0 < a < 6, above, that does not en-
tail a reduction in the implied degree of Cs ., but
if § < a < §+3c we see that the implied degree of
C5,.(z) must be less than c+a—4.

Much as above, we are next led to study the 26+
c—2a derived conditions implied by the set

fi(x;a) = Clepas+2(1—2)"F°Cy . = Oz
in the presence of the original set of conditions

fi(z;a) = Cl7c+25+2(1—a:)“+5027c = O(z°).
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However, as just remarked, the implied degree of
fi(z;a) is less than ¢+ 2§, and we have fi(z;a) =
O(x¢). Thus the set fi(z;a) = O(z**?°) comprises
at most 20 conditions neither vanishing automat-
ically nor by implication. That entails, provided
that § < a < %c, the implied vanishing of (26 +c¢—
2a) — 20 = ¢—2a conditions, revealing therefore the
additional factor (¢ —a)“ 2* of the determinant. By
the way, we note that if ¢ < 2§ then there were no
additional factors to be found in the present manner
for a > 4.

Finally, we acknowledge that by symmetry it fol-
lows that for a # 0, each factor a«—a we have noticed
is partnered by a corresponding factor a+a.

It is clear that a+0 must be an integer in order for
our arguments to make sense. Thus if b is not even
the a must differ by half from integers; other than
for that change our argument remains the same.

It is now convenient to count the number of fac-
tors of A(a;b,c,0) thus far discovered.

We recall that on the first pass we found ¢ factors
corresponding to each a so that 0 < a < §, and
2§ + ¢ — 2a factors corresponding to each a so that
20 < 2a < 20+c. On the second pass we found c—2a
factors corresponding to each a so that 0 < 2a < c.

Suppose we first count those ‘second pass’ factors.
If b is even there are ¢ corresponding to a = 0 and

fora=1, 2, ..., a total of
1=1(c—1)* ifcisodd,
(c=2)+(c—4)+---+ . L
= ;(c=2)c if cis even.
If b is odd, then for a = %, 11, ..., we have found a
number of factors equal to
1=1c? if ¢ is even,
(c=1)+(c=3)+--+ ) L
= 3(c*=1) if cis odd.

Similarly, we see that the number of ‘first pass’
factors corresponding to a so that 26 < 2a < 26+c¢
totals

1=1(c—1)* ifcisodd,

2=1(c—2)c if cis even.

(c—2)+(c—4)+---+{

The point is that 2a — 2§ is even regardless of the
parity of b.

We now also recall that for positive a each factor
a—a is accompanied by a factor a+a. Hence the
total number of factors counted thus far is

e if bis odd and ¢ is odd:
2.1 -1)42-3(c—-1)? = —¢

4

e if bis odd and c is even:
217 +2-1(c—2)c=c—¢
e if bis even and c is odd:
c+2-3(c—1)’+2-2(c—1)* =? —c+1;
e if bis even and c is even:
c+2-2(c—2)c+2-1(c—2)c=c"—c.

Finally, if b is even the number of ‘first pass’ factors
for a in the range 0 < a < § is ¢ corresponding to
a =0 and fora =1, 2, ..., a total of ¢d. Recalling
also the factors corresponding to negative a, we have
here a total of ¢+2¢d factors. If b is odd the number
of first pass factors for a in the range —0 < a < ¢
corresponding to a = £3, £13, ..., £ is also ¢+2¢4.
That is, the number of additional factors in each
case is ¢+ c(b—2c).

One now sees that, in summary, we have found
a total of (b— c)c factors unless b is even and c is
odd, in which case we have discovered (b—c)c+1
factors! However, we commenced by noticing that
the degree of the polynomial A(a;b,¢,0) is at most
(b—c)c. Thus, if b is even and c¢ is odd we must have
A(a;b,c,0) = 0 identically.

In the other cases we have shown that A(«;b, ¢, 0)
is some constant multiple of the polynomial

H (a_a)c H (a_a)cfza H (a_a)bfcfm‘

|2a|<b—2c 0<|2al<e b—2c<|2a|<b—c (6-3)

The 2a are even integers if b is even and thus also ¢
is even. If b is odd, the 2a are odd integers.

We now suppose that & is negative. We’ve done
less than half our work because, with n = £(2¢—b)
positive, study of the determinant A(c; b, ¢,0) of the
System

fo(w; ) = Co e+ (1—2) 0y o2y +(1—2)**Cy e
= 0(a"),
filz;a) = (1—2)"Ch 25 +2(1—2)Cy . = O(z°)
seems somewhat different from our discussion above.
It will again be convenient to conduct our principal

discussion as if b is even. As before, when b is even
a denotes a nonnegative integer.



Suppose first that 0 < 2a < b—c. Then b—c—2a
of the conditions fy(z;a) = O(z°) are automatically
satisfied, revealing a factor (a—a)’ °72* of the de-
terminant A(q;b,c,0).

Therefore at the second pass we have for 0 < 2a <
b—c a collection of b—c—2a conditions implied by
the set fi(z;a) = O(z?), as well as the set fi(z;a) =
O(z°) of conditions.

Moreover, the conditions fy(z;a) = O(z®) entail
that fo(x;a) vanishes identically. It follows that,
when 0 < a < n, the implied degree of Cs . is
less than ¢—2a; and then also the implied degree
of (1—z) "fi(x;a) is less than ¢—2a. However, if
n < a, the implied degree of C; . is less than c—n—a,
and the implied degree of (1 —z)7"f(x;a) is less
than ¢—2n.

