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We briefly discuss the relationship between several character-
izations of the Hasse-Witt invariant of curves in characteristic
p with the goal of computing its value in concrete instances.
We study its asymptotic behaviour when dealing with the geo-
metric fibres of curves of genus > 2 defined over the rationals.
Numerical evidence gathered for several modular curves sup-
ports certain conjectural distribution laws.

1. INTRODUCTION

Throughout, we assume that k is an algebraically
closed field of characteristic p > 0, and €/k denotes
a complete nonsingular curve of genus g > 0. We
know [Hasse 1934; Hasse and Witt 1936] that the
number r(€) of maximal independent unramified
Z | pZ-extensions of the function field k(C) satisfies
the inequalities 0 < r(€C) < g. It is said that the
integer r = r(C) is the Hasse-Witt invariant of C.
If € is elliptic, the only possible values for r are
1 or 0. If r = 1, the curve is said to be ordinary;
otherwise, it is said to be supersingular. If C/Q is
an elliptic curve with complex multiplication, the
set of supersingular primes for € has density equal
to + [Deuring 1941] (compare [de Shalit 1987]). If
C/Q is an elliptic curve that does not have complex
multiplication, the set of supersingular primes has
density equal to zero [Serre 1981]. Elkies [1987]
proved that this set is infinite. Lang and Trotter
[1976] conjectured that
Pe(z) ~ cy/z/logx as x — oo,
where Pg(x) denotes the number of supersingular
primes for € that are < x and ¢ > 0 is a constant
depending on C. It has been proved by Elkies and
Murty that Pe(z) = O(z%/*) [Elkies 1991].
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Let J/k be the jacobian of €/k, and J[p] the
kernel of the multiplication by p in J(k). We have
the equality r(C) = dimg, J[p]. Accordingly, for
any given abelian variety A/k, we let

r(A) := dimg, Alp],

and call this integer the Hasse—Witt invariant of A.
It then follows that 0 < r(A) < dim A. Ordinary
abelian varieties are those for which r(A) = dim A.
If A is isogenous to a product [[ A; of abelian va-
rieties, then r(A4) =Y r(4,;).

The behaviour of the Hasse—-Witt invariant for
the geometric fibres of abelian varieties A/Q of di-
mension > 2 is less well known. We study its vari-
ation with p. If p is a prime of good reduction for
A, we let r,(A) := r(A/z,), and prove that there
are infinitely many primes for which r,(A4) > 2.
However, at present, given an abelian variety A/Q
of dimension > 2, it is not known whether the set
of primes of ordinary reduction is always infinite.

Let P4(x) denote the number of nonordinary
primes for A/Q that are < z. Let P4 (z) denote
the number of primes p < z for which r,(A4) = 0.
The size of P,(x) and P4 o(z) seems to depend on
phenomena of real, complex, and quaternionic mul-
tiplication. Cases arising from the Fermat curves
were treated in [Gonzédlez 1997]. In this paper we
deal with cases that arise from modular curves,
and formulate a higher-dimensional analogue of the
Lang and Trotter conjecture.

Let T" denote a congruence subgroup, f a new-
form of weight two for I', and A;/Q the abelian
variety attached to f by Shimura’s construction.
The set of primes p for which r,(A;) = 0 and
Ay /7, 1s not isogenous to a power of a supersin-
gular elliptic curve is finite. Suppose that f does
not have complex multiplication. Then the set of
primes p for which r,(A;) = 0 has density equal to
zero. As is well known, A; is isogenous to a power
of a Q-simple abelian variety B of dimension td,
where t = 1 or 2, and ¢t = 1 if and only if the en-
domorphism algebra Q® End(By) is commutative.
Numerical computations performed in the range of

levels up to one hundred and primes p < 10* lead
us to conjecture the following asymptotic relations,
where c¢f, ¢y are positive constants and ¢y = ¢y
ford=1:

(i) Ifd =1, Py, (x) ~ cy\/x/logz as © — oo.
(i) If d > 2, PAf(:v) ~ cyloglogz as © — oo.
(i) If d = 1, Pa,  (z) ~ cpov/w/logz as © — oo.
(ivVIfd =2, PAf,O(‘T) ~ cyologlogz as  — oo.
(

vifd>2 Py (z)=0(1) for all z > 2.

We also construct a probabilistic model that pre-
dicts these behaviours.

2. SOME FACTS ON SEMILINEAR ALGEBRA

In this section we consider some facts on semilinear
algebra. We fix an integer n, a power ¢ = p" of
the characteristic of k£, and H, H; denote k-vector
spaces.

Definition 2.1. An additive mapping F' : H; — H,
is said to be g-linear if it satisfies F'(Az) = A\ F'(z)
forall A\ € k and =z € H;.

By End,(H) we denote the k-vector space of all
g-linear operators on H. In the linear case, n = 0,
we simply drop the subindex ¢. For a given matrix
M with entries in k, M) will denote the matrix
obtained from M by raising each of its entries to
the ¢*-th power. If we choose a basis of H, then
we may attach to any g-linear operator F' on H a
matrix W in the usual way: if z = (z;) denotes a
vector of H, then Wx(@ yields the coordinates of
the vector F'(z). Note that, for any integer m > 0,
F™ is a ¢g™-linear operator with matrix W(m) :=
WW@ ...\,

If F € End,(H), the dual operator F' is defined
by (F'(w)(e))? = w(F(e)), for any form w in the
dual linear space H' and any vector e € H. Then
F' € End,-:(H') and, if W is the matrix of F in
the basis {e1,...,e,}, the matrix W' of F' in the
dual basis is given by W' = (W)/9 where W1
denotes the transposed matrix.

The g-linear nonlinear operators do not have at-
tached eigenvalues or characteristic polynomials.
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Each operator F' yields a decomposition H = H, &
H, into invariant subspaces, where F’ restricted to
H, is semisimple and restricted to H,, is nilpotent.
We consider

r(F) := dim H,,

5;(F) := dimker F* for1<i<g,

where ¢ = dim H. The integer r(F') is called the
semisimple rank of F. The integers s;(F') deter-
mine 7(F') and the number and length of the Jor-
dan boxes of the H,; they remain invariant by
changes of basis. In particular,

r(F) = dim im FY = rank W(g) = g — s,(F).

Moreover, 7(F) = dimg , H", where ¢' is the max-
imum between ¢ and ¢~'. Observe that F and F’
have the same invariants.

Given F' € End,(H), and any basis {e,...,¢e,}
of H, we may consider the linear operator T' &
End(H) defined by T'(e;) = Fl(e;) for 1 < i < g.
Although dimker F' = dimker T, it might happen
that dimker ™ and dimker 7™ do not agree. The
following definition is useful for our purposes.

Definition 2.2. We say that a linear operator 1T €
End(H) strongly linealizes a g-linear operator F' €
End,(H) if there exists a basis {e;,...,e,} of H
such that for any integer 7 > 0 is
Ti(e;) = Fi(e;) for1<i<g.

A linear operator T' linealizes a g-linear operator F'
if some power of T' strongly linealizes some (possi-
bly different) power of F'.

Clearly, if F € End,(H) is such that in some basis
it has a matrix W with entries in F,, ¢ > 1, and if
T € End(H) is the linear mapping defined through
W, then T strongly linealizes F. If T linealizes F,
then the semisimple rank of F' equals the sum of
the multiplicities of the nonzero roots of the char-
acteristic polynomial of 7', since the dimensions of
the nilpotent subspaces attached to F' and T are
the same.

Proposition 2.3. If k = F, and T € End(H) is an
operator that linealizes F' € End,(H), then the dual
operator T" linealizes the dual operator F'.

3. HASSE-WITT INVARIANT OF ABELIAN VARIETIES
OVER FINITE FIELDS

Let A/k be an abelian variety of dimension g. We
denote by F the p-linear operator of H*(A, O) in-
duced by the absolute Frobenius F4, and by C4 the
Cartier operator of H°(A,Q'), which is p~*-linear.
As is well known, r(A) = r(F}).

Let (A/k,P4) be the dual abelian variety of A,
where A(k) = Pic’(A) and P4 is the Poincaré sheaf
over A x A. Let Ty(—) denote tangent space at
zero. By considering the canonical isomorphism
i Ty(A) = H'(A,0), we get a canonical pairing

HY(A,0) x HY(A,QY) =k, (r,®) :=&(u*(r))

for which the dual operator of the absolute Frobe-
nius F7; is the Cartier operator C'y. Moreover,
(p*r, @) = (r,p*(@)) for any ¢ € End(A).

Until the end of this section, we assume that
A is defined over F,, ¢ = p", and k = F,. Let
¢ € Endg, (A) denote the relative Frobenius endo-
morphism of A. For each prime [ # p, let T;(A) be
the [-adic Tate module, and V;(A) = Q, ®z, T;(A).

