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We present some examples of numerical investigations of the
value distribution of Green’s function and of its Fourier coeffi-
cients on the modular group PSL(2, Z). Our results indicate
that both Green’s function Gs(z; w) and its Fourier coefficients
Fn(z; s) have a Gaussian value distribution in the semiclassical
limit when Re s = 1/2.

1. INTRODUCTION

In [Avelin 10] we developed algorithms for numerical
computations of Green’s function Gs(z;w) and of its
Fourier coefficients Fn(z; s) on Fuchsian groups with one
cusp. The algorithms can be used for a variety of nu-
merical investigations of the properties of Gs(z;w) and
Fn(z; s). Here we will give some results of a few examples
of such investigations.

First recall the basic setting from [Avelin 10]. Let
Γ be a cofinite Fuchsian group with one cusp. We con-
sider Green’s function on a hyperbolic surface of the type
Γ\H, where H is the Poincaré upper half-plane equipped
with the hyperbolic metric ds2 = y−2(dx2+dy2) and cor-
responding area dμ = dx dy/y2.

It is known that Green’s function (or the resolvent ker-
nel) on Γ\H is an eigenfunction of the Laplace–Beltrami
operator

Δ = y2

(
∂2

∂x2
+

∂2

∂y2

)

with eigenvalue s(1 − s); that Gs(z;w) satisfies
Gs(z;w) = Gs(w; z); that Gs(z;w) is automorphic in
both variables, i.e., Gs(Tz;Uw) = Gs(z;w) when T, U ∈
Γ; and that near z = w, we have

Gs(z;w) =
#Γw
2π

ln |z − w| +O(1),

where Γw is the stabilizer of w; cf. [Hejhal 83, pp. 33–
34 (Proposition 6.5)]. For s not a pole, the following
Fourier series representation holds for z = x + iy with
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y > ImTw for all T ∈ Γ (cf. [Hejhal 83, pp. 39–42, 250]
and [Avelin 10, Lemma 2.1 (a)]):

Gs(z;w) =
E(w; s)y1−s

1 − 2s
(1–1)

−
∑
n�=0

F−n(w; s)y1/2Ks− 1
2
(2π|n|y)e2πinx.

If E(w; s) = 0, then Gs(z;w) is a pseudo cusp form. On
PSL(2,Z), this is the case if, for example, w = ρ, where

ρ =
1
2

+ i

√
3

2
(1–2)

and s is a zero of the Riemann zeta function or a zero of
the Dirichlet L-function L

(
s,
(−3

·
))

; cf. [Hejhal 81, p. 99,
104–105].

The Fourier coefficients of (1–1) are given by (for n �=0
and Re s > 1), cf. [Hejhal 83, p. 41 (6.7)],

Fn(z; s) =
∑

W0∈Γ∞\Γ
(ImW0z)

1/2
Is− 1

2
(2π|n| ImW0z)

× e2πinReW0z, (1–3)

and F0(z; s) = E(z; s), i.e., the Eisenstein series. Each
Fn(z; s) has a Fourier series for z = x+ iy,

Fn(z; s) =

{
y1/2Is− 1

2
(2π|n|y)e2πinx, n �= 0,

ys, n = 0,
(1–4)

+ ϕn0 (s)
y1−s

2s− 1
+
∑
m �=0

ϕnm(s)y1/2Ks− 1
2
(2π|m|y)e2πimx,

valid for s ∈ C, s not a pole; cf. [Hejhal 83, pp. 56ff.,
254ff.].

The computations in the present paper are restricted
to the case Γ = PSL(2,Z). The usual fundamental do-
main of PSL(2,Z) (cf. [Hejhal 83, p. 7]) is

F = {z ∈ H : |z| ≥ 1, |Re z| ≤ 1/2}.

We also note that ρ, defined in (1–2), is the lower right
corner of F .

2. VALUE STATISTICS FOR GREEN’S FUNCTION

The Gs(z;w)-algorithm described in [Avelin 10] may be
used to explore questions in quantum chaology such as
those discussed in, for example, [Hejhal and Rackner 92,
Hejhal 99, Hejhal and Strömbergsson 01, Avelin 08].

