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Abstract. Synchronous and asynchronous dynamics in all-to-all coupled networks of identical,
excitatory, current-based, integrate-and-fire (I&F) neurons with delta-impulse coupling currents and
Poisson spike-train external drive are studied. Repeating synchronous total firing events, during
which all the neurons fire simultaneously, are observed using numerical simulations and found to
be the attracting state of the network for a large range of parameters. Mechanisms leading to such
events are then described in two regimes of external drive: superthreshold and subthreshold. In
the former, a probabilistic argument similar to the proof of the Central Limit Theorem yields the
oscillation period, while in the latter, this period is analyzed via an exit time calculation utilizing a
diffusion approximation of the Kolmogorov forward equation. Asynchronous dynamics are observed
computationally in networks with random transmission delays. Neuronal voltage probability density
functions (PDFs) and gain curves—graphs depicting the dependence of the network firing rate on
the external drive strength—are analyzed using the steady solutions of the self-consistency problem
for a Kolmogorov forward equation. All the voltage PDFs are obtained analytically, and asymptotic
solutions for the gain curves are obtained in several physiologically relevant limits. The absence of
chaotic dynamics is proved for the type of network under investigation by demonstrating convergence
in time of its trajectories.
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1. Introduction

The integrate-and-fire (I&F) model of a neuron is one of the most basic models in
biology. Ever since its inception in the early twentieth century [52], its variants have
been successfully used in describing the dynamics of both single neurons and neuronal
networks [16, 17, 37, 47, 91, 92]. Its utility in neuroscience has often been contrasted
with the significantly more detailed Hodgkin-Huxley model [43]. Quite frequently,
especially in well-conceived, parsimonious, large-scale neuronal network models and
also direct numerical simulations using such models, the simplicity of the I&F model
becomes a major advantage in effectively and efficiently uncovering robust network

mechanisms governing the model dynamics [20, 71, 73]. As a consequence, the I&F
model has been the focus of many theoretical and computational studies for decades.
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The simplest type of the I&F model is the current-based model [52, 91, 92]. Like
other I&F models, it uses a forced RC circuit as a model for the dynamics of the
neuron’s membrane potential until this potential reaches a firing threshold. At that
moment, action potentials, called spikes, are sent to all the (postsynaptic) neurons in
the network connected to this original (i.e., presynaptic) neuron, whose voltage is then
reset to a fixed lower value before following the RC circuit dynamics again. What
distinguishes the current-based I&F model is its description of how spikes are trans-
mitted, which is as currents injected into the postsynaptic neurons, with the strength
of each such current only depending on the strength of the connection between the pre-
and postsynaptic neurons [47, 95]. This current-based I&F model is mathematically
simpler than the conductance-based I&F model [16]. Moreover, both the current-
based I&F and the conductance-based I&F model can be justified to various degrees
as good and simple models for neuronal membrane potential dynamics [95].

In this paper, we consider a version of the current-based I&F model which de-
scribes the spike-induced current injections as delta-impulses which produce an in-
stantaneous jump in the voltages of the respective postsynaptic neurons. Despite its
simplicity, this model can give a reasonably realistic description of neuron operating
regimes in vivo [63] for which many spikes are needed to drive any neuron in the
network to fire.

We will study network synchronization in the dynamics of all-to-all-coupled net-
works of excitatory, current-based, I&F neurons and describe in detail the functioning
of a synchronized network in which the neurons are driven by trains of external spikes
modeled by Poisson point processes in time. A pioneering study of synchronization
of current-based I&F neurons was reported in [67], where the synchronization mecha-
nism is described for a pair of spike-coupled neurons driven by constant superthreshold
currents, i.e., currents which, without the firing and resetting mechanism, would drive
the neuronal voltage to an equilibrium located above the firing threshold. For net-
works containing an arbitrary number of such neurons, synchronization was rigorously
proven mathematically in the classic paper [55]. This result was extended to networks
with constant driving force and a weak noise approximation of the discrete coupling
in [50] and to parameter heterogeneity in the absence of leakage in [81]. What distin-
guishes the current work is the stochastic aspect brought about by the Poisson-train
external drive, which is in fact the standard external drive in many neuronal network
models, and carries with it a fair amount of physiological realism [20, 54, 71, 84, 88].
This is because the external input to each network neuron can be modeled as a train of
spikes arriving from a large number of neurons outside the network under study, and
these neurons fire infrequently and independently of each other [25]. Another recent
paper [26] examines network synchronization in a complementary neuron model with
Poissonian driving but with discrete voltage levels and no leak.

One might expect that synchrony persists even in randomly driven I&F neuronal
networks, at least as long as the average external driving currents are not too far
below threshold (in the sense described in the previous paragraph) and their fluctu-
ations are not too large. However, in this case the mathematical methods used for
describing the synchrony are probabilistic in nature and thus very different from the
dynamical systems method used in [55]. A large part of this work is concerned with
the characterization of synchrony through total firing events, i.e., all the neurons in
the network firing simultaneously, as well as the underlying mechanism of this syn-
chrony. As will be described in detail below, this synchrony mechanism arises from the
fluctuations of neuronal voltages as follows: Consider all neuronal voltages beginning
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at a reset voltage. As time progresses, the external current, a train of independent
Poisson distributed spikes, causes each neuron’s voltage to increase; the distribution
of neuronal voltages broadens and moves towards threshold voltage. When the neuron
with the largest voltage reaches threshold and fires, it increases the voltages of the
remaining neurons, causing the few neurons just below threshold to fire, immediately
increasing the remaining neuronal voltages and so forth until all neurons have fired.
After this total firing event all neuronal voltages are at reset voltage, identical to the
state in which this cycle began. The process continues to repeat itself, total firing
events occurring periodically on average.

The synchrony described in the previous paragraph can occur in two different
driving regimes: super- and subthreshold. The superthreshold regime is a generaliza-
tion to Poisson-train driving of the deterministic or weakly-noisy situation described
in [50, 55, 81]. In this case, a relatively simple probabilistic argument, related to the
proof of the Central Limit Theorem [32], allows us to obtain the evolution of the
probability density function (PDF) of the neuron’s voltage which travels upward past
the firing threshold under the influence of the Poisson-train drive. If the fluctuations
in this drive are sufficiently small, one anticipates periodic total firing events. Similar
to the constant current situation [55], the period with which the total firing events
repeat themselves on average can be approximated as the expected time when the
average of the highest neuronal voltage in the network crosses the threshold. In ad-
dition, we develop a cascade-susceptibility criterion for a total firing event to occur,
and use this to compute the probability of total firing events to occur in succession.

Analysis of the subthreshold regime is considerably more involved since the mean
of the external drive no longer brings a neuronal voltage past the firing threshold
on average. Instead, it is pushed over the threshold by fluctuations in the external
drive current, and a delicate balance between the sizes of these fluctuations and the
mean external current must be struck in order to ensure the existence of the total firing
events on the one hand and their approximate periodicity on the other. We obtain the
description of the dynamics in this regime, in particular, the average period between
two consecutive total firing events, via the solution of a first-passage-time problem
using a diffusion approximation of the Kolmogorov forward equation (KFE) [35]. This
solution is given by a series involving the eigenfunctions of a non-self-adjoint oper-
ator. These eigenfunctions are expressed in terms of the confluent hypergeometric
functions [83], and the coefficients in the series are obtained by integrating the in-
finitely narrow initial PDF against the bi-orthogonal eigenfunction sequence of the
adjoint operator. We also present an alternative derivation of the KFE, to provide a
different perspective from [21].

We contrast the oscillatory regime of the current-based I&F network with its asyn-
chronous regime [1,14,50]. Our numerical simulations indicate that this asynchronous
regime is difficult to reach when the drive is superthreshold as it appears to have a
very small basin of attraction. We obtain a broader asynchronous regime by includ-
ing in the model some physiological effects that break the conditions for synchrony.
This can be achieved in several ways, including sparsity of neuron-to-neuron connec-
tions [5, 13, 93, 94], random synaptic failure [3, 41, 62, 69, 74, 96], or random synaptic
transmission delays [12, 29, 56], which we use in the present work. We describe the
steady-state of this regime using again the diffusion approximation of the KFE, for
which the voltage PDFs as well as gain curves (i.e., firing rate versus average external
drive strength) are obtained exactly by refining the analysis of [14]. In the regime in
which the external drive has small fluctuations, the gain curves exhibit bistability and
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hysteresis, the shape of which can be characterized very precisely in the limit when
the fluctuations vanish. In this limit, the stationary KFE becomes an algebraic equa-
tion, similar to those studied in [50], which can easily be integrated to yield the gain
curve. We find an explicit solution describing the gain curves and all their relevant
characteristics analytically. In the case when the external drive fluctuations are small
but non-vanishing, two asymptotic regimes are characterized and exact solutions for
both the voltage PDF and the gain curves are obtained.

