
The Riccati Equation: Pinching of
Forcing and Solutions
Marlies Gerber, Boris Hasselblatt, and Daniel Keesing

CONTENTS

1. Statement of Results
2. Motivation
3. Proofs
4. Application: Proof of Theorem 1.6
5. Explicit Solutions and Polynomial Asymptotics
6. Numerical Work and Open Questions
Acknowledgments
References

2000 AMS Subject Classification: Primary: 34H05, 34D05, 34A99;
Secondary: 37D40

Keywords: Riccati equation, foliations, filtering, control

A problem at the interface of differential geometry and dynami-
cal systems gives rise to the question of what control of solutions
of the Riccati equation ẋ + x2 = k(t) with positive right-hand
side can be obtained from control of the forcing term k. We
show that a known result about “relative” pinching is optimal
and refine two known theorems. This gives improved regularity
of horospheric foliations and may be of interest in control or
filtering theory.

1. STATEMENT OF RESULTS

The differential equations ẋ = αx2 + βtn and ẋ = αx2 +

βt+ γt2 as well as, more generally, ẋ = α(t)x2 + β(t)x+

γ(t), are called Riccati (differential) equations. (If α W= 0,
the latter reduces to ẏ = y2+η(t) by writing x = (y/α)−
(β/2α)− (αI/2α2).)
Matrix forms of the Riccati differential equation as

well as algebraic counterparts thereof are useful for ap-

plied mathematics, especially filtering and control prob-

lems, and this has motivated a large body of research;

see, for example [Bittanti et al. 91]. A matrix form

of ẋ + x2 = k(t) is of interest in differential geometry,

especially with respect to asymptotic spectral informa-

tion about solutions. This is our principal interest here,

and [Hasselblatt 94b] explains how to obtain such spec-

tral information from the study of solutions of the scalar

equation ẋ+ x2 = k(t), which we undertake.

Two known theorems provide our starting point.

Theorem 1.1. If K1 > K2 > 0 and xi > 0 solves ẋ+x
2 =

ki(t) for i = 1, 2, where K2 ≤ k2(t) ≤ k1(t) ≤ K1 and

x1(0) ≤
√
K1, x2(0) ≥

√
K2, then x2(t) ≥

√
K2 and

x1(t) ≤
√
K1 for all t > 0.

In particular, if a ∈ (0, 1) and K2 > aK1, then x2(t) >√
ax1(t) for all t > 0.
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This is sharp, because if the ki are constant, then

xi(t) =
√
ki are solutions. Theorem 1.1 has applications

to differential geometry for which it suffices to control

the ratio of solutions for large t [Hasselblatt 94b]. There-

fore, one would like to control the ratio of solutions via

the ratio of the right-hand sides (and maybe the ratio

of initial conditions, but this is not important for those

applications).

Theorem 1.2. ([Hasselblatt 94b]) If a ∈ (0, 1), 0 <

ak1(t) < k2(t) < k1(t), and xi is the solution of ẋ+x
2 =

ki(t) for i = 1, 2, then

x2(0) > ax1(0) > 0 implies x2(t) > ax1(t) for all t > 0.

(1—1)

Analogy with Theorem 1.1 suggests that Theorem 1.2

should hold with a replaced by
√
a in (1—1), and Propo-

sition 5.1 provides instances in which an asymptotic ver-

sion of this is true. However, we show that Theorem 1.2 is

sharp and that additional hypotheses on the initial con-

dition do not help. Moreover, we establish that even a

weaker version of Theorem 1.2 that would suffice for the

applications to differential geometry is sharp:

Theorem 1.3. Theorem 1.2 is sharp: One cannot re-

place a in the conclusion by aH for any H < 1, even un-

der more stringent hypotheses on the initial conditions.