Proposition 3.1. (i) The linear operator
o : H'(A,0) - H'(A,0)

linealizes the p-linear operator F7.

(i) The Hasse—Witt invariant of A is the sum of the
multiplicities of the nonzero roots of the modp
reduced characteristic polynomial of ¢ acting on
Vi(A) .

Proof. The assertion in (i) follows from the fact that
for any r € H'(A, O) there exists an integer m,. > 0
such that if m, | m, then (¢*)™(r) = (F*)"™(r).
The assertion in (ii) follows from (i) combined with
det(p — z1d | Vi(A)) (mod p)

= (—1)%z% det(¢* — 2 1d | H'(4,0)),

due to Manin [1961]. O
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Consider an F,-polarization A : A — A and the
corresponding Rosati involution in Q® End(A) de-
fined by 1+ 1’ = A=Y oh o X. Note that the Ver-
schiebung ¢' lies in Endg (A). Since p4 0 ¢!y = ¢
and @409 ; = g, we have that the Verschiebung en-
domorphism of A is ¢ 3; that is, ¢, = ¢ 4. Thus,
;" and ¢’ are dual with respect to the above
pairing. Since the respective Frobenius acting on

Vi(A),V;(A) have the same characteristic polyno-
mial, we get

Proposition 3.2. (i) The linear operator
o HY(A,QY — H(A, QY

linealizes the p~'-linear operator Cy. Thus the
Hasse—Witt invariant of A is the sum of the
multiplicities of the nonzero roots of the charac-
teristic polynomial of ©'™ acting on H°(A, Q).

(ii) The characteristic polynomial of ¢* acting on
H'(A, Q) equals the characteristic polynomial of
©'" acting on H°(A, Q).

Let P(z) := det(p — zId | Vi(A)). As is well
known, P(z) is a polynomial with integral coef-
ficients, independent of [. If o;, 1 <14 < 2g, denote
its complex roots, we have |a;| = ¢'/?, H?il o; =
q?, and we may fix an ordering of the roots of
P(z) so that a;4y = & = q¢/a; for 1 < i < g.
Let 8; == a; + a;, 1 < i < g. The polynomial
Q(z) =[], (z — B;) has integral coefficients and
Q(z)?* = det(p + ¢ — zId | Vi(A)). We have
det(p—z1d | V;(A4)) = 29Q(z) (mod p). Thus r(A)
equals the sum of the multiplicities of the nonzero
roots of Q(x) (modp), and

det(p*—x Id| H' (A, O)) =det(p*—zId| H° (A, Q"))
=(=1)?Q(z) (modp).

4. HASSE-WITT INVARIANTS OF MODULAR CURVES

Let N > 1 be an integer and I' a subgroup of I'y(N)
containing I'; (N). Denote by Xt the complex pro-
jective nonsingular curve defined by the action of
I' in the completed upper-half plane H*. If N > 4,
the curve Xt has a proper and smooth model over

Z[1/N]. The Hecke and the diamond correspon-
dences [T,] and (p), for p{ N a prime, act on it.
The Weil involution w is an automorphism of X
defined over Z[1/N][(], where ( is a primitive N-th
root of unity.

From now on we consider only modular curves of
genus g > 0. We fix a prime p{ N, and a place p of
Q lying over p. We let Jr/ Spec Z,[¢] be the Néron
model of the jacobian of Xr/SpecZ,[(]. We de-
note by Xp = Xr/r,, jp = dr/r, the corresponding
geometric closed fibres. For any endomorphism
of Jr, we let z/; denote its mod p reduction.

Let T}, be the p-th Hecke operator acting on
the space of cusp forms S»(I'). Under the iso-
morphism S,(I') — H°(Xp, Q') given by f(q) —
f(q)q~*dg, the T, operator induced on H°( X, ")
equals (¢*)7'[T,]*¢*. Here ¢ = €*™*, and ¢ denotes
a canonical mapping from the modular curve to its
jacobian.

Proposition 4.1. The endomorphism [,1\’;]* of the vec-
tor space H°(J,, Q') equals (=" o @' o d)*. The
Hasse—Witt invariant of )Z'p is the sum of the mul-
tiplicities of the nonzero roots of the mod p reduced
characteristic polynomial det(T, — x Id | Sy(I")).

Proof. Eichler—Shimura congruence [Shimura 1971]
tells us

[l=¢+¢ olp)=p+uw oy ow,

as equality in End(J,). Since ¢* = 0on H(.J,, Q"),
the first statement follows. The rest is a conse-
quence of proposition 3.2(ii) combined with the fol-
lowing equalities and congruence mod p:
det(T, — x1d | Sy(I"))

= det([T,]* — z1d | H°(Jp, Q"))

= det([fi\’p]]* —z1d | H(Jp, QY)

= det(¢™ —zId | H'(Jp,QY)). O

Proposition 4.2. Let € denote a mod N Dirichlet
character and f =3 _ a(n)g" in S2(Lo(N),€) a
modular form whose coefficients belong to the inte-
ger ring O of a number field E. Let p be a prime
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tdeal of Op over p of residue degree equal to v.
Then, for each integer m > 0 such that v | m, we
have

T,

p (fle)gtdq) = C™(f(q)q"dqg),
where ~ denotes reduction mod p.

Proof. We recall that for any curve C/k in char-
acteristic p > 0, the Cartier operator C' is de-
fined in the following way: given a closed point
z in € and functions t,h € O, such that dt # 0,
then C(hdt) = h,dt, where h] = —dP~'h/dt*~*.
The claim of the proposition follows by consider-
ing(?:)fp,m:ioo,andt:q. O

We see that the Cartier operator and the Hecke
operator f}) agree on the mod p reduced parabolic
forms of Sy(I'y(IN),e) whose coefficients lie in Z.
In the particular case of the trivial Nebentypus
character, S,(I'g(N)) has a basis of parabolic forms
with integral coefficients, hence the two operators
agree on the modp reduced basis. On the other
hand, since Sy(I'g(NV),e) has a basis of eigenfunc-
tions of the T},-operator with algebraic integral co-
efficients, we get

Corollary 4.3. The Hecke operator [,1:,,/]* of H°(J,, Q")
linealizes the Cartier operator C. If I' = I'y(N),

then [Tp]* strongly linealizes C.

Numerical calculations of Hasse-Witt invariants of
modular curves will be displayed in Section 9. They
have been performed by using proposition 4.1 and
the available tables for the characteristic polyno-
mials of the Hecke operators. If X,(/N) happens
to be hyperelliptic, we may compute a matrix for
the Cartier operator at p{ 2N by the method of
[Manin 1962], which in turn requires the knowledge
of an equation of the curve. If we use for that pur-
pose the equations in [Gonzalez Rovira 1991], then
the characteristic polynomial of that matrix equals
the mod p reduced characteristic polynomial of 7.
This happens because the basis of regular differen-
tials obtained from those equations corresponds to
modular forms that do have integral Fourier coef-
ficients.

5. SOME RESULTS ON DENSITIES

From now on, A will denote an abelian variety de-
fined over Q and p a prime of good reduction for
A. We write A, = Ajg,, and 1,(A) := r(A,). We
say that p is a prime of ordinary reduction for A
if r,(A) = dimA. If dimA = 1, we already men-
tioned the existence of infinitely many primes of
ordinary reduction as well as of supersingular re-
duction. In higher dimensions, we find the follow-
ing result.

Proposition 5.1. Let A/Q be an abelian variety of
dimension g > 2. Then, there exists a set of primes
with positive density for which r,(A) > 2 for all p
in this set. In particular, if g = 2, there exists a
set of primes of ordinary reduction for A that has
positive density.

Proof. Let us fix a prime [ > 4¢” and let p be a prime
of good reduction for A such that it splits com-
pletely in the field Q(A[l]). Since Q(u;) € Q(A[l)),
then p = 1 (mod!) and, in particular, p > [ and
the points in A,[/] are rational over F,. Thus, the
relative Frobenius ¢, acts trivially on A,[l]. Since
p = 1 (modl), the Verschiebung ¢), = p/¢p, also
acts trivially on A,[l]. If we consider ¢, + ¢, act-
ing on Tj(4,), we have ¢, + ¢, = 2Id (modl). If
Q(z) = =9 —I—Zf:_ll c;z? % is the polynomial with in-
tegral coefficients such that Q(x)* = det(yp, + ¢}, —
z1d | Vi(4,)) (cf.section 3), then

g—1
x? + Zcixg_i = (z — 2)?(modl).

i=1

From this we get ¢; = —2¢ (mod ) and ¢, =2¢g(g—1)
(mod{). On the other hand, we know that |¢;| <
2gp'/? < p and |cy| < 2g(g — 1)p < lp. For such
primes p we must have 7,(A) > 0, since the con-
dition ¢; = 0 (mod p) would imply ¢; = 0, which
contradicts the fact that ¢, = —2¢g (modl). We
claim that ¢; #Z 0 (modp), which already implies
rp(A) > 1. Assume instead that ¢; = 0 (modp),
then ¢, = 2g(g — 1)p. Since all the roots of the
polynomial Q(z) are real, then all the roots of the
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i-th derived polynomials Q¥ (z), for 1 <i < g—1,
are also real. Therefore, the roots of the polyno-
mial
209-2)
2 ! @ =22 +2%2 + 4p
9g: g

are real, so that ¢ > 4¢°p. Since |c¢;| < 2gp'/?, we
get |ei| = 2gp'/?, which contradicts the fact that
c; is an integer. 0

Another proof, due to Ogus, of the second claim of
the preceding proposition can be found in [Deligne
et al. 1982].