Finally, we address the question of chaotic dynamics in current-based I&F neu-
ronal networks with delta-impulse current interactions driven by spike trains. It is
well known that individual Hodkin-Huxley neurons can exhibit chaotic dynamics, for
example under periodic drive [39, 99]. It was recently shown that networks of such
neurons can collectively exhibit chaotic dynamics (by possessing positive Lyapunov
exponents) even when each individual neuron exhibits no chaos in the absence of net-
work coupling. This demonstrated that network coupling can induce chaos even when
each individual component of the network possesses only regular dynamics [86, 87].
Clearly, a single current-based I&F neuron cannot become chaotic under any drive,
and it was recently shown that a single conductance-based I&F neuron cannot either,
provided the firing threshold is kept constant [10]. On the other hand, for excitatory,
conductance-based, I&F neuronal networks with a finite conductance time course, a
chaotic regime was found [101]. Here, we show that spike train driven current-based
I&F neuronal networks with delta-impulse interactions cannot exhibit chaotic dy-
namics, and that, in fact, two nearby trajectories of such a network generically should
coalesce after a finite time. This implies the possible existence of a strongly attracting
non-chaotic random attractor (under stochastic Poisson driving), which we conjecture
to be synchronized or near-synchronized in some probabilistic sense. Investigating the
precise nature of this attractor will be relegated to future work.

The remainder of this paper is organized as follows. In section 2, we describe the
I&F model under investigation and define a number of its operating regimes and lim-
its. In section 3, we discuss synchronous dynamics of the model and define the notion
of total firing events. We begin with the superthreshold regime, and develop a proba-
bilistic description of the neuronal voltages between two sequential total firing events
which is then used to obtain the average frequency of such events. For this regime, we
also probabilistically determine the parameter ranges in which these events are likely
to happen. We then proceed to the subthreshold regime, where we present the depen-
dence of the expected time between total firing events and the voltage PDF of a single
neuron. We continue by deriving the appropriate Kolmogorov forward and backward
equations (KFE and KBE) and their diffusion approximations, the solutions of which
we construct with a series of confluent hypergeometric functions. For both the super-
and subthreshold regimes, the predicted firing rates are compared to measurements
from numerical simulations. In section 4, we describe the asynchronous regime of net-
work operation, beginning with a description of what physiological effects may break
the tendency of the network to synchronize. We proceed by deriving the steady KFE
for the voltage PDF in the asynchronous regime and describing the solutions of this
steady KFE and the corresponding gain curves in the zero-fluctuation limit, as well
as the exact solutions, gain curves, and asymptotic formulas in two complementary
regimes for the case of small fluctuations. In section 5, we prove that there are no
chaotic dynamics in the current-based I&F network with delta-pulse couplings driven
by spike trains. We present a discussion and the conclusions in section 6. In the
appendix, we describe the details of several calculations used in section 3.2: in ap-
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pendix A, we derive a stationary PDF used in the calculation of the eigenfunctions
for the KFE and KBE, in appendix B, we show how to solve both the KFE and KBE
simultaneously, and in appendix C, we present the computational details needed to
evaluate the solution for the expected time between total firing events.

2. The model

We consider a model neuronal network of N all-to-all coupled, current-based,
excitatory, integrate-and-fire (I&F) point neurons. This network is governed by the
system of differential equations

dvj

dt
= −gL(vj − VR) + Ij(t), j = 1, . . . , N, (2.1)

where vj is the membrane potential of the jth neuron, gL is the leakage conductance,
VR is the resting voltage, and Ij(t) is the injected current. The voltage, vj , evolves
according to equation (2.1) while it remains below the firing threshold, VT . When
vj reaches VT , the jth neuron is said to fire a spike, and vj is set to the value of the
reset voltage, which is VR in this work. Upon resetting, vj is immediately governed
by equation (2.1) again. At the same time, appropriate currents are injected into
all other neurons as described below. For the purpose of comparison to numerical
simulation, the non-dimensional values

VR = 0, VT = 1, and gL = 1 (2.2)

are used. Note that the leakage conductance, gL, sets the time scale.
The instantaneous currents that drive the jth neuron in the network (2.1) are

modeled by the expression

Ij(t) = f
∑

l

δ(t − sjl) +
S

N

∑

i6=j

∑

k

δ(t − τik), (2.3)

where δ(·) is the Dirac delta function. The first term in equation (2.3) corresponds
to the currents arriving from the external input. Each neuron’s external input is
modeled by a Poisson train of Dirac delta function spikes with rate ν. At each spike
time, t = sjl, the neuron’s voltage jumps by an amount f . The sum for the jth

neuron is over all spike times, sjl, which are statistically independent from the times
sil for any other neuron i 6= j. The second term in equation (2.3) corresponds to the
coupling between pairs of neurons in the network. For this all-to-all coupled network,
a spike generated by a neuron is modeled by a Dirac delta function in time which
causes the voltages of all other neurons in the network to jump by the amount S/N .
The scaling by N , the number of neurons in the network, ensures the average firing
rate per neuron remains bounded as N → ∞. The time τik corresponds to the kth

time the ith neuron’s voltage reaches firing threshold, VT . The sum is over all other
spiking neurons except the jth neuron itself.

Each Poisson point process that generates the set of spike times {sjl}∞l=1 for the
external input to the jth neuron is independent from the Poisson point processes for
the other N − 1 neurons. The Poisson point processes are all statistically identical,
each defined on the non-negative real axis, [0,∞), with rate ν. Corresponding to
each of these Poisson point processes, we also define a Poisson counting process,
Mj(t), to describe the number of spikes from the external input appearing in the
jth neuronal current during the time interval [0, t]. These Mj(t) are independent
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stochastic processes with Poisson distributions at each moment of t:

P
(

Mj(t) = m
)

=
(νt)m

m!
e−νt (2.4)

with mean νt. These external spike times generated for a single neuron in one time
interval are independent from those times in any other non-overlapping time inter-
val [44, Sec. 1.3f].

Simulations of the above neuronal network model are carried out by solving equa-
tions (2.1) and (2.3) exactly. Time stepping is controlled by the next external spike
time across the network. If this spike is capable of increasing the neuron’s voltage
above threshold, this neuron fires, and the other neuronal voltages are all increased
instantaneously. Then, the remaining neuronal voltages are examined to see if any are
above threshold. If other neuronal voltages are above threshold, these neurons fire,
and then the remaining voltages (of neurons which have not fired) are increased ap-
propriately. This process repeats until no new neurons spike. Then, we return to the
time stepping procedure and repeat. Under the dynamics of equation (2.3), a neuron
can only fire when an incoming spike arrives. This simulation procedure is similar to
the one discussed with more detail in [11]. Synchrony appears in the simulations for
sufficiently large network coupling strength, S, and large Poisson rate, ν. Examples
of synchronous dynamics of the network (2.1) are shown in figure 2.1.

We should note that the driving effect on the network (2.1) of an external Poisson
spike train with rate ν and spike strength f in the limit as f → 0 and ν → ∞, by the
law of large numbers, is the same as that of the constant current of strength fν. We
will refer to the limit as f → 0 and ν → ∞ while fν = O(1) as the zero-fluctuation

limit. In section 3.1.1 we show the fluctuations are O(f2ν) which are O(f) when
fν = O(1). Most results presented below are for the situation when f is small and ν
large, with fν = O(1), which we will refer to as the small-fluctation regime.

When the network coupling is large in our simulations, not only does it sustain the
synchrony in the network dynamics, but it drives an unsynchronized network into the
synchronous state, as will be discussed in section 3.1.3. This is illustrated in figure 2.1
for networks with voltages initially uniformly randomly distributed between VR and
VT . When the network coupling is sufficiently large that the network is completely
synchronized, the network with randomly distributed voltages does not exhibit any
transition period; it begins firing immediately with total firing events. We note that
the network coupling strength, regarded as being sufficiently large for the purpose of
synchrony, is still weak in the sense that it requires many incoming spikes from other
neurons to cause a neuron to fire, that is, S/N ≪ VT − VR.

In what is to follow, we will address two distinct regimes of network operation:
subthreshold, and superthreshold. These regimes are characterized by considering
the network (2.1) with fluctuating external current replaced by its average, fν, and
the network coupling turned off, S = 0. This is equivalent to a single neuron driven
with constant external current of strength fν. The full network is in the subthreshold
regime whenever fν < gL(VT − VR), under which condition the voltage of the single
neuron with constant current and zero network coupling will not cross threshold, and
thus never fire. On the other hand, the superthreshold regime is used to describe the
network dynamics whenever fν > gL(VT −VR). In this case, the voltage of the single
neuron with constant current and zero network coupling is driven above threshold,
and will fire repeatedly at regular intervals of time.

