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We present an algorithm for the computation of logarithmic �-
class groups of number fields. Our principal motivation is the
effective determination of the �-rank of the wild kernel in the
K-theory of number fields.

1. INTRODUCTION

A new invariant of number fields, called group of loga-
rithmic classes, was introduced by J. -F. Jaulent in 1994
[Jaulent 94]. The interest in the arithmetic of logarithmic
classes comes from its applicability in K-Theory. Indeed,
this new group of classes is revealed to be mysteriously re-
lated to the wild kernel in the K-Theory of number fields.
The new approach to the wild kernel is very attractive
since the arithmetic of logarithmic classes is very effi-
cient. Thus it provides an algorithmic and original study
of the wild kernel. An early algorithm for the compu-
tation of the group of logarithmic classes of a number
field F was developed by F. Diaz y Diaz and F. Soriano
in 1999 [Diaz y Diaz and Soriano 99]. We present a new
and significantly better performing algorithm, which also
eliminates the restriction to Galois extensions.

Let � be a prime number. If a number field F contains
the 2�th roots of unity, then the wild kernel of F and its
logarithmic �-class group have the same �-rank. If F does
not contain the 2�th roots of unity, the arithmetic of the
logarithmic classes still yields the �-rank of the the wild
kernel. More precisely:

• If � is odd [Jaulent and Soriano 01, Soriano 00] we
consider F ′ := F (ζ�), where ζ� is the �th root of
unity, and use classic techniques from the theory of
semisimple algebras.

• If � = 2 [Jaulent and Soriano-Gafiuk 04] we intro-
duce a new group, which we call the �-group of the
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positive divisor classes and which can be constructed
from the �-group of logarithmic classes.

In the present article we consider the general situation
where F is a number field which does not necessarily
contain the 2�th roots of unity.

2. THE THEORETICAL BACKGROUND

This section is devoted to the introduction of the main
notions of logarithmic arithmetic. We also review the
facts that are of interest for our purpose. We do not
attempt to give a fully detailed account of the logarithmic
language. Most proofs may be found in [Jaulent 94, pages
303–313].

2.1 Review of the Main Logarithmic Objects

For any number field F , let JF be the �-adified group of
idèles of F , i.e., the restricted product

JF =
res∏
p

Rp

of the �-adic compactifications Rp = lim←− F×
p /F×

p
�n

of
the multiplicative groups of the completions of F at each
p. For each finite place p the subgroup Ũp of Rp of the
cyclotomic norms (that is to say the elements ofRp which
are norms at any finite step of the local cyclotomic Z�-
extension F c

p/Fp) will be called the group of logarithmic
units of Fp. The product

ŨF =
∏
p

Ũp

is called the group of idelic logarithmic units; it happens
to be the kernel of the logarithmic valuations

ṽp | x �→ −
Log� (NFp/Qp

(x))
degF p

,

defined on the Rp and Z�-valued. These are obtained
by taking the Iwasawa logarithm of the norm of x in the
local extension Fp/Qp with a normalization factor degF p

whose precise definition is given in the next subsection.
The quotient D�F = JF /ŨF is the �-group of loga-

rithmic divisors of F ; via the logarithmic valuations ṽp,
it may be identified with the free Z�-module generated
by the prime ideals of F

D�F = JF /ŨF = ⊕p Z� p.

The degree of a logarithmic divisor d =
∑

p np p is then
defined by

degF (
∑

p

np p) =
∑

p

np degF p,

inducing a Z�-valued Z�-linear map on the class group of
logarithmic divisors. The logarithmic divisors of degree
zero form a subgroup of D�F denoted by

D̃�F = { d ∈ D�F | degF d = 0 }.
The image of the map d̃ivF defined via the set of log-

arithmic valuations from the principal idèle subgroup

RF = Z� ⊗Z F×

of JF to D̃�F is a subgroup denoted by P̃�F , which will
be referred to as the subgroup of principal logarithmic
divisors. The quotient

C̃�F = D̃�F /P̃�F

is, by definition, the �-group of logarithmic classes of F .
And the kernel

ẼF = RF ∩ ŨF

of the morphism d̃ivF from RF in D̃�F is the group of
global logarithmic units.

