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In this article we calculate explicitly the Ramanujan (13, 13)-
regular hypergraph introduced in [Sarveniazi 07] using the com-
puter algebra programs Magma and Octave. This simple
structure represents a nice and arithmetically very rich object in
number theory, namely Γf \ Γ(1).

1. INTRODUCTION

The global Jacquet–Langlands correspondence between
automorphic representations of unit groups of certain di-
vision algebras and automorphic representations of GLd

in positive characteristic is a challenging problem. The
cuspidality of representations of arithmetic groups aris-
ing from unit groups of division algebras is closely related
to certain properties of adjacency matrices of Ramanujan
hypergraphs.

This connection motivated our construction of such
hypergraphs and their adjacency matrices. Indeed, the
adjacency matrices A(i) are actually Hecke operators de-
fined on the arithmetic group Γ(1) at the place p(t) (in
our case p(t) = 1 − t) that transfer automorphic forms
associated to the arithmetic subgroup Γf for f(t) = 1+ t

(see Section 4 for the exact definition).
The cuspidality of the arising automorphic represen-

tation, which must be confirmed in this general case in
positive characteristic, will be addressed in a forthcoming
paper. Of course, the translation of such a deep result as
the Jacquet–Langlands correspondence to the language
of elementary graph theory is amazing, but in this note
we are just trying to present a near-infrared object that
is closely related to this deep result. For more details see
[Sarveniazi 07] and references therein.

Here we give an explicit presentation of Ramanu-
jan (13, 13)-regular hypergraphs introduced in [Sarveni-
azi 07] using the computer algebra programs Magma

and Octave. This is a class of examples of Morgenstern
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FIGURE 1. The graph of the first nearest neighbors of
our (13, 13)-regular hypergraph.

Ramanujan graphs that we have generalized to higher di-
mensions, replacing quaternion algebras in Morgenstern’s
examples with quotient skew-fields of skew-polynomial
rings.

We consider the skew-polynomial ring �qd{τ} over the
field �qd of qd elements, where the indeterminate τ sat-
isfies the rule τ · λ = λq · τ for λ ∈ �qd .

In Sections 2 and 3, we summarize some facts about
Bruhat–Tits buildings, related hypergraphs, and the
skew-polynomial rings. In Section 4 we study the struc-
ture of the arithmetic groups Γ(1), Γ(τ), and Γf (τ). Fi-
nally, in Section 5, we present our explicit calculation in
the smallest nontrivial case,

d = 3, q = 3, and prime f = 1 + t,

and we give a combinatorial description of our hyper-
graph as the Cayley graph of the group PGL(3,�3) =
PSL(3,�3) over the finite field �3.

A Magma program produces a complete factorization
of 1 − τ , which is essential for our construction. The
matrices A(1) and A(2) and their eigenvalues are calcu-
lated and the Ramanujan property (successfully) tested.
A picture of the first nearest neighbors can be seen in
Figure 1.

2. BUILDINGS AND HYPERGRAPHS

Let (F, ν) be a local nonarchimedean field with valuation
ring O, uniformizer π, and residue field k := O/(π).

Attached to the algebraic group PGL(d, F ) for some
fixed number d > 1 is the affine building X•(F d). It is

defined as follows: The edges (0-simplices) are classes of
O-lattices L ⊂ F d of rank d, where

L ∼ L′ ⇐⇒ L′ = λL for some λ ∈ F \ {0},

and r-simplices, i.e., simplices that include r+1 vertices,
are defined by chains of lattices

πL � L1 � · · · � Lr � L.

It is easily seen that all maximal simplices (chambers)
have cardinality d. Furthermore, we have a notion of
apartments that satisfies the axioms of a building (see,
for example, [Brown 89, Ronan 89]).

If we fix a lattice (i.e., a vertex) L, we define the link
lkX•(F d)(L) as the simplicial complex given by all sim-
plices Δ ∈ X•(F d) such that L /∈ Δ, but L ∪ Δ is a
simplex in X•(F d). The simplicial complex lkX•(F d)(L)
is isomorphic to the Tits building associated to the k-
vector space L/πL by the map

lkX•(F d)(L) → X•(L/πL),

πL � L1 � · · · � Lr � L 	→ L1/πL � · · · � Lr/πL;

i.e., it is a building itself. Associated to the building
lkX•(F d)(L) we have a canonical labeling with index set
{1, . . . , d − 1} defined as follows: If πL � L′ � L is
an edge, then the label tL(L′) is defined by tL(L′) :=
dimk L′/πL. If we regard lkX•(F d)(L) as a subcomplex
of the whole building X•(F d), then the label of an edge
L′ evidently depends on the choice of the vertex L, but
we have the following correspondences.