Specifically, if 0 < a < c < 1 and y1, y2 > 0, then there

exist k1(t), k2(t) with 0 < ak1(t) < k2(t) < k1(t) ≤ 1

such that the solutions xi of ẋ+x
2 = ki(t) with xi(0) = yi

satisfy x2(T ) < cx1(T ) for arbitrarily large T .

Combining the hypotheses of Theorem 1.1 and Theo-

rem 1.2 nevertheless leads to a common refinement:

Theorem 1.4. Suppose 0 ≤ b ≤ a ≤ 1, K1 > K2 > bK1 >

0 and K2 ≤ k2(t) ≤ k1(t) ≤ K1 (absolute b-pinching) as

well as 0 < ak1(t) < k2(t) < k1(t)
1 for all t ≥ 0 (relative

a-pinching). Let

B(a, b) :=
1

2
(a− b+ (a+ b)2 + 4(1− a)b ).

If xi is a solution of ẋ + x
2 = ki(t) for i = 1, 2 with

x2(0) > B(a, b)x1(0) > 0 and x1(0) ≤
√
K1, x2(0) ≥√

K2, then x2(t) > B(a, b)x1(t) for all t > 0.

Also, if H := 1/(b + 1) ∈ [1/2, 1] and xi is a solution
of ẋ + x2 = ki(t) for i = 1, 2 with x2(0) > a

Hx1(0) and

x1(0) ≤
√
K1, x2(0) ≥

√
K2, then x2(t) > aHx1(t) for

all t > 0.

1This is to be interpreted as k1(t) = k2(t) when a = 1.

Remark 1.5. This refines both previous results because
B(a, b) ≥ a (with strict inequality for b > 0, a < 1) and
B(a, a) =

√
a.

Theorem 1.4 can be applied to geodesic flows to give

Theorem 4.3 and hence:

Theorem 1.6. For 0 ≤ b ≤ a ≤ 1, a com-

pact b-pinched relatively a-pinched Riemannian mani-

fold has Ca−b+
√
(a+b)2+4(1−a)b (and hence, C2a

1/(b+1)

)

horospheric foliations.

2. MOTIVATION

The need for asymptotic pinching of the solutions of Ric-

cati equations arises in the context of free particle motion

(the geodesic flow) on a Riemannian manifold of negative

sectional curvature, which provides the primary exam-

ple of a classical mechanical system that is ergodic (and

indeed chaotic). These properties are established using

hyperbolicity, i.e., that any two orbits in phase space

drift apart with a uniform exponential rate, either in the

past or in the future, and usually both [Katok and Has-

selblatt 95]. Ergodicity is established by an argument

due to Hopf [Katok and Hasselblatt 95, page 217], which

uses the stable and unstable foliations [Hopf 39], [Katok

and Hasselblatt 95, Theorem 5.4.16] and requires some

regularity of these (C1 in his original work about geo-

desic flows on surfaces [Hopf 39], absolute continuity via

a Hölder condition in later work by Anosov and Sinai

[Anosov and Sinai 67]).

This regularity is obtained using relations between

the fastest and slowest possible rates of orbit separa-

tion (see, e.g., [Hasselblatt and Wilkinson 99]), which

are in turn connected with variations in sectional cur-

vature [Hirsch and Pugh 75], [Klingenberg 82, Theo-

rem 3.2.17], [Hasselblatt 94a]. These results use the fol-

lowing line of reasoning. The linearized geodesic flow

is described by the Jacobi equation, which transforms

into the Riccati equation by changing to variables more

closely related to the expanding and contracting direc-

tions (see the beginning of Section 5 and [Paternain 99,

page 37]). The right-hand side of the Riccati equation

involves sectional curvature, and absolute a-pinching,

max |curvature| > amin |curvature|, gives upper and
lower bounds for the right-hand side. Theorem 1.1 pro-

duces asymptotic bounds of solutions (absolute bunch-

ing); having these is known to imply a corresponding

degree of regularity of the invariant foliations (see, e.g.,

[Fenichel 72, Hirsch et al. 77]).
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Instead of absolute bunching, it suffices to assume rel-