We also discuss two regimes related to the effects of fluctuation in the input
current: fluctuation-driven regime and mean-driven regime. In the fluctuation-driven
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(a) f = 0.01, fν = 1.2, S = 0.4 and P (C) = 0.00027
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(b) f = 0.1, fν = 1.2, S = 2.0 and P (C) = 0.0034
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(c) f = 0.001, fν = 1.2, S = 2.0 and P (C) = 0.99

Fig. 2.1. (Left) Histograms of firing times for the system with uniformly randomly distributed
initial voltages illustrating the trend toward synchronous firing. (Right) Raster plots of firing times
for the system with initial voltages set at VR. For the synchronizable network (c), one total firing
event is followed by another total firing event with high probability. The other two systems, (a) and
(b), do not satisfy our stringent definition of synchronizability.
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regime, the activities of the full network are driven by fluctuations about the mean
voltage. In the mean-driven regime, the entire network is driven by the mean of the
input current.

3. Synchrony

The network synchronizes exactly through total firing events. These synchronized
events are manifested as vertical lines in the raster plots in figure 2.1, where dots
indicate which neuron fired at what time. Total firing events are cascading events
during which all neurons in the network fire simultaneously, and all neuronal voltages,
vj , are reset to VR at the same time. The voltages then rise probabilistically due to
the external driving, until the first neuron fires, and pushes all other neurons to fire
with it. The distribution of neuronal voltages is classified as cascade-susceptible, if
the firing of one neuron activates a total firing event. The system is then classified
as p-synchronizable if the probability of neuronal voltages to be cascade-susceptible
is greater than p when the first neuron fires. In the discussion below, we use p =
0.85 throughout and call p-synchronizable simply synchronizable. By this definition
the networks (a) and (b) in figure 2.1 are not synchronizable, as other firing events
appear which are not part of the total firing events. We remark that this definition
of synchronizability is rather stringent. The networks in figure 2.1 (a) and (b) might
be considered synchronous by some other broader definition.

From equations (2.1) and (2.3), it follows that the jth neuronal voltage, vj , can
only increase when that neuron receives a spike. At that time, the voltage vj jumps
up by f or S/N , respectively, depending on whether the arriving spike was generated
by the external input or another neuron in the network. If vj exceeds the firing
threshold, VT , during such a jump, the jth neuron will fire, and an amount S/N is
added to the voltage of all the other neurons. At this same instant, the increment
of S/N may increase the kth neuronal voltage above threshold, VT , and it will fire,
and so on, and a cascading firing event may thus take place. This cascading effect
maintains the synchrony of the network. In particular, it keeps the network exactly
synchronized if the neuronal voltages are all sufficiently close to one another such
that the cascading event includes all neurons in the network, giving rise to a total
firing event. The probability of a total firing event occurring depends on the network
coupling constant, S, and is computed in section 3.1.3.

After a total firing event, all the neuronal voltages are reset to VR, and then
rise independently due to their independent external Poisson spike trains until the
first spiking of a network neuron. The voltages of all the neurons in the network are
independent since between total firing events no neurons are firing, thus the network
coupling is effectively zero. The expected time between total firing events, and thus
the spike rate of the network, is the expected time, starting from the reset moment,
for the first neuron to fire. In section 3.1 and 3.2, the expected first exit time will be
calculated with different techniques for the subthreshold and superthreshold regimes.

3.1. Superthreshold regime. The time between total firing events in the
synchronous network is determined by the time for the first neuron to reach threshold
voltage and begin the cascade firing event. In contrast to the zero-fluctuation limit
method for the asynchronous model [21], we consider the small fluctuations and com-
pute the distribution of voltage for the neuron with the maximum voltage among all
neuron voltages in the network, then we approximate the mean time this neuron with
maximal voltage exits by determining when the mean of the maximal voltage crosses
the threshold. In this approach we extract the properties of the dynamics from the
mean of the maximum neuronal voltage.
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The average firing rate of the synchronous network will be approximated in terms
of the average time the maximal voltage of all N neurons crosses threshold. In order
to determine this time, we will derive the PDF for the voltage of the neurons in the
network between total firing events, and show that this PDF can be approximated by
the Gaussian distribution. Then in section 3.1.2 we obtain the PDF for the maximum
neuronal voltage in the network from the PDF for a single neuronal voltage. From this
PDF of the maximal voltage, the expectation of the maximum voltage is computed
numerically and used to approximate the average time this neuron crosses threshold
voltage.

3.1.1. Voltage distribution for uncoupled neurons. The mechanism for
synchrony in the superthreshold driving regime is related to the distribution of the
neuronal voltages, resulting from their random inputs, described by equation (2.3).
As mentioned before, these inputs are generated by two sources: the external input
modeled by a Poisson point process and the internal input from other neurons in the
network firing. In the synchronous state, no neurons fire between total firing events,
thus all the input to a given neuron is generated by the external input. The differential
equation in (2.1) which describes the membrane potential, vj , of any neuron in the
network at time t, now takes the form

dvj

dt
= −gL(vj − VR) +

∑

l

fδ(t − sjl) (3.1)

between any two consecutive total firing events when the network is in the synchronous
state.

The Poisson point process defining the incoming spike times {sjl} has constant
rate, therefore the system (3.1) is homogeneous in time, and the initial conditions
vj(0) = VR, j = 1, . . . , N, can be assigned after any total firing event. The solution
to the linear inhomogeneous differential equation (3.1) is

vj(t) = VR + f

M(t)
∑

l=1

e−gL(t−sjl), (3.2)

provided that vj has remained below VT in the interval [0, t]. As the rate of Poisson
points is the same for all neurons, equation (3.2) is simply a different realization of
the Poisson point process for each neuron, and is thus statistically identical for all
neurons. The subscript j will be dropped for the remainder of this discussion.

In order to compute the period of the total firing events taking place in our model,
we first need to compute the PDF of the neuronal voltage (3.2). We cannot find it
in closed form, and so we will only seek it in the small-fluctuation regime, which, we
recall from section 2, is characterized by high incoming-spike Poission rate, ν, and
small spike strength, f , such that the overall driving strength, fν, remains constant.

We proceed in several steps. First, we note that for the purposes of computing the
statistics of the neuronal voltage at any given single time t, we can rewrite equation
(3.2) in terms of a sum involving independent and unordered spike times Ul(t) as [44,
Sec. 4.2B]

v(t) = VR +

M(t)
∑

l=1

Rl(t) = VR +

M(t)
∑

l=1

fe−gL(t−Ul(t)). (3.3)
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Each Ul(t) is uniformly distributed on the interval [0, t] with PDF pU(t)(u) = 1/t for
u ∈ [0, t] and zero elsewhere. Next, consider the random variable Rl(t), which takes
values in the interval [fe−gLt, f ]. The Rl(t)’s are identically distributed, and the PDF
for each Rl(t) can be derived from the PDF of Ul(t) by considering Rl(t) as a function
of U , R(t) = g(U(t)) = fe−gL(t−U(t)), through the transformation rule [7]

pR(t)(r) =
pU(t)(g

−1(r))
∣

∣g′(g−1(r))
∣

∣

, (3.4)

where the prime denotes differentiation with respect to the argument of the function
g(·). This mapping is one to one. This yields the PDF for Rl(t) to be

pR(t)(r) =
1

gLt

1

r
for r ∈

[

fe−gLt, f
]

, (3.5)

and zero elsewhere.
According to equation (3.3), each neuron’s voltage is given by the equation

v(t) − VR =
∑M(t)

l=1 Rl(t), which is a sum of a random number of independent identi-
cally distributed random variables. From equations (2.4) and (3.5), using the formula
for the mean of random sums [44, Sec. 1.1e], we thus compute the average neuronal
voltage at the time t to be

µ(t) = VR + 〈M(t)〉 〈Rl(t)〉 = VR +
fν

gL

(

1 − e−gLt
)

, (3.6)

where we have taken into account that

〈M(t)〉 = νt and 〈Rl(t)〉 =
f

gLt

(

1 − e−gLt
)

. (3.7)

The PDF of the voltage, v(t), would look like a delta function in the zero-
fluctuation limit because its variance would vanish. To describe the mean as well
as the fluctuations of the voltage in this limit, we center the voltage about its mean,
rescale by the amplitude of the fluctuations, and define

w(t) =
v(t) − µ(t)

f
√

ν
=

1

f
√

ν

M(t)
∑

l=1

Rl(t) −
〈M(t)〉 〈Rl(t)〉

f
√

ν

=

M(t)
∑

l=1

Hl(t) − mr(t), (3.8)

where

mr(t) =

√
ν

gL

(

1 − e−gLt
)

