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We construct a planar quartic system and demonstrate that it
has at least 26 limit cycles. The vector field is symmetric and
integrable, but non-Hamiltonian. The proof is based on a verified
computation of zeros of pseudo-Abelian integrals, together with
the symmetry properties.

1. INTRODUCTION

Bifurcations of limit cycles from planar polynomial vec-
tor fields is connected to the second part of Hilbert’s six-
teenth problem, which asks for an upper bound, H(n),
on the number of limit cycles that an nth-degree pla-
nar polynomial vector field can have. The determina-
tion of H(n) has turned out to be very difficult. In
fact, it is not even known whether H(n) exists. A
thorough review of this problem and the progress that
has been made toward its solution can be found in
[[’yashenko 02, Roussarie 98].

There are various restricted versions of the prob-
lem, the most thoroughly studied being probably the
weak Hilbert’s sixteenth problem, formulated by Arnol’d
[Arnol’d 90, Christopher and Li 07]. The weak problem
asks for an upper bound, Z(n), on the number of limit
cycles that can bifurcate from a planar Hamiltonian
vector field under first-order perturbation. Obviously,
Z(n) < H(n). The weak problem has been solved for
n =2, Z(2) = 2 [Chen et al. 06]. For n > 2, it is known
that Z(n) exists (see, e.g., [Varchenko 84]), but there are
no realistic upper bounds on its growth.

Based on the difficulties in obtaining upper bounds
on the number of limit cycles of a planar polyno-
mial vector field, there has been a large interest in
the computation of lower bounds of H(n) and Z(n).
Some such bounds are Z(3) > 13 [Li et al. 09], Z(4) > 16
[Wang et al. 08], Z(5) > 27 [Johnson and Tucker 10a),
Z(7) > 53 [Johnson and Tucker 10b], and in addition
H(4) > 22 [Christopher and Li 07]. The results for the
weak problem for odd degrees are proved by calculat-
ing the numbers of zeros of Abelian integrals, whereas

323



324  Experimental Mathematics, Vol. 20 (2011), No. 3

the results for quartic vector fields are proved by com-
puting focus values at a linear center. In this paper we
improve the result for quartic vector fields and prove that
H(4) > 26.

The construction in this paper is based on first-
order perturbation of an integrable non-Hamiltonian
planar vector field with maximum number of centers
and Z; symmetry. The method, however, is general,
and could be applied to the study of perturbations
around any center where one is able to parameterize
the level curves. A detailed analysis of the impact of
symmetry on cubic and quartic vector fields is done
in [Yu et al. 06].
limit cycles under first-order perturbations are done for
perturbations of Hamiltonian vector fields; some other
papers considering integrable non-Hamiltonian systems
are [Han et al. 07, Yu and Li 02]. Our proof is done using
verified numerical computations based on interval analy-
sis [Moore 66, Neumaier 90]. The details of the numerical

Most studies on the bifurcation of

computations, which are very delicate, are described
in Section 3. Other computer-aided approaches to the
determination of phase portraits of planar vector fields
include [Guckenheimer 95, Guckenheimer and Malo 96,
Johnson 09, Johnson and Tucker 09, Johnson and Tucker
11]. A computational algebra approach to the center
problem can be found in [Romanovski and Shafer 09].

The outline of this paper is as follows: In Section 2, we
describe our construction and the theoretical background
to our results. Some information about computer-aided
proofs and the numerical issues involved is given in Sec-
tion 3. Finally, in Section 4, we describe the results of the
computations.

We end this introduction by stating our main theorem.

Theorem 1.1. There exist a quartic integrable planar vec-
tor field and a quartic perturbation such that the per-
turbed system has at least 26 limit cycles when the per-
turbation is sufficiently small.

2. THE CONSTRUCTION

As in [Johnson and Tucker 10a, Johnson and Tucker 10b],
we study vector fields with maximal number of centers
and Z, symmetric first integrals. We study bifurcations
from a quartic system whose first integral is equal to the
Hamiltonian of a cubic Hamiltonian system with maxi-

mal number of centers:
2
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FIGURE 1. The phase portrait of system (2-1).

Clearly, an integrating factor of (2-1) is u = 1/y, and
the corresponding first integral is

F(z,y) = i (' +y') — % (995 +11y%), (2-2)
which is Zy symmetric. The system (2—1) has six annuli of
periodic orbits, appearing in two classes: I'; (multiplicity
4) and T’y (multiplicity 2); see Figure 1.