Lemma 2.1.

(1) If L, L′ is an edge in X•(F d), then

tL(L′) ≡ −tL′(L) mod d.

(2) If L, L′, L′′ is a triangle (2-simplex) in X•(F d), then

tL(L′) − tL(L′′) ≡ tL′(L′′) mod d.

Proof. 1. We have

πL � L′ � L =⇒ πL′ � πL � L′.

From
πL/πL′ ∼= L/L′ ∼= (L/πL)/(L′/πL)

it follows that

tL′(L) = d − tL(L′ ≡ −tL(L′)) mod d.
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2. We have

πL � L′ � L′′ � L =⇒ πL′′ � L′ � L′′.

From
L′/πL′′ ∼= (L′/πL′)/(πL′′/πL′)

and
πL′′/πL′ ∼= L′′/L′ ∼= (L′′/πL)/(L′/πL)

it follows that

tL′′(L′) = d − dim(πL′′/πL′) = d − (tL(L′′) − tL(L′))

≡ tL(L′) − tL(L′′) mod d.

The group PGL(F, d) acts on the building X•(F d) by
its natural action on the lattices. It is easily seen that this
action is transitive and respects the simplicial structure.
Since we are interested in some special quotients of the
building by this action, we make the following definitions,
due to [Sarveniazi 07].

Definition 2.2. ((n1, . . . , nd−1)-regular hypergraph.)
[Sarveniazi 07, Definitions 29–31]

(1) An (n1, n2, . . . , nd−1)-regular hypergraph is a simpli-
cial chamber complex X• equipped with a labeling
function

t : X0 × X0 → {0} ∪ {1, . . . , d − 1},
(L, L′) 	→ tL(L′),

such that tL(L′) = 0 if {L, L′} /∈ X1, t satisfies the
formulas of Lemma 2.1, and for 1 ≤ i ≤ d− 1 and all
vertices L in X•, we have

#{L′ ∈ lkX•(L) | tL(L′) = i} = ni.

(2) For 1 ≤ i ≤ d− 1 we define the ith adjacency matrix
of X• by

A(i) :=
(
ε(i)(L, L′)

)
L,L′∈X0

,

where

ε(i)(L, L′) :=

{
1 if tL(L′) = i,

0 otherwise.

As in [Sarveniazi 07], we extend the usual notation of
an expanding bound for regular graphs to hypergraphs.

Definition 2.3. (Upper bounds.) [Sarveniazi 07, Defini-
tion 32] Let X• be an (n1, n2, . . . , nd−1)-regular hyper-
graph and A(1), . . . , A(d−1) its adjacency matrices.

(1) For 1 ≤ i ≤ d − 1 we define

λ(i)(X•) := max
λ eigenvalue of A(i)

|λ|�=ni

|λ|.

(2) We say that the hypergraph X• is bounded above
with bound (c1, . . . , cd−1) for some real numbers
c1, . . . , cd−1 ∈ � if λ(i)(X•) ≤ ci for 1 ≤ i ≤ d − 1.

Remark 2.4. Because of the regularity condition, it is
easy to see that for 1 ≤ i ≤ d − 1,

λ(i)(X•) < ni.

3. THE SKEW-POLYNOMIAL RING OVER
A FINITE FIELD

3.1 Skew-Polynomials and Division Rings

We will first recall some basic facts about the ring of
skew-polynomials. Proofs of the following statements
and further details can be found in [Jacobson 96, Sec-
tion I].

The ring of skew-polynomials �qd{τ} has a well-
defined ring of quotients �qd(τ), which is a skew-field.
If we set t := τd, then we can describe the center of
�qd(τ) to be the function field �q(t). That is, �qd(τ) is a
finite division algebra over its center of dimension d2.

Since �qd(t) is a cyclic Galois extension of �q(t) of
degree d whose Galois group is generated by the auto-
morphism

σ : �qd(t) → �qd(t),

λt 	→ λqt,

we can describe the skew-field in terms of the cyclic al-
gebra (�qd(t)/�q(t), σ, t), where we choose 1, τ, . . . , τd−1

to be an �qd(t) base of �qd(τ).

