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FAST COMMUNICATION

ON THE CHANG AND COOPER SCHEME APPLIED TO A LINEAR
FOKKER-PLANCK EQUATION*

CHRISTOPHE BUET! AND STEPHANE DELLACHERIE}

Abstract. We show that for a particular linear Fokker-Planck operator, the explicit Chang and
Cooper scheme is positive and entropy satisfying under a CFL criterion when the initial condition
is positive. Then, we deduce that the distribution given by the explicit Chang and Cooper scheme
converges toward a discrete Maxwellian equilibrium.
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1. Introduction
The Chang and Cooper scheme [1] is a classical scheme [2, 3, 4, 5] used to solve
a spatially homogeneous kinetic equation of the type

of

o =s(s) (11)
where f(t,v) ((t,v) €Ry x R?) is a non-negative distribution and where S(f) is a linear
or non-linear Fokker-Planck operator. The main property of the Chang and Cooper
scheme is that the numerical fluxes used to discretize S(f) are equal to zero when the
distribution f is equal to the equilibrium distribution f, of equation (1.1) (thus, f. is
such that S(f.)=0). In other words, this scheme preserves the equilibrium f. when it
is reached. Nevertheless, up to now there does not exist any convergence proof for the
Chang and Cooper scheme, even in the linear case, showing that tiigloof(t,v) = fe(t,v)

at the discrete level.
In this paper, we show that by using the explicit Chang and Cooper scheme to
discretize the particular linear Fokker-Planck operator

S =09, (0= U+ 39,8, (12)

under a Courant-Friedrichs-Levy (CFL) criterion, the distribution f converges in large
time toward the Maxwellian equilibrium

N
(2T, Jm)3/2

My v, 1.(v)=

m(”_UE)T (1.3)

exp [— oT,
at the discrete level, the quantity N €R’ being the macroscopic density given by
fRS f(v)dv (when S(f) is given by (1.2), the equilibrium distribution f. is equal to
Mn,u, 1.). The physical quantities U, € R?, T, € R, me R, and Q€ R in (1.2) are
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1080 CHANG AND COOPER SCHEME FOR LINEAR FOKKER-PLANCK

respectively the velocity of the medium, the temperature of the medium, the atomic
mass of the particle, and the collision frequency of the particle on the medium. In the
linear case, all these quantities are supposed to be constant. Let us underline that
when |v] = +00, we suppose that (v—U.) f(v) 4+ 22V, f — 0 because of the exponential
decreasing of f. Then, by applying an integration by partsin [ S(f)dv, we obtain that
R3
N is also constant when f is solution of (1.1). Let us note that the linear Fokker-Planck
operator (1.2) is the linear version of the non-linear ion-electron collision operator
studied in [7, 8] in which U,, T, and Q depend on the time. The explicit Chang and
Cooper scheme based on the Chang and Cooper average (see Definition 2.1 below)
applied to (1.2) is built in order to have (v—U,)f(v)+ %va =0 when f=Mnu. 1.
at the discrete level. To obtain the convergence result, we use the fact that, at the
continuous level, S(f) defined by the convection-diffusion operator (1.2) is equivalent
to

S(f)=9%vv- [MN,UQ,TNU (fﬂ . (1.4)

Mnyu.,T.

The operator (1.4) is the non-logarithmic Landau formulation of (1.2). The key point
of the convergence proof is to show that the Chang and Cooper scheme makes equiv-
alent (1.2) and (1.4) at the discrete level. Let us note that S(f) given by (1.2) is also
equivalent to

S(f):Q%Vv~ [fvvlog (fﬂ . (1.5)

Mnu..T.

The operator (1.5) is the Landau formulation of (1.2). In [7, 8], it was proven in
the non-linear case that the scheme based on the entropic average (see Definition 2.3
below) makes equivalent (1.2) and (1.5) at the discrete level. A similar approach was
proposed in [6] in the case of the non-linear isotropic ion-ion collision operator.