To use the symmetry of the system, we consider per-
turbations with the same kind of symmetry. Through the
use of perturbations that respect the symmetry, any limit
cycle that we detect will imply the existence of three ad-
ditional ones if it belongs to the first class of periodic
annuli, and one additional limit cycle if it belongs to the
second class. The perturbed system that we consider is

the following:

&= —y*(y* - 1.1),
§ = wy(a® - 0. 9)
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(2-3)

3 y — Qg — 04333‘2 — 0&4$4)

where € > 0 is a small parameter. We denote the pertur-
bation by eg(x,y).

Each annulus of periodic orbits corresponds to a
continuous family of level curves of the first inte-
gral v, C F7Y(h). The classical method of studying
perturbations from such an annulus in the Hamil-
tonian case is to study Abelian integrals; see, e.g.,
[Christopher and Li 07, Guckenheimer and Holmes 83].
In the present, non-Hamiltonian setting, the correspond-
ing objects are pseudo-Abelian integrals, which have sim-
ilar properties. Given a perturbation as in (2-3), we de-
fine the pseudo-Abelian integral (in general multivalued)
as



o —44.1527847886279
o —64.7283580682510
o3 155.6409265346564
oy —28.2884027418255

TABLE 1. The generated coefficients of the
perturbation (2-3).

which in our case reads
4

. 1 2
I(h) = / (—x2y Pt an- tayt +Oé4x> dx.
r, 3 Yy Yy Yy
(2-4)

The most important property of (pseudo-)Abelian in-
tegrals is described by the Poincaré—Pontryagin theorem.

Theorem 2.1. (Poincaré—Pontryagin.) Let P be the re-
turn map defined on some section transversal to the
level curves of F, parameterized by the values h of F,
where h is taken from some bounded interval (a,b).
Let d(h) = P(h) — h be the displacement function. Then
d(h) = e(I(h) + ep(h,€)), as ¢ — 0, where ¢(h, €) is ana-
lytic and uniformly bounded on a compact neighborhood
of e=0, h € (a,b).

For a proof of this theorem, see, for example,
[Christopher and Li 07].

As a consequence of the above theorem, one can prove
that a simple zero of I(h) corresponds to a unique limit
cycle bifurcating from the integrable system as ¢ — 0. In
fact, to prove the existence of a limit cycle, it suffices to
have a zero of odd order.

Clearly, if (2-4) is zero on one level curve in one of
the annuli of periodic orbits in a class, it is zero on the
other ones, since the different annuli are reflections of
each other in the x- or y-axis. This yields the claimed
multiplicity of limit cycles.

3. NUMERICAL ISSUES

The proof of Theorem 1.1 is computer-aided. In order to
use a computer to prove mathematical statements, the
results of a computation must be guaranteed to be cor-
rect. We need to prove that a given mathematical state-
ment can be reduced to a finite number of computable
conditions, and construct an algorithm that checks those
conditions.

A numerical algorithm is said to be auto-validating if
it guaranteed to produce a mathematically correct re-
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FIGURE 2. The level curves from which the limit cycles
bifurcate. On the right is a closeup of I'y.

sult. The basic object in any such algorithm is an inter-
val whose endpoints are computer-representable floating-
point numbers. Replacing numbers with intervals yields
an arithmetic for sets. Computing with sets, rather than
points, we can quantify all discretization errors of a
numerical algorithm. Since any bounded subset of the
plane can be covered by a finite number of axis-parallel
boxes, we can, for example, do computations that are
valid for the entire domain of a function, or all func-
tions in a finitely parameterized family. In addition
to the discretization errors of a numerical method, an
auto-validated numerical algorithm also incorporates the
computer’s internal representation of the floating-point
numbers and its rounding procedures. All mathematical
operations are performed in interval arithmetic with di-
rected rounding to ensure the correctness of the re-
sult; see, e.g., [Moore 66, Neumaier 90] for details. Our

PA. h I(h)

1 —0.5045 [~9.616E—0013,—9.542E—0013]
1 ~0.5035 [4.982E—0013,5.027E—0013]

