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1. INTRODUCTION

A new invariant of number fields, called group of loga-
rithmic classes, was introduced by J. -F. Jaulent in 1994
[Jaulent 94]. The interest in the arithmetic of logarithmic
classes comes from its applicability in K-Theory. Indeed,
this new group of classes is revealed to be mysteriously re-
lated to the wild kernel in the K-Theory of number fields.
The new approach to the wild kernel is very attractive
since the arithmetic of logarithmic classes is very effi-
cient. Thus it provides an algorithmic and original study
of the wild kernel. An early algorithm for the compu-
tation of the group of logarithmic classes of a number
field F' was developed by F. Diaz y Diaz and F. Soriano
in 1999 [Diaz y Diaz and Soriano 99]. We present a new
and significantly better performing algorithm, which also
eliminates the restriction to Galois extensions.

Let £ be a prime number. If a number field F' contains
the 2/th roots of unity, then the wild kernel of F' and its
logarithmic /-class group have the same /-rank. If F' does
not contain the 2/th roots of unity, the arithmetic of the
logarithmic classes still yields the ¢-rank of the the wild
kernel. More precisely:

o If / is odd [Jaulent and Soriano 01, Soriano 00] we
consider F’ := F(({;), where (; is the fth root of
unity, and use classic techniques from the theory of
semisimple algebras.
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positive divisor classes and which can be constructed
from the f-group of logarithmic classes.

In the present article we consider the general situation
where F' is a number field which does not necessarily
contain the 2/th roots of unity.

2. THE THEORETICAL BACKGROUND

This section is devoted to the introduction of the main
notions of logarithmic arithmetic. We also review the
facts that are of interest for our purpose. We do not
attempt to give a fully detailed account of the logarithmic
language. Most proofs may be found in [Jaulent 94, pages
303-313].

2.1 Review of the Main Logarithmic Objects

For any number field F', let Jr be the ¢-adified group of
idéles of F', i.e., the restricted product

Tes

Jr = HRp
p

of the f-adic compactifications R, = lim FJ* /pre of

J
the multiplicative groups of the completions of F' at each
p. For each finite place p the subgroup U, of R, of the
cyclotomic norms (that is to say the elements of R, which
are norms at any finite step of the local cyclotomic Z,-
extension Fy/F,) will be called the group of logarithmic
units of Fy,. The product

Gr = ]
P

is called the group of idelic logarithmic units; it happens
to be the kernel of the logarithmic valuations

Log, (NF, /g, (x))
degpp

Up |2 — —

defined on the R, and Z,-valued. These are obtained
by taking the Iwasawa logarithm of the norm of z in the
local extension F}, /Q, with a normalization factor degy p
whose precise definition is given in the next subsection.

The quotient Dlp = jp/[:ip is the f-group of loga-
rithmic divisors of F'; via the logarithmic valuations vy,
it may be identified with the free Zj,-module generated
by the prime ideals of F’

Dlp = Jr/Up = Dp Ly .

The degree of a logarithmic divisor 0 = Zp ny P is then
defined by

degp (Z npp) = an degp p,
p p

inducing a Zg-valued Z;-linear map on the class group of
logarithmic divisors. The logarithmic divisors of degree
zero form a subgroup of DI denoted by

YSEF = {D€D€F|degF0 = 0}

The image of the map div r defined via the set of log-
arithmic valuations from the principal idele subgroup

Rp = Z¢ @z F*

of Jr to ﬁep is a subgroup denoted by 77€F, which will
be referred to as the subgroup of principal logarithmic
divisors. The quotient

Clp = Dlp/Plp

is, by definition, the ¢-group of logarithmic classes of F'.
And the kernel

gF = RpN Z/~{F
of the morphism (ﬁzp from Rp in WF is the group of
global logarithmic units.

2.2 Logarithmic Ramification and ¢-adic Degrees

Next we review the basic notions of the logarithmic ram-
ification, which mimic, as a rule, the classical ones.

Let L/F be any finite extension of number fields. Let
p be a prime number. Denote by @g the cyclotomic 7-
extensions of Q,, that is to say the compositum of all
cyclotomic Zg-extensions of Q, on all prime numbers g.
Let p be a prime of F' above (p) and B a prime of L
above p. The logarithmic ramification (respectively iner-
tia) index €(Ly/Fy) (respectively f(Lgp/Fp)) is defined
to be the relative degree

e(Lyp/Fy) = [Ly : Ly N QpFy]
(respectively f(Lm/Fp) =[LyN @;Fp D Fyl).