For the sake of simplicity, we define the Fokker-Planck operator S(f) in monodi-
mensional Cartesian geometry. Thus, the microscopic velocity v belongs to R, and we
replace (27T, /m)3/? with \/27T./m and V,, with 9, in (1.2), (1.3), and (1.4), which
means that (1.2) is now given by

S(f):Qav |:(U_Ue)f+z;javf:| s (16)

and that (1.3) and (1.4) are now given by

— N m(U_Ue)z
My, 1. (v)= WGXP [_QTS} (1.7)
and
_qle f
=0 {MN’Ue’TeaU (MN,UC,TE )] . (18)

The velocity domain is discretized with {v;}; where j€{1,...,jmax} (Jmax <+00).
The velocity step is constant and equal to Av. More precisely, we suppose that this
domain is bounded and is equal to [v/2,v;, . 11/2] With (vi/9,v;,  11/0) ER* xRY,
and we define v; and v;41/2 with vj:=v/9+(j—1/2)Av and v;1/2: =012+ jAV
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where Av:=(vj . 11/2—=v1/2)/Jmax- Let us note that since vy > —ooand v;_ 41,2 <
400, we will have to define particular boundary conditions in order to conserve the
mass. The time subscript is n and the time step is defined by At. Thus, we have
t"t1 =" + At knowing that t° =0, and /;' is an approximation of ft=t"v=v;). At
last, we define

Jmax

()=, Av

that is a discrete version of [ g(v)dv.
R

2. The explicit Chang and Cooper scheme
The explicit Chang and Cooper scheme applied to (1.6) is defined by

U ) =S 21)

with

n Q =N =N
S(Fi =~y [(Ujﬂ/z ~Ue)fjr12—Wim1y2=Ue)fj_1)2
(2.2)
QTe n n n
m(ajfj-i-l =bifi teifii)
where a; =¢; =1 and b; =2 except at the boundary of the velocity domain (see below).
The discrete distribution ?;'l+1/2 is an approximation of f(t=t",v=wv;,;/5) defined
by [1]:

DEFINITION 2.1. The Chang and Cooper average ?j+1/2 of the quantities f; and fj41
is defined by

fiv12=050172f5+(1=05512) fi11 (2.3)
where
1 1

Siv1/2= - ,
T e exp(wipaye) — 1

mAv
Wi+1/2= "F (Vjg172—Ue).

In order to make the Chang and Cooper scheme conservative, we have to impose the
Robin boundary condition

T,, .,
(v=Ue)f+ 8, f=0 (2.4)

at the boundary of the discrete velocity domain. This is equivalent to defining for the
numerical scheme

aj:1 if j?éjma:m

bj=2 if je{2,...,jmax—1},
cj=1 if j#1,

blzbj =1 and ajmax:clzo

max

(2.5)
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and

Fij2=Fjnnit1/2:=0. (2.6)
We have the following classical conservation property:

PROPERTY 2.2. The discrete operator S(f) defined by (2.2), and (2.5), (2.6) verifies
(S(f))=0, which implies that the explicit scheme (2.1), (2.2) verifies

N’n.+1 _ Nn
where N :=(f) is the macroscopic density.

Of course, this property is not a consequence of the Chang and Cooper average but
is a direct consequence of the conservative formulation (2.2) of S(f).

Let us now introduce

N
Mys= exp{
\/27TT6/’ITL 2Te

and
My My, i+l

fi+1/2

Mf,j+1/2_

where Mf,j+1/2 is the entropic average of My ; and My ; 1, that is to say,

DEFINITION 2.3. The entropic average .}v‘j+1/2 of the positive quantities f; and fj 1
is defined by

fir1—1; -
if  fi# fiv
~ 1 . —1 .
fit1/2= ogfi1—log; (2.8)
fj otherwise.