Next we work on abelian subvarieties A/Q of
the jacobian of the modular curve Xr/Q. Let f =
Y onso@(n)q" € S5(I') be a newform, E the field
generated by its coefficients and I the set of Q-
embeddings of E into Q. Let A;/Q denote the
abelian subvariety of Jp of dimension g = [E : Q)
whose cotangent vector space, Hy, is generated
by {f?} for o running into I (compare [Shimura
1971]). H; has a basis of modular forms with
integral Fourier coefficients. From what we have
seen, 7,(Ay) equals the sum of the multiplicities of

the nonzero roots of the mod p reduced polynomial
det(T, — z1d | Hy). Therefore,

rp(Af) = #{o € I'|a(p)” # 0 (modp)}.

In particular, Ay is ordinary at p if and only if
p1{ Nggla(p)). If f has complex multiplication
[Ribet 1977], it follows that there is a set of primes
p with density 1/2 for which r,(A;) = 0.

Proposition 5.2. Suppose that A/Q is an abelian sub-
variety of Jr that is invariant under all the Hecke
endomorphisms.

(i) For almost all primes p, r,(A) = 0 implies
[TP]|A = 0.

(i) If [T}) |4 = 0, then A, is F,-isogenous to a power
of a supersingular elliptic curve. Hence, the set
of primes for which is r,(A) = 0 and A, is not
[, -isogenous to a power of a supersingular el-
liptic curve is finite.

(iii) If the cotangent space to A does not contain
any form with complex multiplication, then the
set of primes p for which r,(A) =0 has natural
density, in the set of all primes numbers, equal
to zero.

Proof. Without loss of generality, we may assume
that A = A; is the variety attached to a newform
f € S:(I'). Let {fi,..., f,} be a basis of newforms
and {hq,...,h,} abasis of forms with integral coef-
ficients of H;. Let M = (m;;) be the matrix of the
change of basis, so that h; = >, m;; fi. Let ¢ de-
note an upper bound of the values |m;;|, and let Q
denote the set of primes such that m,; is p-integral,
pt N, and p'/? > 2gc. If fi = ¥ ai(n)g”,
hi =) ,50¢i(n)q", then we get

()] = |- mijailp)| < 3 lailp)| < 202 < p

for all p € Q. Assume now that r,(A;) = 0. If the
entries in the matrix M are p-integral, we must
have ¢;(p) =0 (modp) for 1 <i<g. If p € Q, we
therefore get ¢;(p) = 0. Since det M # 0, a;(p) =0
for 1 <14¢ < g. We see that T, = 0 on H;. This
yields statement (i).

By Eichler—Shimura, [fp] =, + @;(p) =, +
p/¢p(p). Hence, if we now assume that [T},]j4 = 0,
a power of ¢, will be equal to the multiplication by
an integer. Since flp is defined over a finite field, we
know [Tate 1966] that this condition is equivalent
to Ap being isogenous to a power of a supersingular
elliptic curve. This yields statement (ii).

For a form f without complex multiplication, it
was proved by Serre [1981] that the number Py (z)
of primes p < z such that a(p) = 0 satisfies

1/2

B (log log log x)
Pf,o(iv) = O( (log z)1/2

log longi(x))
as £ — oo. From this formula, statement (i), and

the prime number theorem, we get statement (iii).
a
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6. FROBENIUS DISTRIBUTIONS: FIRST APPROACH

Throughout the remainder of the paper,

f=2 aln

n>0

q ESZNtf)

denotes a newform without complex multiplica-
tion, ¢ = dim Ay, Op the ring of integers of the
number field £ generated by the coefficients of f,
and I = {oy,...,0,} the set of all Q-embeddings
of E into Q. We let Gy = Gal(Q/Q).

For each prime [, we know that there exists a
continuous [-adic representation

pPr - GQ — GL(2, OE & Zl)

unramified outside NI and such that

Tr(pi(Froby,)) = alp),
det(p(Frob,,)) = e(p)p

for all primes p{ Ni. Here Frob, , = Frob, ,(M,;/Q)
denotes a Frobenius element and M; is the Galois
extension of Q cut out by p;. The family p;, for all
primes [, defines an homomorphism

p:Gy— [[GL(2,05 7).
l

Let T be the set of those pairs (o, x) such that
o€l and x : Gog = C is a continuous character
that satisfies a(p)” = x(p)a(p) for all p{ N. The
set T'# @ is a group by the law

(7—7¢) ’ (07 X) = (T ©0, XT.Q,D),

where x7(g) := x(9)". If (0,x) € T, then x is un-
ramified outside N and x = pe’ with some char-
acter p of order 1 or 2 and some integer j. Let
I’ be the subset of the elements o € I such that
(o,x) € T for some x. It turns out that I' is an
abelian subgroup of the group of automorphisms
of E. Let A = kery for (o,x) € T. Consider
the number fields

L=0Q* F=E"

We will now record some facts concerning these
fields L and F that are needed in the sequel. For

their proofs see [Momose 1981; Ribet 1980; 1985;
1992; 1994].

(i) The extension L/Q is abelian and the number
field F' is totally real.

(i) The mapping T' — ' = Gal(£/F) given by
(o, x) +— o is an isomorphism.

(iii) Replacing each p; by an isomorphic representa-
tion, we may suppose that p;(A) is contained in
the subgroup {s € GL(2,0r ® Z;) | det s € Z}},
and that it is equal to it for almost all [.

(iv) For each prime p{ N, we have a(p)*/e(p) € F

(v) The abelian variety Ay is isotypical; i.e., Q-
isogenous to a product B X --- X B, where B =
By is a Q-simple abelian variety. The endomor-
phism algebra Q ® End(By) is a central divi-
sion algebra over F' of dimension 2, with ¢ < 2.
Moreover, dim By = td, where d = [F' : Q).

The following relationship between the fields L and
F, although elementary, will be basic for predicting
the distribution laws of the a(p)-s values. Note that
if Ay is an elliptic curve, then both fields are equal
and coincide with Q.

Main Lemma 6.1. Assume that for a prime pt N, the
geometric fibre flﬁp 1s not isogenous to a power
of a supersingular elliptic curve. Let k denote the
residue degree of any prime in L over p. For a
given integer m, the following conditions are equiv-
alent:

(a) a(p)m € OF?
(b) Tr(p(Frob;",)) € Op @ Zy for all I # p,
(c) k| m.

Proof. The hypothesis over flf,,, implies, as in the
proof of 5.2, that Tr(p,(Frob;)) # 0 for all [ # p,
and m > 0. We first show the equivalence of (a)
and (b). For a given 2 x 2-matrix s with entries
in an integral domain, and for any m > 0, the
following identity is fulfilled:

[m/2]

Tr(s™) = 3 (1)

i=0

m-—1

: (mz_z> (det 5)*(Tr 5)™ %,
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Thus, under the assumption Tr(s) # 0, we have

Tr(s™) ) '
= (Trs)™ (g](—l)imwii (mz_z> (%>>

Since Tr(p,(Frob;")) # 0 for all m > 0, we have
a(p)™ € F if and only if, for each [ # p, we have
Tr(p(Frob,,)) € Op ® Z;, due to the fact that
a(p)’/e(p) € F*.

We now show that (c) implies (b). Since pt N,
p is unramified in L. For a place p of Q over p, let
p be its restricion to L. Since Frob, ,(M;L/Q)" =
Frob; ,(M;L/L) and by taking into account c), we
get Tr(p;(Froby,)™/%) € Op ® Z.

Finally, we show that (a) implies (c). If a(p)™ €
F, then for all (0,x) € T we have (a(p)™)” =
a(p)™. Since a(p) # 0, we have x(p™) = 1, so
that x(Frob,,(ML/Q™) = x(p™) = 1.
fore, Frob, ,(M,L/Q)™ € Gal(M,L/L) and & | m.

Since A is isogenous to a power of By, we have
Tp(Af) = T(Bf/]jrp) dlmAf/dlme

Hence, the Hasse-Witt invariants of A; are deter-
mined by those of the geometric fibres of its build-
ing block By.

