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The 4-dimensional abstract Kummer variety K 4 with 16 nodes
leads to the K 3 surface by resolving the 16 singularities. Here we
present a simplicial realization of this minimal resolution. Start-
ing with a minimal 16-vertex triangulation of K 4, we resolve its
16 isolated singularities—step by step—by simplicial blowups.
As a result we obtain a 17-vertex triangulation of the standard
PL K 3 surface. A key step is the construction of a triangulated
version of the mapping cylinder of the Hopf map from real pro-
jective 3-space onto the 2-sphere with the minimum number of
vertices. Moreover, we study simplicial Morse functions and the
changes of their levels between the critical points. In this way
we obtain slicings through the K 3 surface of various topological
types.

1. INTRODUCTION

Triangulations of manifolds with few vertices have been
a growing subject of research during the last few years.
This is due to new computer facilities that allow cal-
culations and even computer experiments with a list
of simplices on, say, up to 50 vertices or more. Here
we are dealing with combinatorial d-manifolds, which
are d-dimensional simplicial complexes such that the
link of every i-simplex is a triangulated (d− i− 1)-
dimensional standard PL-sphere. For a combinatorial
d-pseudomanifold with isolated singularities, we require
that the link of each vertex be a combinatorial (d− 1)-
manifold, not necessarily a sphere. Not all triangulated
pseudomanifolds satisfy this property. It turns out that
there is a triangulated 5-sphere with only 20 vertices that
is not combinatorial [Björner and Lutz 00]. This example
is not even a combinatorial pseudomanifold.

The problem of finding a combinatorial version of
an abstract d-pseudomanifold is not trivial, especially
if some additional properties such as vertex minimality
are required. It is well known that one has the follow-
ing operations in the class of combinatorial manifolds for
solving this problem: products and connected sums. The
products require a simplicial subdivision of prisms, but
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that is available. In algebraic geometry there is a third
operation on a certain type of pseudomanifold, namely,
the resolution of singularities. A fourth operation would
be a combinatorial version of Dehn twists. If these
could be applied to simply connected combinatorial 4-
manifolds, we could make progress toward a solution of
some interesting problems:

Problem 1.1. Find a pair of orientable PL d-manifolds
(M1 ,M2) such that

(i) M1 and M2 are not homeomorphic,

(ii) there are combinatorial triangulations of M1 and
M2 with n vertices but not with n− 1 vertices,

(iii) the f -vector of such an n-vertex triangulation is
unique for both M1 and M2 .

The entries of the f -vector are defined as the numbers
fi of i-dimensional simplices of the triangulation.

Problem 1.2. Find two concrete combinatorial triangula-
tions of a 4-manifold such that the underlying PL man-
ifolds are homeomorphic but not PL-homeomorphic. It
is known that some compact topological 4-manifolds ad-
mit exotic PL structures. Furthermore, any combinato-
rial triangulation induces a unique PL structure and thus
a unique smooth structure.

Concerning Problem 1.1, there are pairs of nonori-
entable and orientable surfaces with the same mini-
mum number of vertices, e.g., the two surfaces with χ =
−10 admit triangulations with the f -vector (12, 66, 44)
but no smaller triangulations. Moreover, the existence
of pairs of nonhomeomorphic lens spaces with the
same minimum number of vertices is known due to
[Brehm and Swiatkowsk 93]. However, so far, no such
pair of concrete combinatorial manifolds has been
constructed.

Concerning Problem 1.2, it is well known that
in a topological classification of simply connected 4-
manifolds, the relevant pieces are CP 2 (with two orien-
tations), S2 × S2 , and the K3 surface (with two orienta-
tions). However, for topological 4-manifolds it can hap-
pen that there are possibly many distinct PL structures.
There is a method to construct exotic PL structures on 4-
manifolds using Akbulut corks: Akbulut and Yasui inves-
tigated bounded submanifolds of a 4-manifold M . These
so-called corks can be cut out and glued back into the
original manifold, thus changing the PL type of M (see
[Akbulut 91] and [Akbulut and Yasui 08]).

However, applying Akbulut corks to combinatorial
manifolds requires more experiments. For CP 2 and S2 ×
S2 we have standard triangulations. For the K3 surface
we have one optimal triangulation with the minimum
number of 16 vertices [Casella and Kühnel 01], but so
far, the PL type has not been precisely identified. Pre-
sumably, it is the standard structure of the classical K3
surface.

In this article we describe a purely combinatorial ver-
sion of resolving ordinary nodes or double points in real
dimension 4. In particular, we describe this procedure
for the K3 surface as a resolution of the Kummer variety
with 16 nodes. “Purely combinatorial” here means that
we are dealing with simplicial complexes (or subdivisions
of such) with a relatively small number of vertices such
that topological properties or modifications can be recog-
nized or carried out by an efficient computer algorithm.

The construction itself is fairly general. We are going
to illustrate it for the example of the K3 surface as a
desingularization of what we call a Kummer variety, fol-
lowing [Spanier 56]. In particular, we describe a straight-
forward and “canonical” procedure to obtain a concrete
triangulation of the K3 surface with a small number of
vertices and with the classical PL structure. As we will
see in Section 6, this procedure also gives some insights
into Problem 1.1. In principle, such a procedure seems to
be possible in any even dimension.

For all this, computer algorithms are employed and
implemented in the GAP system. Here, a key opera-
tion is the concept of bistellar flips due to [Pachner 87]
that establishes a PL homeomorphism on a combinato-
rial level. A GAP program due to [Björner and Lutz 00]
implements a heuristic algorithm that reduces the num-
ber of vertices of a given combinatorial manifold without
changing its PL type. Since this process is not determinis-
tic, its character is rather experimental and needs a great
deal of computer calculation. Nonetheless, we can use this
concept together with some theoretical lower bounds to
get closer to a solution of the following problem:

Problem 1.3. For any given abstract compact PL d-
manifold, find the minimum number of vertices for a com-
binatorial triangulation of it, and find out which topolog-
ical invariants are related to this number.

For pseudomanifolds admitting some combinatorial
triangulation we have the same problem.

2. THE KUMMER VARIETY AND THE K 3 SURFACE

An abstract d-dimensional Kummer variety Kd =
T
d
/
x∼−x can be interpreted as the d-dimensional torus
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modulo involution [Spanier 56]. It is a d-dimensional flat
orbifold in the sense that the neighborhood of any point
of Kd is a quotient of Euclidean d-space by an orthogonal
group. Topologically, Kd can be seen as a pseudomani-
fold with 2d isolated singularities that are the fixed points
of the involution. A typical neighborhood of a singular-
ity is a cone over a real projective (d− 1)-space whose
apex represents the singularity. Thus, any combinatorial
triangulation of Kd needs at least 2d vertices as a kind
of absolute vertices [Fáry 77]. In more concrete terms, a
series of minimal triangulations of Kd for any d ≥ 3 has
been given in [Kühnel 86].

These combinatorial pseudomanifolds are 2-neighborly
(i.e., any two vertices are joined by an edge) and highly
symmetric, with a transitive automorphism group of or-
der (d+ 1)! · 2d . Moreover, they contain a specific combi-
natorial real projective space RPd−1 with 2d − 1 vertices
as each vertex link. This vertex link happens to coin-
cide with a 2-fold nonbranched quotient of the vertex
link of a series of combinatorial d-tori with 2d+1 − 1 ver-
tices [Kühnel and Lassmann 88], which presumably has
the minimum possible number of vertices among all com-
binatorial d-tori.

In particular, we have a minimal 2-neighborly 16-
vertex triangulation of the 4-dimensional Kummer va-
riety, which will be denoted by (K4)16 . A few of its
properties are the following: The f -vector is given by
f = (16, 120, 400, 480, 192), the Euler characteristic is
χ(K4) = 8, and the integral homology groups are

H∗(K4) = (Z, 0,Z6 ⊕ (Z2)5 , 0,Z). (2–1)

Its intersection form is even of rank 6 and signature 0. We
use an integer vertex labeling ranging from 1 to 16. The
automorphism group of order 5! · 24 = 1920 is generated
by two permutations as follows:

〈 (1, 7, 12)(2, 8, 11)(3, 10, 16)(4, 9, 15),
(1, 9, 10, 14, 16, 8, 7, 3)(2, 13, 12, 6, 15, 4, 5, 11) 〉.

The complex coincides with the orbit (1, 2, 4, 8, 16)192 (cf.
[Kühnel 86], where the labeling is chosen as 0, 1, 2, . . . , 15
instead of 1, 2, 3, . . . , 16).