2.2 Logarithmic Ramification and �-adic Degrees

Next we review the basic notions of the logarithmic ram-
ification, which mimic, as a rule, the classical ones.

Let L/F be any finite extension of number fields. Let
p be a prime number. Denote by Q̂c

p the cyclotomic Ẑ-
extensions of Qp, that is to say the compositum of all
cyclotomic Zq-extensions of Qp on all prime numbers q.
Let p be a prime of F above (p) and P a prime of L

above p. The logarithmic ramification (respectively iner-
tia) index ẽ(LP/Fp) (respectively f̃(LP/Fp)) is defined
to be the relative degree

ẽ(LP/Fp) = [LP : LP ∩ Q̂c
pFp]

(respectively f̃(LP/Fp) = [LP ∩ Q̂c
pFp : Fp]).

As a consequence, L/F is logarithmically unramified at
P, that is to say ẽ(LP/Fp) = 1, if and only if LP is
contained in the cyclotomic extension of Fp. Moreover,
for any q �= p the classical and the logarithmic indexes
have the same q-part (see Proposition 3.2). Hence they
are equal as soon as p � [Fp : Qp].

As usual, in the special case L/F = K/Q, the absolute
logarithmic indexes of a finite place p of K over the prime
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p are just denoted by ẽp and f̃p. With these notations,
the �-adic degree of p is defined by the formula:

degK p = f̃p deg� p with

deg� p =




Log� p for p �= �;

� for p = � �= 2;

4 for p = � = 2.

The extension and norm maps between groups of divi-
sors, denoted by ιL/F and NL/F respectively, have their
logarithmic counterparts, ι̃L/F and ÑL/F respectively.
To be more explicit, ι̃L/F is defined on every finite place
p of F by

ι̃L/F (p) =
∑
P|p

ẽLP/Fp
P,

while ÑL/F is defined on all P lying above p by

ÑL/F (P) = f̃LP/Fp
p.

These applications are compatible with the usual exten-
sion and norm maps defined between RL and RF , in the
sense that they sit inside the commutative diagrams.

RL

�divL−−−−→ D̃�L
degL−−−−→ Z��NL/F

� �NL/F

∥∥∥ and

RF

�divF−−−−→ D̃�F
degF−−−−→ Z�

RL

�divL−−−−→ D̃�L
degL−−−−→ Z���ιL/F

��ιL/F

�[L:F ]

RF

�divF−−−−→ D̃�F
degF−−−−→ Z�

When L/F is a Galois extension with Galois group
Gal(L/F ), one deduces from the very definitions the un-
surprising and obvious properties:

ÑL/F ◦ ι̃L/F = [L : F ] and

ι̃L/F ◦ ÑL/F =
∑

σ∈Gal(L/F )

σ.

2.3 Ideal Theoretic Description of Logarithmic Classes

By the weak density theorem every class in JF /ŨFRF

may be represented by an idèle with trivial components
at the �-adic places, that is to say that every class in
D�F /P�F comes from a �-divisor d =

∑
p�� αp p.

The canonical map from RF to D�F maps a ∈ RF to
d̃ivF (a) =

∑
p ṽp(a)p. Now for each finite place p � �, the

quotient ẽp/ep = fp/f̃p of the classical and logarithmi-
cal indexes associated with p is a �-adic unit (Proposi-
tion 3.2), say λp (which is 1 for almost all p), and one
has the identity,

ṽp = λpvp

between the logarithmic and the classical valuations. So
every �-divisor d comes from a �-ideal a by the formula

a =
∏
p��

pαp �→ dF (a) =
∑
p��

λp αp p.

This gives the following ideal theoretic description of
logarithmic classes.

Definition and Proposition 2.1. Let

IdF = {a =
∏
p��

pαp}

be the group of �-ideals,

ĨdF = {a ∈ IdF |degF dF (a) = 0}

be the subgroup of �-ideals of degree 0, and

P̃rF = {
∏
p��

pvp(a)|ṽp(a) = 0 ∀p | �}

the subgroup of principal �-ideals generated by principal
idèles a having logarithmic valuations 0 at every �-adic
place. Then one has

C̃�F � ĨdF /P̃rF .