As a consequence, L/F is logarithmically unramified at
B, that is to say e(Lyp/Fp) = 1, if and only if Ly is
contained in the cyclotomic extension of F,. Moreover,
for any g # p the classical and the logarithmic indexes
have the same g-part (see Proposition 3.2). Hence they
are equal as soon as p { [F} : Qp).

As usual, in the special case L/F = K /Q, the absolute
logarithmic indexes of a finite place p of K over the prime
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p are just denoted by €, and f;. With these notations,
the f-adic degree of p is defined by the formula:

degpp = ]?p deg,p with

Log, p for p #£ ¢;
deg,p=< ¢ for p =10 # 2;
4 forp=40=2.

The extension and norm maps between groups of divi-
sors, denoted by ¢r,r and Ny /p respectively, have their
logarithmic counterparts, ©7,,p and N L/F respectively.
To be more explicit, 17,/ is defined on every finite place
p of F' by

) = Zng/Fpma
Blp

i r(p
while N 1,/ F is defined on all P lying above p by

Nijp(B) = fry/r, b.

These applications are compatible with the usual exten-
sion and norm maps defined between Ry, and R, in the
sense that they sit inside the commutative diagrams.

_dve 5y, deer g

lﬁw

Rr
[
Rr &R/F Diy
Rr
K
RF

H and

—>Z

dle DE

—>Z

T[DF]

—>Z

TL/F TTL/F
leF DE

When L/F is a Galois extension with Galois group
Gal(L/F'), one deduces from the very definitions the un-
surprising and obvious properties:

NL/F OZL/F = [L : F] and

Z o.

c€Gal(L/F)

ZL/FONL/F =

2.3 Ideal Theoretic Description of Logarithmic Classes

By the weak density theorem every class in Jr /L?FRF
may be represented by an idele with trivial components
at the f-adic places, that is to say that every class in
DUlp/Plp comes from a (-divisor 9 =} ., o p.

NThe canonical map from Rg to Dfr maps a € R to
divp(a) = >, vp(a)p. Now for each finite place p { ¢, the

quotient e,/e, = f,/ fp of the classical and logarithmi-
cal indexes associated with p is a f-adic unit (Proposi-
tion 3.2), say A, (which is 1 for almost all p), and one
has the identity,

Up = App
between the logarithmic and the classical valuations. So
every (-divisor 0 comes from a f-ideal a by the formula

a—Hpo"’HDF Z)\p ap p.

pte pte
This gives the following ideal theoretic description of
logarithmic classes.

Definition and Proposition 2.1. Let

Tdp = {a=]]p"}

pte

be the group of £-ideals,
Zdp = {a € Idp|deg 0p(a) = 0}
be the subgroup of ¢-ideals of degree 0, and

Pre = {[[p"@[5,(a) =0 Vp | £}
ptt

the subgroup of principal £-ideals generated by principal
ideles a having logarithmic valuations 0 at every ¢-adic
place. Then one has

EZF 2%}7’/75\’;’}7‘.

Proof: As explained above, the surjectivity follows from
the weak approximation theorem. So let us consider the
kernel of the canonical map A(?F : Zdp — Clp. Clearly,
we have ker¢r = {a € Zdp | da € Rrp 0p(a) =
divg(a)}. The condition dp(a) = dlvF( ) with a € Zdp
implies vy (a) = 0 Vp | £; and thus (a) € Prp as expected.

O

The generalized Gross conjecture (for the field F' and
the prime £) asserts that the logarithmic class group ce a
is finite (cf. [Jaulent 94]).
consequence of the p-adic Schanuel conjecture was only

This conjecture, which is a

proved in the abelian case and a few others (cf. [Federer
and Gross 81, Jaulent 02b]). Nevertheless, since EZF is
a Zg-module of finite type (by the f-adic class field the-
ory), the Gross conjecture just claims the existence of an
integer m such that ¢ kills the logarithmic class group.
In practice it is rather easy to compute such an exponent
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m (when the classical invariants of the number field are
known); this gives rise to a more suitable description of
Clp in order to carry out numerical computations.