. (3.9)

Since w(t) is a random sum of independent, identically distributed random variables,
Hl(t) = (f

√
ν)−1Rl(t), the methods of characteristic functions and generating func-

tions are invoked for the computation of the PDF for w(t).
The characteristic function of a random variable X is defined as the Fourier

transform of its probability distribution [44, Sec. 1.1d],

φX(κ) =
〈

eiκX
〉

. (3.10)
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For a random sum of M(t) independent, identically distributed random variables
Hl(t), the characteristic function equals the composite function [44, Sec. 1.1e] (shifted
by the additive deterministic term)

φw(t)(κ) = e−iκmr(t)GM(t)

(

φH(t)(κ)
)

, (3.11)

where

φH(t)(κ) =
〈

eiκH(t)
〉

=

∫ ∞

−∞
eiκr/f

√
νpR(t)(r) dr

=
1

gLt

∫ f

f exp(−gLt)

eiκr/f
√

ν

r
dr (3.12)

is the characteristic function of the continuous random variable Hl(t) and

GM(t)(s) =
〈

sM(t)
〉

=

∞
∑

m=0

P (M(t) = m) sm

= e−νt
∞
∑

m=0

(νt)m

m!
sm = eνt(s−1) (3.13)

is the generating function of the discrete random variable M(t), computed from equa-
tion (2.4). From equations (3.11), (3.12), and (3.13), we obtain the characteristic
function

φw(t)(κ) = e−iκmr(t) exp

[

νt

(

1

gLt

∫ f

f exp(−gLt)

eiκr/f
√

ν

r
dr − 1

)]

, (3.14)

with mr(t) defined in equation (3.9).
From formula (3.14), we can immediately calculate the cumulant generating func-

tion Gw(t) of the rescaled voltage, w(t), in equation (3.8) as

Gw(t)(κ) = lnφw(t)(κ) = νt

(

1

gLt

∫ f

f exp(−gLt)

eiκr/f
√

ν

r
dr − 1

)

− iκmr(t). (3.15)

From this function, the nth cumulant of w(t) can be computed via the formula

cn[w(t)] = (−i)n dnGw(t)(κ)

dκn

∣

∣

∣

∣

κ=0

=
1

gL

ν

(f
√

ν)n

∫ f

f exp(−gLt)

rn

r
dr for n ≥ 2. (3.16)

These cumulants are O(ν1−n/2) since the integral in equation (3.16) is of O(fn).
Considering fν = O(1), this is equivalent to

cn[w(t)] = O(fn/2−1). (3.17)

Since the first cumulant vanishes by the choice of the variable w(t), the only non-
vanishing cumulant in the zero-fluctuation limit is the second, which is O(1). Conse-
quently, the probability distribution for w(t) in the small-fluctuation regime is exactly
that for a Gaussian distribution with mean zero and variance c2[w(t)]. A more precise
examination shows that the cumulants in (3.15) scale as (ν/gL)ν−n/2 and are there-
fore negligible for n ≥ 3 in an appropriately nondimensionalized sense when νgL ≫ 1.
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Fig. 3.1. The Gaussian distribution for the neuronal voltage (equation (3.18)) is compared
to the actual distribution of neuronal voltages in the network where voltages are not reset to VR

when they cross threshold. The approximation improves for smaller f . (a) Large fluctuations: the
Gaussian distribution remains a reasonable approximation. (b) Small fluctuations: the Gaussian
distribution provides an excellent approximation over several standard deviations about the mean.

The Gaussian approximation for small fluctuations is therefore formally valid when
f ≪ (fν)gL, where fν is the O(1) mean external current strength.

The Gaussian distribution approximation for the voltage, v(t), is

pv(x, t) ∼ 1√
2πσ(t)

exp

(

− (x − µ(t))2

2σ2(t)

)

, (3.18)

where the average voltage, µ(t), is given in equation (3.6) and its variance is given by

σ2(t) =
f2ν

2gL

(

1 − e−2gLt
)

. (3.19)

Later, the cumulative distribution function (CDF) of the voltage will also be needed,
which for the Gaussian approximation of the PDF is given by

Fv(x, t) ∼ 1

2

(

1 + erf

(

x − µ(t)√
2σ(t)

))

, (3.20)

where erf(·) is the error function,

erf(z) =
2√
π

∫ z

0

e−t2 dt. (3.21)

We point out that this approximate PDF (3.18) is in good agreement with numerical
simulations, as depicted in figure 3.1 (b) for uncoupled neurons in the small-fluctuation
regime, the voltages of which are not reset to VR when they cross threshold.

3.1.2. Firing rate. The time between total firing events in the synchronized
network is the time it takes for the first neuron to reach threshold. In order to
compute the mean of this time now that we have a good approximation for the PDF
of the voltage for a single neuron, we first derive the PDF for the maximum voltage
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of N uncoupled neurons. Then we approximate the average time as the time it takes
the average maximum voltage to reach threshold. The error of this approximation is
negligible in the small-fluctuation regime. We remark that for networks of the size we
are considering, N ∼ 100, the largest voltage at any given time is still typically only
2 or 3 standard deviations from the mean and, as will be shown below, our procedure
yields a reasonably good description of the firing rate. Therefore, we neither use a
careful approximation of the tails of the probability distribution nor pursue a large
deviation analysis.

Since the voltages of all the N neurons in the network are independent and iden-
tically distributed random variables, the probability that all of them will be below a
given value, x, at a given time t, is given by the product of the respective single-neuron
voltage probabilities. In other words, the CDF of such an event is given by

F (N)
v (x, t) = Fv(x, t)N , (3.22)

where Fv(x, t) is the voltage CDF for a single neuron, given by equation (3.20). From
equation (3.22), we find that the PDF for the maximum voltage over the network is
thus given by the expression

p(N)
v (x, t) = Npv(x, t)Fv(x, t)N−1, (3.23)

where pv(x, t) is the single-neuron voltage PDF given by equation (3.18).
We approximate the expected time the first neuron crosses threshold by comput-

ing the time the expected maximum voltage equals threshold by solving the equation

VT =

∫ ∞

−∞
xNpv(x, t)Fv(x, t)N−1dx (3.24)

for t, which appears in the PDF pv(x, t) and the CDF Fv(x, t). The average first exit
time, t, is computed by numerically solving equation (3.24). This approximation is
valid when the standard deviation of the maximal neuronal voltage,

σ(N) =

√

∫ ∞

0

(x − µ(N))2Npv(x, t)Fv(x, t)N−1dx,

is small in comparison to the mean, µ(N), of the distribution. We consider the standard
deviation of the distribution at the time its mean is VT , with non-dimensional value
unity. Over the range of values of f and ν for which the Gaussian approximation
is valid and the network is synchronous, the standard deviation, σ(N), is never more
than 3.5% of the mean, µ(N). To further validate this approximation, in figure 3.2
we compare numerical measurements of the first exit time in a simulation of the full
network dynamics (2.1), to that of the mean predicted by equation (3.24). We observe
good agreement between the measurement and theoretical mean for small f .

The gain curves depicting the frequency of the synchronized oscillations (i.e., the
average network firing rate) versus the average external current, fν, obtained from
this theoretical solution are shown in figure 3.3 along with the corresponding gain
curves computed via numerical simulation of the network. The predicted gain curves
are clearly in good agreement with the numerical measurements.

We see that, holding fν fixed, the firing rates depend strongly on the fluctuation
strength f . To understand the qualitative dependence, we first note that the strength
of the variance (3.19) of the voltage PDFs, pv(x, t), scales linearly with f (for fixed
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Fig. 3.2. Comparison of first exit times measured in simulations to the time predicted via
equation (3.24) for N = 100 neurons with fν = 1.2. (Top left) f = 0.05, (top right) f = 0.01,
and (bottom) f = 0.002. The case of f = 0.05 is just outside the small-fluctuation regime; for the
other two values of f , the difference between the measured and theoretical means are small. Note
the x-axis scale changes for these three cases.

fν). Decreasing f within the small-fluctuation regime tightens the PDF, pv(x, t),
of the neuronal voltages, thereby extending the amount of time needed for some
neuron to reach threshold, and slowing the firing rate. This clearly indicates that
the fluctuations of the voltages, not just their means, control the firing rate. In
contrast, the firing rates of both a single uncoupled neuron and coupled neurons in an
asynchronous dynamic regime can be obtained by an approximation that replaces the
fluctuating driving force with the equivalent mean constant driving current (cf. section
4.4, especially figure 4.3). For sufficiently large f for which the network dynamics are
no longer in the small-fluctuation regime, as expected, the gain curves measured from
the simulations begin to deviate from our theory.