The physical interpretation we have in mind is that
some eigenfunctions with singularities correspond to
wave functions on a surface with a point scatterer, i.e.,

a pointlike obstacle situated on the surface, scattering
the wave functions. See, for example, [Shigehara and
Cheon 97, Shigehara 94], where eigenfunctions in terms
of Green’s function are used, and [de Vries et al. 98] for a
discussion of some physical situations successfully mod-
eled by a point scatterer.

While quantum waves are inevitably influenced by a
point scatterer, a classical particle will not even notice
the obstacle unless it directly strikes it. For example, a
surface that is classically nonchaotic, such as a square,
may show chaotic behavior on the quantum level if we
introduce a point scatterer. See, for example, the com-
putations in [Šeba 90] on the Sinai billiard with a circular
obstacle of radius r = 0.

Regarding cusp forms and Eisenstein series, we ex-
pect that the value distribution on fixed compact subsets
approaches a Gaussian distribution in the semiclassical
limit, i.e., as the eigenvalue approaches infinity. The ex-
perimental results of [Hejhal and Rackner 92, Hejhal 99,
Hejhal and Strömbergsson 01, Avelin 08] indeed point in
this direction.

Here we show examples of experiments with Gs(z;w)
analogous to those done with E(z; s) in [Avelin 08]. Thus
values of Gs(z;w) were computed in a rectangular win-
dow

F = [0, 0.4]× [1.6, 2.0]

over a 1200 × 1200 grid for Im s ≤ 501 and a 2500 ×
2500 grid for Im s near 1000. We kept Re s = 1/2 and
used three values of Im s for which ζ(s) = 0, namely
236.524230, 500.309085, and 999.791572, and w-values
ρ, i, 0.48 + 0.88 i, 0.2 + 1.5 i, and 0.2 + 1.8 i, where only
the last one is in F . Note that

E(ρ; s) = 0 and E(i; s) = 0 if ζ(s) = 0; (2–1)

cf. [Hejhal 92, p. 51] and [Hejhal 81, p. 105].
For readers interested in accuracy and details of our

numerical experiments we have gathered some informa-
tion in Table 1. Here the notations M0, Q, r, and Y are
the same as in [Avelin 10, Section 4]. Computations were
performed with working precision P = 38 and precision
PB in calls to our I- andK-Bessel routines; cf. [Avelin 10,
Section 5]. All computations of values of Gs(z;w) used
the Fourier expansion (1–1) truncated after n = M0 − 2.
The error in the computed values is estimated using

ImGs(z;w) =
E(z; s)E(w; s)

4 Im s
, (2–2)

which follows from [Hejhal 83, p. 251, Theorem 3.5(d)],
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w R M0 Q r PB error

ρ 236.52 65 80 2 38 1e-35
ρ 500.31 116 139 2 72 1e-34
ρ 999.79 213 250 2 154 1e-17

i 236.52 79 80 1 38 1e-35
i 500.31 138 139 1 72 1e-33
i 999.79 249 250 1 154 1e-33

0.48 + 0.88 i 236.52 65 80 3 38 1e-35
0.48 + 0.88 i 500.31 117 139 3 72 1e-33
0.48 + 0.88 i 999.79 214 250 3 154 1e-31

0.2 + 1.5 i 236.52 71 80 3 38 1e-29
0.2 + 1.5 i 500.31 125 139 3 72 1e-22
0.2 + 1.5 i 999.79 229 250 3 154 1e-20

0.2 + 1.8 i 236.52 70 80 3 38 1e-28
0.2 + 1.8 i 500.31 123 139 3 72 1e-22
0.2 + 1.8 i 999.79 225 250 3 154 1e-21

TABLE 1. Numerical details of our computations of G 1
2+iR(z; w) on PSL(2, Z). Our Y -values were 0.85, 0.86.

[Avelin 10, Lemma 2.1(a)], and the fact that we have
Re s = 1/2. The maximum of the relative errors at
the upper right corner and the lower left corner of F
is given in the column marked error. We have noted
that the error stays fairly constant over F , and so
this number may be used as a guide to our overall ac-
curacy. As Im z approaches Imw (this happens only
when w ∈ F , i.e., in the case w = 0.2 + 1.8 i), the
time it takes to compute values using our method tends
to infinity. We therefore remove the strip | Im z −
Imw| ≤ 0.001 from our computations (and check that
the computational time is acceptable and that the accu-
racy near this strip is consistent with the estimates in
Table 1).

