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Let f(2, 3, 4) denote the smallest integer n such that there exists
a K4-free graph of order n for which any 2-coloring of its edges
yields at least one monochromatic triangle. It is well known that
such a number must exist. For a long time, the best known upper
bound, provided by J. Spencer, was f(2, 3, 4) < 3·109. Recently,
L. Lu announced that f(2, 3, 4) < 10,000. In this note, we will
give a computer-assisted proof showing that f(2, 3, 4) < 1000.
To prove this, we will generalize an idea of Goodman’s, giving
a necessary and sufficient condition for a graph G to yield a
monochromatic triangle for every edge coloring.

1. INTRODUCTION

Let F(r, k, l), k < l, be a family of Kl-free graphs with
the property that if G ∈ F(r, k, l), then every r-coloring
of the edges of G must yield at least one monochro-
matic copy of Kk. It was shown in [Folkman 70] that
F(2, k, l) �= ∅. The general case, i.e., F(r, k, l) �= ∅, r ≥ 2,
was settled in the positive by J. Nešetřil and the second
author [Nešetřil and Rödl 76].

Let f(r, k, l) = minG∈F(r,k,l) |V (G)|. The problem of
determining the numbers f(r, k, l) in general includes the
classical Ramsey numbers and thus is not easy. In this
note we focus on the case r = 2 and k = 3. We will write
G → � and say that G arrows a triangle if every 2-
coloring of G yields a monochromatic triangle. Since the
Ramsey number R(3, 3) is equal to 6, clearly f(2, 3, l) = 6
for l > 6.

The value of f(2, 3, 6) = 8 was determined by R. Gra-
ham [Graham 68], and f(2, 3, 5) = 15 by K. Piwakowski,
S. Radziszowski, and S. Urbański [Piwakowski et al. 99].
In the remaining case, the upper bounds on f(2, 3, 4) ob-
tained in [Folkman 70] and [Nešetřil and Rödl 76] are
extremely large (iterated tower). Consequently, in 1975,
P. Erdős [Erdős 75] offered $100 for proving or disprov-
ing that f(2, 3, 4) < 1010. Applying Goodman’s idea
[Goodman 59] (of counting triangles in a graph and in
its complement) for random graphs, P. Frankl and the
second author [Frankl and Rödl 86] came relatively close
to the desired bound, showing that f(2, 3, 4) < 8× 1011.
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This result was improved by J. Spencer [Spencer 88],
who refined the argument and proved f(2, 3, 4) < 3×109,
giving a positive answer to Erdős’s question. Subse-
quently, F. Chung and R. Graham [Chung and Graham
98] conjectured that f(2, 3, 4) < 106 and offered $100
for a proof or disproof. Recently, L. Lu [Lu 08] showed
that f(2, 3, 4) < 10,000. (A weaker result, f(2, 3, 4) <
1.3× 105, also answering Chung and Graham’s question,
was independently found in an earlier version of this pa-
per [Dudek 08]).

All these proofs are based on a modification of Good-
man’s idea that explores the local property of every ver-
tex neighborhood in a graph (see Corollary 2.2).

In this note, we will present a K4-free graph G941 of
order 941 and give a computer-assisted proof that G941 ∈
F(2, 3, 4). This yields f(2, 3, 4) ≤ 941. To prove it, we
will develop a technique that is a generalization of ideas
from [Goodman 59, Nešetřil and Rödl 76, Spencer 88].
More precisely, for every graph G we will construct a
graph H with the property that G arrows a triangle if
and only if the maxcut of H is less than twice number of
triangles in G.

2. COMPUTER-ASSISTED PROOF OF
f(2, 3, 4) < 1000

2.1 Counting Blue and Red Triangles

In order to find an upper bound on the number f(2, 3, 4),
we will use an idea of [Goodman 59]. For any blue–
red coloring of G, let Tbr(v), Tbb(v), and Trr(v) count
the numbers of triangles containing vertex v for which
two edges incident to v are colored respectively blue–
red, blue–blue, and red–red. Also, let Tblue (Tred) be the
number of blue (red) monochromatic triangles.