The theory we have just developed contains no dependence on the network cou-
pling strength, S, apart from the assumption that the connection is sufficiently strong
so that the network dynamics are synchronous. This assumption is verified by com-
paring numerical simulations of networks with two different coupling strengths, both
in the regime when the network displays synchronous behavior. The results are pre-
sented in figure 3.4. In the superthreshold regime, no difference is seen in the firing
rate as a function of the average external current, fν. Well into the subthreshold
regime, our simulations show that the networks do not synchronize as effectively,
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which explains why the numerical results deviate from the theory premised on at
least approximate synchrony.

The size of the network, N , has a weak effect on the firing rate of the synchronous
network, evident in the gain curves in figure 3.3. As the size, N , of the network is
increased, it becomes more likely for the voltage of one neuron to be further from
the mean. In turn, it becomes more likely for a neuron to reach threshold sooner,
thus increasing the firing rate of the network. The difference in firing rates is small,
since the typical deviation from the mean of the maximal neuron in a population of
N neurons grows approximately logarithmically with N .

The computation of the time between synchronous firing events through consid-
eration of the expected value of the maximum neuronal voltage illuminates the fact
that the synchronous events are controlled by fluctuations in the voltage of a single
neuron. The more likely a single neuronal voltage is to be found further from the
mean voltage of all N neurons, the faster the network fires, given that the network
remains synchronizable. This analytical result does not capture the dynamics of the
system driven by inputs below threshold. We will consider this network regime in
section 3.2 after discussing when the superthreshold network is synchronizable.

3.1.3. Probability to be cascade-susceptible. The network exhibits syn-
chronous behavior if the firing of one neuron causes all subsequent neurons to fire in
immediate succession. To determine if the network is expected to exhibit synchronous
behavior, we calculate the probability of all subsequent neurons to fire. We recall from
the beginning of section 3 that the network is classified as p-synchronizable if the prob-
ability of neuronal voltages to be cascade-susceptible is greater than p when the first
neuron fires. We will use p = 0.85 and refer simply to synchronizable networks in the
discussion to follow. Many networks that are not synchronizable under this defini-
tion might be considered synchronous in some other broader definition. We will work
here with this stringent definition, and leave a broader consideration of synchrony for
future work.

The probability that the neuronal voltages in the network (2.1), (2.3) are cascade-
susceptible is computed by determining if a total firing event will occur given one
neuronal voltage is at threshold voltage. A total firing event occurs if the total network
coupling input from neurons firing previously in the cascade-firing event with greater
voltage is sufficiently large to bring another neuronal voltage above threshold, and
therefore fire, perpetuating the cascading event until all neurons fire. At the time
the first neuron fires, denoted by T (1), the neuron with the maximum voltage is at
threshold, V (N) = VT , and we define the remaining ordered neuronal voltages, V (k),
where V (k) > V (j) for k > j, and write the cascade-susceptible condition for the kth

neuron to fire as

Ck : VT − V (k) ≤ (N − k)
S

N
, k ∈ {1, 2, . . . N − 1}, (3.25)

where S is the coupling strength between the N neurons in the network. The total
firing event occurs if condition (3.25) holds for all k, which we write as the cascade-

susceptible condition

C = ∩N−1
k=1 Ck : VT − V (k) ≤ (N − k)

S

N
, ∀k ∈ {1, 2, . . . N − 1}. (3.26)

The probability of the event C is computed in terms of the distribution of the re-
maining neuronal voltages. We will compute this by first conditioning on the time
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that the first neuronal voltage crosses threshold. Then we consider the complement
of event (3.26), Cc, and compute this in terms of the probability of the remaining
N − 1 neurons being distributed in such a way that condition (3.25) fails first at a
given value of k, and sum over these probabilities.

We compute the probability of condition (3.25) by applying the law of total
expectation with respect to the random time T (1) at which the first neuron fires:

P (C) =

∫ ∞

0

P (C | T (1) = t)p
(1)
T (t)dt. (3.27)

The PDF for the exit time of the first of N neurons, p
(1)
T (t), is derived from the

PDF for the exit time of a single neuron, pT (t), which in turn is computed from the
voltage PDF for a single neuron. If the voltage is allowed to evolve without reset,
then integrating the voltage distribution, pv(x, t), over the domain [VR, VT ] results in
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Fig. 3.4. Two gain curves corresponding to the same values of N = 100 and f = 0.01, and two
different values of the network coupling strength, S. The results indicate that the gain curve shape
is independent of S.

the probability the voltage has not crossed threshold, P (T < t), with the assumption
that once the voltage crosses threshold it does not re-cross to be found below at a
later time. We have found this assumption to be approximately valid well into the
superthreshold regime. The PDF, pv(x, t), is taken to be the Gaussian distribution,
equation (3.18), derived in section 3.1.1.

For the conditional probability in equation (3.27) we will consider

P (C | T (1) = t) = 1 − P (Cc | T (1) = t),

the latter being easier to compute explicitly. We simplify the computation of
P (Cc | T (1) = t) by approximating the probability distribution of the neuronal volt-
ages at the conditioned firing time of the first neuron, T (1) = t, as if they were
independent and identically distributed random variables, each with PDF pv(x, t) cor-
responding to uncoupled evolution under equation (2.1) without firing or resetting,
but conditioned upon the event that the maximum neuronal voltage is at thresh-
old: V (N) = VT . We denote this idealized probability measure as Pt|V (N) , so our
approximation reads

P (Cc|T (1) = t) ≈ Pt|V (N)(Cc). (3.28)

This approximation relies on the probability distribution of the dynamical event
T (1) = t being largely determined by the single-time PDFs for the neuronal voltages
without firing and resetting, which is plausible for the superthreshold regime where
the non-resetting neuronal voltages under the dynamics (2.1) are unlikely to recross
threshold at substantially different times. On the other hand the process by which a
neuron crosses threshold in the subthreshold regime clearly requires consideration of
the dynamical development of a substantial fluctuation in the neuronal voltages, and
we have verified that approximation (3.28) does not give very good results. Conse-
quently, here we will only pursue the theoretical estimation of synchronizability for
the superthreshold regime.
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The event Cc contains at least one value of k for which condition (3.25) fails. At
this value of k, the previous neurons firing in the cascading event do not increase the
voltage V (k) sufficiently to bring it above threshold. The cascading chain is broken
and none of the remaining neurons fire. The event Cc is partitioned into the mutually
exclusive events {Aj}N−1

j=1 , where the event Aj consists of the arrangements of the
N − 1 neuronal voltages such that condition (3.25) is satisfied for
k = {N − 1, N − 2 . . . N − j + 1} and fails for k = N − j. The event Cc is the disjoint
union of the events {Aj}N−1

j=1 , and

Pt|V (N)(Cc) =
N−1
∑

j=1

Pt|V (N)(Aj). (3.29)

The probability that the distribution of neuronal voltages is cascade-susceptible is
reduced to determining the probability of neuronal voltage arrangements.

We evaluate the probabilities Pt|V (N)(Aj) by dividing up the interval of voltage
[VR, VT ] into bins of size S/N and defining the sets

Bk =

{

x : VT − (k − 1)S

N
> x ≥ VT − kS

N

}

for k ≥ 1

of which there are b = ⌈(VT −VR)N/S⌉ in total. Under our approximating probability
measure PT |V (N) , each of the N − 1 (unordered) voltages which are not at threshold
are independent of each other and are distributed according to identical conditioned
probability distributions

pv|V (N)(x, t) =











pv(x, t)
∫ VT

VR
pv(x′, t) dx′

for x ∈ [VR, VT ],

0 otherwise.

(3.30)

For the small-fluctuation regime (on which we will focus), we use the Gaussian ap-
proximation (3.18) for pv(x, t). Now, under our approximate probability measure,
Pt|V (N) , the probability, pj(t), for the voltage of any given neuron to be in bin Bj at
time t is computed from the integral

pj(t) =

∫ VT −(j−1)S/N

VT −jS/N

pv|V (N)(x, t)dx for 1 ≤ j ≤ b. (3.31)

We have now set up the framework to determine the probabilities of the events
Aj under the approximation of pj(t) in equation (3.31). The event A1 consists of
condition (3.25) failing for k = N − 1. That is, no neuronal voltages are in the
interval (VT − S/N, VT ] = B1, thus

Pt|V (N)(A1) = Pt|V (N)(v1 . . . vN−1 ∈ Bc
1) = (1 − p1(t))

N−1, (3.32)

using the fact that the (unordered) neuronal voltages are independent. This calcula-
tion is extended to the other events Aj , j > 1,

Pt|V (N)(Aj) = Pt|V (N)

(

{

V (N−1) ∈ B1

}

,
{

V (N−1), V (N−2) ∈ ∪2
i=1Bi

}

, . . . ,
{

V (N−1) . . . V (N−j+1) ∈ ∪j−1
i=1Bi

}

,
{

V (N−j) . . . V (1) ∈ (∪j
i=1Bi)

c
}

)

. (3.33)
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The first j − 1 terms in equation (3.33) describe the arrangement of j − 1 of the
total N − 1 neuronal voltages such that condition (3.25) is satisfied for k = N − j +
1, . . . , N −1. The last term indicates that the cascading event fails after the first j−1
neurons fire.