Proof: As explained above, the surjectivity follows from
the weak approximation theorem. So let us consider the
kernel of the canonical map φF : ĨdF �→ C̃�F . Clearly,
we have ker φF = {a ∈ ĨdF | ∃a ∈ RF dF (a) =
d̃ivF (a)}. The condition dF (a) = d̃ivF (a) with a ∈ ĨdF

implies ṽp(a) = 0 ∀p | �; and thus (a) ∈ P̃rF as expected.

The generalized Gross conjecture (for the field F and
the prime �) asserts that the logarithmic class group C̃�F

is finite (cf. [Jaulent 94]). This conjecture, which is a
consequence of the p-adic Schanuel conjecture was only
proved in the abelian case and a few others (cf. [Federer
and Gross 81, Jaulent 02b]). Nevertheless, since C̃�F is
a Z�-module of finite type (by the �-adic class field the-
ory), the Gross conjecture just claims the existence of an
integer m such that �m kills the logarithmic class group.
In practice it is rather easy to compute such an exponent
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m (when the classical invariants of the number field are
known); this gives rise to a more suitable description of
C̃�F in order to carry out numerical computations.

Proposition 2.2. Assume the integer m to be large enough
such that the logarithmic class group C̃�F is annihilated
by �m. Thus introduce the group

Ĩd(�m)

F = {a ∈ IdF |degF dF (a) ∈ �m degF D�F }
= ĨdF Id�m

F .

Thus, denoting P̃r
(�m)

F = P̃rF Ĩd
�m

F , one has: C̃�F �
Ĩd(�m)

F /P̃r
(�m)

F .

Proof: The hypothesis gives Ĩd�m

F ⊂ P̃rF and by a
straightforward calculation we have

Ĩd(�m)

F /P̃r
(�m)

F = ĨdFId�m

/P̃rFId�m

� ĨdF /(ĨdF ∩ P̃rFId�m

)

� ĨdF /P̃rF Ĩd
�m

F

= ĨdF /P̃rF � C̃�F .

Remark 2.3. A lower bound for m which will be required
for a sufficient precision of the p-adic calculations will be
given after Lemma 3.9.

3. THE ALGORITHMS

Throughout this section a finite abelian group G is pre-
sented by a column vector g ∈ Gm, whose entries form
a system of generators for G, and by a matrix of re-
lations M ∈ Zn×m of rank m, such that vT g = 0 for
v ∈ Zm if and only if vT is an integral linear combination
of the rows of M . We note that for every a ∈ G there
is a v ∈ Zm satisfying a = vT g. If g1, . . . , gm is a basis
of G, M is usually a diagonal matrix. Algorithms for
calculations with finite abelian groups can be found in
[Cohen 00]. If G is a multiplicative abelian group, then
vT g is an abbreviation for gv1

1 · · · gvm
m .

One of the steps in the computation of the logarithmic
class group is the computation of the ideal class group
of a number field. Algorithms for this can be found in
[Cohen 93, Hess 96, Pohst and Zassenhaus 89]. One tool
used in these algorithms is the s-units, which we will also
use directly in our algorithm.

Definition 3.1. (s-units.) Let s be an ideal of a number
field F . We call the group{

α ∈ F× | vp(α) = 0 for all p � s
}

the s-units of F .

For this section let F be a fixed number field. We
denote the ideal class group of F by C� = C�F . We also
write C̃� for C̃�F , D̃� for D̃�F , and so on.

3.1 Computing degF (p) and ṽp(·)
We describe how invariants of the logarithmic objects can
be computed. Some of the tools presented here also are
applied directly in the computation of the logarithmic
class group.

Definition and Proposition 3.2. Let p be a prime number.
Let F be a number field. Let p be a prime ideal of F over
p. For a ∈ Q×

p
∼= pZ × F×

p × (1 + 2pZp) denote by 〈a〉 the
projection of a to (1 + 2pZp). Let Fp be the completion
of F with respect to p. For α ∈ F define

hp(α) :=
Logp〈NFp/Qp

(α)〉
[Fp : Qp] · degp p

.

The p-part of the logarithmic ramification index ẽp is
[hp(F×

p ) : Zp]. For all primes q with q �= p the q-part
of ẽp is the q-part of the ramification index ep of p.