The sum
∑

v∈V (G) Tbr(v) counts two times the num-
ber of nonmonochromatic triangles. This is because each
such triangle is counted once for two different vertices.
On the other hand, the sum

∑
v∈V (G)

(
Tbb(v) + Trr(v)

)
counts three times the number of monochromatic trian-
gles and once the number of nonmonochromatic triangles.
Hence,

∑
v∈V (G)

Tbr(v) = 2
∑

v∈V (G)

(
Tbb(v) + Trr(v)

)
(2–1)

− 6
(
Tblue + Tred

)
.

Consequently, G→� if and only if for every edge color-
ing of G,

∑
v∈V (G)

Tbr(v) < 2
∑

v∈V (G)

(
Tbb(v) + Trr(v)

)
. (2–2)

Denote by N(v) the set of neighbors of a vertex v ∈ V
and let G[N(v)] be a subgraph of G induced on N(v).
Moreover, for a given cut C ⊂ V (G), let

MC(G) =
{{x, y} ∈ E(G) | x ∈ C and y ∈ V \ C}

,

and let
M(G) = max

C⊂V
MC(G),

i.e., M(G) is the value corresponding to the solution of
the maxcut problem for G.

Proposition 2.1. [Frankl and Rödl 86, Spencer 88] Let
G = (V,E) be a graph that satisfies

∑
v∈V (G)

M(G[N(v)]) <
2
3

∑
v∈V (G)

∣∣E(G[N(v)])
∣∣. (2–3)

Then G→�.

An easy consequence of Proposition 2.1 is the following
corollary.

Corollary 2.2. Let G = (V,E) be a graph that satisfies

M(G[N(v)]) <
2
3

∣∣E(G[N(v)])
∣∣ (2–4)

for every vertex v ∈ V (G). Then G→�.

Note that in particular, Corollary 2.2 gives a sufficient
condition for a K4-free graph to be in F(2, 3, 4). We
will extend this idea and give a necessary and sufficient
condition for a graphG to yield a monochromatic triangle
for every edge coloring. More precisely, for every graph
G = (V,E) with t� = t�(G) triangles, we construct a
graph H with |E| vertices such that G → � if and only
if the maxcut of H is less than 2t�.

Let G be a graph with the vertex set V (G) =
{1, 2, . . . , n}. For every vertex i ∈ V (G), let Gi be a
graph with

V (Gi) =
{{i, j} | j ∈ N(i)

}

and

E(Gi) =
{{{i, j}, {i, k}} | ijk is a triangle in G

}
.

Clearly, Gi is isomorphic to the subgraph G[N(i)] of G
induced on the neighborhood N(i).

Now we define a graph H as follows. Let

V (H) = E(G)
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and
E(H) =

⋃
i∈V (G)

E(Gi).

In other words, H is a graph whose set of vertices is the
set of edges of G such that e and f are adjacent in H if e
and f belong to a triangle in G. Clearly |V (H)| = |E(G)|
and |E(H)| = 3t�(G). Moreover, observe that there is
a one-to-one correspondence between blue–red colorings
of edges of G and bipartitions of vertices of H. Let C
be a cut with the partition V (H) = B ∪ R. Since the
edges betweenB andR correspond to nonmonochromatic
triangles in G, we conclude that the value corresponding
to the cut C equals

MC(H) =
∑

i∈V (G)

Tbr(i). (2–5)

Counting the edges that lie entirely in B or in R yields
∑

i∈V (G)

(
Tbb(i) + Trr(i)

)
= |E(H)| −MC(H) (2–6)

=
(
3t� −MC(H)

)
.

By (2–1) we have that
∑

i∈V (G)

Tbr(i) ≤ 2
∑

i∈V (G)

(
Tbb(i) + Trr(i)

)
,

and by (2–2), G→ � if and only if the strict inequality
holds for every edge coloring of G.