The calculation in equation (3.33) follows from combinatorics if we re-express the
events in terms of the unordered independent neuronal voltages. We sum over all
configurations of the neuronal voltages consistent with the description of event Aj ,
resulting in

Pt|V (N)(Aj) =
∑ (N − 1)!

n1!n2! . . . nj−1!(N − j)!

×(p1(t))
n1(p2(t))

n2 . . . (pj−1(t))
nj−1





b
∑

i=j+1

pi(t)





N−j

, (3.34)

where nj denotes the number of neurons with voltage in the set Bj and pj is defined
in equation (3.31).

The probability of the event C with our underlying assumptions is,

P (C) = 1 −
∫ ∞

0

N−1
∑

j=1

Pt|V (N)(Aj)p
(1)
T (t)dt, (3.35)

which is evaluated numerically. As we now show, the sum can be approximated by
only the first few terms. We recall that Pt|V (N)(Aj) computes the probability that
condition (3.25) fails for k = N − j. At larger values of j, the condition is less likely
to fail since the distribution of neuronal voltage is approximately Gaussian with mean
close to VT . Neurons are more likely to be found closer to the center of the distribution,
thus condition (3.26) is more likely to be satsified for smaller values of k = N − j, and
therefore the failure events, Aj , become less probable for larger j. When evaluating
the probability P (C), the series is terminated when terms are less than 10−4. With
this tolerance, 2 to 9 terms are included depending on the parameter values. In figure
3.5, we compare our theoretical prediction of P (C) from (3.35) with its measurement
from direct simulations in which we record the fraction of times the first neuron firing
initiates a total firing event when all neuronal voltages begin at VR.

The transition from the non synchronizable (P (C) < 0.85) network to the syn-
chronizable (P (C) ≥ 0.85) network is smooth; see figure 3.5. This transition is sharper
for smaller f with fν held constant. Larger values of f cause the distribution of neu-
ronal voltages to be more spread out, thus making it less probable that condition (3.26)
holds for all values of k. Larger values of f correspond to larger fluctuations spread-
ing the neuronal voltages apart, requiring larger network coupling strengths for the
cascade-susceptible condition (3.26) to hold with high probability.

We have analyzed a mechanism for the network to maintain a self-consistent state
of synchrony and have developed a theoretical characterization of the synchronizabil-
ity of a network in terms of its governing parameters. Our theoretical prediction of
synchronizability through equation (3.35) agrees well with measurements from nu-
merical simulations of the network. One such example appears in figure 3.5.

Over a broad range of parameter values, the network exhibits a large degree
of what we would intuitively characterize as synchrony (see figure 2.1 (a) and (b)),
but not through strict total firing events. Even though such networks are not “syn-
chronizable” according to our strict definition, our proposed theories for firing rates
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symbols with arrow bars - Monte Carlo simulations. The transition to synchronizablility (above
dashed line at P (C) = 0.85) as S increases is sharper for smaller f .

(equations (3.24) and (3.36)) are reasonably good as a few neurons firing slightly early
or late relative to a substantial firing cascade do not inject significant error to our cal-
culations performed under the idealized assumption that they fire in total synchrony.
Therefore we consider networks with coupling strength S = 2.0 and values for f and
ν that exhibit effective synchronization properties as observed in our simulations of
the full network dynamics, as opposed to limiting ourselves to those that satisfy our
strict definition of synchronizability.

3.2. Subthreshold regime. In the completely synchronous network, (2.1)
and (2.3), of current-based, I&F neurons with delta function current impulses, the
firing rate is determined entirely by the time between total firing events. After such
an event where all neurons fire at the exact same instant, the neuronal voltages are all
reset and the process repeats. In the preceding section, we have addressed such total
firing events in the superthreshold driving case, in which the neurons are all driven
to fire on average.

The method used in section 3.1 is a good approximation when, under the dynam-
ics (3.1) where neurons are uncoupled from each other and their voltages do not reset
upon crossing threshold voltage, VT , the probability of a neuronal voltage to be below
VT given that it was previously above VT is small. A superthreshold driving force
(without resetting voltages) will on average push the neuronal voltages quickly past
VT , so it is unlikely for any neuronal voltage to recross the threshold at substantially
different times. When the driving force is subthreshold, a neuronal voltage is always
very likely to be below VT . This does not imply the neuronal voltage has not crossed
VT , as there is significant probability that there will be fluctuations in the driving
force which push the neuronal voltage just over VT . In section 3.1 it was assumed
that a neuronal voltage below threshold had not crossed VT at an earlier time, and
under the full dynamics had not fired. Therefore, in the subthreshold regime, this
approximation cannot be used to accurately compute the average exit time of the first
neuron.

In the subthreshold regime, the neuronal voltages lie in wait below threshold for
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a sufficiently large fluctuation to push one neuronal voltage over threshold. For the
cascade-susceptible network, this leads to a total firing event. In our superthreshold
regime calculations in section 3.1, we developed a satisfactory theory based on the
analytical approximation (3.18) of the PDF for the voltage of a single neuron with-
out taking into account its resetting at threshold. This calculation hinged on the
assumption that a neuron which crosses threshold without resetting is unlikely to be
found later below threshold. While this is a plausible approximation far enough into
the superthreshold regime, it is certainly not appropriate for the subthreshold regime.
Consequently, we instead obtain the firing rate of the network from the inverse of the
expected time for the first of N neurons to fire as computed through a proper first
exit time problem. While this computation can again be reduced to a first exit time
problem for a single uncoupled neuron, the PDF for this exit time will no longer be
computable in terms of the solution of a simple equation with analytical expressions
as in equation (3.24) and the surrounding discussion. Rather, this PDF is obtained
from the solution of a Kolmogorov forward equation (KFE) with appropriate bound-
ary conditions, expressed in terms of an eigenfunction expansion involving confluent
hypergeometric functions.

3.2.1. Exit time relation to PDF for voltage. We consider the inverse
of the mean firing rate of the completely synchronous network in the subthreshold
regime to be the expectation of the time it takes the first of the N neurons to exit
the voltage interval [VR, VT ], i.e., to reach the firing threshold, VT . This expectation
is computed in terms of the PDF of the exit time for one neuron, in contrast to the
PDF of the voltage of a single neuron, which was used in section 3.1. The expected
time is given by

〈

T (1)
〉

=

∫ ∞

0

tp
(1)
T (t)dt, (3.36)

where p
(1)
T (t) is the PDF of the first exit time, T (1), of the N neurons. The first exit

time, T (1), is the minimum of the set of all exit times of N uncoupled neurons. In the
beginning of section 3, we pointed out that between total firing events the neurons
behave as though they are effectively uncoupled.

The PDF of the minimum exit time, T (1), is calculated from the PDF of one
neuron’s exit time, T , by considering its CDF,

F
(1)
T (t) = P (T (1) ≤ t) = 1 − P (T (1) > t). (3.37)

Between total firing events, the N neurons behave independently, thus

P (T (1) > t) =
(

1 − FT (t)
)N

,

where FT (t) is the CDF of the exit time for one neuron. Consequently, the PDF of
the minimum exit time, T (1), can be related to the PDF, pT (t), of a single neuron’s
exit time through

p
(1)
T (t) = NpT (t)

(

1 − FT (t)
)N−1

, (3.38)

where FT (t) =
∫ t

0
pT (t′) dt′ is the CDF of the exit time for a single neuron [7]. We next

develop the methods for computing the single-neuron exit time distribution, pT (t).
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Consider that upon reaching threshold voltage, the single neuron is removed from
the system, meaning that it is absorbed at the boundary, VT , rather than being
reset back to VR or being allowed to continue to evolve as in section 3.1. Then, the
probability that at time t this neuron has not yet fired (it will fire at a later time T )
is the probability that it is still in the domain [VR, VT ]. This probability is

P (T ≥ t) =

∫ VT

VR

pv(x, t)dx, (3.39)

where x is the neuronal voltage and the PDF, pv(x, t), satisfies the KFE for a single,
Poisson spike-train driven, I&F neuron with an absorbing barrier at VT [15,27,77,78].
The KFE satisfied by the PDF, pv(x, t), will be derived in section 3.2.2. Note that
the PDF, pv(x, t), is defective in the sense that its integral over the domain x ∈
[VR, VT ] does not equal one for all times. The difference is exactly the probability
that the neuron has reached threshold, VT , and therefore been removed from further
consideration.