For a proof see [Jaulent 94].
In Section 2.2 we have seen that the degree degF (p) of

a place p can be computed as degF (p) = f̃p deg� p. From
Section 2.3 we know that ẽpf̃p = epfp. We have

ṽp(x) = −Log�(NFp/Qp
(x))

degF (p)
.

Thus we can concentrate on the computation of ẽp for
which we need the completion Fp of F at p and generators
of the unit group F×

p .
The Round Four Algorithm was originally conceived

as an algorithm for computing integral bases of num-
ber fields. It can be applied in three different ways in
the computation of logarithmic classgroups. Firstly, it is
used for factoring ideals over number fields; secondly, it
returns generating polynomials of completions of number
fields; and thirdly, it can be used for determining integral
bases of maximal orders.

Let Φ(x) be a monic, squarefree polynomial over Zp.
The algorithm for factoring polynomials over local fields
as described in [Pauli 01] returns:
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• a factorization Φ(x) = Φ1(x) · · · · ·Φs(x) of Φ(x) into
irreducible factors Φi(x) (1 ≤ i ≤ s) over Zp,

• the inertia degrees ei and ramification indexes fi of
the extensions of Qp given by the Φi(x) (1 ≤ i ≤ s),
and

• two element certificates (Γi(x),Πi(x)) with
Γi(x),Πi(x) ∈ F [x] such that vi

(
Πi(αi)

)
= 1/ei

and [Fp(Γi(αi)) : Fp] = fi where αi is a root of
Φi(x) in F [x]/(Φi(x)), and vi is an extension of the
exponential valuation vp of Qp to Qp[x]/(Φi(x))
with vi|Qp

= vp.

The factorization algorithm in [Ford et al. 02] returns
the certificates combined in one polynomial for each ir-
reducible factor. The data returned by these algorithms
can be applied in several ways.

• An integral basis of the extension of Qp generated
by a root αi of Φi(x) is given by the elements
Γi(αi)hΠi(αi)j with 0 ≤ h ≤ fi and 0 ≤ j ≤ ei.
The local integral bases can be combined to a global
integral basis for the extension of Q generated by
Φ(x).

• For the computation of ṽp we need to compute the
norm of an element in the completions of F . The
completions of F are given by the irreducible factors
of the generating polynomial of F over Q.

Lemma 3.3. (Ideal Factorization.) Let Φ(x) ∈ Zp[x]
be irreducible over Q. Let Φ1(x), . . . ,Φs(x) ∈ Zp[x] be
the irreducible factors of Φ(x) with two element certifi-
cates (Γi(x),Πi(x)). Denote by ei the ramification in-
dexes of the extensions of Qp given by the Φi(x) (1 ≤ i ≤
s). The Chinese Remainder Theorem gives polynomials
Θ1(x), . . . ,Θs(x) ∈ Qp[x] with

Θi(x) ≡ Πi(x) mod Φi(x),

Θi(x) ≡ 1 mod
∏

j �=i Φj(x).

Let L := Q(α) where α is a root of Φ(x) in C. Then

(p) =
(
p,Θ1(α)

)e1 · · · · · (p,Θs(α)
)es

is a factorization of (p) into prime ideals.

In order to compute [hp(F×
p ) : Zp] it is sufficient to

compute the image of a set of generators of F×
p . Algo-

rithms for this task were recently developed with respect
to the computation of ray class groups of number fields

and function fields [Cohen 00, Hess et al. 03], also see
[Hasse 80, Chapter 15].

Proposition 3.4. F×
p
∼= πZ × (Op/p)× × (1 + p).

Let p be the prime ideal over the prime number p in
Op. Let ep be the ramification index and fp the inertia
degree of p. We define the set of fundamental levels

Fe :=
{
ν | 0 < ν <

pep

p−1 , p � ν
}

and let ε ∈ O×
p such that p = −πeε. Furthermore we

define the map

h2 : a + p �−→ ap − εa + p.

Theorem 3.5. (Basis of (1 + p).) Let ω1, . . . , ωf ∈ Op

be a fixed set of representatives of a Fp-basis of Op/p. If
(p − 1) does not divide e or h2 is an isomorphism, then
the elements

1 + ωiπ
ν where ν ∈ Fe, 1 ≤ i ≤ f

are a basis of the group of principal units 1 + p.

