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We give an explicit construction for the two faithful, irre-
ducible, 16-dimensional representations of 4 Maso over the
field GF(49). Then we extend them to the 32-dimensional
representation of 4-My:2 over GF(7). Explicit matrices are
given on page 14.

INTRODUCTION

At one time [Burgoyne and Fong 1968] it was be-
lieved that the Schur multiplier of the Mathieu
group M,, was 3. Later this was amended to 6,
which was believed for several years to be the cor-
rect answer. Now there are several independent
proofs that the answer is 12. For example, it was
noted in [Gagola and Garrison 1982] that the stan-
dard construction of a spin representation gives an
easy proof of the existence of a proper fourfold
cover 4'M,,. Namely, 2° My, has a 210-dimensional
faithful irreducible real orthogonal representation,
in which the central involution obviously has 210
eigenvalues —1. Since the number of eigenvalues
—1 is congruent to 2 (mod 4), this element lifts to
elements of order 4 in the spin group Spin(210, R),
giving rise to a proper 4-fold cover 4-Ms,.

In this paper we describe an explicit construction
of this group, in its 16-dimensional representation
over GF(49). The existence of such a representa-
tion is easy to prove from the ordinary character
table, as there is only one possibility for the Brauer
tree of the faithful 7-block of defect 1 for 4-Ms,,
shown here (see also [Parker et al.]):
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For the computations we used R. A. Parker’s Meat-
axe programs [Parker 1984], together with arith-
metic subroutines written by M. van Meegen of
RWTH, Aachen. The programs ran on a SUN
SPARCstation, whose purchase was assisted by a
grant from the SERC Computational Science Ini-
tiative. The general method we adopt is that de-
scribed in [Parker and Wilson 1990].

CONSTRUCTION

The generating subgroups

We note first of all that 4 My, may be generated by
subgroups 2'Ly(11) and 2° Ag intersecting in 2° As.
This follows from the fact that My, is generated
by subgroups L,(11) and As intersecting in As.
Specifically, L,(11) is the stabilizer of an endecad
(marked * in the diagram below: see [Curtis 1976]
for the notation) and Ag is the stabilizer of a hexad
(marked O) and a point outside it (marked x).
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* * ®
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As these subgroups have order prime to 7, the rep-
resentation restricts to each as a direct sum of or-
dinary irreducibles reduced modulo 7. In Atlas no-
tation [Conway et al. 1985], the representation of
2:Ly(11) is 6b @ 10c (that is, x10 ® x11), while that
of 2" Ag is 8¢ ® 8d (again, coincidentally, x10 D x11)-
The restriction to 2-As is 6a ® 6a ® 2a ® 2b, or
Xe © X7 D 2x0.

Constructing 2-L,(11)

From SL,(11) = 2'L,(11) written as 2 X 2 matrices
over GF(11) it is easy to obtain a faithful permu-
tation action on 24 points, for example generated
by the two permutations

(23456789101112)(1415161718192021222324)

and

(121314)(3121524)(741916)
(591721)(6 1018 22)(11 8 23 20).

Writing this as a 24-dimensional matrix represen-
tation over GF(49) we can use the Meat-axe to
chop out a copy of the representation 6b. The
exterior square of 6b is ba + 10b, and ba ® 6b =
10c + 10d + 10e, so we can obtain the desired rep-
resentation 6b @ 10c over GF(49).

Constructing 2- Ag

From SLo(9) = 2- Ag written as 2 x 2 matrices over
GF(9), we obtain a faithful permutation action on
the 80 nonzero vectors. Writing this over GF(49),
we can chop out copies of 5a and 10b, and then
chop 8¢ @ 8d from ba ® 10b.

Restricting to 2- A5

Finding subgroups 2-As in 2°Ag and 2'Ly(11) is
straightforward. For example, if all else fails, we
can search at random for elements x and y sat-
isfying > = —1 and y® = (zy)° = 1. We arrange
that in both cases the group 2 As is represented by
block diagonal matrices, with blocks of sizes 6, 6,
2, 2. Moreover we use the Standard Base program
of the Meat-axe to find bases with respect to which
the two copies of 2' As are represented by the same
matrices. We write each of the groups 2-Ly(11)
and 2'Ag with respect to the corresponding such
basis.

Checking the cases

We now have matrices generating the two groups
H = 2'Ly(11) and K = 2-Ag, intersecting in a
group L & 2-As. We can conjugate either H or
K by any matrix commuting with L, and the same
situation will obtain, although the group generated
by these two groups may change. Now (HY, K) =
(H,K9"), so it does not matter whether we con-
jugate H or K. Moreover, matrices commuting
with H will have no effect on H, and similarly
for K. Thus the cases we need to consider cor-
respond to the double cosets of C(H) and C(K)
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in C(L), where the centralizers are computed in
GL16(49). We have C(H) = C(K) = 48% and
C(L) = 48% x GL3(49). More precisely, C(L) con-

sists of all invertible block matrices of the shape

A B 0 0
¢ D 0 O
0 0 E 0}’
0 0 0 F

while C(H) consists of all diagonal matrices of the
form diag(P,Q,Q,Q) and C(K) consists of those
of shape diag(R, S, R, S). Since conjugation by a
scalar matrix has no effect, we need only consider
elements with FF = 1, @ = 1, and S = 1. Then
we can choose double coset representatives with
E = F =1, by putting R = E~!. Thus we need
to compute the 48 x 49 x 50 = 117600 cosets in
GL2(49) of the subgroup of all matrices of the form
(1; (1)) Finally, we eliminate 117599 of the cases by
showing that the group so generated contains ele-
ments of order greater than 44. Thus the remaining
case must generate the group 4' M.

Extending to 4° M,:2

The representation we have constructed is not in-
variant under the outer automorphism of 4-M,,,
but is taken to its dual. Therefore, in order to
construct the holomorph 4°Ms5:2, we must begin
by taking the direct sum of these two representa-
tions. Then we find “standard generators” for the
group: for our purposes that means finding ele-
ments x € 2A and y € 4A with zy of order 11. We
put the representation into a “standard basis” de-
fined by (z,y). Then we find words in = and y that
give us a new pair of generators (z’,y'), which we
guess to be automorphic to (z,y). We prove this
isomorphism using the standard basis algorithm,
as described in [Parker 1984]. The algorithm pro-
duces a matrix P which conjugates (z,y) to (z',y").
Furthermore, by applying the algorithm to the ir-
reducible representations we can tell whether the
isomorphism between (z,y) and (z',y’) is realized
by an inner or an outer automorphism, so we can
ensure that it is outer. Now adjoining P to 4- M,

gives a group which is isoclinic to 4'Ms5:2. There
are 48 such matrix groups in this isoclinism class,
two of which are isomorphic to 4°Ms,:2. They can
all be obtained by multiplying P by a matrix which
acts trivially on one of the 16-dimensional con-
stituents, and as a scalar on the other. Moreover, it
is easy to identify the two cases which are 4° My5:2
simply by looking at the orders of elements.

The matrices

The sidebar on the next page exhibits two matrices
generating 4° Moo:2.
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