Equation (3.39) can be expressed in terms of the CDF, FT (t), of a single neuron’s
first exit time as

P (T ≥ t) = 1 − FT (t). (3.40)

From this equation, the PDF of this first exit time is derived in the form

pT (t) = − d

dt
P (T ≥ t) = − ∂

∂t

∫ VT

VR

pv(x, t)dx. (3.41)

By taking the derivative inside the integral, this is equivalent to

pT (t) =

∫ VT

VR

− ∂

∂t
pv(x, t)dx =

∫ VT

VR

∂

∂x
J [pv](x, t)dx (3.42)

where the flux,

J [pv](x, t) = −
(

gL(x − VR) − fν
)

pv(x, t) − f2ν

2

∂

∂x
pv(x, t), (3.43)

is obtained from the diffusion approximation of the KFE, to be derived next in sec-
tion 3.2.2. Equation (3.42) is the flux of probability that leaves through the upper
boundary,

pT (t) = J [pv](VT , t), (3.44)

as no flux leaves through the lower boundary due to the fact that the Poisson driven
neuronal voltage never falls below VR. The problem of finding the expected time
between total firing events is reduced to determining pv(x, t) with the prescribed
boundary conditions, and then obtaining the flux at x = VT . The KFE that pv(x, t)
satisfies is developed next.

3.2.2. Kolmogorov forward and backward equations. The PDF of the
voltage for a single neuron, pv(x, t), is the solution to the KFE with an absorbing
boundary at x = VT . This equation may be thought of as expressing the conservation
of probability density, and reads

∂

∂t
pv(x, t) =

∂

∂x

[

gL(x − VR)pv(x, t)
]

+ ν
[

pv(x − f, t) − pv(x, t)
]

, (3.45)
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where incoming spikes are modeled by a Poisson spike train with rate ν and strength
f .

The rigorous derivation of this equation is best accomplished by first working
with the probability transition density, pv(y, s;x, t), defined so that

P (vj(t) ∈ B|vj(s) = y) =

∫

B

pv(y, s;x, t) dx

for any nice (Borel) subset B of the real line and pair of times s < t, where vj(t) is
the solution of the differential equation for the voltage (3.1). As can be seen from
this definition, the dependence of the probability transition density pv(y, s;x, t) on x
is as a density variable (representing the Radon-Nikodym derivative of a probability
measure), whereas its dependence on y is as straightforward initial data. This is why
the Kolmogorov backward equation (KBE, expressed in terms of the source variables
s and y) is easier to develop than the KFE (expressed in terms of the target variables
t and x). Once the KBE is obtained, the KFE follows directly through an adjoint
operation [59].

Our strategy will be to relate the derivation of the backward evolution equation
for the probability transition density to that corresponding to a differential equation
for uj , the neuronal voltages in the network without the Poisson spiking terms:

duj

dt
= −gL(uj − VR). (3.46)

The KBE associated to this equation is, from the method of characteristics, simply

−∂pu(y, s;x, t)

∂s
= −gL(y − VR)

∂pu(y, s;x, t)

∂y

pu(y, s = t;x, t) = δ(x − y), (3.47)

(to be solved backward in s from s = t into s < t).

Returning to the actual dynamics for vj(t), we follow the standard technique of
invoking the Chapman-Kolmogorov Equation [44, Sec. 4.4a] to express the probability
transition density under a small time change, ∆s, in the source time argument:

p(y, s − ∆s;x, t) =

∫ ∞

−∞
p(y, s − ∆s; z, s)p(z, s;x, t) dz. (3.48)

We now work on the first factor in the integrand by integrating its target variable
over an arbitrary open set B so we can directly deal with a well-defined probability:

P (vj(s) ∈ B|vj(s − ∆s) = y) =

∫

B

p(y, s − ∆s; z, s) dz.

Following the familiar practice in continuous-time Markov chains [44, Sec. 4.5], we
decompose this probability with respect to a partition corresponding to the number of
spiking events, M(s)−M(s−∆s), (where M(s) is a Poisson counting process [44, Sec.
1.3f] with rate ν describing the number of spiking events on the interval [0, s]) that
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occur during the small time interval (s − ∆s, s]:

P (vj(s) ∈ B|vj(s − ∆s) = y)

= P (vj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) = 0)

×P (M(s) − M(s − ∆s) = 0|vj(s − ∆s) = y)

+P (vj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) = 1)

×P (M(s) − M(s − ∆s) = 1|vj(s − ∆s) = y)

+P (vj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) ≥ 2)

×P (M(s) − M(s − ∆s) ≥ 2|vj(s − ∆s) = y). (3.49)

The number of spiking events on the interval (s−∆s, s] obeys a Poisson distribution
with mean ν∆s and is independent of the voltage at the beginning of the time interval:

P (M(s) − M(s − ∆s) = m|vj(s − ∆s) = y) = P (M(s) − M(s − ∆s) = m)

=
(ν∆s)m

m!
e−ν∆s,

so in particular for small ∆s:

P (M(s) − M(s − ∆s) = 0|vj(s − ∆s) = y) = 1 − ν∆s + O((∆s)2),

P (M(s) − M(s − ∆s) = 1|vj(s − ∆s) = y) = ν∆s + O((∆s)2),

P (M(s) − M(s − ∆s) ≥ 2|vj(s − ∆s) = y) = O((∆s)2).

On the other hand,

P (vj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) = 0)

= P (uj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) = 0)

= P (uj(s) ∈ B|uj(s − ∆s) = y)

and

P (vj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) = 1)

= P (uj(s) + f + e1(∆s) ∈ B|uj(s − ∆s) = y)

= P (uj(s) + e2(∆s) ∈ B|uj(s − ∆s) = y + f),

where the ej(∆s) are random errors (related to exactly when the spike appears in
the time interval (s − ∆s, s]) which vanish in the limit ∆s → 0 and the uj obey the
dynamics of equation (3.46). Therefore, because B is open,

lim
∆s↓0

P (vj(s) ∈ B|vj(s − ∆s) = y,M(s) − M(s − ∆s) = 1)

= δy+f (B) ≡
{

1, if y + f ∈ B,

0, otherwise,

and similarly

lim
∆s↓0

P (uj(s) ∈ B|uj(s − ∆s) = y) = δy(B).
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Substituting these expressions into the decomposition (3.49), we obtain

P (vj(s) ∈ B|vj(s − ∆s) = y)

=(1 − ν∆s + O((∆s)2))P (uj(s) ∈ B|uj(s − ∆s) = y)

+ (ν∆s + O(∆s)2)(δy+f (B) + o(1))

=P (uj(s) ∈ B|uj(s − ∆s) = y) − (ν∆s)δy(B) + ν∆sδy+f (B) + o(∆s)

=P (uj(s) ∈ B|uj(s − ∆s) = y) + (ν∆s)(δy+f (B) − δy(B)).

Since B is an arbitrary open set, we can read-off from this an asymptotic approxima-
tion for the (generalized) probability transition density

pv(y, s−∆s; z, s) = pu(y, s−∆s; z, s)+(ν∆s)(δ(z−(y+f))−δ(z−y))+o(∆s). (3.50)

This is the key expression which explains the form of the Kolmogorov backward and
forward equations for the probability density for the voltages — over a short time
interval of width ∆s the probability transition density evolves just as if there were no
spikes (as described by the uj dynamics of equation (3.46)) but with an additional
transition from the current voltage value y to y + f when a spike appears (with
probability approximately ν∆s). Events where two or more spikes appear in a short
interval have negligibly small probability.

We now complete the derivation in the standard way by using expression (3.50)
along with the identity pv(s, y; s, x) = pu(s, y; s, x) = δ(x − y) in the Chapman-
Kolmogorov equation (3.48):

− ∂pv(y, s;x, t)

∂s

= lim
∆s↓0

pv(y, s − ∆s;x, t) − pv(y, s;x, t)

∆s

= lim
∆s↓0

∫ ∞

−∞
pv(z, s;x, t)

pv(y, s − ∆s; z, s) − pv(y, s; z, s)

∆s
dz

= lim
∆s↓0

∫ ∞

−∞
pv(z, s;x, t)

[

pu(y, s − ∆s; z, s) − pu(y, s; z, s)

∆s

+ν(δ(z − (y + f)) − δ(z − y)) + o(1)] dz

=

∫ ∞

−∞
pv(z, s;x, t)

[

− ∂pu(y, s; z, s′)

∂s

∣

∣

∣

∣

s′=s

+ ν(δ(z − (y + f)) − δ(z − y))

]

dz.