Throughout the remainder of the paper, P =
P, will denote the set of primes p{ N that split
completely in L. If p € Py, we know by 6.1 that
a(p) € F. In this case we let b(p) := Ng/g(a(p)).
By Section 5, Ay is nonordinary at p if and only
if b(p) = 0 (modp), and r,(A;) = 0 if and only if
b(p) = 0 for large enough p.

In general, [Ny q(a(p))| < 29p9/%, but for p € Py,
we have |b(p)| < 2¢p?/2. Moreover, for the primes
p ¢ P, the values a(p) are constrained by the
condition a(p)® € F. These facts lead us to suspect
that the pair L, F might control the distribution
law of the nonordinary primes for Ay, in that its
order should be determined, up to a multiplicative

constant, by those primes in P;. Pursuing this

idea, let us define

NP (z) = #{p € Pr | p < x, b(p) = t}.

Since the possible values of a(p) such that b(p) =0
(mod p) depend on the residue degree of the primes
in F' over p, it is clear that the distribution of the
nonordinary values b(p) in the interval

[_2dpd/2’ 2dpd/2]

cannot be uniform. Nevertheless, to get a rough
idea of its order, let us assume initially that all
the integers lying in [—2¢p?/2, 29p?/?] had the same
probability of being equal to b(p). In this case,

1
Z 2d+1pd/2’

p<z

o {Zpgx 1/(4yp) ifd=1,
2p<a 1/ ifd>1,

NE (@) ~

Z Nspllt

p<z

plt
as ¢ — 0o and for p running into Pp. In particular,
for d > 2, we would get only a finite number of
primes for which a(p) = 0. Since L/Q is abelian,
we have

1 1 1
2 E”[L:@]ZE

pEP, p<w p<z

for 0 <s<1.

If d > 1, we get as a consequence that the num-
ber of nonordinary primes for A; would be asymp-
totically equivalent to loglogz, up to some mul-
tiplicative constant. If d = 1, then FF = Q and
dim By < 2. In this case, we see that the asymp-
totic behaviour of the nonordinary primes would
be that predicted by the results of [Lang and Trot-
ter 1976], even if dim By = 2. The next proposition
shows that for d = 1, the condition dim By = 2 im-
plies (B /Fp) # 1, which explains why the values
rp(Af) behave in this case like those of the g-th
power of an elliptic curve over Q (cf. Section 9).

Proposition 6.2. If F' = Q, all the geometric fibres
A;,, for pt N, are isogenous to the gth-power of
an elliptic curve.
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Proof. We know already that the claim is true if
a(p) = 0. Assume instead that a(p) # 0 and let
denote the residue degree of the primes in L over
p. By Eichler-Shimura and 6.1, there exists an
algebraic integer «y, such that

a(p) = aptae(p), e, =p, ayta; € Op = L.

If Ay is nonordinary at p, then there is a prime
p | p in E such that a(p) 0 (modp). Hence,
af +af € pZ and p divides o, &2*, which implies
that r,(As) = 0 and r(B; /z,) = 0. Since dim By <
2, the geometric fibre By jr  is isogenous to a power
of a supersingular elliptic curve. Thus, the same is
true for A .

Assume now that Ay is ordinary at p. Then
By /g, is also ordinary. If By s were simple, then
the algebra Q ® End(By /z,) would be a number
field, but this is impossible if dim B; = 2 since Q®
End(By /5,) contains the noncommutative algebra
Q ® End(By). Since the characteristic polynomial
of the relative Frobenius ¢, acting on the Tate
module of A /g, . is a power of 2° — (af +ap)z +p”,

we see that the variety A, , is isogenous to a power
of an elliptic curve. O

7. CHEBOTAREV DENSITIES IN GL,-EXTENSIONS

For any number field K, we let G := Gal(Q/K).
Let A/Q be any abelian variety of dimension g, [
a prime, and

pr: Go — Aut(7;(A)) = GL(2g, Z;)

the continuous [-adic representation defined by the
Tate module. Let p be the homomorphism given
by p =[], pi where the product runs over the set of
all prime numbers. We know [Serre 1985/86] that
there exists a finite extension K/Q such that the
subgroup p(G k) is open in the product [[, o;(G k).
If A = Ay, f as above, then p; is equivalent to
the [-adic representation of G into GL(2, 0 ® Z))
attached to f. In this case, we want to prove that
p(Gr) is open in [], p/(Gr), where the field L is,
as in Section 6, the abelian extension of QQ cut out

by the set of Dirichlet characters that intervene in
the inner twists of f.

Lemma 7.1. Let O be the integer ring of a number
field. Let G be a closed subgroup of

[IGL@ oez).
l

Denote by G; the image of G under the projection
in GL(2,0 ® Z;). Suppose that

(a) the image of G by det : [[, G; — [[,(O®Zy)* is
open in det([[, Gy), and
(b) G; contains SL(2,0 ® Z;) for almost all .

Then G is open in [, G.

Proof. The assertions for the case O = Z correspond
to the main lemma in [Serre 1989, Chapter 4]. We
outline the required modifications in our case.

(i) The group PSL(2,F,. ) is simple for any prime
[l > 5 and v a positive integer. Every proper sub-
group of this group is solvable or isomorphic to
one of the following groups: PSL(2,F;.) for m | v,
PGL(2,F;n ) for 2m/|v, or the alternating group As.
The last possibility occurs only if [*/ = 1 (mod 5)
[Huppert 1967].

(i) No proper subgroup of SL(2,F;. ) can possibly
map onto PSL(2,F,. ), since the transvections gen-
erate SL(2,F. ) and have order .

(iii) Let X be a closed subgroup of SL(2,0 ® Z,)
that maps onto SL(2,0/10). If | > 5, then X =
SL(2,0 ® Z;).

(iv) Let G be a closed subgroup of [[, GL(2,0®Z,)
(at this point, we do not require G to satisfy the
conditions of 7.1). Let X = [[,G;. Let S be a
finite set of prime numbers, and Xy = [],.4 G-
The image Gg of G by the projection X — Xy is
open in Xg.

(v) Assume now that a closed subgroup G of

[[6L@ oez)
l

satisfies (b). Let S be a finite set of prime num-
bers so that {2,3,5} are in S and, if [ € S, then
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GL(2,0®1Z,;) contains SL(2,0 ® Z;). Then G con-
tains [ ;5 SL(2,0 ® Z)).

(vi) If G is as in (v), then G contains an open sub-
group of [[,SL(2,0 ® Z;) N G,.

Suppose now that G satisfies (a) and (b). To
finish the proof we take into account that the kernel
of the homomorphism det : [[, G; = [[,(0®Z,)* is
[[,SL(2,0®Z;) N G,. Hence, by (vi), the kernel of
det| is open in ker(det). Since det(G) is an open
subgroup of det(]], G;), we get that G is an open
subgroup of [[, Gi. O

We turn now to the [-adic representations attached
to the newform f. We denote by p, ;, the restriction
of p; to G, and by p;, the restriction of p to G.

Lemma 7.2. The image of pr(Gr) under the map
det : [[, o1, (Gr) = [1, Z; is open.

Proof. Because G, C ker(e), the cyclotomic char-
acter is det(pp ;) : G — Zj. The assertion follows
as in [Serre 1989, Lemma IV, 3.1]. O

Since p;(G) contains SL(2, 0 ® Z;) for almost all
[, and from the above lemmas, the next proposition
follows.

Proposition 7.3. The subgroup p(Gp) is open in the
product [], pi(GL).

We recall that F' is the center of Q ® End(By).
Consider

OF®Zl:@O>\7

Y[

where O, denotes the completion of the integer ring
O at a prime ideal A|l. By p, we denote the com-
positum of p; ;, with the projection onto GL(2, Oy).
Given an integral ideal m = [[ A" of O, let

Pm :Hp)\
Alm

and let ¢,, denote the (mod m)-reduction homomor-
phism

[T GL(2,0,) = [] GL(2,0./2™).

Alm Alm

For a prime p | p in L not dividing N, we note
Frob, = Frob,(M/L), where M is now the field
cut out by p,. We denote, for simplicity,

a(p) = oy + ay,

where £ is the residue degree of p, a(p) = «, +
a,e(p), and a,, = p. Observe that

a(p) = Tr(py,(Frob,))

For each nonzero integral ideal m of Op, and for
any element 0 € Op, we define 7, (6) as

Nao(m) i PP INE/0(B) < 0lp) = 6 (modm))
I 50 #{p | Nr/o(p) < o} ’
where p runs into the set of primes in L that do

not divide N. The Chebotarev density theorem
guarantees the existence of the limit. Observe that

T (6)
Nr/o(m)

for all [ # p.

:]_,
0eOF/m

which tells us that the average value of 7, is 1.