By continuity, we extend this definition by setting fjﬂ/g =01if f;=0 or fj;+1=0.
Thus, /’\/lvf’j+1/2 in (2.7) is given by

Myjv1— My
log./\/lmq_l — log/\/lf,j

Myjt12=

The entropic average was introduced to discretize the non-linear ion-electron collision
operator [6, 8] and the non-linear isotropic ion-ion collision 1 operator [7]. Due to

Property 2.2, we have M = Mo and, thus, an J+1/2—Mf0 j+1/2 for all neN.
We have the following result:

LEMMA 2.4. When f;-LH/Q is the Chang and Cooper average of ' and f}',, the
discrete operator S(f™); defined by (2.2) can be written as
(&)
My ),

n QTe o fn
S(f )j: mAv? {Mfod-i-l/? [(Mf0> -
J+1

R fn f7l
— Mo i1/ [(Mf(])j_ (Mf())jl] }




C. BUET AND S. DELLACHERIE 1083

where boundary conditions (2.5), (2.6) are replaced with the boundary conditions
Mo
Moy

no Mfoajmax+1

= A o

and Jh 1= (2.10)

s»Jmax

In other words, the Chang and Cooper average (2.3) makes equivalent at the dis-
crete level the convection-diffusion formulation (1.6) and the non-logarithmic Landau
formulation (1.8). Moreover, let us remark that boundary conditions (2.10) are equiv-
alent at the discrete level to the boundary condition

By(f/ M o) =0. (2.11)

Of course, (2.11) is equivalent at the continuous level to Robin boundary condition
(2.4). Let us note that (2.9) shows that when f™ is equal to the Maxwellian equilib-
rium M o, we have S(f™)=0 which implies that f"**= f": the Chang and Cooper
scheme was initialy built to verify this property that may be easily deduced from the
convection-diffusion formulation (2.2). At last, we immediatly deduce from Lemma
2.4:

COROLLARY 2.5. When f;-LH/Q is the Chang and Cooper average of f}' and f}' | and
when fI'=0, the discrete operator S(f"); defined by (2.2) can be written as

QT M\fo '+1/2 .K/l\fo ',1/2
S(f"). = € »J n 5] n .
(f )J mAv2 ( Mf(’,j+1 f]+1+ Mfo,j—l fj*l

(2.12)

Thus, for any At>0, f;’“ >0 when, for ezample, f}' >0 and fI',>0.
This result shows that Dirac type initial conditions can be treated with the Chang
and Cooper scheme. This property is a direct consequence of the Chang and Cooper
average.

The proof of Lemma 2.4 uses the following property:
PROPERTY7%.6. When ??H/g is the Chang and Cooper average of f' and fl' ,, we
can define f; 4,9 with

i I n ( ) ) Mo j 1Mo ;

IOngO’j+1—10ng07j Mfo’j Mfo,j+1 Mf07j+1_Mf0,j

Fivy2= (2.13)

Proof of Lemma 2.4. By using (2.13), we obtain that when j€{2,...,jmax— 1}

Q0 17 [l Mo i 1Mo
S(fn), = —— Jg___ _Ji+ UAEY i S RV , U,
U5 = 3 <Mf°,j Mf°,<7‘+1> Mo jp1—=Mpo (v341/2=Ue)

QS S Mpo Mo
<v7*1/2 e)

Av \Myo ;1 Myo;) Mgoj—Mgo ;s

Q i I

ikl _ ~U,

+Av |:10ng073-+1—10ng07]4 (V4172 )

7=

B 1Ong0,j - log/\/lfoyj,l

(Uj—l/z—Ue)}

QT

W( T 2f7 ).
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But, since vj1=v;+Av and vj4y/2 = (v; +v;41)/2, we also have

mAv
Wjt1/2:= = (V54172 —Ue) == [(log M o) 11— (log Mo);] .