Proposition 2.2. Assume the integer m to be large enough
such that the logarithmic class group Clp is annihilated
by £™. Thus introduce the group

™)

Zdr " ={a€Zdp|degpop(a) € ™ degp Dlp}

= Tdp IdS .

m —m

Thus, denoting 757"; = PNTF Zdy , one has: EZF ~

(g™ (™
Ty e

™ —
Proof: The hypothesis gives Zdr C Prrp and by a
straightforward calculation we have

~(£7YL) N(em)

Idp ' [Prp  =ZIdpZd" PrpZd"

~ Idp/(Zdp N PreZd")
__ gy

SIdF/'PT‘FIdF

:ﬁlp/i;rp ZEEF

O

Remark 2.3. A lower bound for m which will be required
for a sufficient precision of the p-adic calculations will be
given after Lemma 3.9.

3. THE ALGORITHMS

Throughout this section a finite abelian group G is pre-
sented by a column vector g € G™, whose entries form
a system of generators for GG, and by a matrix of re-
lations M € Z™*™ of rank m, such that vTg = 0 for
v € Z™ if and only if v” is an integral linear combination
of the rows of M. We note that for every a € G there
is a v € Z™ satisfying a = vTg. If g1,...,gm is a basis
of G, M is usually a diagonal matrix. Algorithms for
calculations with finite abelian groups can be found in
[Cohen 00]. If G is a multiplicative abelian group, then
vTg is an abbreviation for gi* - - gom.

One of the steps in the computation of the logarithmic
class group is the computation of the ideal class group
of a number field. Algorithms for this can be found in
[Cohen 93, Hess 96, Pohst and Zassenhaus 89]. One tool
used in these algorithms is the s-units, which we will also
use directly in our algorithm.

Definition 3.1. (s-units.) Let s be an ideal of a number
field F. We call the group

{ae F*|vy(a)=0forallpfs}

the s-units of F.

For this section let F' be a fixed number field. We
denote the ideal class group of F' by C¢ = Clp. We also
write C{ for Clg, DI for Dlf, and so on.

3.1  Computing degp(p) and v, (+)

We describe how invariants of the logarithmic objects can
be computed. Some of the tools presented here also are
applied directly in the computation of the logarithmic
class group.

Definition and Proposition 3.2. Let p be a prime number.
Let F' be a number field. Let p be a prime ideal of F' over
p. Fora € Q) =p” xF) x (1+2pZ,) denote by (a) the
projection of a to (14 2pZ,). Let F, be the completion
of F with respect to p. For a € F define

Log, (N o
) o LB N0, )

[FP : Qp] : degpp
The p-part of the logarithmic ramification index €, is
[hp(FY) + Zp). For all primes q with ¢ # p the g-part

of €y is the g-part of the ramification index e, of p.

For a proof see [Jaulent 94].

In Section 2.2 we have seen that the degree degp(p) of
a place p can be computed as degp(p) = fp deg, p. From
Section 2.3 we know that 'evpf,g = ep fp. We have

_ Log,(Nr, /q, (%))

@) = T e ()

Thus we can concentrate on the computation of e, for
which we need the completion F}, of F' at p and generators
of the unit group F,*.

The Round Four Algorithm was originally conceived
as an algorithm for computing integral bases of num-
ber fields. It can be applied in three different ways in
the computation of logarithmic classgroups. Firstly, it is
used for factoring ideals over number fields; secondly, it
returns generating polynomials of completions of number
fields; and thirdly, it can be used for determining integral
bases of maximal orders.

Let ®(z) be a monic, squarefree polynomial over Z,.
The algorithm for factoring polynomials over local fields
as described in [Pauli 01] returns:
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e a factorization ®(z) = ®q(x)----- D, (z) of ®(z) into
irreducible factors ®;(x) (1 <17 < s) over Z,,

e the inertia degrees e; and ramification indexes f; of
the extensions of Q,, given by the ®;(x) (1 <i <s),
and

e two element certificates (I';(z),IL;(z)) with
Ti(2),11;(z) € F[z] such that v;(I;(ey)) = 1/e;
and [F,(T;(«;)) : F,] = f; where «; is a root of
O, (x) in Flz]/(®;(x)), and v; is an extension of the
exponential valuation v, of Q, to Qu[z]/(®;(z))
with vi|g, = vp.