Remark 3.1. It is easy to see that the cyclic extension
of function fields �qd(t)/�q(t) is unramified at all primes
(cf. [Rosen 02, Proposition 8.5]).

If v is a valuation of �q(t) and w is a valuation of
�qd(t) such that w lies over v, we get the field extension
of the associated local fields �qd(t)

w
/�q(t)v of degree dw.

Furthermore, by Remark 3.1 we have dw = fw, where fw

is the degree of the extension of the corresponding residue
fields and the numbers dw and fw are independent of the
choice of the valuation above v, since the extension is
Galois. We define �qd(τ)v := �qd(τ) ⊗�q(t) �q(t)v.
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Proposition 3.2.

(1) �qd(τ)v
∼= (�qd(t)w/�q(t)v, σd/dw , t).

(2) The division algebra �qd(τ)v splits completely if and
only if v(t) = 0.

(3) �qd(τ)v splits completely if and only if v is not one of
the valuations corresponding to the primes t and 1/t.

For a proof, see [Goss 96, Theorem 4.12.4, Corollary
4.12.5].

In the case that the skew-field splits, we can de-
scribe the splitting isomorphism explicitly. We follow
[Reiner 75, Sections 29, 30]. The crucial point is that for
v(t) = 0, we can find with the help of Hensel’s lemma an
element T ∈ �qd(t)w such that Norm�

qd (t)w/�q(t)v
(T ) =

t. For simplicity we will assume that dw = d. Then
1, τ, . . . , τd−1 is still an �qd(t)w-base of �qd(τ)v . We per-
form the base change

1 	→ 1,

τ 	→ τ̃ := T−1τ,

τ2 	→ (τ̃ )2 = T−1σ(T−1)τ2

...

τd−1 	→ (τ̃ )d−1 = T−1σ(T−1) · · ·σd−2(T−1)τd−1.

Now we get an isomorphism of �q(t)v-vector spaces:

�qd(τ)v → End�q(t)v
(�qd(t)w),

αiτ̃
i 	→ �qd(t)w →σi

�qd(t)w →·αi �qd(t)w .

If we choose an �q(t)v-base of �qd(t)w , we can identify
the endomorphism ring End�q(t)v

(�qd(t)w) with the ring
of matrices Md(�q(t)v).

3.2 Skew-Polynomials and Endomorphisms

Let �q be an algebraic closure of �q. To an element
f :=

∑n
i=0 λiτ

i ∈ �qd{τ} of degree n we associate an
�q-linear map

ϕf : �q → �q, x 	→
n∑

i=0

λix
qi

.

We define Vf := Ker(ϕf ) ⊆ �q. It is a finite-dimensional
�q-vector space. If ϕf is separable, that is, λ0 �= 0,
then dim�q Vf = n = degτ f . We will call an element of
�qd{τ} normalized if its absolute coefficient is equal to 1.

Proposition 3.3. Let f :=
∑n

i=0 λiτ
i ∈ �qd{τ} be a nor-

malized polynomial of degree n. Then we have the fol-
lowing correspondence between the two following sets of
objects:

f = fr · · · f1,

which is a decomposition of f into normalized skew-
polynomials f1, . . . , fr such that degτ (fi) ≥ 1 for 1 ≤
i ≤ r, and

0 � V1 � · · · � Vr = Vf ,

which are flags of t = τd-stable �q-subvector spaces in Vf .

We briefly describe the correspondence:

1. If f1, . . . , fr are given, then we define Vi := Vfi···f1

for 1 ≤ i < r.

2. If V1, . . . , Vr are given, then ϕi :=
∏

λ∈Vi
(X − λ)

is an �q-linear polynomial in �qd [X ], that is, there
exist elements λij ∈ �qd such that

ϕi =
dim�q (Vi)∑

j=0

λijX
qj

.

We define

f1 :=
dim�q (V1)∑

j=0

λ1j

λ10
τ j

and

fi :=
dim�q (Vi)∑

j=0

λij

λi0
τ j/fi−1

for 1 < i ≤ r, where the division by fi−1 takes place
inside �qd{τ} from the right.