The K3 surface, on the other hand, is a prime
(i.e., indecomposable by nontrivial connected sums; see
[Donaldson 86]) compact oriented connected and simply
connected 4-manifold admitting a unique smooth or PL
structure. By Freedman’s theorem [Freedman 82], it is
uniquely determined up to homeomorphism by its inter-
section form. The Euler characteristic is χ(K3) = 24, the

integral homology groups are

H∗(K3) = (Z, 0,Z22 , 0,Z),

and the intersection form is even of rank 22 and signature
16. In a suitable basis it is represented by the unimodular
matrix

E8 ⊕ E8 ⊕ 3

(
0 1
1 0

)
,

where E8 is given by

E8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This makes the K3 surface distinguished from the
topological point of view. Also, from the combinatorial
point of view this 4-manifold is fairly special, since the
data n = 16, χ = 24 coincide with the case of equality in
the generalized Heawood inequality(

n− 4
3

)
≥ 10(χ(M) − 2), (2–2)

which holds for any combinatorial n-vertex triangula-
tion of any compact 4-manifold M ; see [Kühnel 94],
[Kühnel 95, 4B].

Inequality (2–2) is also a partial solution to Problem
1.3 in the introduction. Equality can occur only for 3-
neighborly triangulations, i.e., for which any triple of
vertices determines a triangle of the triangulation. Con-
sequently, the f -vector has to start with

(
n,
(
n
2

)
,
(
n
3

))
in this case. In other words, any combinatorial trian-
gulation of the K3 surface has at least 16 vertices (the
same number as required for the Kummer variety K4),
and one with precisely 16 vertices must necessarily be
3-neighborly (or superneighborly). Such a 3-neighborly
vertex-minimal 16-vertex triangulation of a PL mani-
fold homeomorphic to the K3 surface (K3)16 was pub-
lished in [Casella and Kühnel 01]. The f -vector is f =
(16, 120, 560, 720, 288), and observe the 3-neighborliness
f2 = 560 =

(16
3

)
. Its automorphism group is isomorphic

to the affine linear group AGL(1, 16) and is generated by
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two permutations as follows:

〈 (1, 3, 8, 4, 9, 16, 15, 2, 14, 12, 6, 7, 13, 5, 10),
(1, 11, 16)(2, 10, 14)(3, 12, 13)(4, 9, 15)(5, 7, 8) 〉.

This group of order 16 · 15 = 240 acts 2-transitively
on the set of vertices (1, . . . , 16) of (K3)16 . The triangu-
lation (K3)16 itself is defined as the union of the orbits
(1, 2, 3, 8, 12)240 and (1, 2, 5, 8, 14)48 under this permuta-
tion group; see [Casella and Kühnel 01], where the label-
ing is chosen as 0, 1, 2, . . . , 15 instead of 1, 2, 3, . . . , 16.

3. THE HOPF σ -PROCESS

By the Hopf σ-process we mean the process of blowing
up a point, and simultaneously, the resolution of nodes
or ordinary double points of a complex algebraic variety.
This was described in [Hopf 51]; compare [Hirzebruch 53]
and [Hauser 00]. From the topological point of view the
process consists in cutting out some subspace and gluing
in some other subspace. In complex algebraic geometry,
one point is replaced by the projective line CP 1 ∼= S2 of
all complex lines through that point. This is often called
blowing up the point. In general, the process can be ap-
plied to nonsingular 4-manifolds, and it yields a transfor-
mation of a manifold M to M#(+CP 2) or M#(−CP 2),
depending on the choice of orientation.

The same construction is possible for nodes or ordi-
nary double points (a special type of singularity), and
also the ambiguity of the orientation is the same for the
blowup process of a node. Similarly, it has been used in
arbitrary even dimension in [Spanier 56] as a so-called
dilatation process.

In the particular case of the 4-dimensional Kummer
variety with 16 nodes, a result of [Hironaka 64] states
that the singularities of a 4-dimensional Kummer variety
K4 can be resolved into a smooth manifold, birationally
equivalent to K4 . It is also well known that the minimal
resolution of the 4-dimensional Kummer variety is a K3
surface. This raises the question whether it is possible to
carry out the Hopf σ-process in the purely combinatorial
category. In this case, one would have to cut out a certain
neighborhood A of each of the singularities and to glue
in an appropriate simplicial complex B.

The spaces Ai that have to be cut out are the fol-
lowing: The Kummer variety K4 is the quotient of a 4-
dimensional torus T

4 = R
4/Z4 by the central involution

σ : x �→ −x with precisely 16 fixed points xi , 1 ≤ i ≤ 16.
Let Xi be a suitable neighborhood of xi . Then σ acts
on X = T

4 \⋃Xi without fixed points. The involution σ

acts as the antipodal map on each connected component
of ∂X.

Therefore, the quotient of ∂Xi is a projective space
RP 3 of dimension 3 for each 1 ≤ i ≤ 16, and the quo-
tient of Xi itself is a cone over it, which we denote by
Ai . Thus the quotient X̃ = X/σ is a manifold having 16
disjoint copies of RP 3 as its boundary, and the quotient
K4 = T

4/σ contains the disjoint subsets A1 , . . . , A16 as
neighborhoods of the 16 singularities.

The spaces Bi that have to be glued in are the fol-
lowing: The Hopf map h : S3 → CP 1 induces a map
h̃ : RP 3 → CP 1 , since the Hopf map identifies antipodal
pairs of points. We consider the cylinder C = RP 3 × [0, 1]
with the identification along the bottom of the cylinder
by an equivalence relation ∼ defined by (x, 0) ∼ (h̃(x), 0).
The quotient C̃ = C/∼ is a manifold with boundary RP 3 .
If we identify the boundary of X̃ with the union of the
boundaries of 16 copies B1 , . . . , B16 of C̃, we get a closed
manifold S. Alternatively, each Bi can be seen as a copy
of (CP 2 \B4)/σ , where the involution σ̃ : CP 2 → CP 2 is
defined by

σ̃[z0 , z1 , z2 ] = [−z0 , z1 , z2 ]

with a fixed-point set consisting of the point [1, 0, 0] at
the center of the ball B4 and the polar projective line
z0 = 0.

It is proved in [Spanier 56] that S is in fact a K3 sur-
face. Our main result is a simplicial realization of this
construction. In principle, one can expect that such a
combinatorial construction is possible, but there are a
number of technical difficulties to overcome. One of the
problems is to make the procedure efficient and to keep
the number of vertices sufficiently small at each interme-
diate step.

4. FROM K 4 TO K 3: COMBINATORIAL
RESOLUTION OF THE 16 SINGULARITIES

Our goal is to construct a simplicial version of theK3 sur-
face out of (K4)16 by a combinatorial version of Spanier’s
dilatation process. More precisely, we find a way to cut
out a certain simplicial version of Ai and to glue in a
simplicial version of Bi . We prefer a description of Bi

as the mapping cylinder of the Hopf map h̃, defined on
RP 3 = ∂B4/σ̃ . In the combinatorial setting this is possi-
ble if the corresponding boundaries are combinatorially
isomorphic, i.e., if they are equal up to a relabeling of
the vertices. However, in general, the boundaries are PL-
homeomorphic but not combinatorially isomorphic. This
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FIGURE 1. 3-dimensional bistellar moves.

is the main difficulty here. Therefore, we need an effi-
cient procedure to change the combinatorial type while
preserving the PL-homeomorphism type of the manifold.
One possibility of such a procedure is the well-established
concept of bistellar moves. Therefore, we start with a
short review of bistellar moves; see [Pachner 87].

Definition 4.1. (Pachner’s bistellar moves.) Let M be a
d-dimensional simplicial complex, and let A be a (d− i)-
face of M , where 0 ≤ i ≤ d. If lkM (A) is the boundary
complex ∂B of an i-simplex B that is not a face of M ,
the operation ΦA on M defined by

ΦA (M) := (M \ (A ∗ ∂B)) ∪ (∂A ∗B)

is called a bistellar i-move or bistellar i-flip. Similarly,
we have the reverse bistellar i-flip Φ−1

A , which can also
be interpreted as a (d− i)-flip.

For d = 3 all flips and reverse flips are shown in Figure
1. Two simplicial complexes K and L are called combina-
torially isomorphic, or just isomorphic, if they are equal
up to a relabeling of the vertices. Two simplicial com-
plexes K and L are called bistellarly equivalent if there
exists a sequence of bistellar flips from K to a complexK ′

such that K ′ is isomorphic to L. This concept of bistellar
flips has been a useful tool in several ways:

1. By a theorem of [Pachner 87], two combinatorial
manifolds are PL-homeomorphic if and only if the
triangulations are bistellarly equivalent.