Proposition 7.3 will be used to establish the uni-
form convergence of the sequence {m,} when the
indices m run into the filter of all nonzero ideals
of the ring Op. Before that we need the following
lemma:

Lemma 7.4. Let [ be a prime number and let m, v
denote positive integers such that m divides v. Put
G := GL(2,F.), G, == {s € G | det(s) € Fn },
and G, = {s € G, | Tr(s) = e} fore € Fp.
Then:

() #G =1"(1" =1)2(1"+1) and #G.,, = I"(I* —1) x
(I +1)(1™ - 1).

. i —-1) if 2mtv,

0 #Cmo = {zv(zv L@ —1) if2m| .

(i) (" =)™ = 1) < #Gpe <171 +1)(I™ —1)
for all e € Fy..

(iv) #G, . =1"(1* = 1" — 1) for all e £ 0.

Theorem 7.5. (i) There exists a bounded function
m: O — R such that lim, 7, = ® and the
convergence is uniform.
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(ii) There ezist both an ideal n # (0) of Op and
constants 0 < ¢, < & such that for all 0 € O
is ¢y (0) < w(0) < Eama(6).

Proof. Since, by 7.3, p(G ) is an open subgroup of
[L,(I15; px(GL)), there is a nonzero ideal n of Op
satisfying the following properties:
— if Atn, then

pA(GL) = {s € GL(2,0,) | det s € Z;}.
- p(GL) = HM“ PA(GL) X pu(Gr).
=t (tapa(GL)) = pa(GL).
Let v denote the residue degree of a prime ideal A
over [ and A{n. By the preceding lemma, we get

/(17 + 1) < ma(0) < 171" —1). Ifv =1 we get,

moreover,

/(12 - 1)
20/

if =0 (mod \),
—1?—-141)
if 02 0 (mod \).

T (0) =

Hence, the infinite product [],,, m,(6) is absolutely
convergent. Let ¢(6) := [],,, ma(6). If n|m, then

m(®) = m0(0) [ m(0)-

Alm,Afn

Thus, lim,, 7,(0) = m,(0)c(f). We denote this
limit by 7(6). We consider the constants

1 ifv=1,

o= {101
2T -)

C = I | C1,xs

Atn

Cy 1= I | C2 X

An

{1/(1 +177) ifv>1,
Cia\ =

ifv>1
ifv=1,

For each 6 € O we have ¢; , < m\() < ¢, and
¢1 < c(f) < é. Note that if m > n, then m,(0) < ¢

for ¢ := Npjg(n)é,. The convergence of the se-
quence is uniform since, for all m > n, we have

|7(0) — 0 (0)| = 7 (0) [ [ 72 (0)—1| < ¢ [ con—1
Afm Afm
and
lim [ [ e2n = 1. O
Afm

8. A PROBABILISTIC MODEL AND CONJECTURES

To predict more precisely the number of nonordi-
nary primes for A;, and of those for which r,(A;)
vanishes, which we can find up to a given value,
we construct a probabilistic model. It generalizes
the one introduced in [Lang and Trotter 1976] for
the elliptic curves defined over Q. We keep the
notations of Section 7.

Let ¥ be the set of all prime ideals of the integer
ring of L. Because

lim #{p e X | Npglp)=p
a—oo  F#{p € X | Npjg(p) <

we can rewrite m,(0) as

. #pePrp<z, alp)=0 (modm)}
Nrjg(m) lim e, p<z] ,

and see that the functions m, are determined by
the primes in P;,.

Let {r,...,74} be the set of all Q-embeddings
of F into Q. Let 7 : F — R? denote the geometric
representation of F, given by 7(a) = (oY, ..., a(?)
for o in F and ¥ := ™. We note that if p € P,
then a(p)® is defined and |a(p)®?| < 2p'/? with
1< <d.

We now list and comment on our assumptions
concerning the probabilistic model.

<
<ap
T

}

H1. There exists a positive continuous function m:
R? — R with support in [—1,1]? such that, for
any Lebesgue measurable subset X C RY,

/ . #{pETLIPS:r, T;L\(/];g)eX}
« el

#{pePr|p<az}
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In the case of elliptic curves defined over Q, it
is conjectured that the measure attached to the
density function ., corresponds to the Sato—Tate
measure (2/7) sin® ada, once the set of conjugacy
classes of SU(2) is identified with [—1,1] (compare
[Lang and Trotter 1976; Tate 1965]). For an insight
in the general case, consider the Mumford—Tate
group Gy (By) and the kernel G' of the canoni-
cal homomorphism of G/(By) in the multiplica-
tive group G,,. Let K be the maximal compact
subgroup of G*(C) and CIK the set of its conju-
gacy classes. Put in Cl1 K the image of the Haar
measure of K. It seems reasonable to suspect that
this measure should provide the measure attached
10 M-

H2. For each p € Py and for each nonzero ideal m
in Op, there exists a constant ¢(p,m) > 0 such
that the function ¢, : P, X Op — R defined by

7(0)

Iu(p,0) = c(p,m 7roo<—> T (6

.0) = clp. ) 7 (5. 2) 7a(0)

satisfies ) g, gm(p,0) =1 for almost allp€ Py,

H3. For each p € P, there exists a constant ¢, > 0

such that the function g : P, x O — R defined
by

o(p.0) = ¢, (50) (0

satisfies ) ;. ¢g(p,0) = 1 for almost allp € Py.

If a(p’) = 0 for some p' € P, then 7, (0) > 0 for
all m. Thus 7 (0) > 0. If, moreover, 7. (0) > 0,
then H2 and H3 follow from HI.

The next result yields the asymptotic behaviour
of the family of constants introduced in H2, H3.

Theorem 8.1. Assume H1 and H2, and let d, D de-
note the degree and the discriminant, respectively,

of F/Q.
(i) For each nonzero ideal m of Op, we have

V1D

~ 2dpd/2

c(p, m) as p — oo.

(ii) Assume, moreover, that H3 holds. Then c, =
lim,, ¢(p, m) and

VID]

CPNW as p — Q.

Proof. Let {e;} be the canonical basis of R?. Fix
m and choose a basis {u;} of the lattice 7(m). Let
U be the linear automorphism of R? defined by
Ul(e;) = u; for 1 <7 <d. Since

|det U| = \/|D|Np/q(m),

we have

l=[ 7o = \/|D|NF/Q(m)/ Too O U.
Rd

R4

We approximate the integral by Riemann sums:

, 1 ¢ ty
= lim —ded/2 Z WOO<U<ﬁ"”’ﬁ)>'

Let 6y € Op. Since 7y, and U are uniformly con-
tinuous, we get

. 7(90)
| o U
Jm [ Mo © ( Vo )

. 1 7'(00) tl td >
= lim E Too ( +U e .
0o 2dnd/2 ) )

p—oo 24p /(tn)EZd V2p (2\/]_) 2\/;5)

Thus,

. 7(90)
wolU=1 o0 U
[ o= jim [ noo (T2 +0)

) 1 7(0)
= lim so 20 ™ (5 )

fcho+m

By multiplying the last equality by m,(6) and
summing over the congruence classes 6, in Op/m,
we get

AL 3y WOO(T(G))M(G) —1.

poo 20pt/2 9c0r 2vp

We easily see that H2 implies (i).
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From H2 and H3, it is clear that lim,, ¢(p,m) =
¢, By using (i), we get for all m

2dd/zz ( ) 0)_1‘
< lim \/WZ (

p—roo 2dpd/2

p%OO

) 7(6) = 7w (0)]
(1), we get

v/ |D 0

lhn2dbg §:ﬂ®(%il)ww)=1.
pmree p PEO R \/Z_?

Now (ii) follows from H3. O

Remark. From theorem 8.1, it follows that

By thorem 7.5 and applying (i) for m =

lim g (p, ) = g(p,0)

for almost all p € P,. The functions g, (p, —)
and g(p, —) can be interpreted as probability dis-
tributions of random variables Y, , and Y,, re-
spectively, with target in the adeles of F', so that
lim,, Prob{Y, , = 7(6)} = Prob{Y, = 7(6)}. That
is, the sequence of random variables {Y, .} con-
verges in law to Y.

Given a real number z > 2, we define
PR (z) =#{peP,|p<z, alp) =0}

We may assume that the asymptotic distribution
of the values a(p), for p € Py, is given by the ran-
dom variable Y,,. Then, up to an additive constant,
P;f’ght(x) is asymptotically equivalent to

> 9(p.9)
peP,p<e
as © — 00. For 0 =0, we get

> a0~ L 00 3

pEP,p<z pEP.p<z

as & — 00.

Let n be the ideal of O as in 7.5. The density of
primes p such that a(p) € nOg is greater than zero,
since we are considering [-adic representations that
are odd. Thus, it should be m,(0) > 0, in which

case m(0) > 0. Since Sato-Tate density attains its
maximum at 0, it should be 7,,(0)7(0) > 0.