Histograms were made by throwing hyperbolic area
into 20 buckets according to the local size of the real
and imaginary parts of Gs(z;w). Standard deviation and
moments were computed as

σ2 =
1

μ(F )

∫
F

|ReGs(z;w)|2 dμ(z), (2–3)

Ik = 1 −
1

μ(F )

∫
F
|ReGs(z;w)|k dμ(z)

π− 1
2 2

k
2 σkΓ

(
k+1
2

) ,

and similarly for ImGs(z;w); thus Ik = 0 for a Gauss-
ian distribution. The integrals giving σ and Ik in (2–3)
were computed as Riemann sums.1 The value δ is the
mean difference between the histogram points and the
corresponding points on the conjectured Gaussian curve
(σ
√

2π)−1 exp
(
− x2

2σ2

)
.

1In this regard, note that the grid size Δx is about 0.014π/R,
0.029π/R, 0.028π/R (in the hyperbolic metric) for our three re-
spective choices of s = 1/2 + iR.

We remark that a good fit to a Gaussian curve should
not be expected unless the box F is large compared to the
de Broglie wavelength, which is related to τ = π/R. For
our R-values (236.524230, 500.309085, and 999.791572),
F corresponds to about 17τ , 35τ , and 71τ respectively.
Ideally one would like to have a larger F . However, this
becomes a question of computational time.

The accuracy in our computations of the Ik depends
on our grid size in F and on how fast Gs(z;w) varies
over the grid. We record the discrepancies of ReGs(z;w)
and ImGs(z;w) over the grid and note that these are
sometimes as large as 8% of maxz∈F |ReGs(z;w)| and
maxz∈F | ImGs(z;w)|, respectively. (In the case with
w = 0.2 + 1.8 i ∈ F it is even worse.) Thus some of our
Ik are not as accurate as we would have liked. Having a
finer grid is, again, a question of computational time. In
this (preliminary) experiment it was our priority to study
several cases in order to gain an overall understanding.
It would be useful to perform a more thorough study of
a few of these cases with a larger F and a finer grid size.
Our computational time for the data in this paper is on
the order of several months.

Our results for ReGs(z;w) and ImGs(z;w) are shown
in Tables 2 and 3 respectively, and in Figures 1, 2,
3, and 4. (Note that by (2–1) and (2–2) we have
Gs(z; ρ), Gs(z; i) ∈ R for our s-values.) It is clear that
the fit of the values of ReGs(z;w) to a Gaussian distri-
bution improves as the eigenvalue increases through our
three test values, for all our w-cases. For ImGs(z;w)
(which is much smaller than ReGs(z;w) in magnitude)
the tendency is not as clear, although the overall picture
shows an improvement in δ and (even more so) the higher
moments.
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w R mean σ δ I4 I6 I8

ρ 236.52 -1e-03 0.17 3e-02 8e-02 2e-01 4e-01
ρ 500.31 1e-04 0.16 1e-02 4e-02 1e-01 2e-01
ρ 999.79 -1e-04 0.48 2e-03 3e-03 1e-02 3e-02

i 236.52 1e-04 0.12 4e-02 2e-02 1e-01 2e-01
i 500.31 1e-04 0.19 1e-02 -3e-03 -1e-03 2e-02
i 999.79 1e-04 0.21 5e-03 1e-02 5e-02 1e-01

0.48 + 0.88 i 236.52 2e-02 1.69 5e-03 7e-02 1e-01 2e-01
0.48 + 0.88 i 500.31 -9e-05 0.21 1e-02 4e-02 1e-01 2e-01
0.48 + 0.88 i 999.79 -6e-05 0.42 2e-03 4e-03 5e-03 -2e-02

0.2 + 1.5 i 236.52 -1e-02 0.91 1e-02 6e-02 1e-01 3e-01
0.2 + 1.5 i 500.31 2e-04 0.13 2e-02 -1e-02 -2e-02 -2e-02
0.2 + 1.5 i 999.79 6e-05 0.15 8e-03 1e-02 3e-02 6e-02

0.2 + 1.8 i 236.52 -2e-02 1.63 4e-03 5e-02 1e-01 1e-01
0.2 + 1.8 i 500.31 7e-05 0.07 2e-02 -9e-03 -6e-02 -1e-01
0.2 + 1.8 i 999.79 5e-05 0.28 5e-03 4e-03 1e-02 7e-03

TABLE 2. Value statistics of ReG 1
2+iR(z;w) on PSL(2, Z) in the box F .