2. From a practical point of view bistellar moves
allow a reduction in the number of vertices of
a given triangulation without changing its PL-
homeomorphism type. Many examples have been
investigated, and many small triangulations of 3-
and 4-manifolds have been found using this tech-
nique; see [Lutz 99] or [Lutz et al. 08].

3. It is possible to decide whether two given complexes
are PL-homeomorphic by finding a connecting se-
quence of bistellar flips. This has been successful in

many cases even if it cannot be excluded that the
algorithm does not terminate.

4. In particular, it is possible to decide whether
a given simplicial complex is a combinatorial
manifold: One just has to examine the PL-
homeomorphism types of all links.

5. These algorithms are implemented in a GAP pro-
gram; see [Lutz 08].

4.1. A Triangulated Mapping Cylinder Of The Hopf
Map h̃ : RP 3 → CP 1 with the Minimum Number
of Vertices

From the topology of the complex projective plane it is
fairly clear that one can construct a triangulation of CP 2

from a triangulated version of the Hopf map h : S3 → S2 .
Conversely, every triangulation of CP 2 contains implic-
itly a triangulation of the Hopf map (possibly with col-
lapsing of certain simplices) by considering a neighbor-
hood of a triangulated CP 1 inside the triangulation.

Theorem 4.2. [Madahar and Sarkaria 00] There is a sim-
plicial version of the Hopf map h : S3 → S2 with the min-
imum number 12 of vertices for S3 that are mapped in
triplets onto the 4-vertex S2 . From this simplicial Hopf
map one can reconstruct the unique 9-vertex triangula-
tion of CP 2 , which was known before; see [Kühnel 95].

Roughly, the procedure for the construction of a tri-
angulated CP 2 is the following:

1. Find a simplicial subdivision of the mapping cylin-
der of the Hopf map that is a triangulated CP 2

minus an open 4-ball.

2. Close it up on top by a suitable simplicial 4-ball.

3. Finally, reduce the number of vertices by bistellar
flips as far as possible.

For our purpose here, we can follow an analogous
procedure:
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1. Find a simplicial version of the Hopf map h̃ :
RP 3 → S2 .

2. Find a simplicial subdivision of the mapping cylin-
der C̃, which is nothing but a triangulated complex
projective plane with one hole modulo the involu-
tion σ̃. There is one boundary component, which is
homeomorphic to RP 3 .

3. Finally, reduce the number of vertices by bistellar
flips as far as possible.It is well known that any
combinatorial triangulation of RP 3 has at least 11
vertices [Walkup 70]. Therefore, 11 is the minimum
also for the space we are looking for.

Theorem 4.3. There is an 11-vertex triangulation of the
mapping cylinder of the Hopf map h̃ : RP 3 → S2 such
that all vertices and edges are contained in the boundary.
This is the minimum possible number of vertices, since it
is the minimum already for the boundary.

Proof. On the boundary of CP 2 \B4 , the involution σ

coincides with σ̃ and leads to a twofold quotient map
S3 → RP 3 . From this it is clear that a triangulated ver-
sion of the Hopf map from RP 3 onto S2 requires a simpli-
cial Hopf map h : S3 → S2 that is centrally symmetric on
S3 , i.e., that is invariant under σ. Therefore we need to
construct a centrally symmetric triangulation of S3 first.
This should allow a simplicial fibration by Hopf fibers.

For the construction, we start with two regular
hexagons (2-polytopes) P1 , P2 in the plane and take the
product polytope [Ziegler 95, p. 10] P := P1 × P2 . The
vertices will be denoted by aij , where i, j range from 1
to 6. The facets of P are 6 + 6 hexagonal prisms, one of
them having vertices a11 , . . . , a16 on top and a21 , . . . , a26

on the bottom. The subcomplex ∂P1 × ∂P2 ⊂ ∂P is the
standard (6 × 6)-grid torus as a subcomplex decompos-
ing ∂P into two solid tori, one on each side of the torus.
One of the squares has vertices a11 , a12 , a21 , a22 , see
Figure 2, where the labeling is simply ij instead of aij .
For a simplicial version we need to subdivide the prisms.
In a first step, we subdivide each square in the torus by
the main diagonal, as indicated in Figure 2. Next we in-
troduce one extra vertex bi at the center of the six prisms
on one side and ci at the center of the six prisms on the
other side, i = 1, . . . , 6. That is to say, b1 , . . . , b6 repre-
sent the core of one solid torus, and c1 , . . . , c6 the core of
the other.

Furthermore, we introduce the pyramids from each bi
and ci to the 12 triangles of each corresponding prism.
Finally, the remaining holes are closed by copies of the

FIGURE 2. Combinatorial (6 × 6)-grid torus with Hopf
fibres.

join of the edge between two adjacent center vertices and
the edge of a hexagon. Typical tetrahedra of this type are
〈b1b2a11a12〉 and 〈c1c2a11a21〉. This procedure is carried
out for each of the two solid tori; see Figure 3.

Thus, we get a centrally symmetric triangulation S3
cs

of the 3-sphere with 48 vertices, with 2 · (6 · (12 + 6)) =
216 tetrahedra and with an automorphism group G of
order 144.

On this triangulation of S3 we define the simplicial
Hopf map hcs : S3

cs → S2 by the following identifications:

{aij | j − i ≡ 1 (6)} �→ a1 ,

{aij | j − i ≡ 2 (6)} �→ a2 ,

{aij | j − i ≡ 3 (6)} �→ a3 ,

{aij | j − i ≡ 4 (6)} �→ a4 ,

{aij | j − i ≡ 5 (6)} �→ a5 ,

{aij | j − i = 0} �→ a6 ,

{bi} �→ b,

{ci} �→ c.

The image is a simplicial 2-sphere with eight vertices,
namely, a double pyramid from b and c over the hexagon
a1 , a2 , a3 , a4 , a5 , a6 . Note that the antipodal map

σ : aij �→ ai+3,j+3 , bi �→ bi+3 , ci �→ ci+3

(all indices taken modulo 6) is compatible with the sim-
plicial Hopf map. By construction, the quotient P =
S3

cs/σ is a 24-vertex triangulation of RP 3 . The automor-
phism group is a normal subgroup of G of index 2. It
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FIGURE 3. A solid torus as half of S3
cs with two Hopf

fibers.

follows that this triangulated RP 3 again allows a simpli-
cial version of the Hopf map h̃ : P → S2 .

The image of the torus in Figure 3 under h forms the
hexagon (a1 , a2 , a3 , a4 , a5 , a6), and each of the solid tori
on each side gets mapped to a cone over it. A suitable
simplicial decomposition C of the cylinder P × [0, 1] is
compatible with the projection map

h̃× {0} : P × {0} → S2 × {0},
(x, 0) �→ (h̃(x), 0),

on the bottom of C and leads to a triangulated mapping
cylinder C/∼. Its boundary is PL-homeomorphic to the
link of any vertex of (K4)16 .

For better handling of the blowup process, we com-
puted a reduced version of C ∼=P L C/∼ by bistellar flips.
In this reduced version, the boundary is isomorphic to
a vertex-minimal triangulation of RP 3 with the f -vector
(11, 51, 80, 40). Moreover, the boundary ∂C is bistellarly
equivalent to lk(K 4 )1 6 (v) for any vertex v, which will be
needed for the construction of a triangulated K3 surface.
On 11 vertices 1, 2, . . . , 11 this complex is the following:

C =
〈
(1, 3, 5, 6, 11), (2, 3, 5, 6, 11), (2, 4, 5, 6, 11),
(2, 3, 6, 9, 11), (3, 6, 7, 9, 11), (1, 3, 6, 7, 11),
(6, 7, 8, 10, 11), (1, 6, 7, 10, 11), (4, 6, 8, 9, 11),
(6, 7, 8, 9, 11), (2, 4, 6, 9, 11), (1, 2, 3, 5, 8),
(1, 2, 3, 5, 11), (1, 5, 7, 8, 9), (1, 2, 5, 7, 8),
(1, 4, 5, 9, 11), (4, 5, 7, 9, 11), (1, 4, 5, 7, 9),
(1, 2, 4, 5, 11), (1, 2, 4, 5, 7), (3, 4, 7, 8, 11),
(1, 3, 4, 7, 8), (1, 2, 3, 8, 11), (1, 3, 7, 8, 11),
(1, 2, 8, 10, 11), (1, 7, 8, 10, 11), (1, 2, 7, 8, 10),
(4, 7, 8, 9, 11), (1, 4, 7, 8, 9), (1, 2, 4, 9, 11)

〉
.