Thus if 0 < a < 7, then because the implied de-
gree of (1—x) *f1(z;a) is less than ¢— 2a, the con-
ditions fi(x;a) = O(x¢) themselves yield 2a factors
a—a. Further that implied degree also implies that
the set fi(z;a) = O(z®) is satisfied, yielding an ad-
ditional b —c— 2a such factors. In all, we see an
additional factor (a—a)*~¢ of A(a;b,c,0).

However, if n < a then, because the implied de-
gree of (1—x)~"f,(x;a) is less than ¢— 27, the con-
ditions fi(x;a) = O(z) themselves yield 27 factors
a—a and the set f;(z;a) = O(x) is satisfied. Since
(b—c—2a)+2n = ¢—2a, this shows the additional
factor (a—a)2* of A(a;b,¢,0).

We now turn to the cases b—c < 2a. Here we
use the advice appended to Useful Remark 5.4. In
this case none of the conditions fy(z;a) = O(z”) is
automatically satisfied. However, if 0 < a <, then
¢ > n+a+b—c so the set of conditions fo(z;a) =
O(z") implies b—c linear conditions on (1—z)?**Cs,,
specifically, the set D¢ ((1—2)**Cs,) = O(z"~°). It
follows that b—c of the conditions (1—x)~ f(z;a) =
O(z°) are satisfied by implication, revealing a factor
(a—a)’=¢ of the determinant A(a;b,c,0).

Further, if n < a then n+a+b—c > c and the set
of conditions fy(z;a) = O(x*) implies just c—a—n
linear conditions on (1—z)?*C, ., namely, the set
Detemn((1—2)%Cy,) = O(z°~*"). It follows that
(c—a—n)—(a—n) = c—2a of the conditions

(1—2)7"f1(z;a) = O(z°)

are satisfied by implication, and this reveals a factor
(a—a)“2* of A(a;b,c,0).
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We may now count the factors of A(a;b,c,0) thus
far obtained, once again remarking that 2a is odd
if b is odd. Fortunately, there is little new work
for us to do. We recall that if 0 < 2a < b—c we
have (b—c—2a)+ (b—c¢), or (b—c—2a)+ (c—2a),
factors according as 0 < a <0, or n < a. Whereas
if b—c¢ < 2a, we have just b—c, or c— 2a, factors.

The terms b—c—2a yield (b—c—2)+(b—c—4)+- -
or (b—ec—1)+(b—c—3)+- - factors according as b
is even or odd, and the c¢— 2a, which have a > 7,
s0 0 < ¢—2a < b—c, provide (¢c—2)+ (c—4)+---
factors.

Again we recall that by symmetry it follows that
for a # 0, each factor o —a we have noticed is part-
nered by a corresponding factor a+a. In particular
the multiplicities b—c provide a total of (b—c)+4(2¢c—
b)(b— c) factors.

Happily, it is now evident that we are about to
repeat our calculations for the case b > 2c¢, other
than that c is everywhere replaced by b—c. Thus,
unless b is even and b—c is odd, we see we have
found

(b—(b—c))(b—c) = c(b—c)
factors. If b is even and c is odd, we have found
c(b—c)+1 factors, and it follows that A(a;b,c,0)
must vanish identically. In summary, we see that in
the other cases the determinant A(a;b, ¢, 0) is some
constant multiple of the polynomial

H (Oé—a)bic H (a_a)b7c72a H (a_a)cfmz

|2a|<2c¢—b 0<|2a|<b—c 2c—b<|2al<c (6-4)

with the 2a even integers if b is even, and odd inte-
gers if b is odd. O

7. REMARKS AND ACKNOWLEDGEMENTS

This work had its genesis in the early eighties; that
story is recounted in extenso in [Bombieri et al.
1995]. Given that, it does seem some sort of achieve-
ment to finally be able to prove the Main Theorem.
More to the point, it seems encouraging to have been
able to do it by the use of ideas which are likely to be
capable of application to the more general construc-
tions alluded to in [Bombieri et al. 1995]. For an
application of the implicit constructions see [Bom-
bieri et al. 1996].

Nonetheless this draft of the argument is polluted
by several disgraceful scandals. The worst of these
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surely is my inability to add an incidental remark to
those in Section 4 making it immediately plain that
A, () is a power of A(a). That, however, is mit-
igated by the contribution of the ‘Useful Remarks’
of Section 5. I am therefore more outraged by the
scandal whereby I can see only indirectly that there
is a symmetry causing A(q;b,c,0) to be a constant
multiple of A(a;b,b—¢,0).

Moreover, that defect in my arguments helped to
hold me back from sketching an elegant normalisa-
tion for A(a;b,c,0), as I had expected to be able
to do. In the event, I am forced to rely on [Krat-
tenthaler and Zeilberger 1997] by equating the cases
o = —1b of this paper and z = 0 of [Krattenthaler
and Zeilberger 1997]. I had expected to be able to
effect the normalisation by evaluating the polyno-
mials (6-3) and (6-4) at @ = 0, or a = 3, according
as b is odd, or even.

I am very much indebted to Christian Kratten-
thaler and Doron Zeilberger for motivating me fi-
nally to produce the present efforts, and acknowl-
edge the assistance of Paula Cohen in reading earlier
drafts of these remarks. This paper has been a ben-
eficiary of the unusually detailed and very helpful
remarks of its referee.
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