Thus, we can write that

MfO j+1Mf0 7 Te —_
. ? . _Ue = —— ;
Mo ji1—Mjo (v51/2=Ue) SYNSAMCASTE
and that
(Uj+1/2_Ue) _ T.

log M o ;11 —logM o ; mAv’
Then, we have

n _ QT& f]n—i-l f]n 'on
S(f )J = AL |:<Mf0,j+1 — Mfo’j Mf07j+1/2

Ui i1\ 1
_ — Mo .
(Mfo,j Myo i1 Jham1z

0T,

, , QT,
— oz Ui =207 1) + s (e =27 + i)

that is to say

o 0T [ AR I i
S(f )j—msz {Mf"ﬂ'“/z [(Mf0>j+1 (Mf‘))j]

_ r I
Mo j_1/2 [(Mfo)J B (Mf0 >j—11 }

If j€{1,jmax}, we verify that the equality (2.9) remains true when

Moo
Mo

_ g Mf07jlnax+1

o= f1- and iy =f;
0 f1 fﬂmaerl Jmax Mfo

sJmax

Proof of Property 2.6. By using (2.14), we obtain that

_ 1 Mo
Ojy1/2=— + :
log Mo 1 —logMyo; = Mo i1 = Mo

Then

n 7fn fn* n
?T} — J+1 Y + J J+1
T2 log Mo 1 —log Mo ;- Mo iy = Mo,

Mfo,jJrl + fﬁrl

which shows that

(2.14)

f_j+1/2:

—n i +( ) ) Myo My
Myo j1—Myo;

IOng01j+1—10ng07j Mfo,j Mfo,j+1
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3. Positivity of the scheme

Let us define
f’ﬂ
h . =
max maX (M f() , )

hy in *mm (./\J/clfo ) ‘

PROPOSITION 3.1. For all initial conditions {ff};, when ?;‘l+1/2 is the Chang and
Cooper average of fi* and f}',, under the CFL criterion

Av? ;
Ar< 20 min ( — Mfoﬁ\ ) , (3.1)
OTe 5 \ Mo jirj2+Myo j_1/2

We have the following result:

then the explicit scheme (2.1), (2.2) verifies the mazimum principle
R <hMHL<prtl<pn

min — min max — max-*

Thus, for all non-negative initial condition {f]};, the scheme (2.1), (2.2) verifies

(3.2)

inf f;* >0,

J.n
this inequality being strict when the initial condition {fjo}] is positive.

This result proves that the numerical scheme (2.1), (2.2) preserves the positivity of
the distribution f' under a CFL criterion. But, it also proves that there exists hpy,
and h% . such that the sequences {h. }, and {h ..}, admit the respective limits
hoe and A2 . when n goes to +00. Let us underline that we cannot deduce from this

min max
result that h2% =h2° | equality which would imply that there would exist a constant

min max?

C >0 such that
Vj: nli_{r;of}l:O'Mfovj

Here, we can just deduce from (3.2) that hSS, <hSS . In the sequel, we will deduce the
equality between h%% and hZS . from the fact that the scheme (2.1) (2.2) is entropy

min max
satisfying under a CFL criterion that is more restrictive than (3.1).

Proof of Proposition 3.1. By defining A’ = f}'/ Mo ; and by using Lemma 2.4,
we can write

; AtQT,
fj +1 _ fn

AT [Mfo g2 (W =h5) = Myo i1z (h?—h?q)]
Then, it is obvious that

AT, Myojp1/2+Myo i1y

n__ A —Rh" h?}+1
7 mAv? Mo ( mm) J
and that
AtQT. Mo i1 9+ Mo i
n+1 n e fO,5+1/2 f9,5—-1/2 n n
hy <R+ : (hihax —h5) -

mAv? Mo ;
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Let us now suppose that At is such that

2 .
At < mAv min ( — Mfoﬁ\ ) .
Mo i1+ My j1)2

Then, we obtain that

., n n+1 n
Vy: <h;7 <h

min — max’
that is to say

Wiy SR <hpti<hp

min — max — '“max* O

4. Convergence toward a Maxwellian equilibrium
Let us now define

hn

At" :At*h;n—i“ (4.1)
with
. m  Av?
AtT= 40T, MO’
M° =max (Mfo’ji1> .
J 0.5

We also define the discrete entropy

= ()