Putting all this together, we generalize the Lang
and Trotter conjecture on the distribution law of
supersingular primes in the elliptic case in the fol-
lowing conjecture:

Conjecture 8.2. Let f € Sy(N, ) be a newform with-
out complex multiplication. Let d = [F : Q. Let
Py, ,(z) denote the number the primes p < x for
which r,(Ay) = 0. There exist constants Cro >
0,Cy such that

1

p<z

as r — O0.

PAf,o (‘T)

Remark. Conjecture 1 amounts to saying that there
should exist constants cyo > 0 such that

~cpove/logz ifd=1,
Py, o(x) ¢ ~cpologloge  ifd=2,
= 0(1) if d > 2.

We should emphasize that the function Py, should
exhibit the same asymptotical behaviour since

Pro(x) = Pao(x) + O(1);
compare 5.2(i).

Next we deal with the nonordinary reductions of
Ay, which are more difficult to handle.

Lemma 8.3. Let {p,,} be a sequence of prime ideals
of Op, with constant residue degree v, such that the
sequence of their norms {p,,} tends monotonically
to infinity. Assume that p,, € P for all m, as
well as H1, H2. For each nonzero ideal m of Op,

we have
~ 7r00(0)7rm(0) \/W/@dp;inﬂ)

; ifv>dJ2,
9; gm(pm7 ) — O(p;ld/Z) Zf v = d/2,

as Pp, — 00.

Proof. Case v > d/2. For any 6 € p,, such that

7(0) € [=2y/p,,, 24/, )", we have Ny q(0) = kpl,,
where k € Z and |k| < 24p%/2~v. If p,, is large



70 Experimental Mathematics, Vol. 6 (1997), No. 1

enough, the inequality implies £ = 0 and 6 = 0.
Thus,

7(6)
gp; W°°<2\/zm)”m(9) = oo (0)m (0).

By 8.1(i), the assertion follows.

Case v =d/2. Let 0 # 0 € p,, be chosen so that
7(0) € [~24/Pm, 24/Pm)?. There exists an ideal a
of Op such that () = p,,a with 1 < Np/g(a) < 2%
Denoting by s; the number of ideals a for which
Npjg(a) < 2%, we see that there are at most s
principal ideals (#) that satisty 6 € p,, and 7(0) €
(2P, 2P, ]*. We fix (f). From all generators
of (#) as a principal ideal, we only consider those
whose image under 7 lies in [—2,/Py, 2/Pp)?. We
shall prove that their number is bounded by a con-
stant that does not depend on p,,,. Indeed, consider
[Neo(0) _ Nela)pi® _ vl

0] = :
1. 109] = gd-1p{d-D/2 = 241

Let ¢ a unit of Of. The conditions [€(D9W)| < 2pl/2)
for 1 < i < d, force [€] < 27 for all 5. The set of
units that satisfy these inequalities is finite. Let s,
denote its number and M an upper bound for the
function 7,,. By taking into account 6 = 0, and if
s : =518y + 1, we get

3 7roo<27;§%>7rm(0) < MsNyg(m),

since my(0) < Npjg(m). By 8.1(i), the assertion
follows.

Case v < d/2. Now d/2—v > 1/2 and, in partic-
ular, 1/2—v/d > 1/(2d). We denote by {ey,...,eq}
a basis of the lattice 7(Or). For z = (z;), y =
(y;) € RY, we define zy := (x;1;), so that we have

the rule 7(af) = 7(a)7(B). Let {&1,...,&4-1} be
a system of fundamental units of Op.

We first show that for any integer m > 0 there is
a basis {u1 m,...,Usm} of the lattice 7(mp,,) such
that

0 < kpy/? < |uf),| < kopl? for 1 <m,j<d.

Here k;, k; are constants independent of m, and
ulf), = (T (Unn))). Assume first that mp,, is a
principal ideal. We may choose a generator «,, in
mp,, such that

d—1
log(|a)]) = log(Niyq(m)"/1p2/") + 3 6 log (|69 |)
k=1

where 0 < §, < 1, and 1 < j < n [Hecke 1981].
Let ¢1, ¢, > 0 be real numbers that only depend on
{9} and satisfy

1 Npyo(m)pi/® < |al)| < e Npjg(m)'/p2/d

for 1 < j <d. It suffices to define w, , := 7(ay,)en
for 1 < n < d, and adjust the bounding con-
stants k;, k», accordingly. Fix now an ideal class of
Op and consider all ideals mp,, that belong to it.
Take an integral ideal a such that all ideals amp,,
are principal. By applying the preceding result to
them, we get bases of the lattices 7(amp,,) with
bounding constants Ny/q(a)'/?k; and Np/q(a)'/ ;.
Here k; and k, are the constants obtained before.
Let ¢ € GL(n,R) be such that t(7(0p)) = 7(a).
Clearly, t(7(mp,,)) = 7(amp,,). We choose the ba-
sis of 7(mp,,) by applying ¢ to the chosen basis
in the principal case. By taking into account the
finiteness of the class number, the existence of the
basis {u,, ,} follows in all the cases.

Choose now a system of representatives {6;}, 1 <
i < s, of Op/m. Without loss of generality, we may
assume that p,, { m, since this is obviously true for
Pm > Npjg(m). Thus,

D e (23%) T (6)

0Epm
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Let 6, ,, be chosen so that 6;,, = 0 (modp,,) and
;. m = 0; (modm). It suffices to prove that

VID| Z T ( 7(6) ) - 1
2dpd/2=v 2y/Pm’/  Nrpjo(m)
as pp,, — 00. Afterwards, multiplying by 7, (60; )

and by 8.1(i), the result will follow. Consider the
affine automorphism

Oi,m+pmm

Uim 7t = n,m
PC) 2 r,m +Zw u
and put V; ,, = Ufnll([—
| :/ T = \/|D|NF/Q(m)p;/ T 0 Ui,
RY R4
2d

1=
Vim  VID|Npg(m

Note v;,, this last expression. For (t,) € Z?, we
consider the cubes

1,1]%). Clearly,

d tn+1}

[ tn
nI_I1 2/Pm’ 2y/Dm
which satisfy

d

t, ot +1 ]
Um(H[Wm 2\/m]>ﬂ[_1’” 4o,

and denote their union by H; ,,,. Consider now only
those cubes that have a nonempty intersection with
the boundary of H; . Since 0 < kip¥/* < |ulf) |
for 1 < n,j < d, their number is O(p{d—1(1/2=v/d),
The volume of their union is O (p{d—1(1/2-v/d)=d/2),
Since (d —1)(1/2 —v/d) —d/2 < —1/(2d) — v, we
get

/ 1 = i + O(p /D)

2d

Y E—
VID|Ngq(m)

By H1, for each € > 0 there exists a 6 > 0 such that

if 2,y € [[0_,[an,bn], with |b, — a,| < d for all n,

then |7y (z) — 7o (y)| < €. Now, by considering

those primes p,, such that dk,p”/?~'/? < §, and
setting W, ,,, = mo 0 U, 1, We get

1 t ty
Wim_+ Wzm( sty )‘
/Rd 7 2dpd/2 Z 7 2\/pm 2\/pm

m (tn)€Z
<8/ 1.

i,m

Since

P

tn) €L

we get

| T(0) \ 1
Z degn/%"ﬂw(2\/%> NF/@(‘“)\/W‘

€0i,mtmpm
2d
<+ O,
VID|Ng/o(m)
Therefore,
: 1 7(0)
hm DR 7Too( )
m—00 0€9i§mpm 2dp;17{2 2‘ /Pm
B 1
Ni/g(m)\/ID[’
which concludes the proof. [l

We denote by P r the set of primes p{ N that split
completely in LF.

Theorem 8.4. Assume H1 and H2, and let d = [F:Q).

(i) Let m be a nonzero ideal of Op. If d > 2 then

D (0piNg o)) In (P, 0) = O(p™") as p — o0, p €
Pr. If d > 2 we have

S

{0:p|Np/o(0)}

ESHESE

Im(p,0) <

"=

asp — 00, p € Prp.
(ii) Furthermore, assume H3. If d > 2 then

> 9p.0)=0(p")

{0:p|Np/o(0)}
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asp — o0, p€ Pp. If d > 2 then

L < Z

{0:pINF/0(0)}

Cod
p

| o
(&}

9(p,0) <

iS

as p — 00, p € Prp, where 0 < ¢; < ¢» are the
constants introduced in theorem 7.5.

Proof. Let {pi,...,p;, } be the different prime ideals
of O over p € Pr. We have

Yo gm0 <D g+ Y gu,6).

{0:pINr/0(0)} 0€p 9€pi,

For each prime p € Py, let p, | p denote a prime
ideal for which the sum >, gu(p,0) attains its
maximum value. Then

ng(pag) < Z In(p, 0) Sngm(p,H).