Theorem 3.6. (Generators of (1 + p).) Assume that
(p − 1) | e and h2 is not an isomorphism. Choose e0

and µ0 such that p does not divide e0 and such that e =
pµ0−1(p − 1)e0. Let ω1, . . . , ωf ∈ Op be a fixed set of
representatives of a Fp-basis of Op/p subject to ωpµ0

1 −
εωpµ0−1

1 ≡ 0 mod p. Choose ω∗ ∈ Op such that xp−εx ≡
ω∗mod p has no solution. Then the group of principal
units 1 + p is generated by

1 + ω∗πpµ0e0 and 1 + ωiπ
ν where ν ∈ Fe, 1 ≤ i ≤ f.

3.2 Computing a Bound for the Exponent of C̃�

Let F be a number field and � a prime number. Let
C̃� = C̃�F

∼= Ĩd/P̃r be the �-group of logarithmic divisor
classes. Let p1, . . . , ps be the �-adic places of F .

We describe an algorithm which returns an upper
bound �m of the exponent of C̃� (see Proposition 2.2).
We denote by

• C̃�(�) the � group of logarithmic divisor classes of
degree zero:

C̃�(�) :=
{

[a] ∈ C̃�
∣∣∣∣ a =

∑s
i=1 aipi with

degF (a) = 0

}
,

• C�′ the �-group of the �-ideal classes, i.e., the �-part
of C�/〈[p1], . . . , [ps]〉.
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Remark 3.7. If (�) = pe where p is a prime ideal of OK

then the group C̃�(�) is trivial.

Lemma 3.8. [Diaz y Diaz and Soriano 99] Let

θ : C̃� −→ C�′, ∑
p mpp �−→

∏
p�� p(1/λp)mp .

The sequence

0 −→ C̃�(�) −→ C̃� θ−→ C�′ −→ Coker θ −→ 0

is exact.

Proof: Recall that, if p � �, ṽp = λpvp. Denote by
p1, . . . , ps the �-adic places of F . Let

ã =
∑

q

aqq

= d̃iv(α)

=
∑

p

ṽp(α)p

=
∑
p��

λpvp(α)p +
s∑

i=1

ṽpi
(α)pi

be a principal logarithmic divisor. A representative of
the image of ã under θ in terms of ideals is of the form

a =
∏
q�(�)

qvq(α) = (αOK)×
s∏

i=1

p
−vpi

(α)

i .

This shows that the homomorphism θ is well defined. It
follows immediately that Ker θ = C̃�(�).

Lemma 3.9. Set �m′
= exp C�′ and ��m = exp C̃�(�). Then

�m′+�ma ≡ 0 mod P̃� for all a ∈ D̃�.

Proof: It follows from the exact sequence in Lemma 3.8
that for all a ∈ D̃� the congruence �m′

θ(a) ≡ 1 holds in
C�′. Thus �m′

a ∈ Ker θ = C̃�(�) and �m′+�ma ≡ 0 mod P̃�.

Lemma 3.9 suggests setting the precision for the com-
putation of C̃� to m := m′ + m̃ �-adic digits. If the ideal
class group C� is known we can easily compute m′. In or-
der to find m̃ we compute a matrix of relations for C̃�(�).

Lemma 3.10. (Generators and Relations of C̃�(�).)
Let p1, . . . , ps be the �-adic places of F . Assume that
s > 1. Reorder the pi such that v�(deg(p1)) =

min1≤i≤s v�(deg(pi)). Let γ1, . . . , γr be a basis of the �-
units of F . Then the group C̃�(�) is given by the gener-
ators [gi] :=

[
pi − deg(pi)

deg(p1)
p1

]
(i = 2, . . . , s) with relations∑s

i=2 ṽpi
(γj)[gi] = [0].

Proof: We consider a logarithmic divisor a =
∑s

i=1 aipi

of degree zero over F that is constructed from the �-
adic places. By the choice of p1 and as deg(a) =
deg(

∑s
i=1 aipi) =

∑s
i=1 ai deg(pi) = 0 the coefficient a1

is given by the other s − 1 coefficients. Thus the [gi]
generate C̃�(�).