ative bunching to obtain regularity of the invariant folia-

tions [Hasselblatt 94a]. In the present context, absolute

bunching corresponds to bounds on the solutions of the

Riccati equation. In general, it gives control of some ratio

of bounds on contraction and expansion rates. Relative

bunching corresponds to bounding a ratio of solutions of

the Riccati equation instead. In terms of the dynamical

system, it means that one need not control the ratio of

the largest expansion rate in the system and the smallest

expansion rate in the system, but only the ratio of largest

and smallest rates at each point in phase space.

This raises the question of whether pointwise con-

trol of sectional curvatures implies pointwise con-

trol of expansion rates. Does relative a-pinching

(maxat p |curvature| > aminat p |curvature| for every p)
imply a corresponding degree of relative bunching? This

question was addressed in [Hasselblatt 94b] with an af-

firmative answer, but with less bunching than obtained

from absolute pinching. The difference corresponds ex-

actly to the difference between Theorem 1.1 and Theo-

rem 1.2, and, by Theorem 1.3, Theorem 1.2 cannot be

improved to include a square root as in Theorem 1.1.

This does not rule out an analogous conjecture for re-

lations between relative pinching and relative bunching,

because it is not clear to which extent a relatively a-

pinched manifold can fail to be absolutely a-pinched.

3. PROOFS

Proof of Theorem 1.1: If t is such that x2(t) ≤
√
K2,

then ẋ2(t) = k2(t) − x22(t) ≥ 0, so x2(t) ≥
√
K2 for all

t > 0. Likewise, x1(t) ≤
√
K1 for all t > 0.

Proof of Theorem 1.2: Suppose x2(t) ≤ ax1(t). Then

(suppressing t-dependence)

ẋ2x1 − x2ẋ1 = (k2 − x22)x1 − x2(k1 − x21)
> (ax1 − x2)k1 + x1x2(x1 − x2)
> (ax1 − x2)(k1 + x1x2) ≥ 0,

which implies
d

dt

x2

x1
> 0. Therefore, x2 > ax1 for all

t > 0.

The last strict inequality is not sharp because it results

from replacing (x1 − x2) by (ax1 − x2). Accordingly,

[Hasselblatt 94b, page 62, line 12] conjectures that if 0 <

ak1(t) < k2(t) < k1(t) and xi is the solution of ẋ+ x
2 =

ki(t) for i = 1, 2, then x2(0) >
√
ax1(0) implies x2(t) >√

ax1(t) for all t > 0.

Proof of Theorem 1.3: Take a < aI < cI < c, M > 0

such that cI + (4/M) < c, 6 > 0 such that (M + 2)262 <

1/2, aI < cI(1 − (M + 2)262) and aIk1(t) = k2(t) (then

ak1(t) < k2(t)). If k > 0, then
√
k is an equilibrium of

the autonomous ordinary differential equation ẋ+x2 = k

that attracts all positive solutions. Thus, there is a τ > 1

such that choosing k1(t) = 6/2 on [0, τ ] gives xi(τ ) < 6 for

i = 1, 2. Now take k1(t) = 1 for t ≥ τ + 6 and increasing

on [τ, τ + 6]. Let T = τ + (M + 1)6.

The Riccati equation implies that ẋ1(t) ≤ k1(t) ≤ 1
for t ≥ τ , so x1(t) ≤ 6+ (t− τ ) ≤ (M +2)6 for t ∈ [τ, T ],
which implies via the Riccati equation that ẋ1(t) ≥ 1 −
(M + 2)262 for t ∈ [τ + 6, T ], hence

x1(T ) ≥M6(1− (M + 2)262).