It has the f -vector (11, 51, 107, 95, 30), and its boundary
∂C contains the complete 1-skeleton of C. In particu-
lar, C is vertex minimal, since the boundary RP 3 re-
quires at least 11 vertices for any simplicial triangulation
[Walkup 70].

Remark 4.4. By starting with the product polytope of two
3k-gons containing a 3k × 3k-grid torus, one can similarly
obtain a simplicial version of the Hopf map from the lens
space L(k, 1) to S2 . Furthermore, the same procedure as
above can be carried out for the corresponding mapping
cylinder.

4.2. Simplicial Blowups

A PL version of the Hopf σ-process from Section 2 is
the following: We cut out the star of one of the singu-
lar vertices, which is nothing but a cone over a trian-
gulated RP 3 . This corresponds to the space Ai above.
The boundary of the resulting space is this triangulated
RP 3 and is therefore PL-homeomorphic to the boundary
of the triangulated mapping cylinder C from Section 3,
which corresponds to the space Bi . Then we cut out Ai

and glue in Bi by an appropriate PL homeomorphism,
as indicated in Section 2.

For a combinatorial version with concrete triangula-
tions, however, we face the problem that these two tri-
angulations are not isomorphic. This implies that before
cutting out and gluing in, we have to modify the trian-
gulations by bistellar flips until they coincide. This com-
putation is provided by the GAP program bistellar,
which is available from [Lutz 08].

Definition 4.5. (Resolution of singularities in the PL topol-
ogy.) Let v be a singular vertex of a PL 4-pseudomanifold
M with a compact neighborhood A of the type “cone over
an RP 3” and let φ : ∂A→ ∂C be a PL homeomorphism.
A PL resolution of the singularity v is given by the fol-
lowing construction:

M �→ M̃ := (M \A◦) ∪φ C.

We will refer to this operation as a PL blowup of v.

Definition 4.6. (Simplicial resolution of singularities.) Let
v be a vertex of a 4-pseudomanifold M whose link is iso-
morphic to the particular 11-vertex triangulation of RP 3

that is given by the boundary complex of the triangu-
lated C above. Let ψ : lk(v) → ∂C denote such an iso-
morphism. A simplicial resolution of the singularity v is
given by the following construction:

M �→ M̃ := (M \ star(v)◦) ∪ψ C.
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We will refer to this operation as a simplicial blowup, or
just a blowup of v.

Since in either case both parts are glued together along
their PL-homeomorphic boundaries, the resulting com-
plex is closed, and the construction of M̃ is well de-
fined. The pseudomanifold M̃ is closed, and the num-
ber of singular points in M̃ is the number of singular
points in M minus one. In particular, we can apply this
to M = (K4)16 and then repeat the procedure for the
resulting spaces until the last singularity disappears. We
can now prove the following main result:

Theorem 4.7. There is a 17-vertex triangulation of the K3
surface (K3)17 with the standard PL structure, which can
be constructed from (K4)16 by a sequence of bistellar flips
and in between by 16 simplicial blowups.

The proof of the theorem is constructive and will
be given in the form of an algorithm. From the con-
struction, it is clear that the resulting PL manifold is
PL-homeomorphic to the classical K3 surface, not only
homeomorphic.

Let K̃i , 0 ≤ i ≤ 16, be the 4-dimensional Kummer va-
riety after the ith blowup. Since we have to modify its
combinatorial type repeatedly, our notation will not dis-
tinguish here between two different complexes after bis-
tellar flips. Furthermore, let C be the bounded complex
from Section 4.1 and Qi the intersection form of K̃i .

We start with a singular vertex v ∈ K̃i . In general, its
link is not isomorphic to ∂C. Thus, we have to modify
K̃i \ star(v) in a suitable way to yield a complex that
allows a simplicial blowup with the space C. This is
accomplished by modifying ∂(K̃i \ star(v)) = lk(v) with
respect to the combinatorial structure of the complex.
Even though in general we cannot claim that this must
always be possible, in this particular case we were able
to find fairly short sequences of bistellar moves realizing
this modification at any of the 16 steps. The sequences
were found using the approach from [Lutz 08].

Once ∂(K̃i \ star(v)) is isomorphic to ∂C, we can per-
form the simplicial blowup and gain K̃i+1, as indicated
above. Note that in each step we can perform the blowup
in two significantly different ways, corresponding to the
choice of orientation of C. For the verification of the
choice of the right orientation we compute the intersec-
tion form Qi+1 and check that

| sign(Qi+1)| = | sign(Qi) + 1|
holds (note that Q(K4) = 0 and Q(K3) = ±16).

Due to the various modifications above, the resulting
complex K̃i+1 will be considerably bigger than K̃i . Thus
we use bistellar flips to reduce it before repeating the
same operation for the remaining singularities. At every
step, the signature of the intersection form and the sec-
ond Betti number will increase by one, and the number of
singularities will decrease by one. Also, the torsion part
of H2(K4) will gradually decline. This, however, depends
on the order of the blowing-up process of the singularities.
It follows that the resulting complex is a triangulation of
the K3 surface with the expected intersection form and
with the standard PL structure. The algorithm is written
in GAP. For the computation of the intersection form we
use polymake [Gawrilow and Joswig 00].

The smallest complex (with respect to the f -vector)
that we were able to obtain by bistellar moves is a 17-
vertex version of the K3-surface, which will be denoted
by (K3)17 . Its facets as well as some basic properties are
listed in Table 1.

Further data as well as all 16 steps of the dilatation
process are available from the web page of the first au-
thor, given at the end of this article. The source code
itself is available upon request.

So far, we have not been able to prove PL-equivalence
to (K3)16 . However, since the given complex has only
17 vertices, this is most likely to be true, and fur-
ther experiments will probably prove the following
conjecture.

Conjecture 4.8. (K3)17 is PL-homeomorphic to (K3)16 .

Remark 4.9. If Conjecture 4.8 is false, this would imply
that (K3)16 is exotic. In this case, to our knowledge,
(K3)16 would be the first explicit triangulation
with few vertices of a nonstandard combinatorial
4-manifold.

