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We give an explicit construction for the two faithful, irre-

ducible, 16-dimensional representations of 4:M22 over the

field GF(49). Then we extend them to the 32-dimensional

representation of 4:M22:2 over GF(7). Explicit matrices are

given on page 14.

INTRODUCTIONAt one time [Burgoyne and Fong 1968] it was be-lieved that the Schur multiplier of the Mathieugroup M22 was 3. Later this was amended to 6,which was believed for several years to be the cor-rect answer. Now there are several independentproofs that the answer is 12. For example, it wasnoted in [Gagola and Garrison 1982] that the stan-dard construction of a spin representation gives aneasy proof of the existence of a proper fourfoldcover 4:M22. Namely, 2:M22 has a 210-dimensionalfaithful irreducible real orthogonal representation,in which the central involution obviously has 210eigenvalues �1. Since the number of eigenvalues�1 is congruent to 2 (mod 4), this element lifts toelements of order 4 in the spin group Spin(210;R),giving rise to a proper 4-fold cover 4:M22.In this paper we describe an explicit constructionof this group, in its 16-dimensional representationover GF(49). The existence of such a representa-tion is easy to prove from the ordinary charactertable, as there is only one possibility for the Brauertree of the faithful 7-block of defect 1 for 4:M22,shown here (see also [Parker et al.]):t t t t144 160 176 160144 16 160
c
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For the computations we used R. A. Parker's Meat-axe programs [Parker 1984], together with arith-metic subroutines written by M. van Meegen ofRWTH, Aachen. The programs ran on a SUNSPARCstation, whose purchase was assisted by agrant from the SERC Computational Science Ini-tiative. The general method we adopt is that de-scribed in [Parker and Wilson 1990].
CONSTRUCTION

The generating subgroupsWe note �rst of all that 4:M22 may be generated bysubgroups 2:L2(11) and 2:A6 intersecting in 2:A5.This follows from the fact that M22 is generatedby subgroups L2(11) and A6 intersecting in A5.Speci�cally, L2(11) is the stabilizer of an endecad(marked � in the diagram below: see [Curtis 1976]for the notation) and A6 is the stabilizer of a hexad(marked f) and a point outside it (marked �).����������������
**
* *
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ff
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As these subgroups have order prime to 7, the rep-resentation restricts to each as a direct sum of or-dinary irreducibles reduced modulo 7. In Atlas no-tation [Conway et al. 1985], the representation of2:L2(11) is 6b� 10c (that is, �10��11), while thatof 2:A6 is 8c�8d (again, coincidentally, �10��11).The restriction to 2:A5 is 6a � 6a � 2a � 2b, or�6 � �7 � 2�9.
Constructing 2:L2(11)From SL2(11) �= 2:L2(11) written as 2�2 matricesover GF(11) it is easy to obtain a faithful permu-tation action on 24 points, for example generatedby the two permutations(2 3 4 5 6 7 8 9 10 11 12)(14 15 16 17 18 19 20 21 22 23 24)

and(1 2 13 14)(3 12 15 24)(7 4 19 16)(5 9 17 21)(6 10 18 22)(11 8 23 20):Writing this as a 24-dimensional matrix represen-tation over GF(49) we can use the Meat-axe tochop out a copy of the representation 6b. Theexterior square of 6b is 5a + 10b, and 5a 
 6b =10c+ 10d+ 10e, so we can obtain the desired rep-resentation 6b� 10c over GF(49).
Constructing 2:A6From SL2(9) �= 2:A6 written as 2� 2 matrices overGF(9), we obtain a faithful permutation action onthe 80 nonzero vectors. Writing this over GF(49),we can chop out copies of 5a and 10b, and thenchop 8c� 8d from 5a
 10b.
Restricting to 2:A5Finding subgroups 2:A5 in 2:A6 and 2:L2(11) isstraightforward. For example, if all else fails, wecan search at random for elements x and y sat-isfying x2 = �1 and y3 = (xy)5 = 1. We arrangethat in both cases the group 2:A5 is represented byblock diagonal matrices, with blocks of sizes 6, 6,2, 2. Moreover we use the Standard Base programof the Meat-axe to �nd bases with respect to whichthe two copies of 2:A5 are represented by the samematrices. We write each of the groups 2:L2(11)and 2:A6 with respect to the corresponding suchbasis.
Checking the casesWe now have matrices generating the two groupsH �= 2:L2(11) and K �= 2:A6, intersecting in agroup L �= 2:A5. We can conjugate either H orK by any matrix commuting with L, and the samesituation will obtain, although the group generatedby these two groups may change. Now hHg;Ki �=hH;Kg�1i, so it does not matter whether we con-jugate H or K. Moreover, matrices commutingwith H will have no e�ect on H, and similarlyfor K. Thus the cases we need to consider cor-respond to the double cosets of C(H) and C(K)
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in C(L), where the centralizers are computed inGL16(49). We have C(H) �= C(K) �= 482 andC(L) �= 482 �GL2(49). More precisely, C(L) con-sists of all invertible block matrices of the shape0BB@A B 0 0C D 0 00 0 E 00 0 0 F
1CCA ;

while C(H) consists of all diagonal matrices of theform diag(P;Q;Q;Q) and C(K) consists of thoseof shape diag(R;S;R; S). Since conjugation by ascalar matrix has no e�ect, we need only considerelements with F = 1, Q = 1, and S = 1. Thenwe can choose double coset representatives withE = F = 1, by putting R = E�1. Thus we needto compute the 48 � 49 � 50 = 117600 cosets inGL2(49) of the subgroup of all matrices of the form�P0 01�. Finally, we eliminate 117599 of the cases byshowing that the group so generated contains ele-ments of order greater than 44. Thus the remainingcase must generate the group 4:M22.
Extending to 4:M22:2The representation we have constructed is not in-variant under the outer automorphism of 4:M22,but is taken to its dual. Therefore, in order toconstruct the holomorph 4:M22:2, we must beginby taking the direct sum of these two representa-tions. Then we �nd \standard generators" for thegroup: for our purposes that means �nding ele-ments x 2 2A and y 2 4A with xy of order 11. Weput the representation into a \standard basis" de-�ned by (x; y). Then we �nd words in x and y thatgive us a new pair of generators (x0; y0), which weguess to be automorphic to (x; y). We prove thisisomorphism using the standard basis algorithm,as described in [Parker 1984]. The algorithm pro-duces a matrix P which conjugates (x; y) to (x0; y0).Furthermore, by applying the algorithm to the ir-reducible representations we can tell whether theisomorphism between (x; y) and (x0; y0) is realizedby an inner or an outer automorphism, so we canensure that it is outer. Now adjoining P to 4:M22

gives a group which is isoclinic to 4:M22:2. Thereare 48 such matrix groups in this isoclinism class,two of which are isomorphic to 4:M22:2. They canall be obtained by multiplying P by a matrix whichacts trivially on one of the 16-dimensional con-stituents, and as a scalar on the other. Moreover, itis easy to identify the two cases which are 4:M22:2simply by looking at the orders of elements.
The matricesThe sidebar on the next page exhibits two matricesgenerating 4:M22:2.
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