Meanwhile, ẋ2(t) ≤ k2(t) ≤ aI for t ≥ τ , hence

x2(T ) ≤ 6+ aI(M + 1)6 and

x2(T )

x1(T )
≤ 6+ aI(M + 1)6

M6(1− (M + 2)262)

=
aI

1− (M + 2)262
+

aI + 1
M(1− (M + 2)262)

< cI +
2

M(1− (M + 2)262)
< cI +

4

M
< c.

Applying this argument repeatedly yields infinitely many

T > 0 with this property that are at least 1 apart: Take

k1 decreasing to 6/2 on [T, T+6] and restart the argument

with initial values xi(T + 6).

Proof of Theorem 1.4: If 0 < r ≤ B(a, b), then f(r) :=
r
r − a
1− r ≤ b by the quadratic formula because f is increas-
ing on [a,B(a, b)]. If x2(t) ≤ rx1(t), then (suppressing t)

ẋ2x1 − x2ẋ1 = (k2 − x22)x1 − x2(k1 − x21)
> (ax1 − x2)k1 + x1x2(x1 − x2)
≥ (a

r
− 1)x2k1 + x1x22(

1

r
− 1)

≥ (a− r)x2k1
r

+
x32
r
(
1

r
− 1)

≥ x2
r
(
1

r
− 1)[x22 − bk1] ≥ 0,

by Theorem 1.1, which implies
d

dt

x2

x1
> 0. Therefore,

x2 > rx1 for all t > 0.

The second claim reduces to showing that

f(a1/(b+1)) ≤ b, which follows from f(aα) ≤ (1/α) − 1,
hence from g(x) := x−α − 1− αx−α + α− αxα + αx ≥ 0
for x ∈ [0, 1]. This holds because gI(x) =

α(α − 1)x−α−1 − α2xα−1 + α, so g(1) = gI(1) = 0

and gII(x) = α(1 − α2)x−α−2 + α2(1 − α)xα−2 ≥ 0 for
x ∈ [0, 1].
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4. APPLICATION: PROOF OF THEOREM 1.6

Theorem 1.1 and Theorem 1.2 arose as part of the proof

of a corresponding result in differential geometry. The-

orem 1.1 is a step in the proof of hyperbolicity of the

geodesic flow of a manifold of negative curvature [Anosov

and Sinai 67, Klingenberg 82] and gives “absolute bunch-

ing” information from absolute pinching of sectional cur-

vature. A refined argument that obtains bunching in-

formation (as in Definition 4.2) from relative pinching of

sectional curvature proved Theorem 1.2 along the way

[Hasselblatt 94b]. Theorem 1.4 can be inserted in the

corresponding place in the proof of the results in [Has-

selblatt 94b] to refine those results.

Definition 4.1. The sectional curvature of a compact

negatively curved Riemannian manifold N is relatively

a-pinched if C ≤ sectional curvature < aC for some

C : N → −R+. If C is constant, the curvature is said

to be (absolutely) a-pinched.

Definition 4.2. A flow ϕt on a compact Riemannian man-

ifoldM is said to be an Anosov flow with Anosov splitting

(Eu, Es):=(Esu⊕Eϕ, Ess⊕Eϕ) if TM = Esu⊕Ess⊕Eϕ,

Eϕ = span{ϕ̇} W= {0} and ∃λ < 1, C > 0, ∀p ∈M , t > 0
,Dϕt(v), ≤ Cλt,v, (v ∈ Es(p)) and
,Dϕ−t(u), ≤ Cλt,u, (u ∈ Eu(p)).

Say that ϕt is α-bunched if there exist µf ≤ µs < 1 <

νs ≤ νf : M × R+ → R+ with

lim
t→∞ supp∈M

µs(p, t)νs(p, t)
−1µf (p, t)−α = 0,

lim
t→∞ supp∈M

µs(p, t)νs(p, t)
−1νf (p, t)α = 0

such that for all p ∈M , v ∈ Ess(p), u ∈ Esu(ϕtp), t > 0,
we have

µf (p, t),v, ≤ ,Dϕt(v), ≤ µs(p, t),v,,
νf (p, t)

−1,u, ≤ ,Dϕ−t(u), ≤ νs(p, t)
−1,u,.