Application 3.4. If f = 1 − t = 1 − τd, then V1−t =
�qd ⊆ �q and all�q-subspaces of V1−t are τd (= t) stable.
We get the following correspondence between the two
following sets of objects:

1 − τd = (1 + λdτ) · · · (1 + λ1τ),

decompositions of 1 − τd into normalized skew-
polynomials of degree 1, and

0 � V1 � · · · � Vd = V1−t,

maximal flags of �q-subvector spaces in V1−t.
We define

L1−t :=
{
(λ1, . . . , λd) ∈ (�qd)d | 1 − τd

= (1 + λdτ) · · · (1 + λ1τ)
}
.
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4. ARITHMETIC SUBGROUPS OF �qd{τ}
In this section we fix the irreducible polynomial
p := 1 − t ∈ �q[t]. Let f ∈ �q[t] be another irreducible
polynomial not equal to t and 1−t. By abuse of language
we will not distinguish between the irreducible polyno-
mial f and its corresponding valuation. As done in [Sar-
veniazi 07] we define the following groups:

(1) Γ(1) := �qd{τ}[ 1p ]×/Z, where Z = �q[t, 1
p ]× is the

center;

(2) Γ(τ) := Ker(�qd{τ}[ 1p ]×/Z →τ=0
�

×
qd/�×

q );

(3) Γf (τ) := {g ∈ Γ(τ) | g ≡ 1 mod f}. Here g ≡
1 mod f means g − 1 ∈ f �qd{τ}[ 1p ].

According to Proposition 3.2, the prime f splits com-
pletely �qd{τ}, and the composition of the maps

�qd{τ}
[
1
p

]
−→ �qd{τ}

[
1
p

]
⊗�q[t] �q[t]/(f)

∼=−→ �qd{τ}
[
1
p

]
⊗�q [t] �q[t]f ⊗�q [t]f �q[t]f/(f)

∼=−→ Md(�q[t]/(f))

induces a representation of the quotient group

ρ : Γ(τ)/Γf (τ) ↪→
(
�qd{τ}

[
1
p

]
/(f)

)× /
center

∼= PGLd(�q[t]/(f)).

We use the representation ρ to define the set of matri-
ces

Mλ
i := ρ((1 − λiτ) · · · (1 − λ1τ))

for λ = (λ1, . . . , λd) ∈ L1−t and define

Mi := {Mλ
i | λ ∈ L1−t}

for 1 ≤ i < d. Furthermore, we define M :=
⋃d−1

i=1 Mi.
We use these matrices to define the Cayley graph

Hypf (1 − t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
C(PSLd(�q[t]/(f),M),

if 1 − t is a dth power in �q[t]/(f);
C(PGLd(�q[t]/(f),M),

if 1 − t is not a power in �q[t]/(f).

We have the following result [Sarveniazi 07, Theo-
rem 33].

Theorem 4.1. The Cayley graph Hypf (1 − t) is a Ra-
manujan (n1, . . . , nd−1)-regular hypergraph with bounds
(c1, . . . , cd−1), where for 1 ≤ i < d,

(1) ni := number of i-dimensional �q-subspaces of �qd ;

(2) ci :=
(
d
i

)
q(d−i)i/2;

(3) the local labeling function for all vertices x, y of
Hypf (1 − t) is given by

tx(y) :=

{
i iff ∃ g ∈ Mi such that gx = y;
0 otherwise.

5. EXPLICIT CALCULATION OF THE
(13, 13)-REGULAR HYPERGRAPH

In this section we present the results of an explicit calcu-
lation done with the computer algebra programs Magma

and Octave. We set the parameters as small as possible,
which means that q = 3, d = 3, p = 1 − t, f = 1 + t.

We calculate the elements of L1−t:

