
Computing the Mertens and Meissel–Mertens
Constants for Sums over Arithmetic Progressions
Alessandro Languasco and Alessandro Zaccagnini
with an Appendix by Karl K. Norton

CONTENTS

1. Introduction
2. Theoretical Framework
3. Verification of Consistency
Acknowledgments
References

2000 AMS Subject Classification: 11-04, 11Y60

Keywords: Mertens constants, Mertens-Meissel constants, arith-
metic progressions

We give explicit numerical values with 100 decimal digits
for the Mertens constant involved in the asymptotic formula
for

∑
p≤x

p≡a mod q
1/p and, as a byproduct, for the Meissel–

Mertens constant defined as
∑

p≡a mod q(log(1 − 1/p) + 1/p),
for q ∈ {3, . . . , 100} and (q, a) = 1. The complete set of
results is available online (http://www.math.unipd.it/∼languasc/
Mertens-comput.html).

1. INTRODUCTION

In this paper we use the technique developed in [Lan-
guasco and Zaccagnini 09] to compute the constants
M(q, a) involved in the following asymptotic formula:∑

p≤x
p≡a mod q

1
p

=
log log x
ϕ(q)

+M(q, a) + Oq

(
1

log x

)
, (1–1)

where x → +∞, and the Meissel–Mertens constant
B(q, a) is defined as

B(q, a) :=
∑

p≡a mod q

(
log
(

1 − 1
p

)
+

1
p

)
,

where, here and throughout the present paper, q ≥ 3 and
a are fixed integers with (q, a) = 1, p denotes a prime
number, and ϕ(q) is the usual Euler totient function.

In fact, we will see how to compute M(q, a) with a
precision of 100 decimal digits, and we will use the re-
sults in [Languasco and Zaccagnini 09] to obtain well-
approximated values for B(q, a).

To do so, we recall that the constant C(q, a) studied
in [Languasco and Zaccagnini 07, Languasco and Zacca-
gnini 09] is defined implicitly by

P (x; q, a) :=
∏
p≤x

p≡a mod q

(
1 − 1

p

)
=

C(q, a)
(log x)1/ϕ(q)

(1 + o(1))

(1–2)
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as x → +∞. In [Languasco and Zaccagnini 07], we
proved that

C(q, a)ϕ(q) = e−γ
∏
p

(
1 − 1

p

)α(p;q,a)

,

where α(p; q, a) = ϕ(q) − 1 if p ≡ a mod q and
α(p; q, a) = −1 otherwise, and γ is the Euler constant.
This enabled us to compute their values to 100 decimal
digits in [Languasco and Zaccagnini 09].

Taking the logarithm of both sides in (1–2), we get
that

∑
p≤x

p≡a mod q

log
(

1 − 1
p

)
= logC(q, a) − log log x

ϕ(q)
+ o(1)

as x→ +∞, and hence, adding (1–1), we obtain

M(q, a) = B(q, a) − logC(q, a). (1–3)

By (1–3) and using the results in [Languasco and Zac-
cagnini 09] together with the computation ofM(q, a) that
we will explain below, we can compute the corresponding
values for B(q, a) in the same range (and with the same
precision) for any q ∈ {3, . . . , 100} and (q, a) = 1.

We recall that M(q, a) and C(q, a) were computed in
[Finch 07] in the case q ∈ {3, 4} and (q, a) = 1. For more
information on the literature about these (and many
other) constants, we suggest that the reader have a look
at [Finch 03].

The referee of this paper and Robert Baillie [Baillie 09]
independently remarked that a computation similar to
ours with q up to 10000 suggests that

1. as q → ∞, M(q, 1) approaches 0,

2. as q → ∞, M(q, 2) approaches 1/2,

and asked whether this is actually true. This in fact fol-
lows from the following result by Karl K. Norton [Nor-
ton 09]: If 1 ≤ a < q, then

lim
q→+∞
(q,a)=1

M(q, a) =

{
1/a if a is a prime number,
0 otherwise,

(1–4)

and the limit is uniform on a. We will see how to prove
(1–4) in §4.