Replacing the use of Theorem 1.2 in [Hasselblatt 94b]

by Theorem 1.4 gives:

Theorem 4.3. The geodesic flow of a compact b-

pinched relatively a-pinched Riemannian manifold N is

a − b + (a+ b)2 + 4(1− a)b + 6-bunched (and hence,

2a1/(b+1) + 6-bunched) for some 6 > 0.

Using [Hasselblatt 94b, Theorem 5] this implies The-

orem 1.6.

5. EXPLICIT SOLUTIONS AND POLYNOMIAL
ASYMPTOTICS

Explicit solutions of the scalar Riccati equation with

monomial forcing are discussed in [Watson 95]. It is easy

to check that

u :=

∞

k=0

ak · tk(n+2)
k!(n+ 2)2kΓ(k + n+1

n+2 )

solves the Jacobi equation ü = atnu, and this implies

that x := u̇/u solves the Riccati equation ẋ + x2 = atn

(see [Paternain 99, page 37] or [Davis 90]). However,

asymptotic ratios can be found without using the given

series. In fact, the following result is shown in [Marić 00,

Theorem 1.7] and part a) of its proof:

Proposition 5.1. If f solves ẋ+ x2 = P (t) and f(0) ≥ 0,
where P (t) is a polynomial with P (t) > 0 for t >

0, then limt→∞ f(t)(P (t))−1/2 = 1. In particular, if

P (t) = atn, for n a positive integer and a > 0, then

limt→∞ f(t)a−1/2t−n/2 = 1.

The result in [Marić 00] applies more generally, where

P (t) is replaced by any differentiable function g(t) that is

positive for t > 0 and satisfies limt→∞ gI(t)/(g(t))3/2 = 0.
Moreover, as shown in [Marić 00], the limit condition on

g can be replaced by the weaker assumption that g−1/2 is
Beurling slowly varying (defined on page 7 of [Marić 00]).

The proof in [Marić 00] is based on prior work in [Geluk

and de Haan 87] and [Omey 97]. The special case of ẋ+

x2 = atn was known even earlier. For example, it can be

treated by applying methods in [Bellman 53, Chapter 6,

Sections 3 and 13]. This involves a transformation that

goes back to Liouville. See [Bellman 53] for additional

bibliographic information.

An immediate consequence of Proposition 5.1 is:

Proposition 5.2. If P (t) is a polynomial with P (t) > 0

for t > 0, then the solutions fa(t) of ẋ+x
2 = aP (t) with

fa(0) ≥ 0 satisfy limt→∞ fa(t)/f1(t) =
√
a.

6. NUMERICAL WORK AND OPEN QUESTIONS

Our investigations began by probing for optimality of

Theorem 1.2 using solutions of the Riccati equation with

k(t) = esin t+sinπt+sin
√
2 t ∈ (e−3, e3) on the right-hand

side (chosen for being bounded, bounded away from 0,

and “stochastic”). For two solutions x1(t) and x2(t) of

the Riccati equation with right-hand side k(t) and ak(t),

respectively, and with x1(0) = x2(0) = 1, we checked
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k(t) = esin t+sinπt+sin
√
2 t x2(t)/x1(t) for a = 1/2
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1

FIGURE 1. Solution ratio for quasiperiodic right-hand side.

whether
√
a ≤ x2(t)/x1(t) for large t using Mathematica.

Figure 1 shows that this is not so, and the same fluc-

tuations persist for times around t = 5000. Therefore,

one cannot replace
√
a by a in (1—1) and Theorem 1.2 is

sharp in that sense.