FIGURE 1. Histograms of the real-valued G 1
2+iR(z; w) with w1 = ρ and w2 = i. The solid lines are Gaussian curves.

FIGURE 2. Histograms of the real and imaginary parts of G 1
2+iR(z; 0.48+0.88 i), in the first and second rows respectively.

The solid lines are Gaussian curves.
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n R mean σ δ I4 I6 I8

0.48 + 0.88 i 236.52 2e-04 0.017 3e-01 6e-02 1e-01 3e-01
0.48 + 0.88 i 500.31 -1e-05 0.002 4e+00 8e-02 2e-01 3e-01
0.48 + 0.88 i 999.79 -2e-05 0.006 2e-01 2e-02 7e-02 1e-01

0.2 + 1.5 i 236.52 3e-04 0.021 3e-01 6e-02 1e-01 3e-01
0.2 + 1.5 i 500.31 -5e-05 0.006 9e-01 8e-02 2e-01 3e-01
0.2 + 1.5 i 999.79 -5e-05 0.011 1e-01 2e-02 7e-02 1e-01

0.2 + 1.8 i 236.52 1e-04 0.011 6e-01 6e-02 1e-01 3e-01
0.2 + 1.8 i 500.31 2e-05 0.004 1e+00 8e-02 2e-01 3e-01
0.2 + 1.8 i 999.79 -4e-05 0.007 3e-01 2e-02 6e-02 1e-01

TABLE 3. Value statistics of Im G 1
2+iR(z; w) on PSL(2, Z) in the box F .

FIGURE 3. Histograms of the real and imaginary parts of G 1
2+iR(z; 0.2 + 1.5 i), in the first and second rows respectively.

The solid lines are Gaussian curves.

FIGURE 4. Histograms of the real and imaginary parts of G 1
2+iR(z; 0.2 + 1.8 i), in the first and second rows respectively.

The solid lines are Gaussian curves.
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We have also made topography figures of Gs(z;w) in
F using the data computed for the statistics tests; see
[Avelin 07b].

3. VALUE STATISTICS FOR Fn(z; s)

The functions Fn(z; s) for n �= 0 can be thought of as
generalizations of the Eisenstein series (although they in-
crease much more rapidly at the cusps); cf. Section 1.
With [Avelin 08] in mind, it is thus natural to perform
value statistics tests with Fn(z; s). With the basic setup
exactly the same as in Section 2, we computed values
of Fn(z; s) with n = 1, . . . , 5 and s = 1/2 + iR for
R = 98.831194 . . ., R = 500, and R = 1000. (The fact
that the value s = 1/2 + 98.831194 . . . is a zero of the
Riemann zeta function has no special significance in this
particular test.) Numerical details and sample errors are
given in Table 4. We used working precision P and called
the Bessel routines with precision PB. The error estimate
is computed as in Table 1, but with [Avelin 10, p. 21 (45)]
in place of (2–2). See [Avelin 10, Section 3] for the re-
maining notation (M0, Q, Y ).

Results of our statistical tests are presented in Tables 5
and 6 for the real and imaginary parts of Fn(z; s) respec-
tively, and in Figure 5 for n = 1 and Figure 6 for n = 5.
The corresponding figures for n = 2, 3, 4 are of similar
quality, and we present these in [Avelin 07a, Section 3].

Although the improvement of the fit to a Gaussian
curve is not as strong as with E(z; s) in [Avelin 08], our
results for Fn(z; s) do suggest that the values of Fn(z; s)
have a Gaussian limit distribution as Im s → ∞ for
Re s = 1/2.

n R M0 Q P PB error

1 98.83 47 48 38 38 1e-37
1 500.00 108 147 38 38 1e-20
1 1000.00 210 226 97 174 1e-27

2 98.83 55 56 38 38 1e-36
2 500.00 120 147 38 38 1e-34
2 1000.00 225 226 97 174 1e-37

3 98.83 62 63 38 38 1e-35
3 500.00 129 147 38 38 1e-35
3 1000.00 209 230 38 174 1e-25

4 98.83 69 70 38 38 1e-36
4 500.00 138 147 38 38 1e-35
4 1000.00 220 230 38 174 1e-34

5 98.83 76 77 38 38 1e-36
5 500.00 146 147 38 38 1e-34
5 1000.00 229 230 38 174 1e-34

TABLE 4. Numerical details of our computations of Fn(z;
1
2

+ iR) on PSL(2, Z). Our Y -values were 0.85, 0.86.