2. THEORETICAL FRAMEWORK

From now on, we will let χ be a Dirichlet character mod-
ulo q. By the orthogonality of Dirichlet characters, a

direct computation and [Hardy and Wright 79, Theo-
rem 428] show that

ϕ(q)M(q, a) = γ +B −
∑
p|q

1
p

+
∑

χ mod q
χ�=χ0

χ(a)
∑
p

χ(p)
p

,

(2–1)
where

B :=
∑
p

(
log
(

1 − 1
p

)
+

1
p

)
(2–2)

is the Meissel–Mertens constant.
Moreover, using the Taylor expansion of log(1−x) and

again by orthogonality, it is clear that

ϕ(q)B(q, a) = −
∑

χ mod q

χ(a)
∑
m≥2

1
m

∑
p

χ(p)
pm

(2–3)

= −
∑

χ mod q
χ�=χ0

χ(a)
∑
m≥2

1
m

∑
p

χ(p)
pm

+B(q),

where B(q), defined as

B(q) := −
∑
m≥2

1
m

∑
(p,q)=1

1
pm

,

represents the contribution of the principal character
χ0 mod q and is equal to

B(q) =
∑

(p,q)=1

(
log
(

1 − 1
p

)
+

1
p

)

= B −
∑
p|q

(
log
(

1 − 1
p

)
+

1
p

)
,

where B is defined in (2–2). Recalling from [Languasco
and Zaccagnini 09, Section 2] that

ϕ(q) logC(q, a) (2–4)

= −γ + log
q

ϕ(q)
−

∑
χ mod q
χ�=χ0

χ(a)
∑
m≥1

1
m

∑
p

χ(p)
pm

,

and comparing the right-hand sides of (2–1), (2–3), and
(2–4), it is clear that it is much easier to compute M(q, a)
than both C(q, a) and B(q, a), since in (2–1) no prime
powers are involved.

Moreover, by (1–3), we can obtain B(q, a) using
M(q, a) and C(q, a).

Since in [Languasco and Zaccagnini 09] we already
computed several values of C(q, a), it is now sufficient
to compute M(q, a) for the corresponding pairs q, a.

To accelerate the convergence of the inner sums in
(2–1), (2–3), and (2–4), we will consider, as we did in
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[Languasco and Zaccagnini 09], the “tail” of a suitable
Euler product. Letting A be a fixed positive integer,
we denote the tail of the Euler product of a Dirichlet
L-function by

LAq(χ, s) =
∏
p>Aq

(
1 − χ(p)

ps

)−1

,

where χ �= χ0 mod q and 	(s) ≥ 1.
For the reader’s convenience we give a proof of the

following formula:

∑
p>Aq

χ(p)
pm

=
∑
k≥1

μ(k)
k

log(LAq(χk, km)), (2–5)

where χ �= χ0 mod q, for every integer m ≥ 1. We use
Möbius inversion with a little care, since the series for
LAq(χ, 1) is not absolutely convergent. The Taylor ex-
pansion for log(1 − x) implies that

∑
k≥2

μ(k)
k

log(LAq(χk, km))

=
∑
p>Aq

∑
k≥2

∑
n≥1

μ(k)
nkpnkm

χnk(p)

=
∑
p>Aq

∑
�≥2

χ�(p)
�p�m

∑
k≥2
k|�

μ(k)

= −
∑
p>Aq

∑
�≥2

χ�(p)
�p�m

=
∑
p>Aq

χ(p)
pm

− logLAq(χ,m),

since
∑
k|� μ(k) = 0 for � ≥ 2, and this proves (2–5) for

every m ≥ 1.
Now inserting (2–5), with m = 1, in (2–1), we have

ϕ(q)M(q, a) (2–6)

= γ +B −
∑
p|q

1
p

+
∑

χ mod q
χ�=χ0

χ(a)
∑
p≤Aq

χ(p)
p

+
∑

χ mod q
χ�=χ0

χ(a)
∑
k≥1

μ(k)
k

log(LAq(χk, k))

= ϕ(q)
∑
p≤Aq

p≡a mod q

1
p

+M(q)

+
∑

χ mod q
χ�=χ0

χ(a)
∑
k≥1

μ(k)
k

log(LAq(χk, k)),

where
M(q) := γ +B −

∑
p|q

1
p
−

∑
p≤Aq

(p,q)=1

1
p
.