The factorization algorithm in [Ford et al. 02] returns
the certificates combined in one polynomial for each ir-
reducible factor. The data returned by these algorithms
can be applied in several ways.

e An integral basis of the extension of Q, generated
by a root «; of ®;(x) is given by the elements
The local integral bases can be combined to a global
integral basis for the extension of Q generated by
d(x).

e For the computation of v, we need to compute the
norm of an element in the completions of F. The
completions of F' are given by the irreducible factors
of the generating polynomial of I’ over Q.

Lemma 3.3. (Ideal Factorization.) Let ®(x) € Zp[z]
be irreducible over Q. Let ®1(x),...,Ds(x) € Zplz] be
the irreducible factors of ®(x) with two element certifi-
cates (I';(x),I;(z)). Denote by e; the ramification in-
dezes of the extensions of Q, given by the ®;(x) (1 < i <
s). The Chinese Remainder Theorem gives polynomials

O1(2),...,04(x) € Qplz] with

0;(x) =

IL; (x) mod ®;(x),
Lmod [];; ®;(z).

Let L := Q(«) where « is a root of ®(x) in C. Then

(p) = (P, @1(&))61 ..... (p, @S(a))es

is a factorization of (p) into prime ideals.

In order to compute [h,(Fy) : Zyp] it is sufficient to
compute the image of a set of generators of F,*. Algo-
rithms for this task were recently developed with respect
to the computation of ray class groups of number fields

and function fields [Cohen 00, Hess et al. 03], also see
[Hasse 80, Chapter 15].

Proposition 3.4. F,* = 7% x (O, /p)* x (1 +p).

Let p be the prime ideal over the prime number p in
Oyp. Let e, be the ramification index and f, the inertia
degree of p. We define the set of fundamental levels

Fe :={1/\0<1/<%,pr/}

and let ¢ € O, such that p = —7n°. Furthermore we
define the map

hy:a+p+—adl —ea+p.

Theorem 3.5. (Basis of (1 + p).) Let wy,...,wr € O,
be a fized set of representatives of a Fp-basis of Oy /p. If
(p — 1) does not divide e or hy is an isomorphism, then
the elements

1+ w;nm” wherev € Fo,1 <i< f

are a basis of the group of principal units 1+ p.
Theorem 3.6. (Generators of (1 + p).)  Assume that
(p—1) | e and hy is not an isomorphism. Choose ey
and po such that p does not divide eqg and such that e =
po~l(p — 1)eg. Let wr,...,ws € Op be a fized set of
representatives of a F,-basis of O, /p subject to wfuo —
5wfﬂ071 = 0 mod p. Choose w, € Oy such that P —ex =
wsmod p has no solution.
units 1 + p is generated by

Then the group of principal
1+ w,m? % and 1 4 w;n¥ where v € Fe, 1 <1< f

3.2 Computing a Bound for the Exponent of C£

Let F' be a number field and ¢ a prime number. Let
Cl = Clp 2 Td/Pr be the L-group of logarithmic divisor
,ps be the f-adic places of F.

We describe an algorithm which returns an upper

classes. Let py,...

bound £™ of the exponent of C/ (see Proposition 2.2).
We denote by

° 5!7(6) the ¢ group of logarithmic divisor classes of
degree zero:

Cll) = {[a] ect

a= Z?:l a;p; with
degp(a) =0 ’

e C!' the ¢-group of the ¢-ideal classes, i.e., the ¢-part
of CL/([pal, ..., [ps])-
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Remark 3.7. If (¢) = p® where p is a prime ideal of Ok
then the group C{(¢) is trivial.

Lemma 3.8. [Diaz y Diaz and Soriano 99] Let
0:Cl —s cr, ZP mpp — prp(l/kp)mp_
The sequence
0 — Cl(t) — Cl -2 ¢t/ — Coker 6 — 0

15 exact.