Consequently, (2–5) and (2–6) yield that G → � if
and only if

MC(H) < 2
(
3t� −MC(H)

)

for every cut of H. Consequently, we have the following
theorem.

Theorem 2.3. Let G be a graph. Then there exists a
graph H of order |E(G)| with M(H) ≤ 2t�(G) such that
G→� if and only if M(H) < 2t�(G).

2.2 Approximating the Maxcut

Since Theorem 2.3 requires an assumption regarding the
maxcut of the graph H, we will approximate it with
Proposition 2.4 below. The proof of this proposition for
regular graphs can be found in [Krivelevich and Sudakov
06]. Along the lines of their proof one can obtain the
following easy generalization, which we present here.

Proposition 2.4. Let H = (V,E) be a graph of order n.
Let λmin = λmin(H) be the smallest eigenvalue of the

adjacency matrix of H. Then

M(H) ≤ |E(H)|
2

− λmin|V (H)|
4

.

Proof: Let A = (aij) be the adjacency matrix of H =
(V,E) with average degree d and V = {1, 2, . . . , n}. Let
x = (x1, . . . , xn) be any vector with coordinates ±1.
Then

∑
{i,j}∈E

(xi − xj)2 =
n∑

i=1

dix
2
i −

∑
i�=j

aijxixj

=
n∑

i=1

di −
∑
i�=j

aijxixj

= nd− xTAx.

By the Rayleigh–Ritz ratio (see, e.g., [Horn and Johnson
85, Theorem 4.2.2]), for any vector z ∈ Rn, we have
zTAz ≥ λmin‖z‖2, where by ‖·‖ we denote the Euclidean
norm. Therefore,

∑
{i,j}∈E

(xi − xj)2 = nd− xTAx

≤ nd− λmin‖x‖2 (2–7)

= nd− λminn.

Let V = V1∪V2 be an arbitrary partition of V into two
disjoint subsets and let e(V1, V2) be the number of edges
in the bipartite subgraph of H with bipartition (V1, V2).
For every vertex i ∈ V , set xi = 1 if i ∈ V1 and xi = −1 if
i ∈ V2. Note that for every edge {i, j} ofH, (xi−xj)2 = 4
if this edge has its endpoints in the distinct parts of the
above partition and is zero otherwise. Now using (2–7),
we conclude that

e(V1, V2) =
1
4

∑
{i,j}∈E

(xi − xj)2

≤ 1
4
(dn− λminn)

=
|E|
2
− λmin|V |

4
,

which completes the proof.

2.3 Numerical Results

Let G be a circulant graph defined as follows:

V (G941) = Z941

and

E(G941) =
{{x, y} | x− y = α5 mod 941

}
,
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i.e., the set of edges consists of those pairs of vertices x
and y that differ by a fifth residue of 941. Equivalently,

V (G941) = {0, 1, . . . , 940}

and

E(G941) =
{{x, y} ∣∣ |x− y| ∈ D or 941− |x− y| ∈ D}

,

where D is a distance set defined by

D = {1, 12, 15, 32, 34, 37, 40, 42, 44, 46, 50, 52, 54, 55, 65, 73, 83, 93,

97, 112, 114, 116, 118, 119, 122, 123, 131, 140, 142, 144, 145,

147, 153, 154, 161, 167, 172, 175, 178, 180, 182, 189, 191, 198,

202, 207, 215, 218, 223, 225, 234, 243, 248, 251, 254, 278, 281,

282, 293, 302, 304, 310, 311, 317, 318, 323, 328, 339, 341, 380,

384, 386, 389, 392, 399, 402, 403, 406, 408, 410, 413, 418, 419,

427, 428, 431, 437, 444, 447, 451, 454, 461, 466, 467}.

