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In this note | describe a computational study of the successive
maxima of the relative sum-of-divisors function p(n) := o(n)/n.
These maxima occur at superabundant and colossally abundant
numbers, and I also study the density of these numbers. The val-
ues are compared with the known maximal order e” log log (n);
theorems of Robin and Lagarias relate these data to a condition
equivalent to the Riemann hypothesis. It is thus interesting to
see how close these conditions come to being violated.

1. INTRODUCTION

Many conjectures equivalent to the Riemann hypothesis
(RH) are known [Conrey 05]. Let us refer to an attempt
to disprove the Riemann hypothesis by a purely numeri-
cal computation as an attack. Some may regard the fail-
ure of an attack as evidence for the truth of the Riemann
hypothesis. Two of the most extensive attacks attempted
involve:

1. explicit computations of zeros of the Riemann zeta
function: the zetagrid project [Wedeniwski 05] has
verified that the first 1012 zeros have real part i,
and Gourdon [Gourdon 04] has verified 10! zeros;

2. the Turan inequalities, on which Varga and col-
leagues have based an attack [Norfolk et al. 92].

It is interesting to speculate which of these attacks is the
stronger, in the sense of having the largest “evidence-
to-computation-time” ratio. In general, one would like
to minimize the amount of floating-point computation
(which always entails difficult round-off error analysis) in
favor of as much exact calculation with integers as possi-
ble. Thus, it is worthwhile to look for other approaches.
Robin [Robin 84] has shown that

RH < # < ¢ loglog(n) for n>5040, (R)

where o(n) is the sum of divisors of the positive inte-
ger n. Building on this, Lagarias [Lagarias 02] showed
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the equivalence of the Riemann hypothesis to a condi-
tion on harmonic sums H,, := Y ., 1/i, namely

RH <= o(n) < H, + exp(H,)log(H,) for all n. (L)

These inequalities suggest an attack: to disprove the RH,
we need to find n with large relative abundance p(n) :=
o(n)/n and that violate one or other of these inequalities.
How difficult might this be? We can get a clue from
another theorem of Robin [Robin 84]:

Theorem 1.1. Independently of the RH, except for n =
1,2,12,

% — €7 loglog (12)) log log (12)
loglog (n)

p(n) < €7 loglog (n) + (
(1-1)

The numerator in the last term is about 0.6482. Note
also that it is known that limsup,, .. p(n)/loglog (n) =
€7. Thus, possible violations of inequality (R) must have
p(n) exceeding €7 loglog (n) in the small gap allowed by
Theorem 1.1.

2. ABUNDANT NUMBERS

The numbers called perfect in classical number theory
have o(n) = 2n, so p(n) = 2. Abundant numbers have
p(n) > 2, and t-abundant numbers have p(n) > ¢. Some
properties of these have been studied in [Davenport 33,
Deléglise 98].

The study of numbers with p(n) large in various other
senses was initiated by Ramanujan [Ramanujan 15, Ra-
manujan 97| and further developed by Alaoglu, Erdds,
and Nicolas [Alaoglu and Erdds 44, Erdés and Nicolas
75]. A positive integer n is called superabundant (SA) if
p(k) < p(n) for all k < n.

Here is a summary of some known facts about SA
numbers, upon which I will later base an algorithm:

1. The exponent sequence does not increase: if n =
292 3% ... m%m is SA, where m is the maximal prime
factor, then as > agz = -+ > a,.

2. All exponents are determined within a range +1
by the first exponent: if 1 < j < ¢ < m, then
|a; — [a;log; j]| < 1.

3. The last exponent is unity except in two cases: a,, =
1 unless n =4 or 36.

4. The first exponent provides an upper bound for all
exponents: for i > 2 we have % < 2922,

A certain subset of the SA numbers allows an even
more precise characterization: n is colossally abundant
(CA) if there exists € > 0 such that

a(n) - o(k)

nl-‘,—s = kl—l—e

for all k£ > 1. (2-1)

CA  numbers viewed as maximizers of
log(o(n)/n) — elog (n) for fixed €; thus, we penalize n
that are too large. Robin [Robin 84] has shown that the
structure of the set of CA numbers is determined by the
following properties: We first form the set E of critical €
values,

1
Ep: U {logp<1+al>},
a=1,2,3,... Zi:lp
E:=|JE,
P

and then label the elements of E in decreasing order:
€1 = log, (%) > € = log, (%) > e3 = logy (%) > e
We then have the following theorem (paraphrased from
[Robin 84, p. 190]:

may be

(2-2)

Theorem 2.1.