Proof: Recall that, if p { ¢, v, = Ayv,. Denote by

P1,...,Ps the f-adic places of F. Let

a= Zaqq
q
= div(a)

= Z%(Of)P
3

=) Nvp(a)p+ > Ty, (a)p
=1

pte
be a principal logarithmic divisor. A representative of
the image of a under 6 in terms of ideals is of the form

G*Hq oc)f OLOK Xle"’pq(a)

qt(0)
This shows that the homomorphism ¢ is well defined. It
follows immediately that Ker 6 = Cl(¢). O

Lemma 3.9. Set (™ = expCl and /™ = exp (?E(E) Then

¢+ = 0 mod Pl for all a € DE.

Proof: 1t follows from the exact sequence in Lemma 3.8
that for all a€ DI the congruence (™ 9(a) = 1 holds 5 in
Cl'. Thus (™ a € Ker§ = C(¢) and £™ *™q = 0 mod PL.

O

Lemma 3.9 suggests setting the precision for the com-
putation of Cl to m :=m' + m l-adic digits. If the ideal
class group C/ is known we can easily compute m’. In or-
der to find m we compute a matrix of relations for a\é(f)

Lemma 3.10.
Let P1,---
s > 1.

(Generators and Relations of EZ(Z).)
,bs be the l-adic places of F. Assume that
Reorder the p; such that ve(deg(p1)) =

ming <;<s ve(deg(p;)). Let Y1s- -5 be a basis of the £-
units of F. Then the group CL({) is given by the gener-
ators [g;] :== [p; — dig(::l%pl] (i =2,...,5) with relations

2 =2 Up, (73) 8] = [0].

Proof: We consider a logarithmic divisor a = Zle a;p;
of degree zero over F' that is constructed from the /-
adic places. By the choice of p; and as deg(a) =
deg(3-0_  aipi) = >0, a;deg(p;) = 0 the coefficient a;
is given by the other s — 1 coefficients. Thus the [g;]
generate Ez(f)

The relations between the classes of EZ(Z) are of the
form >°7_, b;[g;] = [0]. That is, there exists 3 € Ry such

that . .
> bigi=> ap; = div()
i=2 =1

with vg(8) = 0 for all q 1 (¢). Thus 3 is an element of the
group of l-units {a € Ry | v4(a) = 0} of Rp. Hence we
obtain the relations given above. O

A version of this lemma for the case that I’ is Galois
can be found in [Diaz y Diaz and Soriano 99).

Algorithm 3.11. (Precision.)

Input: a number field F' and a prime number /,
the f-adic places p1,...,ps of F', and a basis
Y1, ...,V of the f-units of F.

Output: an upper bound for the exponent of Ce.

Set /™ — expCl', set m «— max{m’,4}.

If s = 1 then return £™ . [Remark 3.7]
Repeat
Set m «— m+2
Set [Lemma 3.10]
Up,(11) - Up(m)
A — : : . mod /™.
Epz () 5!35 ()
Let H be the Hermite normal form of A modulo
o,

Until rank(H) = s — 1.

Let S = (S;,;)i,; be the Smith normal form of A
modulo £™.

Set M« maxj<j<s—1 (vg(Si7i)), return ¢ 7

Remark 3.12. In general, Algorithm 3.11 does not termi-
nate if Gross’s conjecture is false.
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3.3 Computing ce

We use the ideal theoretic description from Section 2.3
for the computation of Cl = Id/Pr In the previous
section we have seen how we can compute a bound for
the exponent of Cl. Tt is clear that this bound also gives
a lower bound for the precision in our calculations.

Theorem 3.13. (Generators of (AZZ.) Let ay,...,a; be a
basis of the ideal classgroup of F with ged(a;,¢) =1 for
all 1 < i < t. Denote by p1,...,ps the L-adic places of
F. Let ay,... a5 be elements of Ry with vy, (o) = 0; 5
(,7 =1,...,8) and ged((e;),€) = 1 for all 1 < i < s.
Set ar4; := () for1 <i <s. For an ideal a of F denote
by @ the projection of a from P, pZe to @M(f) pZe. We
distinguish two cases:

(i) 1f degy(a;) = 0 for all 1 <i < t+s then set b; 1= a;.

The group Clp is generated by by, ... byys.