QEF‘P {93P|NF/ZJ(9)} QEF‘P

To get (i), it suffices to apply 8.3.
Let n be an ideal as in 7.5. We have

61 Zgn(pa 9) S Zg(pa 9) S 62 Zgn(pa 9)

as p — 0o, p € Pr. Here the sum runs over the
elements 6 such that p | Np/p(6). To get (ii), it
suffices now to apply (i). O

At this point, as a higher-dimensional analogue of
the Lang and Trotter conjecture, it seems natural
to state the following conjecture:

Conjecture 8.5. We let f € Sy(N,e) be a new-
form without complex multiplication. Assume that
d > 2. Let Py, (z) denote the number the primes
p < x for which Ay is not ordinary at p. There
exists a constant c; > 0 such that

Py, (z) ~ crloglogz  as x — oo.

9. NUMERICAL EXAMPLES

We give in Table 1 the distribution of the values
rp(Xo(l)) for primes | < 100 and p < 10°. It is
obtained by using the tables of the characteristic
polynomials of the Hecke operators 7}, computed
by Wada. The entries in the headed column g give

the genus of X(/), and n the number of isogeny
classes of Q-defined modular elliptic curves of con-
ductor [. The entries in columns r, = 4 give the
number of primes p < 10° for which r,(X, (1)) = i.
The entries in columns r, < g display the whole
number of nonordinary reductions in the range.
We note that if f € S5(Ty(l)) is a newform, then
Ay is absolutely simple and Q®End(A;) is a com-
mutative field; thus, d = dim A;.

For z = 10°, the functions v/z/logz, loglogz
take the values 4.58 and 1.93 respectively. In Ta-
ble 1, in all levels for which the frequency of nonor-
dinary reductions is > 5, we find a Q-defined mod-
ular elliptic curve of conductor [. If the frequency
is > 10, then there are two isogeny classes of such
curves. In contrast, in levels with frequency < 3,
there are no elliptic modular curves of this conduc-
tor.

In Table 2, A denotes the abelian variety Jy([)
deprived of its modular elliptic factors, for I < 100.
In its columns, n denotes the number of isogeny
classes of the Q-simple subvarieties A; = By of A,
and d their respective dimensions. We list the val-
ues Py (10°%), Pg(10*), Pgo(10°), Py o(10*) when B
runs through the set of isogeny classes of -simple
subvarieties of A. The table has been computed
from the characteristic polynomials of the Hecke
operators T, p < 10*, supplied to us by Wang.

The function loglog increases so slowly that it is
a time-consuming process to build trust in the con-
jectures. Nevertheless, the numerical results sup-
port them in the given range. Indeed, if m(z) de-
notes the arithmetical mean of the values Pg(z)
for the 20 subvarieties B in Table 2, we have

m(10*)  33/20

= =1.375
m(10%)  24/20 ’
whereas
4
log(log(10%)) — 1.149.
log(log(10?))

Note that, in Table 2, we have only five subvari-
eties B for which is Pg(10*) > 0. For [ # 97, we
have dim B = 2. The cases correspond to the levels
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Il g =0 r,=1 rp,=2 rp,=3 rp,=4 r,=5 r,=6 r,=7 r,<g n
1 1 6 161 6 1
17 1 5 162 5 1
19 1 7 160 7 1
23 2 2 0 165 2 0
29 2 0 0 167 0 0
31 2 0 0 167 0 0
37 2 1 10 156 11 2
41 3 0 0 0 167 0 0
43 3 1 0 3 163 4 1
47 4 0 0 0 0 167 0 0
53 4 0 0 0 6 161 6 1
59 5 0 0 1 0 0 166 1 0
61 4 0 0 0 4 163 4 1
67 5 0 0 0 0 10 157 10 1
71 6 0 0 0 0 1 2 164 3 0
73 5 0 0 0 2 6 159 8 1
79 6 0 0 0 0 0 7 160 7 1
83 7 0 0 0 0 1 0 9 157 10 1
89 7 0 0 0 0 0 1 11 155 12 2
97 7 0 0 0 0 1 0 3 163 4 0
TABLE 1. Distribution of r,(Xo(l)) for primes [ < 100 and p < 10°.
A= Jo(l)/Ez dimA n d PB(103) PB(104) PB70(103) PB70(104)
Jo(23) 2 1 2 2 3 2 3
Jo(29) 2 1 2 0 0 0 0
Jo(31) 2 1 2 0 0 0 0
Jo(41) 3 1 3 0 0 0 0
Jo(43)/Ey34 2 1 2 2 2 1 1
Jo(47) 4 1 4 0 1 0 0
Jo(53)/ Es34 3 1 3 1 1 0 0
Jo(59) 5 1 5 1 1 0 0
Jo(61)/Eg14 3 1 3 0 0 0 0
Jo(67)/Eg7a 4 2 2,2 1,1 1,1 0,0 0,0
Jo(71) 6 2 3,3 2,2 4,2 0,0 0,0
Jo(73)/ErspB 4 2 2,2 3,1 3,2 1,0 1,1
Jo(79)/Erga 5 1 5 1 1 0 0
Jo(83)/Es34 6 1 6 2 3 0 0
Jo(Sg)/(EggA X Eggc) 5 1 5 1 1 0 0
Jo(97) 7 2 3,4 2,2 4,3 1,0 1,0

TABLE 2. Data on the the quotient variety A of Jy(I) by its modular elliptic factors, and on the classes of
Q-simple subvarieties of A.
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[ =23 and p = 43,109,1033; | = 43 and p = 2; and
[ =73 and p = 59,1117. In the twelve remaining
cases with dim B > 2, we find only a newform f
and a prime p for which r,(A;) = 0. This happens
in level [ = 97 and p = 7; furthermore, since the
characteristic polynomial of T% is 2%+ 722+ 14z +7,
we see that a(7) # 0.

If mo(x) denotes the arithmetical mean of the
values Ppo(z) for the eight subvarieties B of di-
mension 2 in Table 2, we have

mo(10*)  6/8 15

mo(10%) B m -
The growth of mg(z) in the range is reasonably
similar to that of m(z) and loglog x.

In Table 3 we show the Hasse-Witt invariants
of Ay = Ji(N)/Jo(N), for N < 31, p < 100.
The table is obtained by using the characteristic
polynomials of the Hecke operators T}, calculated
by Lario. Here g denotes the dimension of Ay.

For N = 20,21,24,28 we have many nonordi-
nary primes, since 13 < P, (100) < 15. This
is due to the fact that, at these levels, there is
a newform generating a rational subspace of di-
mension 2 that has complex multiplication. In-
deed, let K be one of the imaginary quadratic fields
Q(i), QV=3), AV=2), QV=7), and let m be
the integral ideal (2+4), (2++v/—=3), (14++v=2),
((1/2 ++/=7/2)%), respectively. The discriminant
—D is equal to —4, —3, —8, —7, respectively, and
the norm M of m is 5, 7, 3, 4, respectively. The
integer ring O of K is a principal ideal domain.
Each integral ideal a prime to m has one and only
one basis z, such that z, = 1 (modm). This is due
to the fact that two different roots of unity in O
have different classes mod m and that the set of
classes mod m of roots of unity in O coincides with
the group (O/m0O)* ~ (Z/MZ)*. Hence, the for-
mula 1 (a) = z, defines a Grossencharakter mod m
of K. Thus, there exists a parabolic form of weight
2 with complex multiplication for I'; (DM ). More-
over, it is easy to prove that the level of this form
is DM = N.

For N = 26,30, we have 5 < P,,(100) < 8.
If N = 26, then J,(26)/J,(26) is Q-isogenous to
Ay x Ay, x A7, where f1, f, are newforms of level
26, and f3 is a newform of level 13. Moreover,
each Ay, is Q-isogenous to the square of a simple
abelian variety By, of dimension 1. If N = 30,
then J;(30)/J5(30) is Q-isogenous to Ay x Ay,
where f1, f, are newforms of level 30. We have
Ay ~ Bj fori =1,2, F = Q, but dimBy, = 1,
dim By, = 2. Observe that the Hasse-Witt invari-
ants of .J; (26)/.J(26) behave like those of €} x €3 x
€3, and the Hasse-Witt invariants of J; (30)/.J; (30)
behave like those of €2 x C3; here the €; denote el-
liptic curves over Q.

For N = 13,16,18, we have 1 < P4, (100) < 2.
In these cases, Ay = Ay ~ B? with dim B; = 1.
In the remaining cases is Py, (100) = 0, and Ay
has no subvarieties A; for which F' = Q.

ACKNOWLEDGEMENTS

We are grateful to G. Frey, H. Riick and J.-P. Serre
for their help in a preliminary study of these ques-
tions and to J. C. Lario and X. Wang for kindly
providing us with extensive tables of characteris-
tic polynomials of Hecke operators. The authors
also thank the referees for valuable comments on
an earlier version of this paper.