{

<w,w,w>,<w,w^9,w^3>,<w,w^21,w^19>,

<w,w^25,w^7>,<w^3,w,w^9>,<w^3,w^3,w^3>,

<w^3,w^11,w^5>,<w^3,w^23,w^21>,<w^5,w^3,w^11>,

<w^5,w^5,w^5>,<w^5,2,w^7>,<w^5,w^25,w^23>,

<w^7,w,w^25>,<w^7,w^5,2>,<w^7,w^7,w^7>,

<w^7,w^15,w^9>,<w^9,w^3,w>,<w^9,w^7,w^15>,

<w^9,w^9,w^9>,<w^9,w^17,w^11>,<w^11,w^5,w^3>,

<w^11,w^9,w^17>,<w^11,w^11,w^11>,<w^11,w^19,2>,

<2,w^7,w^5>,<2,w^11,w^19>,<2,2,2>,

<2,w^21,w^15>,<w^15,w^9,w^7>,<w^15,2,w^21>,

<w^15,w^15,w^15>,<w^15,w^23,w^17>,<w^17,w^11,w^9>,

<w^17,w^15,w^23>,<w^17,w^17,w^17>,<w^17,w^25,w^19>,

<w^19,w,w^21>,<w^19,2,w^11>,<w^19,w^17,w^25>,

<w^19,w^19,w^19>,<w^21,w^3,w^23>,<w^21,w^15,2>,

<w^21,w^19,w>,<w^21,w^21,w^21>,<w^23,w^5,w^25>,

<w^23,w^17,w^15>,<w^23,w^21,w^3>,<w^23,w^23,w^23>,

<w^25,w^7,w>,<w^25,w^19,w^17>,<w^25,w^23,w^5>,

<w^25,w^25,w^25>

}

The elements of 1 + λ1τ for (λ1, λ2, λ3) ∈ L1−t:

{

w*tau+1, w^17*tau+1, w^15*tau+1, 2*tau+1,

w^7*tau+1, w^3*tau+1, w^5*tau+1, w^9*tau+1,

w^11*tau+1, w^19*tau+1, w^21*tau+1, w^23*tau+1,

w^25*tau+1

}

The elements of (1 + λ2τ)(1 + λ1τ) for
(λ1, λ2, λ3) ∈ L1−t:

{

w^4*tau^2 +w^14*tau+1, w^14*tau^2+w^10*tau+1,

w^18*tau^2+w^24*tau+1, w^6*tau^2+w^8*tau+1,

w^2*tau^2+w^20*tau+1, w^12*tau^2+w^16*tau+1,

w^24*tau^2+w^6*tau+1, w^10*tau^2+w^22*tau+1,

w^20*tau^2+w^18*tau+1, w^22*tau^2+w^12*tau+1,

tau^2+tau+1, w^8*tau^2+w^2*tau+1,

w^16*tau^2+w^4*tau+1

}
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The elements of M1:

[

[2 2 1] [2 2 2] [1 0 1] [0 0 1] [2 1 2]

[0 2 1] [2 0 2] [2 2 1] [0 1 2] [1 2 0]

[0 0 2], [0 2 1], [0 2 0], [1 2 2], [1 0 2],

[1 2 2] [1 2 0] [0 2 0] [1 2 1] [2 1 1]

[0 2 0] [2 0 1] [0 2 2] [1 1 2] [2 1 2]

[1 2 0], [1 1 2], [2 1 1], [1 0 1], [1 1 0],

[2 0 1] [0 1 0] [2 0 0]

[1 0 0] [2 1 0] [2 2 2]

[2 2 1], [0 2 2], [2 0 2]

]

The elements of M2:

[

[1 2 0] [2 1 0] [1 1 0] [0 2 0] [1 1 2]

[0 1 1] [2 0 0] [1 0 2] [2 0 1] [1 2 2]

[0 0 1], [1 0 1], [2 2 2], [2 2 0], [1 1 0],

[0 1 2] [1 1 1] [0 1 1] [2 2 2] [1 0 0]

[0 1 0] [2 2 1] [1 0 0] [0 2 2] [0 1 2]

[1 0 2], [1 2 0], [2 1 0], [2 1 2], [2 0 1],

[1 2 2] [1 2 1] [2 2 1]

[2 2 0] [0 0 1] [1 2 0]

[2 0 0], [1 1 2], [1 2 2]

]

We calculate the number of elements of PGL(3,�3) =
PSL(3,�3) = 5616 and check that the matrices above
generate this group. Then we calculate the adjacency
matrices A(1), A(2) and calculate the eigenvalues with
the help of Octave. Since A(2) is the transpose of A(1),
we calculate only the eigenvalues of A(1).

Eigenvalues of A(1) (and eigenvalues of A(2)):

# Created by Octave 3.0.0,

# rows: 5616

# columns: 1

(13.00000000000001,0)

(7.126860683941947,0)

(-3.417234277700118,5.507744181041602)

(-3.417234277700118,-5.507744181041602)

...

One sees that 13 is an eigenvalue, as expected. We
check that the upper-bound condition predicted above is
true, that is, c1 = c2 = 9 and

λ(1)(X•) = λ(2)(X•) ≈ 7.126860683942489 ≤ 9.

Finally, we calculate that the graph, regarded as a 26-
regular graph, is not a Ramanujan graph:

λ(X•) ≈ 14.25372136788398 > 2
√

26 − 1 = 10.
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