(11) Otherwise let 1 < j <t+s such that ve(deg,(a;)) =
ming <;<¢4s ve(degy(a;)). Set b; := ai/a? with d =

jggg:% mod ¢™ where (™ > exp(Cl). The group
EZF is generated by by, ... ,Ej,l,ﬁjﬂ, .. ,EHS.

Proof: Let a € Zd. There exist v € Rp and ayq,. ..
Zy such that a = szl al® - (7).
1 <i<s. Now

a =TTy o () Ty (o)) - (T a0)).

By the definition of Zd (Definition and Proposition 2.1)
we have

,ap €
Set g; = vp,(7y) for

a=a=IT_,a () Tho (o)) - (= (0)%).
As B, () T ()77

o=l o (Hj‘:1 @gj) mod Pr.

s we obtain

i) =0fori=1,...,

Thus all elements of Cf can be
Ap, e, 0,01 = (@), ..

cases we obtain:

represented by
,0t1s = (ag). For the two

(i) It follows immediately that by,...
tors of CZ.

,byys are genera-

(ii) If we have @ = aj' - --- - @, mod Pr for an

ideal a € Zd then 0 = deg(d) = SUEY a; deg, (@)
Thus —a; = Zz# a; deg,(@;)/ deg,(a;). Hence,

by,...,b_1,bj41,...,b,1 are generators of Cl.

O

We continue to use the notation from Theorem 3.13.

Set C' :=CLl/(p1,...,Ps).

Remark 3.14. The definition of C¢' in this section and
the previous section, where we considered the /(-part
of Cl/{p1,...,ps), differ.
makes the description of the algorithm easier. In the al-
gorithm we make sure that only the ¢-part of the group
appears in the result by computing the (-adic Hermite
normal form of the relation matrix.

The definition we chose here

The relations between the generators ay,...,a; of
the group C¢ are of the form Hl (@4 = (a) with
a € Rp. There exist integers ci,...,c, such that
() = Hlemci mod Pr. This ylelds the relation
[, & =1, ()" mod Pr in CL.
all relations involving the generators a; + Pr from their
relations as generators of the group C¢' in this way.

The other relations between the generators of C¢ are

We can derive

obtained as follows. A relation between the generators @;
is of the form []}_, @m = (1) mod Pr or equivalently
[Ty () - TIiZ, pi = () for some a € Rp. The last
equality is fulfilled if and only if []}_, p;"* is principal, i.e.,

if TI°_, pi’" is an (¢)-unit. Assume that []_, p/*" = (v )
for some v € Rp. As v, (o) = 0 for all (o) € Pr and
p; | (£) the equation vy, (TT;_; @ -7) = 0 must hold. By
the definition of §; we obtain v; = —u,,(y) for 1 <7 <s.

Corollary 3.15. (Relations of 675.) Let

(@, ...
be a basis and a relation matric of CU' := Cl/{p1,...,Ps).
Let azy1 = (1),...,0i45 = (as) be as above. For each
1 <k <t wefindcka,...,cks such that HZ b [ -

I, (ai)ck’i, Let v1,...,7 be a basis of the (£ )—umts of
Rp. Setv;;:=vp,(v) (1<i<r,2<j<s). Set

L0, (ai,j)i,je{l,.“,t})

bl,l b1t —C12 ... —C15

M= bt,l ce bt,t —Ct,2 ce —Ct,s
’ 0 e 0 V1,2 o U1,s
0O ... O Vro  een  Upsg

) s

For the two cases we obtain:
(i) ((by,...bsss), M) are generators and relations of CL.

(ii) Let j be chosen as in Theorem 3.13. Denote by N
the matriz obtained by removing the jth column from
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M. Then ((by,...

F cl Gal A0 e ol ce
Q(v/—521951) [1024] 5(2) 2 paip2 [4] 8 | [24]
Q4 V11) [1] E(4) 5 p1--pa [l 5| [5]
Q(i, V78) [2,2] E(4) 2 pi (2] 2 | [1]
Q(i,v/455) [2,2,10] E(4) 2 pip3 [2,2] 512 | [2,512]
Q(i,/1173) [2,2,6] E(4) 2 p? [2,2,2] 2 | 2,2,2]
Q(i,/1227) [4,4] E(4) (613 p1---pa [4,4] 613 | [613]
Q(e) [14] D) | 2 pipd [ 1| 1]
Xa(z) = 2" + 1327 — 122 4 52 3 pip3 [1] 3| [3]