(i) Ife ¢ E, then o(n)/n'* has a unique mazimum at-
tained at the number ne with prime exponents given

by
1+e
P —1
ap(ﬁ) = {logp (]f—l)J — 1. (2*3)
(ii) If € satisfies €;41 < € < ¢ fori =1,2,3,..., then
ne 1s constant and we call it N;. We have N1 =
2, No =6, ....

(iii) If the sets E, are disjoint (which is likely, but not
certainly known), then the set of CA numbers is
equal to the set of N;, i =1,2,3,.... If this is the
case, then o(n)/n'*¢ attains its mazimum at the
two points N; and Njyq.

(iv) If the sets E, are not disjoint, then for each €; €
E, N E,, o(n)/n'* attains its mazimum at the
four points N;, ¢N;, *N; and N;11 = qrN;.

Finally, Robin has proven that if the Riemann hypoth-
esis is false, then there will be a counterexample n (vi-
olating the inequality (R)) that is a CA number. There
might also be SA counterexamples. We could also try
to find violations of Lagarias’s inequality (L), but this
would involve more difficult estimation (using asymptotic
expansions) of the harmonic sum.



Thus, my procedure will simply be as follows: I com-
pute successively larger CA numbers and check Robin’s
inequality for each. As a further check, I compute some
SA numbers, but these cause extra difficulties to be men-
tioned below.

3. ALGORITHMS

The computation of CA and SA numbers allows a very
compact representation: since the prime exponents form
a slowly decreasing sequence, with a very long tail of
ones, we may just store for each exponent the number
of primes with that exponent. In this way I was able
to reach CA numbers as large as 1010, The required
quantities for inequality testing, log(n) and p(n), are
computed directly from this representation using high-
precision floating-point arithmetic. For this I used the
mpfr library [Hanrot et al. 04].

3.1 Colossally Abundant Numbers

My algorithm to compute colossally abundant numbers
is as follows: I keep a list z of records, each containing
a prime p, log p, its exponent a, and a critical €., which
is the value of € at which this exponent will next change
(as € is decreased). I also maintain a variable ¢, which
counts the number of exponents equal to unity.
We first initialize:
e Fix 0 < € < 1. Then, for each prime p, compute
a= {logp (p:::l)J —1, and if @ > 2, store it in the
z list. If @ = 1, just increment the variable ¢. Stop
when a = 0. During this p loop, also update log(n)

and p(n), using p(n) = [T, 2.

Now each step of the main loop consists in determining
which of the possible events A, B, or C occurs:

e A: A new prime (with exponent 1) is added, so we
increment ¢. This happens when €cy; := log, (1 + p)
is maximal, where p is the new prime.

e B: The first prime with exponent 1 has its exponent
raised to 2. This happens when

p+1+1
€inc :zlogp< p+1 P>

is maximal, where p is the prime in question.

e C: A prime with exponent greater than or equal to
2 has its exponent incremented. This happens when

1 _pa—i-l
€max = lng <ppa+1>
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is maximal, where p is the prime in question and a
its exponent.

This algorithm will correctly compute all CA numbers in
sequence, as long as the floating-point arithmetic is accu-
rate enough to ensure that all tests are decided correctly.
In all tests I computed primes using Dan Bernstein’s ver-
sion of Atkin’s sieve [Bernstein 99].

3.2 Superabundant Numbers

In contrast, to my knowledge, no algorithm for comput-
ing all SA numbers up to a given maximum is known, al-
though it is possible that a method of Robin for a related
problem might be adapted [Robin 82]. T have therefore
used the following method, which generates a list an ini-
tial portion of which contains only SA numbers (and all
SA numbers up to the maximum of the initial portion),
but it is not possible to determine when the first incorrect
entry in the list occurs.