1 —0.5025 [—4.766E—0013,—4.690E—0013]
1 —0.5018  [1.730E—0012, 1.742E—0012]

1 ~0.5010  [—6.946E—0012,—6.931E—0012]
1 —0.5000 [1.052E—0011,1.055E—0011]

1 —0.4500  [—9.858E—0005,—9.857E—0005]
2 ~0.2900  [—6.018E~+0000,—6.017E+0000]
2 ~0.2500 [1.145E40001, 1.146E+0001]

TABLE 2. The computed enclosures of the pseudo-
Abelian integrals. P.A. = periodic annulus.
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FIGURE 3. The graphs of I(h) on I'; and T'.

algorithms use the interval arithmetic package C-XSC
[Hammer et al. 95].!

In the case at hand, we need to rigorously enclose the
value of I(h) in (2-4). We do this using the interval ex-
tension of Simpson’s method, i.e.,

/abf(x) are 20 (f<a> 4 (“‘2”)) +f<b>)
1

5 p(4
~ e (0~ @ £ (0],

Note that f*)([a,b]) in the above formula denotes an
interval enclosure of the range of f(*) on the interval [a, b].
In order to enclose the error term in Simpson’s method,
we need differentiable information about the function. To
get the enclosures of the required derivatives, we com-
pute with Taylor arithmetic (the necessary software is
provided by [Blomquist et al. 05]), which uses automatic
differentiation (see, e.g., [Griewank 00]), to compute the
derivatives of a function.

The simplicity of the first integral (2-2) implies that
we can determine, by hand, the parts of a given level
curve 7y, where y=y(x) and z = z(y). This reduces
the computation of I(h) to one-dimensional integration.
With this parameterization, however, the function we are
integrating contains a factor of the form \/---+ /-,
which is numerically unstable. When we compute higher-
order derivatives, even more accuracy is lost. The choice
of Simpson’s method rather than a higher-order Tay-
lor integration scheme is a compromise between order
and accuracy of enclosures. The size of the enclosures of

LCXSC, C++ eXtension for Scientific Computation, version 2.2.3.
Available from http://www.math.uni-wuppertal.de/org/WRST/
xsc/cxsc.html.

03 —0.28 ~0.26

higher-order derivatives computed with automatic differ-
entiation will grow very fast with the order.

In addition, the value of a pseudo-Abelian integral
with many zeros is very small; in our case, the sum in
(24) is up to 14 orders of magnitude smaller than each
of its terms. This huge demand for accuracy together with
the inaccuracy of implicitly defined functions and the
fact that the square root is non-Lipschitz at zero, which
implies that the relative size of the interval enclosures
grows without bound close to zero, makes the computa-
tions extremely delicate. In fact, it forces us to compute
with 256-bit arithmetic. With lower-precision computa-
tions we get only enclosures of the values of (2-4) of the
form (—n,n), for some small number 7. This illustrates
the strength of validated numerical methods; we are able
to tell when we have enough accuracy. Using a standard
numerical experiment for a problem this sensitive, any
result is possible.

4. NUMERICAL RESULTS

The idea is to generate a perturbation with as many ze-
ros as possible in I'y, and afterward check whether zeros
in T'y are also implied. In contrast to an algebraic ap-
proach, such as [Romanovski and Shafer 09], we do not
compute focus quantities. Instead, we compute the zeros
of the pseudo-Abelian integral, for some fixed perturba-
tion. This means that the limit cycles will have some
distance from the center.

In trying to locate a perturbation with as many ze-
ros as possible, we start by (nonrigorously) sampling
the value of each of the five terms in (2-4) at 100 uni-
formly distributed level curves in —0.505 < h < —0.5,



where —0.505 corresponds to the center. Since we have
four coefficients in our perturbation, we can solve the lin-
ear system constructed by requiring that I(h) = 0 at four
different h-values. We do this with the four values as close
as possible to the center, and evenly spaced. After some
small corrections, we get the choice of parameters given
in Table 1, yielding six limit cycles in I'y and one limit
cycle in I's. These are our candidate coefficients, and the
final step is to run the validated integration scheme to
prove that I(h) has validated sign changes.

The level curves from which the limit cycles bifurcate
are shown in Figure 2, the graphs of the pseudo-Abelian
integrals on I'y and I's are presented in Figure 3, and the
validated enclosures of the values are given in Table 2.
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