7 m [14] 7| [7]
Q(+v/1234577,/=3) [273) E(4) 2 pipe [273] 4 | [4,4]

3 pt (273] 318

13 pipe [273] 169 | [13,13]

Q(¢s, v/303) [14] E(4) 2 pi (14] 2| [2]

3 pips (1] 9| [9]

7 piooops [1 1]
Q(p) 2,6,6] S(5) 2 pips [2,2,6] 2 | [2,2,2]
xp(x) =2+ 20 1824 342+ 172+3" | 3 p1---ps [6] 3 [3]
Q(¢s,v/5029) [15,150] [2,4] 2 pipe [3,150] 4 | [2,2]

3 pipe [15,150) 3 | [3,3]

5 pip2 [3,150] 25 | [5,25]
Q(i,v11,/—499)  [3,105] E(8) 5 pi---ps [3] 25 | [5,5,25]
Q(i,V11,7) [2,2,2,6] S@B)x | 2 p? 2,2,2,6] 2| [2,2,2,2]
Xo(x) = 2® + 327 + 22 + 125 FE(4) 3 pipe [2,2,2,6] 9| [3,3]

5 p1---piz [2] 51 [5,5]

TABLE 1.

’Ej*l’Ei‘H’ ooy bias), N) are gen-

erators and relations of CL.

Now we only need to find the elements oy, . .
Epi (Oéj) = 6i,j~ Let MNiy---

., Qg with
,Mi,r; be a system of generators

of O for 1 <i<s. Let

a1@1(771,1)
5Pl (771,T1)

apl (778,1)

Epl (nsﬂ’s )

Vp, (11,1)
Up, (771,T1)

Vp, (Ms,1)

Up, (77877*5)

Let S = LMR be the f-adic Smith normal form of
M with transformation matrices L and R. Application

of the left transformation matrix L to the generators

m,1,---

,Ns,r, yields elements o, ..., o5 with the desired

properties.

Algorithm 3.16. (Logarithmic Classgroup.)

Input:
Output:

a number field F' and a prime number /.
generators g and and a relation matrix H
for Clp.

Determine a bound ¢ for the exponent of Cl F and
use it as the precision for the rest of the algorithm.
[Algorithm 3.11]

Compute generators ay,...,a; of C¢' = Cl/{py,...,
ps), where p1,...,ps are the ideals of F' over /.
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Determine a;41 = (aq),...,045s = (ag) with
p, () = i 5.

Compute generators g := (El, o ,EH_S)T with
deg(b;) = 0 from ay,..., 004 s. [Theorem 3.13]

Compute a relation matrix M between the genera-
tors g. [Corollary 3.15]

In case (ii) remove the jth column from M and the
jth generator from g.

Compute the ¢-adic Hermite normal form H of M.

Return (g, H).

4. EXAMPLES

All methods presented here have been implemented in
the computer algebra system Magma [Canon et al. 03].

We recomputed the logarithmic class groups from
[Diaz y Diaz and Soriano 99, Section 6] with our new al-
gorithm. Our results differ in one example. For the field
F =Q(4,v/1173) and ¢ = 2 we obtain EEF =~ Oy xCyxCy
instead of E@F =~ (9 x Oy x Oy x Cy. As F contains the
4th roots of unity, the 2-rank of the wild kernel of F' is 3.

Table 1 contains examples of logarithmic {-class
groups C/ of selected number fields F' together with their
class groups C/¢, Galois groups Gal, and the factorization
of the ideals (¢). xa(z) denotes the minimal polynomial
of o and i denotes a root of 22 + 1. The class groups
are presented as a list of the orders of their cyclic fac-
tors, C¢' = Cl/{p1,...,ps), and £™ is the bound for the
exponent of Cl as obtained by Algorithm 3.11.

The logarithmic 2-class group of Q(i,/78) is an ex-
ample of the fact that the cokernel of 6 in the exact se-
quence in Lemma 3.8 is not trivial in general. Indeed
one can show [Dubois and Soriano-Gafiuk 04] that for
F = Q(i,+/d) with d # 2 and d squarefree

Cy if d = 42 mod 16,
Cy7 otherwise.

Coker(f) = {
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