On the other hand, the ratio of solutions stays well

above 1/2, which means that the lower bound might be

improved over Theorem 1.2. By varying a, we computed

the function Rk(a) := inft≥0 x2(t)/x1(t). We first ob-

-4 -3 -2 -1

-2.5

-2

-1.5

-1

-0.5

-4 -3 -2 -1

-3

-2.5

-2

-1.5

-1

-0.5

-4 -3 -2 -1

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

c = 3, slope 0.586 c = 1, slope 0.703 c = 0.075, slope 0.887

FIGURE 2. Solution ratios versus “spread” parameter a
(log-log plot).

tained the log-log plot in the middle of Figure 2, which

suggests that the optimal result should have Rk(a)

a.703. The other two plots in Figure 2, obtained for differ-

ent c in kc(t) :=e
(sin t+sinπt+sin

√
2 t)/c, produce analogous

lower bounds of Hölder type, only with different expo-

nents, suggesting that Rkc(a) ≈ aH(kc). We computed

H(kc) for various values of c. The results (in Figure 3)

suggest that limc→0H(kc) = 1, which led us to Theo-

rem 1.3.

The primary effect of the parameter c in the functions

kc above is to affect the ratio between the infimum and

5 10 15 20

0.5
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0.7

0.8

0.9

1

FIGURE 3. H(kc) versus c.

supremum of kc, i.e., on the absolute bounds on the right-

hand side. Figure 3 suggests that Theorem 1.2 can be

refined by adding hypotheses from Theorem 1.1, i.e., that

relative a-pinching of the right-hand sides of the Riccati

equation combined with absolute b-pinching of the right-

hand sides should force the corresponding solutions to

be aH -bunched for some H ∈ [1/2, 1]. This led us to
Theorem 1.4.

With Theorem 1.4 in hand, the computations that

led to Theorem 1.3 allow us also to test whether The-

orem 1.4 is sharp by comparing the actual pinching of

the numerical solutions given by the function Rkc(a) in

Figure 2 with the predicted pinching B(a, b). This is mo-

tivated by Figure 1, which shows the solution ratio stay-

ing well above 1/2 even though there is only quite weak

absolute pinching. Since kc(t) = e(sin t+sinπt+sin
√
2 t)/c

gives b = a inft kc(t)/ supt kc(t) = ae
−6/c, Figure 4 plots

B(a, ae−6/c)/Rkc(a) ≤ 1 versus a and c. If Theorem 1.4

2
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FIGURE 4. Pinching comparison.

were strictly optimal, one would expect the ratio to be

essentially 1 for all values of a and c. However, for small

values of c (which correspond to extremely small values of

b, i.e., very weak absolute pinching) the computed ratio

is as low as about 1/2, and it is truly close to 1 only for

strong relative pinching (a ≈ 1), which suggests that ei-
ther the result is yet amenable to further improvement or

that quasiperiodic right-hand sides help pinch solutions.

One might suspect numerical difficulties for small c, but

the deviation from 1 is noticeable, albeit small, even for

moderate values of c and a.

Theorem 1.3 (or even sharpness of any improvements

to Theorem 1.4) does not imply that the corresponding

differential-geometric results are sharp. The main the-

orem of [Hasselblatt 94b] uses Theorem 1.2, but The-

orem 1.3 does not imply that the result in [Hasselblatt

94b] is sharp. It is a subtle differential-geometric question

how big the difference between absolute and relative cur-

vature pinching can really be. In Theorem 1.4, we allow
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a− b to be arbitrarily close to 1, but there might be ob-
structions to such large separation of the pinching factors

for Riemannian metrics (such as in Theorem 1.6). Such

obstructions could lead to improvements of the last two

results here. On the other hand, it seems likely that a/b

can be arbitrarily large. Verifying this would require the

construction of examples, for instance, of metrics such

that for some orbits of the geodesic flow, the Riccati equa-

tion along them has forcing terms on the right-hand side

as used in the proof of Theorem 1.3. Ergodicity of the

2-frame flow might help here.
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