Our remarks about the size of F (here it corresponds
to 7τ , 35τ , and 71τ for our three R-values respectively),
the grid size, and computational time in Section 2 apply
to our Fn(z; s)-computations as well. One would like to
use larger F and finer grid size also for Fn(z; s), at least
for a few examples, to gain better accuracy in the Ik.

We have made topographical figures of Fn(z; s) in F

using the data computed for these statistics tests; see
[Avelin 07b].

4. FURTHER EXPERIMENTS

4.1 Nonarithmetic Groups

Of course, one expects to find similar Gaussian behavior
for Gs(z;w) and Fn(z; s) when the group Γ is nonarith-
metic, i.e., a natural counterpart of what we found for
the Eisenstein series in [Avelin 08].

4.2 Computing Higher Fourier Coefficients of Fn(z; s)

Statistical studies of the Fourier coefficients of cusp forms
and Eisenstein series are presented in [Hejhal 99] and
[Avelin 08]. In order to perform similar tests on the
Fourier coefficients of Fn(z; s), one needs to be able to
compute ϕnm(s) for large m; cf. (1–4). The ideas in
[Hejhal 99, p. 299] for Fourier coefficients of cusp forms
are also applicable to Fn(z; s). However, these ideas
require the computations of a sum involving values of
Fn(z∗j ; s), where some Im z∗j are very large. This sum
suffers catastrophic cancellation due to the I-Bessel term
in (1–4). Therefore the method in [Hejhal 99, p. 299] ap-
plied to Fn(z; s) requires I-Bessel computations of very
large precision. With our present methods for the I-
Bessel function, cf. [Avelin 10, Section 5], we are unable
to achieve this. But the high-precision computations of
the K-Bessel function in [Booker et al. 06] offer a promis-
ing approach also for the I-Bessel function. We hope to
return to this in a later publication.

4.3 On the Appearance of Gs(z; w) in Cusp Form
Computations

In [Hejhal 92], the author used a version of his cusp form
algorithm to search for pseudo cusp forms on PSL(2,Z)
and other Hecke triangle groups; cf. [Hejhal 81, p. 99].
Hejhal’s algorithm computes eigenfunctions Φ(z) of the
Laplacian with a Fourier expansion of the type

Φ(z) =
∞∑
n=1

cny
1/2Ks− 1

2
(2π|n|y)

{
cos(2πnx),
sin(2πnx),

(4–1)

where the factor cos(2πnx) or sin(2πnx) reflects that
Φ(z) is either even or odd with respect to the reflection
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n s mean σ δ I4 I6 I8

1 98.83 2e-03 0.19 6e-02 -5e-02 -5e-02 4e-02
1 500.00 7e-05 0.07 4e-02 -7e-03 -3e-02 -5e-02
1 1000.00 5e-05 0.05 4e-02 2e-02 5e-02 9e-02

2 98.83 -7e-04 0.09 2e-01 2e-01 4e-01 5e-01
2 500.00 -4e-05 0.04 8e-02 3e-02 7e-02 1e-01
2 1000.00 -2e-05 0.04 5e-02 2e-02 7e-02 1e-01

3 98.83 -2e-03 0.24 6e-02 1e-02 9e-02 2e-01
3 500.00 -5e-05 0.11 2e-02 3e-02 9e-02 2e-01
3 1000.00 -4e-05 0.05 4e-02 2e-02 3e-02 3e-02

4 98.83 -3e-03 0.20 1e-01 2e-01 4e-01 6e-01
4 500.00 3e-05 0.07 4e-02 3e-02 6e-02 1e-01
4 1000.00 -4e-05 0.05 3e-02 2e-03 4e-03 5e-03

5 98.83 2e-03 0.25 8e-02 6e-02 2e-01 4e-01
5 500.00 1e-04 0.11 3e-02 2e-02 7e-02 2e-01
5 1000.00 -8e-06 0.05 4e-02 2e-02 6e-02 1e-01

TABLE 5. Value statistics of Re Fn(z; 1/2 + iR) on PSL(2, Z).