One can check that G941 is a K4-free, 188-regular
graph with |V (G941)| = 941, |E(G941)| = 88,454, and
t�(G941) = 707,632. Then, the graphH corresponding to
G941 in Theorem 2.3 is 48-regular with |V (H)| = 88,454,
|E(H)| = 3t�(G941) = 2,122,896. Moreover, using in
Matlab the function eigs for real, symmetric, and
sparse matrices with the option sa, we get λmin(H) ≥
−15.196. Thus, Proposition 2.4 implies

M(H) ≤ |E(H)|
2

− λmin(H)|V (H)|
4

≤ 1,397,484.746

< 1,415,264 = 2t�(G941).

Consequently, Theorem 2.3 yields the main result of this
note.

Theorem 2.5. The Folkman number f(2, 3, 4) is less than
or equal to 941.

Remark 2.6. For given numbers n and r, let G(n, r) be a
circulant graph with vertex set

V (G(n, r)) = Zn

and edge set

E(G(n, r)) =
{{x, y} | x �= y and x− y = αr mod n

}
.

Note that G(n, r) is well defined, i.e., the graph is undi-
rected if −1 is an rth residue of n. In particular,
G941 = G(941, 5). By exhaustive search we found that
G941 is the smallest graph among all graphs G(n, r) for
which our technique works that belongs to the family
F(2, 3, 4).

G(n, r) ρ

G(127, 3) 0.030884
G(281, 4) 0.042306
G(313, 4) 0.040612
G(337, 4) 0.034517
G(353, 4) 0.037667
G(457, 4) 0.030386
G(541, 5) 0.049676
G(571, 5) 0.044144
G(701, 5) 0.029507
G(769, 6) 0.044195
G(937, 6) 0.048529
G(941, 5) −0.012728

TABLE 1. Candidates for membership and one member
of F(2, 3, 4).

For a given K4-free graph G(n, r), let H be a graph
that corresponds to G(n, r) from Theorem 2.3. Let
α = |E(H)|

2 − λmin(H)|V (H)|
4 and β = 2t�(G(n, r)). In

view of Theorem 2.3 and Proposition 2.4, if α < β, then
G(n, r) → �, and so G(n, r) ∈ F(2, 3, 4). Obviously the
converse is not true, since α is only an approximation on
M(H). We define a parameter ρ = α−β

α to get an esti-
mate of how “close” G(n, r) is to the property F(2, 3, 4).
In Table 1 we have listed all (up to isomorphism) K4-free
graphs G(n, r) with n ≤ 941 and ρ < 0.05.

3. CONCLUDING REMARKS

Recently, S. P. Radziszowski and Xu Xiaodong sug-
gested [Radziszowski and Xiaodong 07] that the graph
G127 = G(127, 3), considered in [Hill and Irving 82],
belongs to the family F(2, 3, 4). One can check that
t�(G127) = 9779. Let H be a graph from Theorem
2.3 that corresponds to G127. Using a semidefinite pro-
gram with polyhedral relaxations [Rendl et al. 07a, Rendl
et al. 07b], we obtained an upper bound on M(H) ≤
19558 = 2t�(G127). Note that 2t�(G127) is also the
straightforward upper bound from Theorem 2.3. This co-
incidence between numerical and theoretical bounds may
suggest that G127 � �. However, the question whether
G127 ∈ F(2, 3, 4) remains open.

A related interesting question is to find a reasonable
upper bound for f(3, 3, 4). We tried to find another argu-
ment that would ensure the existence of relatively small
K4-free graphs. Such a construction for 2-colors was con-
sidered in an earlier version of our paper [Dudek 08].
The existence of a reasonably small graph G that yields
a monochromatic triangle under every 3-coloring is an
open question that we are currently trying to address.
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Graphs: His Legacy of Unsolved Problems. Wellesley: A K
Peters, 1998.

[Dudek 08] A. Dudek. “Problems in Extremal Combina-
torics.” PhD thesis, Emory University, 2008.
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