The algorithm is as follows:
292 a9 = 1,2,3,..., we recursively extend the list of
prime factors with every possible exponent a,, subject
to the conditions as > a3 > -+ = am; if 1 < j < i < m,
then |a; — a;log; j]| < 1; and i% < 29272 § > 2. Each
extension satisfying all these conditions is a candidate
SA number. When no more extensions are possible, we
move to the next power of two. After reaching the largest
desired power of two, we check the list to remove non-SA

numbers by sorting it and keeping only n corresponding
214

For each initial term

to successive maxima of p(n). I was able to reach
this way, at which n is approximately 10107, Tt is easy
to determine that the smallest SA candidate divisible by
2! has log(n) > 154, so my SA data up to at least this

n will be correct.

4. RESULTS

Figure 1 shows that loglog (n) at CA numbers n appears
to be asymptotically an affine function of loge.

This may be verified by some asymptotic estimates:
for fixed small positive €, we have that the maximal prime
m(e) in the colossally abundant number associated with
e satisfies m(e) ~ ﬁgl(e). This is obtained from equa-
tion (2-3) by solving

1+e
pTe—1
1 — | =2.
o ( pe—1 )
Similarly, the number of distinct primes k(e) satisfies
k(e) ~ 1/(elog?(¢e)). From bounds given in [Robin 84],
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FIGURE 1. The dependence of the colossally abundant num-
ber n(e) on e. The straight line confirms the asymptotic
affine dependence of loglog (n) on loge.

we have

Z logp <logn(e) < Z log p + Z as log p,
p<m(e) p<m(e) P2
(4-1)

21 It follows that

where 29 < 2z and ay < logy “5e—~-
n(e) ~ —1/(elog(e)).

Using the computed data on SA and CA numbers,
we may estimate their density. Defining Q(z) to be the
number of SA numbers less than or equal to x, we see
the graph of Figure 2(top). It is known from [Erdés and
Nicolas 75] that

lim inf 710g(Q(x)

~ 1.1042;
n—oc loglog () ’

>1+E
- 48

my data gives about 1.2 for the left-hand side ratio at
loglog (n) = 5. For CA numbers no comparable results
are known; my data is shown in Figure 2(bottom).

Defining d(n) as the difference between the right- and
left-hand sides of Robin’s inequality,

d(n) := e loglog (n) — #

(4-2)
(so that 6 < 0 implies that the Riemann hypothesis
is false), we see the behavior in Figure 3 (top). This
suggests that log d is asymptotically an affine function of
z = loglog (n), with slope close to —3. We may subtract
a line of this slope in order to study more closely the

oscillations. There are also fast oscillations as shown
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FIGURE 2. Cumulative number of SA numbers (top). Den-
sity of CA numbers (bottom).

in Figure 4 (top). This shows the difference between

log§(n) and a conjectured best-fit line a — /2, where
x := loglog (n).

Considering now superabundant numbers, I observe
the behavior shown in Figure 4 (bottom). It appears
that SA numbers come almost as close to minimizing &
as do CA numbers.

On the basis of these data, we are led to a final con-
jecture:

Conjecture 4.1. Assuming the Riemann hypothesis, then
for colossally abundant numbers we have

log §(n) ~ f% loglog (n) — o(loglog (n)) (4-3)

asn — 0.
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FIGURE 3. Dependence of logd(n) on n at CA numbers
(top). Deviation of log ¢ from a best-fit line at CA numbers
(bottom).

5. CONCLUSION

The most surprising observation is that the oscillations in
6 are so small. There is no sign of the near-violations of
the Riemann hypothesis that are seen in (-zero calcula-
tions. The present calculations were done on a Pentium 4
and took several days using mpfr set at 100-bit precision.
Some calculations were verified with interval arithmetic.
The need to use floating-point software creates difficul-
ties: not only is there a speed penalty, but also there is
really a need for some kind of dynamic precision control.
It is not easy to see how to implement this (perhaps some
form of exact real arithmetic [Briggs 06]), but if it could
be achieved, a much longer run would be possible and
should provide worthwhile new data. The limiting factor
in the current implementation is the storage needed for
internal data structures.
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FIGURE 4. Dependence of 6 on n at CA numbers (top); log §
at CA numbers (lower line and circles) and at SA numbers
(upper line). The SA number data are probably incorrect
past about loglog (n) = 10 (bottom).
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