5. CRITICAL POINT THEORY AND SLICINGS

The Morse theory for smooth functions defined on
smooth manifolds is an important tool in topology. Sim-
ilarly, the PL structure of a d-dimensional combina-
torial (pseudo)manifold M can be examined using an
analogous concept of critical points of functions, de-
fined on a triangulation of a manifold M ; compare
[Kühnel 90, Kühnel 95]. In this section we describe a few
computer experiments on triangulations of the K3 sur-
face and the Kummer variety. As a result, we obtain a
picture of slices through these spaces by levels of perfect
Morse functions in a PL version.
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〈1 2 3 8 13〉, 〈1 2 3 8 14〉, 〈1 2 3 12 13〉, 〈1 2 3 12 15〉, 〈1 2 3 14 15〉, 〈1 2 4 7 13〉,
〈1 2 4 7 15〉, 〈1 2 4 13 15〉, 〈1 2 5 6 9〉, 〈1 2 5 6 14〉, 〈1 2 5 9 17〉, 〈1 2 5 14 15〉,
〈1 2 5 15 17〉, 〈1 2 6 8 14〉, 〈1 2 6 8 15〉, 〈1 2 6 9 16〉, 〈1 2 6 15 17〉, 〈1 2 6 16 17〉,
〈1 2 7 8 11〉, 〈1 2 7 8 15〉, 〈1 2 7 11 13〉, 〈1 2 8 10 11〉, 〈1 2 8 10 13〉, 〈1 2 9 16 17〉,
〈1 2 10 11 13〉, 〈1 2 12 13 15〉, 〈1 3 4 5 8〉, 〈1 3 4 5 17〉, 〈1 3 4 6 10〉, 〈1 3 4 6 12〉,
〈1 3 4 8 9〉, 〈1 3 4 9 10〉, 〈1 3 4 12 17〉, 〈1 3 5 7 11〉, 〈1 3 5 7 14〉, 〈1 3 5 8 16〉,
〈1 3 5 11 16〉, 〈1 3 5 14 15〉, 〈1 3 5 15 17〉, 〈1 3 6 10 12〉, 〈1 3 7 8 11〉, 〈1 3 7 8 14〉,
〈1 3 8 9 12〉, 〈1 3 8 11 16〉, 〈1 3 8 12 13〉, 〈1 3 9 10 12〉, 〈1 3 12 15 17〉, 〈1 4 5 8 16〉,
〈1 4 5 11 16〉, 〈1 4 5 11 17〉, 〈1 4 6 7 12〉, 〈1 4 6 7 15〉, 〈1 4 6 10 15〉, 〈1 4 7 12 13〉,
〈1 4 8 9 16〉, 〈1 4 9 10 14〉, 〈1 4 9 14 16〉, 〈1 4 10 14 16〉, 〈1 4 10 15 16〉, 〈1 4 11 16 17〉,
〈1 4 12 13 17〉, 〈1 4 13 15 16〉, 〈1 4 13 16 17〉, 〈1 5 6 9 13〉, 〈1 5 6 13 14〉, 〈1 5 7 10 12〉,
〈1 5 7 10 14〉, 〈1 5 7 11 12〉, 〈1 5 9 11 13〉, 〈1 5 9 11 17〉, 〈1 5 10 12 14〉, 〈1 5 11 12 13〉,
〈1 5 12 13 14〉, 〈1 6 7 8 14〉, 〈1 6 7 8 15〉, 〈1 6 7 10 12〉, 〈1 6 7 10 16〉, 〈1 6 7 14 16〉,
〈1 6 9 11 13〉, 〈1 6 9 11 14〉, 〈1 6 9 14 16〉, 〈1 6 10 15 16〉, 〈1 6 11 13 14〉, 〈1 6 15 16 17〉,
〈1 7 10 14 16〉, 〈1 7 11 12 13〉, 〈1 8 9 10 11〉, 〈1 8 9 10 12〉, 〈1 8 9 11 16〉, 〈1 8 10 12 13〉,
〈1 9 10 11 14〉, 〈1 9 11 16 17〉, 〈1 10 11 13 14〉, 〈1 10 12 13 14〉, 〈1 12 13 15 16〉, 〈1 12 13 16 17〉,
〈1 12 15 16 17〉, 〈2 3 4 6 12〉, 〈2 3 4 6 16〉, 〈2 3 4 7 14〉, 〈2 3 4 7 16〉, 〈2 3 4 12 14〉,
〈2 3 5 6 12〉, 〈2 3 5 6 16〉, 〈2 3 5 12 16〉, 〈2 3 7 14 16〉, 〈2 3 8 13 14〉, 〈2 3 9 10 13〉,
〈2 3 9 10 14〉, 〈2 3 9 11 14〉, 〈2 3 9 11 16〉, 〈2 3 9 12 13〉, 〈2 3 9 12 16〉, 〈2 3 10 13 14〉,
〈2 3 11 14 16〉, 〈2 3 12 14 15〉, 〈2 4 5 7 10〉, 〈2 4 5 7 11〉, 〈2 4 5 8 10〉, 〈2 4 5 8 12〉,
〈2 4 5 11 12〉, 〈2 4 6 11 12〉, 〈2 4 6 11 16〉, 〈2 4 7 9 14〉, 〈2 4 7 9 15〉, 〈2 4 7 10 13〉,
〈2 4 7 11 16〉, 〈2 4 8 10 12〉, 〈2 4 9 10 13〉, 〈2 4 9 10 14〉, 〈2 4 9 13 15〉, 〈2 4 10 12 14〉,
〈2 5 6 7 10〉, 〈2 5 6 7 12〉, 〈2 5 6 8 10〉, 〈2 5 6 8 14〉, 〈2 5 6 9 16〉, 〈2 5 7 11 12〉,
〈2 5 8 12 14〉, 〈2 5 9 15 16〉, 〈2 5 9 15 17〉, 〈2 5 12 14 15〉, 〈2 5 12 15 16〉, 〈2 6 7 10 13〉,
〈2 6 7 11 12〉, 〈2 6 7 11 13〉, 〈2 6 8 10 15〉, 〈2 6 10 11 13〉, 〈2 6 10 11 17〉, 〈2 6 10 15 17〉,
〈2 6 11 16 17〉, 〈2 7 8 11 15〉, 〈2 7 9 11 14〉, 〈2 7 9 11 15〉, 〈2 7 11 14 16〉, 〈2 8 10 11 15〉,
〈2 8 10 12 14〉, 〈2 8 10 13 14〉, 〈2 9 11 15 17〉, 〈2 9 11 16 17〉, 〈2 9 12 13 16〉, 〈2 9 13 15 16〉,
〈2 10 11 15 17〉, 〈2 12 13 15 16〉, 〈3 4 5 8 17〉, 〈3 4 6 8 9〉, 〈3 4 6 8 11〉, 〈3 4 6 9 15〉,
〈3 4 6 10 15〉, 〈3 4 6 11 13〉, 〈3 4 6 13 16〉, 〈3 4 7 12 14〉, 〈3 4 7 12 17〉, 〈3 4 7 13 16〉,
〈3 4 7 13 17〉, 〈3 4 8 11 17〉, 〈3 4 9 10 15〉, 〈3 4 11 13 17〉, 〈3 5 6 10 12〉, 〈3 5 6 10 15〉,
〈3 5 6 13 15〉, 〈3 5 6 13 16〉, 〈3 5 7 11 15〉, 〈3 5 7 14 15〉, 〈3 5 8 16 17〉, 〈3 5 9 10 15〉,
〈3 5 9 10 17〉, 〈3 5 9 15 17〉, 〈3 5 10 12 16〉, 〈3 5 10 16 17〉, 〈3 5 11 15 16〉, 〈3 5 13 15 16〉,
〈3 6 7 8 9〉, 〈3 6 7 8 15〉, 〈3 6 7 9 15〉, 〈3 6 8 11 15〉, 〈3 6 11 13 15〉, 〈3 7 8 9 13〉,
〈3 7 8 11 15〉, 〈3 7 8 13 14〉, 〈3 7 9 13 17〉, 〈3 7 9 15 17〉, 〈3 7 12 14 15〉, 〈3 7 12 15 17〉,
〈3 7 13 14 16〉, 〈3 8 9 12 13〉, 〈3 8 10 11 16〉, 〈3 8 10 11 17〉, 〈3 8 10 16 17〉, 〈3 9 10 11 14〉,
〈3 9 10 11 16〉, 〈3 9 10 12 16〉, 〈3 9 10 13 17〉, 〈3 10 11 13 14〉, 〈3 10 11 13 17〉, 〈3 11 13 14 16〉,
〈3 11 13 15 16〉, 〈4 5 7 8 13〉, 〈4 5 7 8 16〉, 〈4 5 7 10 13〉, 〈4 5 7 11 16〉, 〈4 5 8 10 15〉,
〈4 5 8 11 12〉, 〈4 5 8 11 17〉, 〈4 5 8 13 15〉, 〈4 5 9 10 13〉, 〈4 5 9 10 15〉, 〈4 5 9 13 15〉,
〈4 6 7 9 12〉, 〈4 6 7 9 15〉, 〈4 6 8 9 14〉, 〈4 6 8 11 14〉, 〈4 6 9 12 14〉, 〈4 6 11 12 14〉,
〈4 6 11 13 17〉, 〈4 6 11 16 17〉, 〈4 6 13 16 17〉, 〈4 7 8 13 16〉, 〈4 7 9 12 14〉, 〈4 7 12 13 17〉,

(Continued on next page)