The relations between the classes of C̃�(�) are of the
form

∑s
i=2 bi[gi] = [0]. That is, there exists β ∈ RF such

that
s∑

i=2

bigi =
s∑

j=1

ajpj = d̃iv(β),

with vq(β) = 0 for all q � (�). Thus β is an element of the
group of �-units {α ∈ RF | vq(α) = 0} of RF . Hence we
obtain the relations given above.

A version of this lemma for the case that F is Galois
can be found in [Diaz y Diaz and Soriano 99].

Algorithm 3.11. (Precision.)
Input: a number field F and a prime number �,

the �-adic places p1, . . . , ps of F , and a basis
γ1, . . . , γr of the �-units of F .

Output: an upper bound for the exponent of C̃�.
Set �m′ ← exp C�′, set m← max{m′, 4}.
If s = 1 then return �m′

. [Remark 3.7]

Repeat

Set m← m + 2

Set [Lemma 3.10]

A←




ṽp2(γ1) . . . ṽps
(γ1)

...
. . .

...
ṽp2(γr) . . . ṽps

(γr)


 mod �m.

Let H be the Hermite normal form of A modulo
�m.

Until rank(H) = s− 1.

Let S = (Si,j)i,j be the Smith normal form of A

modulo �m.

Set m̃← max1≤i≤s−1

(
v�(Si,i)

)
, return �m′+�m.

Remark 3.12. In general, Algorithm 3.11 does not termi-
nate if Gross’s conjecture is false.
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3.3 Computing C̃�

We use the ideal theoretic description from Section 2.3
for the computation of C̃� ∼= Ĩd/P̃r. In the previous
section we have seen how we can compute a bound for
the exponent of C̃�. It is clear that this bound also gives
a lower bound for the precision in our calculations.

Theorem 3.13. (Generators of C̃�.) Let a1, . . . , at be a
basis of the ideal classgroup of F with gcd(ai, �) = 1 for
all 1 ≤ i ≤ t. Denote by p1, . . . , ps the �-adic places of
F . Let α1, . . . , αs be elements of RF with ṽpi

(αj) = δi,j

(i, j = 1, . . . , s) and gcd((αi), �) = 1 for all 1 ≤ i ≤ s.
Set at+i := (αi) for 1 ≤ i ≤ s. For an ideal a of F denote
by a the projection of a from

⊕
p pZ� to

⊕
p�(�) pZ� . We

distinguish two cases:

(i) If deg�(ai) = 0 for all 1 ≤ i ≤ t+s then set bi := ai.
The group C̃�F is generated by b1, . . . , bt+s.

(ii) Otherwise let 1 ≤ j ≤ t + s such that v�(deg�(aj)) =
min1≤i≤t+s v�(deg�(ai)). Set bi := ai/ad

j with d ≡
deg�(ai)
deg�(aj)

mod �m where �m > exp(C̃�). The group

C̃�F is generated by b1, . . . , bj−1, bj+1, . . . , bt+s.

Proof: Let a ∈ Ĩd. There exist γ ∈ RF and a1, . . . , at ∈
Z� such that a =

∏t
i=1 aai

i · (γ). Set gi := ṽpi
(γ) for

1 ≤ i ≤ s. Now

a =
∏s

i=1 aai
i ·

(
(γ) ·∏s

j=1(αi)−gi
) · (∏s

j=1(αi)gi
)
.

By the definition of Id (Definition and Proposition 2.1)
we have

a = a =
∏t

i=1 aai
i ·

(
(γ) ·∏s

j=1(αj)−gj
) · (∏s

j=1 (αj)gj
)
.

As ṽpi

(
(γ) ·∏s

j=1(αj)−gj
)

= 0 for i = 1, . . . , s we obtain

a ≡∏t
i=1 aai

i ·
(∏s

j=1 (αj)
gj ) mod P̃r.

Thus all elements of C̃� can be represented by
a1, . . . , at, at+1 = (α1), . . . , at+s = (αs). For the two
cases we obtain:

(i) It follows immediately that b1, . . . , bt+s are genera-
tors of C̃�.

(ii) If we have a ≡ aa1
1 · · · · · a

at+s

t+s mod P̃r for an
ideal a ∈ Ĩd then 0 = deg(a) =

∑t+s
i=1 ai deg�(ai).

Thus −aj =
∑s

i�=j ai deg�(ai)/deg�(aj). Hence,

b1, . . . , bj−1, bj+1, . . . , bt+s are generators of C̃�.