n R mean σ δ I4 I6 I8

1 98.83 6e-03 0.10 2e-01 1e-01 3e-01 4e-01
1 500.00 8e-04 0.22 2e-02 3e-02 1e-01 2e-01
1 1000.00 -3e-04 0.18 8e-03 8e-03 3e-02 6e-02

2 98.83 6e-03 0.12 1e-01 -6e-02 -4e-02 8e-02
2 500.00 5e-04 0.14 2e-02 2e-02 8e-02 2e-01
2 1000.00 3e-04 0.28 4e-03 9e-03 3e-02 7e-02

3 98.83 -1e-02 0.21 1e-01 -7e-02 -8e-02 2e-02
3 500.00 -3e-04 0.29 6e-03 2e-02 7e-02 2e-01
3 1000.00 2e-05 0.13 1e-02 6e-03 3e-02 1e-01

4 98.83 -2e-03 0.09 2e-01 7e-02 2e-01 4e-01
4 500.00 -5e-04 0.16 2e-02 3e-02 1e-01 2e-01
4 1000.00 -3e-04 0.32 4e-03 1e-02 4e-02 8e-02

5 98.83 -2e-03 0.07 3e-01 -1e-01 -2e-01 -2e-01
5 500.00 -3e-04 0.32 7e-03 4e-03 3e-02 1e-01
5 1000.00 -4e-04 0.33 4e-03 2e-02 7e-02 1e-01

TABLE 6. Value statistics of ImFn(z; 1/2 + iR) on PSL(2, Z).

FIGURE 5. Histograms of the real and imaginary parts of F1(z; 1/2 + iR), in the first and second rows respectively. The
solid lines are Gaussian curves.
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FIGURE 6. Histograms of the real and imaginary parts of F5(z; 1/2 + iR), in the first and second rows respectively. The
solid lines are Gaussian curves.

Rz = −z. The Fourier coefficients cn are required to be
real and normalized with c1 = 1.

At first glance, the functions computed in [Hejhal 92]
all seem to be of the form

Gs(z; ρ) with E(ρ; s) = 0, (4–2)

where E(ρ; s) is the Eisenstein series; cf. (1–1) and (1–2)
or [Hejhal 92, p. 45]. On PSL(2,Z), for example, Hejhal
was able to detect Gs(z; ρ), with s the first zero of the
Riemann zeta function, i.e., s = 1/2 + i14.134725 . . .;
cf. [Hejhal 92, Section 8] and [Avelin 10, Table 6]. The
fact that no other Gs(z;w) seem to appear is somewhat
puzzling, considering that for each w sufficiently near ρ
there exists (by elementary complex variables) some s =
1/2 + iR with R near 14.134 . . . such that E(w; s) = 0.

It might be possible to use our Gs(z;w)-algorithm
to explore the reason that the functions Gs(z; ρ) with
E(ρ; s) = 0 seem to stand out so strongly in Hejhal’s ex-
periments. It appears that the fact that ρ is an elliptic
fixed point of order three plays a central role in this expla-
nation. For example, the nodal curves of the Eisenstein
series through ρ can be visualized to leading order for
R ≈ R0 and z ≈ ρ by expanding E(z; s) into a Taylor se-
ries about s = s0 and then using Taylor series representa-
tions forE(z; 1/2+iR0) and Es(z; 1/2+iR0) about z = ρ;
cf. [Hejhal 92, p. 93, (9.2)] and [Avelin 07a, (16)]. One
finds that the curve along which E(z; 1/2 + iR) is zero
intersects ∂F approximately at distance C(R − R0)1/3

from ρ, for some constant C; that is, this intersection

is relatively distant from ρ. The power 1/3 is a direct
consequence of ρ being of order three.

Another consequence of the fact that ρ is an elliptic
fixed point of order three seems to be that nodal curves
for the functions

fn(w) =
ReF−n(w; s)
ReF−1(w; s)

− ReF−n(ρ; s0)
ReF−1(ρ; s0)

(4–3)

(which are related to the normalized Fourier coefficients
of pseudo cusp forms) are much closer together for s =
1/2 + iR0 than the corresponding curves for other s =
1/2 + iR with R near R0; cf. [Avelin 07a, Section 4],
especially (17) and the paragraph following Table 9.

Although further investigation is necessary to provide
a complete explanation, these circumstances are likely
to be part of it. See [Avelin 07a, Section 4] for some
additional insights.
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