The following proposition shows that the distribution f™ converges toward a
Maxwellian equilibrium:

PROPOSITION 4.1. For all positive initial condition {f}};, when ?;‘LH/Q is the Chang
and Cooper average of fI' and [}y, under the CFL criterion

At <AL, (4.2)

the explicit scheme (2.1), (2.2) verifies the inequality

H" ' <H™, (4.3)
which implies that
ngrfoo At™ = At* (4.4)
and that
lim f”:LOMfo7j (4.5)

n—-4o0o J <Mf0,j>

as soon as At>0.
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This result shows that the Chang and Cooper scheme is entropy satisfying and
is a convergent scheme in the case of the linear Fokker-Planck operator (1.6) under
the CFL criterion (4.2). We wish to underline that the maximum principle (3.2) and
Definition (4.1) show that the sequence {At™},>¢ is an increasing sequence bounded
by At*. This means that the CFL criterion (4.2) is less and less restrictive when n goes
to infinity. Let us note that we suppose in Proposition 4.1 that the initial condition
is positive. In fact, we have almost the same result when the initial condition is only
non-negative:

COROLLARY 4.2. For all non-negative initial condition {fJ(»)}j such that N° >0, when

?;1+1/2 is the Chang and Cooper average of fi* and fI'.y, under a CFL criterion, the
explicit scheme (2.1), (2.2) verifies (4.4) and (4.5) as soon as At>0. Nevertheless,
if there exists jo such that fJQU =0, we can just say that there exists ng € N* such that,
under the CFL criterion (4.2), (4.3) is satisfied when n>ng.

This corollary is a consequence of Corollary 2.5. Let us note that Corollary 4.2
does not mean that when n <ng, the scheme (2.1), (2.2) cannot be entropy satisfying
under a CFL criterion. In fact, Corollary 4.2 means that the approach used in the
proof of Proposition 4.1 to prove that the scheme is entropy satisfying under the
CFL criterion (4.2) may not be valid when n<mng (we easily understand this point
by noting that At™ =0 as soon as there exists jo such that f}! =0). Nevertheless, by
using the fact that lim+xlogx:O, it should be possible to prove that the scheme is

z—0
also entropy satisfying under a CFL criterion when n <ng.

To prove Proposition 4.1, we use the following lemma.

LEMMA 4.3.

i Mg > . (4.6)
Mpojarppt Mo jrpe— 2M
Proof of Proposition 4.1. Let us suppose that At >0 satisfies the CFL criterion
(4.2). Thus, by using Lemma 4.3, we obtain that At also satisfies the CFL criterion
(3.1) which implies that f]”H >0 by using Proposition 3.1. As a consequence, we can
evaluate the entropy H"*!. By using the fact that f;’“ =fj +AtS(f™);, we obtain

that

Hrl = Z[f;’+AtS(f”)j]log<

J

i +At5(f")j) A
Mo

f’ﬂ
:H"—i—AtE S(f™);1 < ) A
: (f )] 0og ./\/lfo ; v

+ [+ ALS(f™);]log <1 + NS;W) Av.
i

Since f;ﬁl >0, we also have % > —1. Thus, by using the inequality

J

Ve>—1:log(l+z)<z
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and by using the fact that >_,.S(f");Av=0 (see Property 2.2), we obtain that

H"“<H"—|—At2[ log< / ) +Ats(f) Av. (4.7)

J Mye i

By applying the Schwarz inequality to (2.9), we obtain that

" QT, /—~ QT., 1~ 2
(f )j =~ mAv2 (Mfo J+1/2 +Mf07j 1/2> mAUQ |:Mf0 ]+1/2 (h]Jrl h])

PRy (1)),

where we have defined h} = fI'/Myo ;. And, by using the fact that /\//\tfo_’j:tl/g >0
and by using again Lemma 4.3, we obtain

"P_ QT 2M° 20T, ;
Z f”J mAv? h2in mszZMfU,gﬂ/z(h]H h).