REFERENCES

[de Shalit 1987] E. de Shalit, Iwasawa theory of
elliptic curves with complex multiplication; p-adic L
functions, Perspectives in Mathematics 3, Academic
Press, Boston, 1987.

[Deligne et al. 1982] P. Deligne, J. S. Milne, A. Ogus,
and K.-Y. Shih, Hodge cycles, motives, and Shimura
varieties, Lecture Notes in Math. 900, Springer,
Berlin, 1982.

[Deuring 1941] M. Deuring, “Die Typen der Multi-
plikatorenringe elliptischer Funktionenkérper”, Abh.
Math. Sem. Hansischen Univ. 14 (1941), 197-272.

[Elkies 1987] N. D. Elkies, “The existence of infinitely
many supersingular primes for every elliptic curve
over Q’, Invent. Math. 89:3 (1987), 561-567.



Bayer and Gonzalez: On the Hasse-Witt Invariants of Modular Curves

75

N 13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
g 2 2 4 2 6 2 4 4 10 4 12 8 12 8 20 6
p T'p

2 2 — 4 — 6 — 0 - 10 - 12 - 12 - 20 -

3 2 2 4 — 6 0 — 4 10 — 12 6 — 2 20

) 2 2 4 0 6 — 2 4 10 2 — 8 12 6 20 -—

7 0 2 4 2 6 0 — 4 10 2 12 4 12 — 20 6
11 0 2 4 2 6 0 2 - 10 2 12 2 12 8 20 6
13 — 2 4 2 6 2 4 4 10 2 12 12 6 20 2
17 2 2 — 2 6 2 0 4 10 4 12 8 12 6 20 6
19 2 2 4 2 0 4 4 10 4 12 6 12 6 18 4
23 2 2 4 2 6 0 0 4 — 2 12 8 12 8 20 6
29 2 2 4 2 6 2 2 4 10 2 12 6 12 8 — 4
31 2 2 4 2 6 0 4 4 10 2 12 6 12 6 20 6
37 2 2 4 2 6 2 4 4 10 2 12 8 12 8 18 6
41 2 0 4 2 6 2 2 4 10 4 12 6 12 6 20 6
43 2 2 4 2 6 0 4 4 10 4 12 8 12 8 20 6
47 2 2 4 2 6 0 2 4 10 2 12 8 12 6 20 2
53 2 2 4 2 6 2 2 4 10 2 12 8 12 8 20 6
59 2 2 4 2 6 0 2 4 10 4 12 8 12 6 20 6
61 2 2 4 2 6 2 4 4 10 0 12 8 12 6 20 6
67 2 2 4 2 6 0 4 4 10 4 12 8 12 8 20 6
71 2 2 4 2 6 0 2 4 10 2 12 8 12 6 16 6
73 2 2 4 2 6 2 4 4 10 4 12 8 12 6 18 6
79 2 0 4 2 6 0 4 4 10 2 12 8 12 8 20 4
83 2 2 4 2 6 0 2 4 10 4 12 6 12 6 20 6
89 2 2 4 2 6 2 2 4 10 4 12 8 12 6 20 6
97 2 2 4 2 6 2 4 4 10 4 12 8 12 6 20 6

TABLE 3. Hasse-Witt invariants of Ay := J1(N)/Jo(V).

[Elkies 1991] N. D. Elkies, “Distribution of supersingu-
lar primes”, pp. 127-132 in Journées Arithmétiques
(Luminy, 1989), Astérisque 198-200, Soc. math.
France, Montrouge, 1991.

[Gonzdlez 1997] J. Gonzélez, “Hasse-Witt matrices for
the Fermat curves of prime degree”, Tohoku Math.
J. 49 (1997).

[Gonzalez Rovira 1991] J. Gonzalez Rovira, “Equations
of hyperelliptic modular curves”, Ann. Inst. Fourier
(Grenoble) 41:4 (1991), 779-795.

[Hasse 1934] H. Hasse, “Existenz separabler zyklis-
cher unverzweigter Erweiterungskérpern vom Prim-

zahlgrade p tber elliptischen Funktionenkoérpern
der Charakteristik p”, J. Reine angew. Math. 172
(1934), 77-85.

[Hasse and Witt 1936] H. Hasse and E. Witt, “Zyklische
unverzweigte Erweiterungskorpern vom Primzahl-
grade p Uber einem algebraischen Funktionenkdér-
pern der Charakteristik p”, Monats. Math. Phys. 43
(1936), 477-492.

[Hecke 1981] E. Hecke, Lectures on the theory of alge-
braic numbers, Graduate Texts in Math., Springer,
New York, 1981. Translated from the German by
George U. Brauer, Jay R. Goldman and R. Kotzen.



76 Experimental Mathematics, Vol. 6 (1997), No. 1

[Huppert 1967] B. Huppert, Endliche Gruppen. I, Die
Grundlehren der Mathematischen Wissenschaften
134, Springer-Verlag, Berlin, 1967.

[Lang and Trotter 1976] S. Lang and H. Trotter,
Frobenius distributions in GLs-extensions, Lecture
Notes in Math. 504, Springer, Berlin, 1976.

[Manin 1961] J. I. Manin, “The Hasse-Witt matrix of
an algebraic curve”, Izv. Akad. Nauk SSSR Ser. Mat.
25 (1961), 153-172. In Russian. Translated in Amer.
Math. Soc. Transl. Ser. 45 (1965), 245-264.

[Manin 1962] J. I. Manin, “On the theory of Abelian
varieties over a field of finite characteristic”, Izv.
Akad. Nauk SSSR Ser. Mat. 26 (1962), 281-292. In
Russian.

[Momose 1981] F. Momose, “On the [-adic representa-
tions attached to modular forms”, J. Fac. Sci. Univ.
Tokyo Sect. IA Math. 28:1 (1981), 89-109.

[Ribet 1977] K. A. Ribet, “Galois representations
attached to eigenforms with Nebentypus”, pp. 17-51
in Modular functions of one variable V (Bonn, 1976),
Lecture Notes in Math. 601, Springer, Berlin, 1977.

[Ribet 1980] K. A. Ribet, “Twists of modular forms
and endomorphisms of abelian varieties”, Math. Ann.
253:1 (1980), 43-62.

[Ribet 1985] K. A. Ribet, “On l-adic representations
attached to modular forms I1”, Glasgow Math. J. 27
(1985), 185-194.

[Ribet 1992] K. A. Ribet, “Abelian varieties over Q and
modular forms”, pp. 53-79 in Algebra and topology

(Taejon, Korea, 1992), edited by S. G. Hahn and
D. Y. Suh, Korea Adv. Inst. Sci. Tech., Taejon, 1992.

[Ribet 1994] K. A. Ribet, “Fields of definition of abelian
varieties with real multiplication”, pp. 107-118 in
Arithmetic geometry (Tempe, AZ, 1993), edited by
N. Childress and J. W. Jones, Contemp. Math. 174,
Amer. Math. Soc., Providence, RI, 1994.

[Serre 1981] J.-P. Serre, “Quelques applications du
théoréme de densité de Chebotarev”, Inst. Hautes
Etudes Sci. Publ. Math. 54 (1981), 323-401. Re-
printed in (Euvres, vol. 3, Springer, 1986.

[Serre 1985/86] J.-P. Serre, “Résumés des cours au
College de France”, Annuaire du Collége de France
(1985/86), 95-99.

[Serre 1989] J.-P. Serre, Abelian l-adic representations
and elliptic curves, Second ed., Advanced Book Clas-
sics, Addison-Wesley Publishing Company Advanced
Book Program, Redwood City, CA, 1989. With the
collaboration of Willem Kuyk and John Labute.

[Shimura 1971] G. Shimura, Introduction to the arith-
metic theory of automorphic functions, Publications
of the Mathematical Society of Japan, Princeton Uni-
versity Press and Iwanami Shoten, Tokyo, 1971.

[Tate 1965] J. T. Tate, “Algebraic cycles and poles of
zeta functions”, pp. 93-110 in Arithmetical Algebraic
Geometry (Purdue Univ., 1963), edited by O. F. G.
Schilling, Harper & Row, New York, 1965.

[Tate 1966] J. Tate, “Endomorphisms of abelian
varieties over finite fields”, Invent. Math. 2 (1966),
134-144.

Pilar Bayer, Facultat de Matematiques, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, E-08007

Barcelona, Spain (bayer@cerber.mat.ub.es)

Josep Gonzélez, Escola Universitaria Politecnica de Vilanova i la Geltrd, av. Victor Balaguer s/n, E-08800 Vilanova

i la Geltru, Spain (josepg@mat.upc.es)

Received January 18, 1995; revision received July 12, 1996; accepted October 2, 1996