We continue to use the notation from Theorem 3.13.
Set C�′ := C�/〈p1, . . . , ps〉.

Remark 3.14. The definition of C�′ in this section and
the previous section, where we considered the �-part
of C�/〈p1, . . . , ps〉, differ. The definition we chose here
makes the description of the algorithm easier. In the al-
gorithm we make sure that only the �-part of the group
appears in the result by computing the �-adic Hermite
normal form of the relation matrix.

The relations between the generators a1, . . . , at of
the group C�′ are of the form

∏t
i=1 aai

i = (α) with
α ∈ RF . There exist integers c1, . . . , cn such that
(α) ≡ ∏s

i=1 (αi)
ci mod P̃r. This yields the relation∏t

i=1 aai
i ≡ ∏s

i=1 (αi)
ci mod P̃r in C̃�. We can derive

all relations involving the generators ai + P̃r from their
relations as generators of the group C�′ in this way.

The other relations between the generators of C̃� are
obtained as follows. A relation between the generators αi

is of the form
∏s

i=1 (αi)
vi ≡ (1) mod P̃r or equivalently∏s

i=1(αi)vi ·∏s
i=1 pwi

i = (α) for some α ∈ RF . The last
equality is fulfilled if and only if

∏s
i=1 pwi

i is principal, i.e.,
if

∏s
i=1 pwi

i is an (�)-unit. Assume that
∏s

i=1 pwi
i = (γ)

for some γ ∈ RF . As ṽpj
(α) = 0 for all (α) ∈ P̃r and

pj | (�) the equation ṽpj

(∏s
i=1 αvi

i ·γ
)

= 0 must hold. By
the definition of βi we obtain vi = −ṽpi

(γ) for 1 ≤ i ≤ s.

Corollary 3.15. (Relations of C̃�.) Let(
(a1, . . . , at), (ai,j)i,j∈{1,...,t}

)
be a basis and a relation matrix of C�′ := C�/〈p1, . . . , ps〉.
Let at+1 = (α1), . . . , at+s = (αs) be as above. For each
1 ≤ k ≤ t we find ck,2, . . . , ck,s such that

∏t
i=1 b

ak,i

i =∏s
i=2 (αi)

ck,i . Let γ1, . . . , γr be a basis of the (�)-units of
RF . Set vi,j := ṽpj

(γi) (1 ≤ i ≤ r, 2 ≤ j ≤ s). Set

M :=




b1,1 . . . b1,t −c1,2 . . . −c1,s

...
. . .

...
...

. . .
...

bt,1 . . . bt,t −ct,2 . . . −ct,s

0 . . . 0 v1,2 . . . v1,s

...
. . .

...
...

. . .
...

0 . . . 0 vr,2 . . . vr,s




.

For the two cases we obtain:

(i) ((b1, . . . bt+s),M) are generators and relations of C̃�.
(ii) Let j be chosen as in Theorem 3.13. Denote by N

the matrix obtained by removing the jth column from
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F C� Gal � (�) C�′ �m
�C�

Q(
√−521951) [1024] S(2) 2 p1p2 [4] 8 [2,4]

Q(i,
√

11) [1] E(4) 5 p1 · · · p4 [1] 5 [5]

Q(i,
√

78) [2,2] E(4) 2 p4
1 [2] 2 [1]

Q(i,
√

455) [2,2,10] E(4) 2 p2
1p

2
2 [2,2] 512 [2,512]

Q(i,
√

1173) [2,2,6] E(4) 2 p2
1 [2,2,2] 2 [2,2,2]

Q(i,
√

1227) [4,4] E(4) 613 p1 · · · p4 [4,4] 613 [613]

Q(α) [14] D(4) 2 p2
1p

2
2 [1] 1 [1]

χα(x) = x4 + 13x2 − 12x + 52 3 p2
1p

2
2 [1] 3 [3]

7 p1 [14] 7 [7]

Q(
√

1234577,
√−3) [273] E(4) 2 p1p2 [273] 4 [4,4]

3 p2
1 [273] 3 [3]

13 p1p2 [273] 169 [13,13]

Q(ζ3,
√

303) [14] E(4) 2 p2
1 [14] 2 [2]