TABLE 1. 17-vertex triangulation of the K3 surface (K3)17 with the standard PL structure. Its f -vector is
f (K3) = (17, 135, 610, 780, 312). Note that the complex is not 2-neighborly.
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〈4 8 9 14 16〉, 〈4 8 10 11 12〉, 〈4 8 10 11 15〉, 〈4 8 11 14 15〉, 〈4 8 13 15 16〉, 〈4 8 14 15 16〉,
〈4 10 11 12 15〉, 〈4 10 12 14 16〉, 〈4 10 12 15 16〉, 〈4 11 12 14 15〉, 〈4 12 14 15 16〉, 〈5 6 7 10 12〉,
〈5 6 8 10 15〉, 〈5 6 8 13 14〉, 〈5 6 8 13 15〉, 〈5 6 9 13 16〉, 〈5 7 8 9 13〉, 〈5 7 8 9 17〉,
〈5 7 8 16 17〉, 〈5 7 9 10 13〉, 〈5 7 9 10 17〉, 〈5 7 10 14 16〉, 〈5 7 10 16 17〉, 〈5 7 11 15 16〉,
〈5 7 14 15 16〉, 〈5 8 9 12 13〉, 〈5 8 9 12 17〉, 〈5 8 11 12 17〉, 〈5 8 12 13 14〉, 〈5 9 11 12 13〉,
〈5 9 11 12 17〉, 〈5 9 13 15 16〉, 〈5 10 12 14 16〉, 〈5 12 14 15 16〉, 〈6 7 8 9 16〉, 〈6 7 8 14 16〉,
〈6 7 9 12 16〉, 〈6 7 10 13 17〉, 〈6 7 10 16 17〉, 〈6 7 11 12 13〉, 〈6 7 12 13 17〉, 〈6 7 12 16 17〉,
〈6 8 9 14 16〉, 〈6 8 11 13 14〉, 〈6 8 11 13 15〉, 〈6 9 11 12 13〉, 〈6 9 11 12 14〉, 〈6 9 12 13 16〉,
〈6 10 11 13 17〉, 〈6 10 15 16 17〉, 〈6 12 13 16 17〉, 〈7 8 9 12 16〉, 〈7 8 9 12 17〉, 〈7 8 12 16 17〉,
〈7 8 13 14 16〉, 〈7 9 10 13 17〉, 〈7 9 11 14 15〉, 〈7 9 12 14 15〉, 〈7 9 12 15 17〉, 〈7 11 14 15 16〉,
〈8 9 10 11 16〉, 〈8 9 10 12 16〉, 〈8 10 11 12 17〉, 〈8 10 12 13 14〉, 〈8 10 12 16 17〉, 〈8 11 13 14 15〉,
〈8 13 14 15 16〉, 〈9 11 12 14 15〉, 〈9 11 12 15 17〉, 〈10 11 12 15 17〉, 〈10 12 15 16 17〉, 〈11 13 14 15 16〉.

TABLE 1. 17-vertex triangulation of the K3 surface (K3)17 with the standard PL structure. Its f -vector is
f (K3) = (17, 135, 610, 780, 312). Note that the complex is not 2-neighborly (Continued).

Definition 5.1. Let Md be a combinatorial manifold. A
function f : M → R is called regular simplexwise linear
(rsl) if f(v) �= f(w) for any two vertices w �= v and if f
is linear when restricted to an arbitrary simplex of the
triangulation.

A point x ∈M is said to be critical for an rsl function
f : M → R if

H�(Mx,Mx \ {x}, F ) �= 0,

where Mx := {y ∈M |f(y) ≤ f(x)} and F is a field.
It follows that no point of M can be critical except

possibly for the vertices. If we fix an rsl function f and
a vertex v of M , we can define the multiplicity vector
m(v, F ) as the following (d+ 1)-tuple of integers:

m(v, F ) :=
(
dimH0(Mv,Mv \ {v}, F ), . . . ,
dimHd(Mv,Mv \ {v}, F )

)
.

The vertex v is said to be critical of index i and multi-
plicity m if dimHi(Mv,Mv \ {v}, F ) = m > 0;

d∑
i=0

dimHi(Mv,Mv \ {v}, F )

is called the total multiplicity of v;

µi(f, F ) :=
∑
v∈V

dimHi(Mv,Mv \ {v}, F )

is referred to as the number of critical points of index i
in M (where V denotes the set of vertices of M); and

µ(f, F ) :=
d∑
i=0

µi(f, F )

is said to be the number of critical points of M . The
multiplicity vector together with the number of critical
points has to be considered for appropriately encoding
the relevant information about the PL structure of M ,
since in contrast to the smooth case, higher multiplicities
cannot be avoided in general.

The classical Morse relation µi(f, F ) ≥ bi(M,F ) is
still true for any rsl function f on M , where bi(M,F ) =
dimHi(M ;F ) denotes its ith Betti number. Equality
refers to the case of a tight or perfect function. If any
rsl function has this property, we call the triangulation
of M a tight triangulation; cf. [Kühnel 95]. In particu-
lar, µi does not depend on f in the tight case. For some
examples of multiplicities on (K3)16 , see Table 2.

Definition 5.2. Let M be an orientable combinatorial d-
(pseudo)manifold and let f : M → R be an rsl function.
Then we call the preimage f−1(x) a slicing of M when-
ever x �= f(v) for any vertex v ∈M .

By construction, a slicing is a PL (d− 1)-manifold,
and we have f−1(x) ∼= f−1(y) whenever f−1 [f(x), f(y)]
contains no vertex, i.e., if no vertex is mapped into the
interval [f(x), f(y)]. Note that any partition of the set
of vertices V = V1

.∪V2 of M already determines a slic-
ing: Just define an rsl function g with g(v) < g(w) for
all v ∈ V1 and w ∈ V2 and look at a suitable preimage.
For an example of a slicing of a 3-manifold and a 3-
pseudomanifold see [Kühnel 95, Figures 9, 11].
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f{1,...,5,7,6,8,9,11,10,12,...,16} f{2,...,7,1,8,9,16,10,...,15} f{1,...,5,7,6,8,9,11,10,12,...,16}

fi(v) v m(v,F2) v m(v,F2) v m(v,F2)

0 1 (1, 0, 0, 0, 0) 2 (1, 0, 0, 0, 0) 1 (1, 0, 0, 0, 0)

1
15

2 (0, 0, 0, 0, 0) 3 (0, 0, 0, 0, 0) 2 (0, 0, 0, 0, 0)

2
15

3 (0, 0, 0, 0, 0) 4 (0, 0, 0, 0, 0) 3 (0, 0, 0, 0, 0)

3
15

4 (0, 0, 1, 0, 0) 5 (0, 0, 0, 0, 0) 4 (0, 0, 1, 0, 0)

4
15

5 (0, 0, 2, 0, 0) 6 (0, 0, 1, 0, 0) 5 (0, 0, 1, 0, 0)

5
15

7 (0, 0, 3, 0, 0) 7 (0, 0, 3, 0, 0) 7 (0, 0, 2, 0, 0)

6
15

6 (0, 0, 2, 0, 0) 1 (0, 0, 4, 0, 0) 6 (0, 0, 4, 0, 0)

7
15

8 (0, 0, 3, 0, 0) 8 (0, 0, 3, 0, 0) 8 (0, 0, 3, 0, 0)

8
15

9 (0, 0, 3, 0, 0) 9 (0, 0, 3, 0, 0) 9 (0, 0, 3, 0, 0)

9
15

11 (0, 0, 2, 0, 0) 16 (0, 0, 4, 0, 0) 11 (0, 0, 4, 0, 0)

10
15

10 (0, 0, 3, 0, 0) 10 (0, 0, 3, 0, 0) 10 (0, 0, 2, 0, 0)

11
15

12 (0, 0, 2, 0, 0) 11 (0, 0, 1, 0, 0) 12 (0, 0, 1, 0, 0)

12
15

13 (0, 0, 1, 0, 0) 12 (0, 0, 0, 0, 0) 13 (0, 0, 1, 0, 0)

13
15

14 (0, 0, 0, 0, 0) 13 (0, 0, 0, 0, 0) 14 (0, 0, 0, 0, 0)

14
15

15 (0, 0, 0, 0, 0) 14 (0, 0, 0, 0, 0) 15 (0, 0, 0, 0, 0)

1 16 (0, 0, 0, 0, 1) 15 (0, 0, 0, 0, 1) 16 (0, 0, 0, 0, 1)

TABLE 2. Multiplicity vectors of the critical points of f{1 , . . . ,5 ,7 ,6 ,8 ,9 ,11 ,10 ,12 , . . . ,16},
f{2 , . . . ,7 ,1 ,8 ,9 ,16 ,10 , . . . ,15}, f{1 , . . . ,5 ,7 ,6 ,8 ,9 ,11 ,10 ,12 , . . . ,16} : (K3)16 → [0, 1]

Since every combinatorial (pseudo)manifold has a fi-
nite number of vertices, there exists only a finite number
of slicings. Hence, if f is chosen carefully, the induced
slicings admit a useful visualization of M .

5.1. Combinatorial Morse analysis on (K 3)16

The 16-vertex triangulation of the K3 surface is a very
special object in combinatorial topology:

1. It satisfies equality in the generalized Heawood in-
equality (2–2) for the number n of vertices of a
4-manifold M with Euler characteristic χ(M).

2. It is 3-neighborly, or superneighborly, meaning that
f2 =

(
n
3

)
. See [Spanier 09, Theorem 5.8] for a char-

acterization of all possible g-vectors of a trian-
gulated K3 surface, starting with the minimum
(g0 , g1 , g2) = (1, 10, 55).