For A ≥ 1, it is clear that the two sums on the right-
hand side of the previous equation collapse to

∑
p≤Aq 1/p,

but in (3–1) we will explicitly need the value of the sum-
mation over p | q, and hence, to avoid double compu-
tations, we will use the definition of M(q) as previously
stated.

For C(q, a) the analogue of (2–6) is [Languasco and
Zaccagnini 09, equation (5)], while for B(q, a) it can be
obtained through a similar argument.

Notice that the Riemann zeta function is never com-
puted at s = 1 in (2–6), since for k = 1 we have
χk = χ = χ0. To compute the summation over χ in
(2–6) we follow the approach of [Languasco and Zacca-
gnini 09, Section 2].

This means that in order to evaluate (2–6) using a
computer program, we have to truncate the sum over k
and to estimate the error we are introducing. Let K > 1
be an integer. We get

ϕ(q)M(q, a)

= ϕ(q)
∑
p≤Aq

p≡a mod q

1
p

+M(q)

+
∑

χ mod q
χ�=χ0

χ(a)
∑

1≤k≤K

μ(k)
k

log(LAq(χk, k))

+
∑

χ mod q
χ�=χ0

χ(a)
∑
k>K

μ(k)
k

log(LAq(χk, k))

= M̃(q, a, A,K) + E1(q, a, A,K),

say. We remark that B, defined as in (2–2), can be easily
computed up to 1000 correct digits in a few seconds by
adapting (2–3) to the case in which the sum on the left-
hand side runs over the complete set of primes. We recall
that in [Moree 00], see also the appendix by Niklasch,
B and many other number-theoretic constants are com-
puted with a nice precision; see also [Gourdon and Se-
bah 01]. Using the lemma in [Languasco and Zacca-
gnini 09] and the trivial bound for χ, it is easy to see that

|E1(q, a, A,K)| ≤ 2(Aq)1−K(ϕ(q) − 1)
K2(Aq − 1)

.

We take this occasion to correct a typo in the in-
equality for E1(q, a, A,K) in [Languasco and Zacca-
gnini 09, p. 319]: the factor 2K in the denominator should
read K2.
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In order to ensure that M̃(q, a, A,K) is a good ap-
proximation of M(q, a), it is sufficient that Aq and K be
sufficiently large. Setting Aq = 9600 and K = 26 yields
the desired 100 correct decimal digits.

Now we have to consider the error we are introducing
during the evaluation of the Dirichlet L-functions that
appear in M̃(q, a, A,K). This can be done exactly as in
[Languasco and Zaccagnini 09, Section 3], with km there
replaced by k.

Let T be an even integer and N a multiple of q. For
χ �= χ0 mod q and k ≥ 1, we use the Euler–Maclaurin
formula in the following form:

LT,N (χk, k) (2–7)

=
∑
r<N

χk(r)
rk

− 1
Nk

T∑
j=1

(−1)j−1Bj(χk)
j!

k(k + 1) · · · (k + j − 2)
N j−1

,

where Bn(χ) denotes the χ-Bernoulli number, which is
defined by means of the nth Bernoulli polynomial Bn(x)
(see [Cohen 07, Definition 9.1.1]), as follows:

Bn(χ) = fn−1

f−1∑
a=0

χ(a)Bn

(
a

f

)
,

in which f is the conductor of χ.
Hence the error term in evaluating the tail of the

Dirichlet L-functions LAq(χk, k) is

|E2(q, a,K,N, T )|

≤ (ϕ(q) − 1)qTBT
U(q,K,N, T )

∑
1≤k≤K

1
k

k · · · (k + T − 2)
T !

N1−k−T

=
(ϕ(q) − 1)qTBT
U(q,K,N, T )T !

×
∑

1≤k≤K
(k + 1) · · · (k + T − 2)N1−k−T

≤ (ϕ(q) − 1)(K + T − 2)T−2qTBT
U(q,K,N, T )NT−1T !

∑
1≤k≤K

N−k

≤ 2(ϕ(q) − 1)(K + T − 2)T−2qTBT
(N − 1)U(q,K,N, T )NT−1T !