By using the fact that z+— logx is an increasing function, we can write that

-y

Vr>0,Vy>0: ————
logx —logy

<max(z,y),

which implies that

"? QT 2M° 20T,
Z f"J mAv? I, mAu?ZMf°J+1/2(hJ+1 h) (logh sy —loghy) .

Moreover, by using (2.9), we have

Zs(f")j log(f"/Mjo);
mAUQ ZMf" g12l(f"/Mgo)ji1 — (f"/ Mo)]log(f" [ M o),

mMZMfoj 12 [(F7 [ M o)y = (7 [ Mgo) -] log(f" [ Mo )5
that is to say

0T, — —
ZS )jlog(f"/ Myo); = WZMfo,j+1/z(h;?+l—hy)(1oghy+1—1oghy)go
J

(4.8)
by again using the fact that x+logz is an increasing function. Thus, we can write

that
f’ﬂ
Mo ; '
4QT. h

H"HSH”-l-At(l—At maxM0> S(f log( " ) Av.
A2 Z My ),

n 2
4T, Wy .
1 mS

Finally, we obtain
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Then, when At <At™, by using inequality (4.8) we obtain the inequality

fﬂ*%EH"+At(L-§i>-}:SU”Ubg<AQN> Av<H". (4.9)
- _

J

Thus, under CFL criterion (4.2), we obtain that H™ is a decreasing sequence.
Moreover, (3.2) implies that f}' is bounded. As a consequence, H" is also bounded.
This implies that there exists H> € R such that

lim H"=H>. (4.10)

n——+o0
Moreover, by again using (3.2), we obtain that
At < AT <AL,
that is to say

inf A" >0, (4.11)

which means that we can choose At at any time t" in such a way At>¢e with € >0.
Thus, when H" "' = H"=H>, (4.9), (4.10), and (4.11) imply that

" o [ 4 _
>t >jlog<Mf0)jAvo,

that is to say
Vit hja=hj
by using (4.8). We deduce from this equality limit (4.4) and that
Vji: lim fI'=C-Mjo;,

n—-+oo

where C' € R*. The mass conservation Property 2.2 allows to write that C'= Mo )"
9.4

Proof of Lemma 4.3. We have
Myo jyrja+ Mo j_1j2 Tog(Myo /Mo 1) , Jog (Mo, /Myo 1)

Mo - Mo /Mo =1 Myo /Mo =17
Then
Mio grja+ Mo iryo < 1 n 1
Mo — min(L, Mo /Mo jy1) - min(1l,Myo ;/ Myo ;1)
since Vo > 0:min(l,z) < (z—1)/logz. But
1 1 2

. +— <—

min(1, Mo ;/Mygo ;1)  min(1, Mo ;/Mgo ;1) mkm(MfO,kil/MfO,k)
ZngX(Mfﬂ,kﬂ/MfO,k)
=2M°,

which gives the result. O
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5. Conclusion

We have shown that for a particular linear Fokker-Planck operator that is a linear
version of an ion-electron collision operator, the explicit Chang and Cooper scheme
[1] has good properties. Indeed, when the initial condition is positive, and under
a classical CFL criterion, the entropy decreases, the distribution is positive and it
converges toward a Maxwellian equilibrium. The proof is based on the fact that, at
the discrete level, the convection-diffusion formulation of the studied linear Fokker-
Planck operator is equivalent to a non-logarithmic Landau formulation in the case
of the Chang and Cooper scheme. For this Fokker-Planck operator, it seems to be
difficult to obtain similar results in the non-linear case whereas it is possible to obtain
such results by replacing the Chang and Cooper average by the entropic average
[6, 7, 8]. Nevertheless, the Chang and Cooper scheme is interesting also in the non-
linear case because it is easy to propose an implicit version of this scheme. At last, it
should be interesting to try to apply the proposed approach to other linear Fokker-
Planck operators as those coming from the Wilkins model of neutron thermalization
[9] or from a linearization of the Compton (and inverse Compton) operator [10] (see
also the introduction in [2] for these models).
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