3. It is the only known triangulation of a 4-
manifold admitting an automorphism group acting
2-transitively on the set of vertices (besides the triv-
ial case of the 6-vertex 4-sphere).

From the viewpoint of Morse theory, this has the follow-
ing consequence:
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Proposition 5.3. Any rsl function f defined on (K3)16 is a
perfect function in the sense that the total number of criti-
cal points is 24. More precisely, we have µ0(f) = µ4(f) =
1, µ1(f) = µ3(f) = 0, and µ2(f) = 22. This holds for any
choice of a field F .

Proof. This follows from the fact that the 16-vertex tri-
angulation of the K3 surface is a tight triangulation in
the sense of [Kühnel 95, Kühnel and Lutz 99]. The rea-
son is that the triangulation is 3-neighborly, which im-
plies that there are no critical points of index 1: Any sub-
set of vertices spans a connected and simply connected
subset. The 2-neighborliness implies that every rsl func-
tion has exactly one critical point of index 0. The rest fol-
lows from the duality µi(f) = µ4−i(f) and the Poincaré
relation µ0 − µ1 + µ2 − µ3 + µ4 = χ(K3) = 24.

Corollary 5.4. Any rsl function f defined on (K3)16 has a
critical point of index 2 with a multiplicity greater than 2.
More precisely, ten possible critical vertices have to build
up the second Betti number 22. This holds for any choice
of field F .

Moreover, any slicing of an rsl function on (K3)16 is
a connected 3-manifold.

Proof. The first part is obvious from the Morse inequal-
ity µ2(f) ≥ b2(M) = 22 and the fact that by the 3-
neighborliness, only the middle vertices (i.e., all but the
three on top and the three on bottom) can be critical
of index 2. For examples of multiplicity vectors see Ta-
ble 2. The second part follows from the fact that there is
no critical point of index 1. If there were a disconnected
level, it would have to be modified into a connected level
later, and this procedure requires a critical point of index
1 in between.

It may be interesting to see how the levels of such
a function change in passing through a critical level.
It does not seem to be known from differential topol-
ogy what the possible levels can be for smooth perfect
functions on the K3 surface. The standard embedding
(z0 , z1 , z2 , z3) �→ (zi z̄j )ij of a quartic surface in projec-
tive 3-space K3 → CP 3 → S14 → R

15 induces smooth
Morse functions by linear projections from 15-space to
R. However, in general, these won’t be perfect. It is
well known that there is no tight smooth embedding or
immersion of the K3 surface into any Euclidean space
[Thorbergsson 86]. Not too much seems to be known
about possible slicings of perfect smooth Morse functions
defined on the K3 surface. In the PL case, we have the

following feature: An rsl function

fΩ : (K3)16 → [0, 1]

on (K3)16 is essentially determined by a fixed order-
ing on the set of vertices Ω := {v1 , . . . , v16} determin-
ing the function fΩ by the condition 0 = fΩ(v1) < · · · <
fΩ(v16) = 1. Any slicing f−1

Ω (α) of a 4-manifold con-
sists only of tetrahedra and 3-dimensional prisms of type
∆2 × [0, 1] (where ∆2 denotes a triangle), induced by
proper sections with the 4-simplices of (K3)16 . In many
cases, the topological type of f−1

Ω (α) can be identified us-
ing standard techniques. Some of the slicings can be seen
in advance:

The 3-torus. Obviously, there is a 3-torus as a slicing of
the 4-torus. It can be arranged that this avoids all the 16
fixed points of the involution. Hence we have the same
slicing in the Kummer variety and, by the purely local
resolution procedure, also in the K3 surface.

Real projective 3-space. The link of any singular point in
K4 is a real projective 3-space. By resolving the singu-
larities, we change only a neighborhood of these points.
Thus, there are slicings in (K3)16 separating such a
neighborhood. These are homeomorphic to RP 3 .

The Poincaré homology sphere Σ3. There is a surgery
description of the K3 surface showing the Poincaré ho-
mology sphere as a possible slicing (see [Saveliev 99] for
details). Even though this does not tell about the number
of vertices that will be needed, it turns out that a certain
slicing of the 16-vertex triangulation is this manifold Σ3;
see below.

Proposition 5.5. As slicings of (K3)16 we obtain at least
the manifolds

S3 , RP 3 , L(3, 1), L(4, 1), L(5, 1), Σ3 ,

and a number of other space forms: the 3-torus, the cube
space, the octahedron space, the truncated cube space, and
the prism space P (3). Here Σ3 denotes the Poincaré ho-
mology sphere with a fundamental group of order 120.

Proof. The permutation

(1, 16)(2, 15)(3, 14)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9)

on the 16 vertices is an automorphism of (K3)16 , and we
have f−1

{1,...,16}(
1
2 ) ∼= T

3 . Hence, we use this slicing as a
starting point and analyze all possible slicings of (K3)16

around this 3-torus in the middle.
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Since (K3)16 is 3-neighborly, all slicings with three or
fewer vertices on one side are trivial (i.e., the slicing is
a 3-sphere). With four vertices on one side we have two
possible situations. Either the tetrahedron formed by the
four vertices is contained in the complex (in this case the
slicing is clearly trivial), or it is not. In the latter case,
we have a slicing behind an empty tetrahedron. This
type of slicing is a real projective 3-space. Therefore, a
simplicial decomposition of the set

|f−1
Ω ([0, α])|, 3

15
< α <

4
15
,

is PL-homeomorphic to the mapping cylinder C of the
Hopf map h̃ in Section 4. Hence, we can find topological
copies of C in (K3)16 (which is not surprising).

Neither the span of {1, . . . , 8} nor the span of
{9, . . . , 16} contains a 4-simplex of (K3)16 . Thus, five
vertices on one side cannot induce a trivial slicing with
a sphere but can do so with a lens space of type L(4, 1),
L(3, 1), or L(2, 1) = RP 3 . In the case of six or seven
vertices we have the cube space, the octahedron space,
or the Poincaré homology sphere. Eight vertices on
each side result in the 3-torus, the only nonspherical
3-manifold in this series.

For a complete list of the topological types of these
slicings see Table 3.

Besides the symmetrical slicings of Table 3 we found
a number of other 3-dimensional spherical space forms
such as the truncated cube space, the prism space P (3),
and the lens space L(5, 1), as well as some orientable flat
manifolds. Triangulations of such spaces were found in
[Lutz 99]. These can be used for comparison by bistellar
flips.

5.2. Combinatorial Morse Analysis on (K 4)16

In this section we will use the field F := F2 because the
Kummer variety has 2-torsion in the homology; see equa-
tion (2–1). Since (K4)16 is not a combinatorial manifold,
we cannot apply critical point theory as easily as for the
K3 surface. The reason is that now all vertex links are
distinct from combinatorial 3-spheres. This implies that
duality no longer holds. Moreover, it has the following
consequence, somehow against our intuition about Morse
theory: Slicings below a noncritical point do not neces-
sarily have to be homeomorphic to those above the same
noncritical point. Moreover, (K4)16 is not a tight triangu-
lation. A tight triangulation of a simply connected space
(manifold or not) must be 3-neighborly, but (K4)16 is
not, because of f2 = 400 <

(16
3

)
. In particular, not all rsl

functions are perfect functions.

α f−1
Ω (α) Slicing in between

1
30

S3 {1} and {2, . . . , 16}
1
10

S3 {1, 2} and {3, . . . , 16}
1
6

S3 {1, 2, 3} and {4, . . . , 16}
7
30

S3 {2, 3, 4, 5} and {1, 6, . . . , 16}

RP 3 {1, 2, 3, 4} and {5, . . . , 16}
3
10

L(4, 1) {1, . . . , 5} and {6, . . . , 16}

L(3, 1) {2, . . . , 6} and {1, 7, . . . , 16}

RP 3 {1, 2, 3, 5, 6} and {4, 7, . . . , 16}
11
30

C3 {2, . . . , 7} and {1, 8, . . . , 16}

O3 {1, . . . , 5, 7} and {6, 8, . . . , 16}
13
30

Σ3 {1, . . . , 7} and {8, . . . , 16}
1
2

T
3 {1, . . . , 8} and {9, . . . , 16}

TABLE 3. Topological types of slicings of (K3)16 . Here
Σ3 denotes the Poincaré homology sphere, C3 the
cube space and O3 the octahedron space.