,

where BT is the T th Bernoulli number, which is the T th
coefficient of the power series expansion of the function
x/(ex − 1), and

U(q,K,N, T ) := min
χ mod q
χ�=χ0

min
1≤k≤K

|LT,N (χk, k)|.

Collecting the previous estimates, we have that∣∣∣∣∣M(q, a) − M̃(q, a, A,K)
ϕ(q)

∣∣∣∣∣ ≤ |E(q, a, A,K,N, T )|
ϕ(q)

,

where E(q, a, A,K,N, T ) denotes

E1(q, a, A,K) + E2(q, a,K,N, T ).

Some experimentation for q ∈ {3, . . . , 100} suggested
to us that we use different ranges for N and T to reach
a precision of at least 100 decimal digits in a reason-
able amount of time. Using Aq = 9600, K = 26
and recalling that q | N and T is even, our choice is
N = (
8400/q�+1)q and T = 58 if q ∈ {3, . . . , 10}, while
for q ∈ {90, . . . , 100} we have to useN = (
27720/q�+1)q
and T = 88. Intermediate ranges are used for the remain-
ing integers q.

The programs we used to compute the Dirichlet char-
acters modulo q and the values of M(q, a) for q ∈
{3, . . . , 100}, 1 ≤ a ≤ q, (q, a) = 1, were written
using the GP scripting language of Pari/GP.1 The
C program was obtained from the analogous GP pro-
gram using the gp2c tool. The actual computations
were performed using a double quad-core Linux PC
for a total amount of computing time of about four
hours and four minutes. The complete set of results is
available online (http://www.math.unipd.it/∼languasc/
Mertens-comput.html), together with the source pro-
gram in GP and the results of the verifications of the
identities (3–1) and (3–2), which are described in the fol-
lowing section.

Moreover, at the same web address, you will also find
the values of B(q, a) computed via (1–3) using the previ-
ous results onM(q, a) and those for C(q, a) in [Languasco
and Zaccagnini 09]. The use of (1–3) implies some sort
of “error propagation.” To avoid this phenomenon we
recomputed some values of C(q, a). A complete report of
this recomputation step can be found at the web address
previously mentioned.

Moreover, to be safer, we also directly computed
B(q, a) using (2–3) for q ∈ {3, . . . , 100}, 1 ≤ a ≤ q,
and (q, a) = 1. The computation time was about three
days, six and one-fourth hours. By comparing the values
of B(q, a) obtained using these two methods, we can say
with confidence that the values of B(q, a) we computed
are correct up to 100 decimal digits.

Finally, we also wrote a program to compute B(q, a),
C(q, a), and M(q, a) with at least 20 correct decimal dig-
its. Comparing with [Languasco and Zaccagnini 09], the

1Available online (http://pari.math.u-bordeaux.fr/).
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main parameters can be chosen now to be much smaller,
and so we were able to compute all these constants for
every 3 ≤ q ≤ 300, 1 ≤ a ≤ q, (q, a) = 1. In particu-
lar, the required time on a double quad-core Linux PC
for the range q ∈ {3, . . . , 200} was about five hours and
five minutes, while for the range q ∈ {201, . . . , 300}, it
was about eighteen hours. In this case we directly com-
puted B(q, a), C(q, a), and M(q, a) and we used (1–3) as
a consistency check.

All of these results can be downloaded at the web ad-
dress previously mentioned.

3. VERIFICATION OF CONSISTENCY

The set of constants M(q, a) satisfies many identities,
and we checked our results verifying that these identities
hold within a very small error. The basic identities that
we exploited are two: the first is

∑
a mod q
(q,a)=1

M(q, a) = γ +B −
∑
p|q

1
p
. (3–1)

This can be verified by a direct computation, taking into
account the fact that primes dividing q do not occur in
any sum of the type

∑
p≤x

p≡a mod q

1
p
.

The other identity is valid whenever we take two mod-
uli q1 and q2 with q1 | q2 and (a, q1) = 1. In this case we
have

M(q1, a) =
n−1∑
j=0

(a+jq1,q2)=1

M(q2, a+ jq1) +
∑
p|q2

p≡a mod q1

1
p
,

(3–2)
where n = q2/q1.