3 p2
1p

2
2 [1] 9 [9]

7 p1 · · · p4 [1] 1 [1]

Q(β) [2,6,6] S(5) 2 p1p2 [2,2,6] 2 [2,2,2]

χβ(x)=x5+2x4+18x3+34x2+17x+310 3 p1 · · · p4 [6] 3 [3]

Q(ζ5,
√

5029) [15,150] [2,4] 2 p1p2 [3,150] 4 [2,2]

3 p1p2 [15,150] 3 [3,3]

5 p1p2 [3,150] 25 [5,25]

Q(i,
√

11,
√−499) [3,105] E(8) 5 p1 · · · p8 [3] 25 [5,5,25]

Q(i,
√

11, γ) [2,2,2,6] S(3)× 2 p2
1 [2,2,2,6] 2 [2,2,2,2]

χγ(x) = x3 + 3x2 + 2x + 125 E(4) 3 p1p2 [2,2,2,6] 9 [3,3]

5 p1 · · · p12 [2] 5 [5,5]

TABLE 1.

M . Then ((b1, . . . , bj−1, bj+1, . . . , bt+s), N) are gen-
erators and relations of C̃�.

Now we only need to find the elements α1, . . . , αs with
ṽpi

(αj) = δi,j . Let ηi,1, . . . , ηi,ri
be a system of generators

of O×
p for 1 ≤ i ≤ s. Let

M :=




ṽp1(η1,1) . . . vps
(η1,1)

...
. . .

...
ṽp1(η1,r1) . . . vps

(η1,r1)
...

...
...

ṽp1(ηs,1) . . . vps
(ηs,1)

...
. . .

...
ṽp1(ηs,rs

) . . . vps
(ηs,rs

)




.

Let S = LMR be the �-adic Smith normal form of
M with transformation matrices L and R. Application
of the left transformation matrix L to the generators
η1,1, . . . , ηs,rs

yields elements α1, . . . , αs with the desired
properties.

Algorithm 3.16. (Logarithmic Classgroup.)
Input: a number field F and a prime number �.
Output: generators g and and a relation matrix H

for C̃lF .

Determine a bound �m for the exponent of C̃lF and
use it as the precision for the rest of the algorithm.

[Algorithm 3.11]

Compute generators a1, . . . , at of C�′ = C�/〈p1, . . . ,

ps〉, where p1, . . . , ps are the ideals of F over �.
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Determine at+1 = (α1), . . . , at+s = (αs) with
ṽpi

(αj) = δi,j .

Compute generators g := (b1, . . . , bt+s)T with
deg(bi) = 0 from a1, . . . , at+s. [Theorem 3.13]

Compute a relation matrix M between the genera-
tors g. [Corollary 3.15]

In case (ii) remove the jth column from M and the
jth generator from g.

Compute the �-adic Hermite normal form H of M .

Return (g,H).

4. EXAMPLES

All methods presented here have been implemented in
the computer algebra system Magma [Canon et al. 03].

We recomputed the logarithmic class groups from
[Diaz y Diaz and Soriano 99, Section 6] with our new al-
gorithm. Our results differ in one example. For the field
F = Q(i,

√
1173) and � = 2 we obtain C̃�F

∼= C2×C2×C2

instead of C̃�F
∼= C2 × C2 × C2 × C2. As F contains the

4th roots of unity, the 2-rank of the wild kernel of F is 3.
Table 1 contains examples of logarithmic �-class

groups C̃� of selected number fields F together with their
class groups C�, Galois groups Gal, and the factorization
of the ideals (�). χα(x) denotes the minimal polynomial
of α and i denotes a root of x2 + 1. The class groups
are presented as a list of the orders of their cyclic fac-
tors, C�′ = C�/〈p1, . . . , ps〉, and �m is the bound for the
exponent of C̃� as obtained by Algorithm 3.11.

The logarithmic 2-class group of Q(i,
√

78) is an ex-
ample of the fact that the cokernel of θ in the exact se-
quence in Lemma 3.8 is not trivial in general. Indeed
one can show [Dubois and Soriano-Gafiuk 04] that for
F = Q(i,

√
d) with d �= 2 and d squarefree

Coker(θ) ∼=
{

C2 if d ≡ ±2 mod 16,
C1 otherwise.
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