From the F2-Betti numbers b0 = 1, b1 = 0, b2 = 11,
b3 = 5, b4 = 1 of the Kummer variety, we expect that any
rsl function has 18 or more critical points, counted with
multiplicity. The question is whether there is a perfect
rsl function on this triangulation that in addition fits the
symmetry of the complex. This would be an excellent
candidate for visualizing the space (K4)16 by various 3-
dimensional slicings.

Proposition 5.6. As slicings associated with perfect func-
tions on (K4)16 we obtain at least the manifolds

RP 3 , RP 3#RP 3 , RP 3#RP 3#RP 3 ,

S2 × S1#RP 3#RP 3 ,

and the 3-torus.

Proof. There is a perfect rsl function f{1,...,16} given by

f{1,...,16} : (K4)16 → [0, 1] ; i �→ i− 1
15

.
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level of f{1,...,16} type slicing in between
1
30

RP 3 {1} and {2, . . . , 16}
1
10

RP 3#RP 3 {1, 2} and {3, . . . , 16}
1
6

RP 3#RP 3#RP 3 {1, . . . , 3} and {4, . . . , 16}
7
30

(S2 × S1)#2(RP 3) {1, . . . , 4} and {5, . . . , 16}
1
2

T
3 {1, . . . , 8} and {9, . . . , 16}

TABLE 4. Slicings of (K4 )16 by the perfect and symmetric rsl function f{1 , . . . ,16}

As we already know, the first and the last slicings repre-
sent the link of the vertex 1 and 16 and are therefore com-
binatorial real projective 3-spaces. Furthermore, the mid-
dle slicing f−1

{1,...,16}(
1
2 ) is homeomorphic to the 3-torus,

which is more or less immediate from the construction of
(K4)16 as the 4-torus modulo the central involution. The
other slicings are connected sums of RP 3 and S2 × S1 .
They are listed in Table 4. The multiplicity vectors are
shown in Table 5.

An example of an rsl function that is not a perfect
function is the function

f{1,4,6,2,3,5,7,...,16} : (K4)16 → [0, 1] .

This admits an empty triangle on one side, leading to
a critical point of index 1. In fact, f{1,4,6,2,3,5,7,...,16} has
precisely 20 critical points, counted with multiplicity; see
Table 5.

6. FURTHER RESULTS

In each of the 16 steps of the dilatation process for the
Kummer variety we have the choice between two orienta-
tions. Consequently, for the resulting nonsingular mani-
fold at the end there are a number of possible topological
types. One can describe these by the intersection form.

Proposition 6.1. One can construct some combinatorial 4-
manifolds realizing any of the intersection forms of rank
22 and signature 2n, n ∈ {0, . . . , 8}, from the triangu-
lated 4-dimensional Kummer variety K4 by 16 simpli-
cial blowups, except for 19(CP 2)#3(−CP 2) and possibly
11(S2 × S2).

Proof. The case n = 8 was already treated in Section 4.
In this case, the orientation was uniquely determined at

f{1,...,16} f{1,4,6,2,3,5,7,...,16}

level v m(v,F2) v m(v,F2)

0 1 (1, 0, 0, 0, 0) 1 (1, 0, 0, 0, 0)

1
15

2 (0, 0, 0, 0, 0) 4 (0, 0, 0, 0, 0)

2
15

3 (0, 0, 0, 0, 0) 6 (0, 1, 0, 0, 0)

3
15

4 (0, 0, 1, 0, 0) 2 (0, 0, 1, 0, 0)

4
15

5 (0, 0, 0, 0, 0) 3 (0, 0, 1, 0, 0)

5
15

6 (0, 0, 1, 0, 0) 5 (0, 0, 1, 0, 0)

6
15

7 (0, 0, 1, 0, 0) 7 (0, 0, 1, 0, 0)

7
15

8 (0, 0, 1, 1, 0) 8 (0, 0, 1, 1, 0)

8
15

9 (0, 0, 0, 0, 0) 9 (0, 0, 0, 0, 0)

9
15

10 (0, 0, 1, 0, 0) 10 (0, 0, 1, 0, 0)

10
15

11 (0, 0, 1, 0, 0) 11 (0, 0, 1, 0, 0)

11
15

12 (0, 0, 1, 1, 0) 12 (0, 0, 1, 1, 0)

12
15

13 (0, 0, 1, 0, 0) 13 (0, 0, 1, 0, 0)

13
15

14 (0, 0, 1, 1, 0) 14 (0, 0, 1, 1, 0)

14
15

15 (0, 0, 1, 1, 0) 15 (0, 0, 1, 1, 0)

1 16 (0, 0, 1, 1, 1) 16 (0, 0, 1, 1, 1)

TABLE 5. Multiplicity vectors of two rsl functions
f{1 , . . . ,16} and f{1 ,4 ,6 ,2 ,3 ,5 ,7 , . . . ,16} on (K4 )16 .
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every step by that in the first step. Therefore, the con-
struction is essentially unique (up to the orientation in
the first blowup) and leads to the K3 surface. In particu-
lar, the manifold 19(CP 2)#3(−CP 2) cannot be obtained
in this way.

The signature of an even intersection form of a simply
connected PL 4-manifold is divisible by 16 by Rohlin’s
theorem; cf. [Freedman and Kirby 76]. It follows that for
n ∈ {1, . . . , 7}, we have an odd intersection form. In these
cases the manifold is homeomorphic to

k(CP 2)#l(−CP 2),

where k − l = ±2n, n ∈ {1, . . . , 7}, and k + l = 22. In the
case n = 0, the construction is not unique: The pattern
of the orientations of all 16 blowups is not determined,
since there are eight positive and eight negative blowups
distributed arbitrarily in K4 . An odd intersection form
was obtained by one particular sequence. This leads to
the manifold 11(CP 2)#11(−CP 2).

The question whether the manifold 11(S2 × S2) can
also be obtained by this construction remains open at
this point. It must also be left open whether any of
the other manifolds with a 22-dimensional second ho-
mology admits a triangulation with only 16 vertices. By
[Kühnel 95, Theorem 4.9], such a 16-vertex triangulation
would have to be 3-neighborly and would, by the Dehn–
Sommerville equations, have the same f -vector as (K3)16

and thus would give a solution to Problem 1.1 in the in-
troduction. Further experiments in this direction could
possibly produce such an example. This is still work in
progress.

In the case of ten vertices and χ = 4, the combinato-
rial data correspond to three topological types of sim-
ply connected 4-manifolds, namely S2 × S2 , CP 2#CP 2 ,
and CP 2#(−CP 2). These would be candidates for a
solution to Problem 1.2. However, it was shown in
[Kühnel and Lassmann 83] that in fact, none of the topo-
logical manifolds above has a combinatorial triangulation
with only ten vertices.

More details of the combinatorial processes de-
scribed above are available from the first author’s
web page, http://www.igt.uni-stuttgart.de/LstDiffgeo/
Spreer/k3. Moreover, most of the algorithms used to
compute simplicial blowups and multiplicity vectors of
rsl functions are planned to be available soon within
the GAP package simpcomp [Effenberger and Spreer 11],
maintained by Effenberger and the first author.
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das kombinatorische Homöomorphieproblem für Trian-
gulierungen kompakter semilinearer Mannigfaltigkeiten.”
Abh. Math. Sem. Univ. Hamburg 57 (1987), 69–
86.

[Saveliev 99] N. Saveliev. Lectures on the Topology of 3-
Manifolds: An Introduction to the Casson Invariant.
Berlin: De Gruyter, 1999.

[Spanier 56] E. Spanier. “The Homology of Kum-
mer Manifolds.” Proc. AMS 7 (1956), 155–
160.

[Spanier 09] E. Spanier. “Face Enumeration: From Spheres
to Manifolds.” J. European Math. Soc. 11 (2009), 449–
485.

[Thorbergsson 86] G. Thorbergsson. “Tight Immersions of
Highly Connected Manifolds.” Comment. Math. Helv. 61
(1986), 102–121.

[Walkup 70] D. Walkup. “The Lower Bound Conjecture for
3- and 4-Manifolds.” Acta Math. 125 (1970), 75–107.

[Ziegler 95] G. M. Ziegler. Lectures on Polytopes, Graduate
Texts in Math. 152. New York: Springer, 1995.

Jonathan Spreer, Institut für Geometrie und Topologie, Universität Stuttgart, 70550 Stuttgart, Germany
(spreer@mathematik.uni-stuttgart.de)

Wolfgang Kühnel, Institut für Geometrie und Topologie, Universität Stuttgart, 70550 Stuttgart, Germany
(kuehnel@mathematik.uni-stuttgart.de)

Received July 30, 2009; accepted April 15, 2010.