Equation (3–2) holds also for B(q, a) with the only
remark that in the final summation, the summand 1/p
should be replaced by log(1 − 1/p) + 1/p. Concerning
(3–1), this holds for B(q, a) too if we replace γ−∑p|q 1/p
with −∑p|q(log(1 − 1/p) + 1/p).

The proof of (3–2) depends on the fact that the residue
class a mod q1 is the union of the classes a+ jq1 mod q2,
for j ∈ {0, . . . , n− 1}. If q1 and q2 have the same set of
prime factors, the condition (a+ jq1, q2) = 1 is automat-
ically satisfied, since (a, q1) = 1 by our hypothesis.

On the other hand, if q2 has a prime factor p that q1
lacks, then there are values of j such that p | (a+ jq1, q2)
and the corresponding value of M(q2, a + jq1) on the

right-hand side of (3–2) would be undefined. The sum at
the far right takes into account these primes.

The validity of (3–1) was checked immediately at the
end of the computation of the constants M(q, a), for a
fixed q and for every 1 ≤ a ≤ q with (q, a) = 1, by the
same program that computed them. These results were
collected in a file, and a different program checked that
(3–2) holds within a very small error by building every
possible relation of that kind for every q2 ∈ {3, . . . , 100}
and q1 | q2 with 1 < q1 < q2. As in [Languasco and
Zaccagnini 09], the total number of identities checked
was

100∑
q=3

∑
d|q

1<d<q

ϕ(d) =
100∑
q=3

(q − 1 − ϕ(q)) = 1907,

but there are dependencies among them, which we did
not bother to eliminate, since the total time required
for this part of the computation is absolutely negligible.
Again as in [Languasco and Zaccagnini 09], the number
of independent identities is

100∑
q=3

∑
p|q
p<q

ϕ

(
q

p

)
=

100∑
n=2

π

(
100
n

)
ϕ(n) = 1383,

where p denotes a prime in the sum on the left. Please
note that in [Languasco and Zaccagnini 09, p. 323], we
erroneously wrote that the previous sum is equal to 1408,
which is in fact its value starting from n = 1.

Similar checks were done also for the 20-digit case.
Working for every q ≤ 300, we have 12,343 independent
relations over a total number of 17,453 such relations. In
this case, too, we obtained the desired precision (at least
20 decimal digits).

4. APPENDIX (BY K. K. NORTON): PROOF OF
CONJECTURE (1–4)

The proof is a direct consequence of the following lemma
by Karl K. Norton.

Lemma 4.1. (Lemma 6.3 of [Norton 76]). Let q ≥ 2 be
an integer and let L be a nonempty set of integers such
that for each a ∈ L, we have 1 ≤ a < q and (q, a) = 1.

Write |L| = λ for the cardinality of L, and let E =⋃
a∈L{p prime : p ≡ a mod q}. Then, for x ≥ 2, we have

∑
p≤x
p∈E

1
p

= λ
log log x
ϕ(q)

+
∑
p≤x
p∈L

1
p

+ O
(
λ

log q
ϕ(q)

)
, (4–1)
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where the implicit constant is absolute. Also,

∑
p≤x
p∈L

1
p
≤ log log(3λ) + O(1),

where the implicit constant is absolute.

Taking just one fixed arithmetic progression p ≡
a mod q, with 1 ≤ a < q and (q, a) = 1, (this means
L = {a}) equation (4–1) implies, for x ≥ 2, that

∑
p≤x

p≡a mod q

1
p

=
log log x
ϕ(q)

+ f(a) + O
(

log q
ϕ(q)

)
, (4–2)

where f(a) = 1/a if a is a prime number and 0 otherwise,
and the implicit constant is absolute. Combining this
with (1–1) we get immediately that

M(q, a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/a+ O
(

log q
ϕ(q)

)
if a is a prime number,

1 ≤ a < q, (q, a) = 1,

O
(

log q
ϕ(q)

)
if a is not a prime number,

1 ≤ a < q, (q, a) = 1,

and hence (1–4) holds.
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