Using the evolution equation (3.47) for the probability transition density pu, we obtain

− ∂pv(y, s;x, t)

∂s

=

∫ ∞

−∞
pv(z, s;x, t)

[

−gL(y − VR)
∂δ(z − y)

∂y
+ ν
(

δ(z − (y + f)) − δ(z − y)
)

]

dz,

(3.51)
which reduces to the KBE for the probability transition density:

−∂pv(y, s;x, t)

∂s
= −gL(y − VR)

∂pv(y, s;x, t)

∂y
+ ν
(

pv(y + f, s;x, t) − pv(y, s;x, t)
)

.

(3.52)
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We used Dirac delta functions in (3.51) to describe the formal structure of the ar-
gument; they can be avoided through more cumbersome analysis involving estimates
controlling the probability for the underlying stochastic process vj to vary in a way
substantially different from that suggested by the Dirac delta functions [59].

Having obtained the KBE for the evolution of the probability transition density
with respect to its source variables s and y, we can now write down the KFE for the
evolution of the probability transition density with respect to target variables t and
x through taking the adjoint of the (infinitesmal generator) operator implied by the
right hand side of (3.52) and applying it to the (t, x) variables:

∂pv(y, s;x, t)

∂t
=

∂

∂x

(

gL(x − VR)pv(y, s;x, t)
)

+ ν
(

pv(y, s;x − f, t) − pv(y, s;x, t)
)

.

The KFE (3.45) for the probability density of the voltage itself is simply obtained by
observing from the law of total probability that:

pv(x, t) =

∫ ∞

−∞
pv(y, 0;x, t)pv(y, 0)dy.

In other words, the probability transition density acts like a Green’s function for
the probability density, and therefore satisfies the same evolution equation. This
concludes our derivation of the Kolmogorov equations, and we proceed to find their
approximation solutions in the small-fluctuation regime.

An approximation to the KFE is obtained by considering f small, which is the
case for the synchronized network. In this small-fluctuation regime, where fν is
held constant, ν is then large. The voltage jumps a small amount for each incoming
spike and does not have long to decay before the next spike arrives, thus the voltage
approximates a smooth function. By Taylor expanding the function pv(x − f, t) for
small f , we generate a Kramers-Moyal expansion [75, Sec. 4.1]. Keeping the first
three terms in this expansion, equation (3.45) is reduced to the Fokker-Planck form

∂

∂t
pv(x, t) =

∂

∂x

[

(gL(x − VR) − fν)pv(x, t)
]

+
f2ν

2

∂2

∂x2
pv(x, t), (3.53)

in which the difference term has been replaced by drift and diffusion terms. Equation
(3.53) can be written in the conservation form

∂

∂t
pv(x, t) +

∂

∂x
J [pv](x, t) = 0, (3.54)

with the probability flux J [pv](x, t) defined in equation (3.43).

The approximate KFE (3.53) requires that a second boundary condition be im-
posed. In particular, a reflecting boundary condition is posed at x = VR because
the actual neuronal voltage cannot go below threshold, nor are any neurons injected
into the network at the voltage value x = VR, due to the fact that firing neurons are
removed from the system rather than having their voltages reset to VR, as discussed
above. This reflecting boundary condition requires that the probability flux J [pv](x, t)
must vanish at x = VR.

The initial condition for equation (3.53) is

pv(x, 0) = δ(x − VR), (3.55)
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as the neuronal voltage always starts at the reversal potential after a total firing event.
From equation (3.43), we see that the reflecting boundary condition at VR is

f2ν

2

∂

∂x
pv(x, t)

∣

∣

∣

∣

x=VR

− fνpv(VR, t) = J [pv](VR, t) = 0, (3.56a)

and the absorbing boundary condition at VT is

pv(VT , t) = 0. (3.56b)

Equation (3.53) along with initial condition (3.55) and boundary conditions (3.56)
is the approximate KFE. The corresponding KBE will be needed to construct the
solution to the KFE. As the adjoint of the KFE, integration by parts yields this KBE:

∂

∂t
q(x, t) =

[

− gL(x − VR) + fν
] ∂

∂x
q(x, t) +

f2ν

2

∂2

∂x2
q(x, t), (3.57a)

with the adjoint boundary conditions

∂

∂x
q(x, t)

∣

∣

∣

∣

x=VR

= 0 (3.57b)

and

q(VT , t) = 0. (3.57c)

The method for obtaining an eigenfunction expansion of the analytic solution pv(x, t)
to the KFE will be outlined next. While equation (3.53) could also be solved directly
with an appropriate numerical method, the eigenfunction expansion avoids accumu-
lation of error from time integration and allows precise computation of derivatives
involved in the boundary flux (3.44); see appendix C.3.

3.2.3. Solving the approximate KFE. To solve equation (3.53), we consider
a separation of variables, and a series expansion of the form

pv(x, t) =

∞
∑

n=0

AnPn(x)e−λnt, (3.58)

where the nth eigenfunction, Pn(x), solves the eigenvalue problem

d

dx

[

(gL(x − VR) − fν)Pn(x)
]

+
f2ν

2

d2

dx2
Pn(x) + λnPn(x) = 0. (3.59a)

The boundary conditions of this eigenvalue problem are

f2ν

2

d

dx
Pn(x)

∣

∣

∣

∣

x=VR

− fνPn(VR) = 0 (3.59b)

and

Pn(VT ) = 0, (3.59c)

in accordance with the homogenous boundary conditions (3.56) for the full KFE.
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The operator in the eigenvalue problem (3.59) is not symmetric, which normally
would require solving both the direct and the adjoint problem in order to find biorthog-
onal sets of eigenfunctions that would allow us to determine the terms of the series in
equation (3.58). We obviate this in appendix B by transforming the equation into a
self-adjoint form. Also in appendix B we demonstrate the property

pv(x, t) = ps(x)q(x, t) (3.60)

holds for our boundary conditions (3.56) for the full KFE, where q(x, t) solves the
adjoint problem (KBE (3.57)) and ps(x) is the stationary distribution for the related
problem of equation (3.53) but with reflecting boundary conditions at both ends (zero
flux). The stationary solution is derived in appendix A to be

ps(x) = N exp

(

− (gL(x − VR) − fν)2

f2νgL

)

, (3.61)

where the constant N would normally be chosen so that ps(x) integrates to one
over the domain. However, our use of the stationary distribution to transform the
equations for the eigenfunctions Pn(x) does not rely on it being properly normalized,
so we choose N = 1 for simplicity.

It is now justified to write the PDF of the voltage in the form

pv(x, t) = ps(x)

∞
∑

n=0

AnQn(x)e−λnt, (3.62)

where Qn(x) and λn are the eigenfunctions and eigenvalues of the problem

[

− gL(x − VR) + fν
] d

dx
Qn(x) +

f2ν

2

d2

dx2
Qn(x) + λnQn(x) = 0, (3.63a)

with boundary conditions

d

dx
Qn(x)

∣

∣

∣

∣

x=VR

= 0 (3.63b)

and

Qn(VT ) = 0. (3.63c)

The constants An are determined from the initial condition (3.55) via the equation

∫ VT

VR

δ(x − VR)Qn(x)dx = An

∫ VT

VR

ps(x)Q2
n(x)dx, (3.64)

for which

An =
Qn(VR)

∫ VT

VR
ps(x)Q2

n(x)dx
. (3.65)

The solution to equation (3.63) is obtained through two transformations of vari-
ables. First, we shift and rescale the variable x so that

z =
gL(x − VR) − fν

f
√

gLν
. (3.66)
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The system is driven to z = 0 by the average drift, and x is essentially rescaled by the
standard deviation, which is O(f

√
ν). The eigenfunction equation (3.63) for Qn(x)

under this transformation becomes the equation for Q̃n(z)

Q̃′′
n(z) − 2zQ̃′

n(z) +
2λn

gL
Q̃n(z) = 0, (3.67)

in which Qn(x) = Q̃n(z(x)). This would be Hermite’s equation if 2λ/gL happened to
be an integer. Taking another transformation, ζ = z2, the above equation for Q̃n(z)
becomes the equation for Q̂n(ζ)

ζQ̂′′
n(ζ) +

(

1

2
− ζ

)

Q̂′
n(ζ) +

λn

2gL
Q̂n(ζ) = 0, (3.68)

where again, Qn(x) = Q̂n(ζ(z(x))).
Equation (3.68) is a differential equation of the form

ξ
d2w(ξ)

dξ2
+ (b − ξ)

dw(ξ)

dξ
− aw(ξ) = 0, (3.69)

whose solution is the confluent hypergeometric function [2], also known as Kummer’s
Function,

1F1(a, b, ξ) =

∞
∑

n=0

(a)nξn

(b)nn!
, (3.70)

where

(c)n = c(c + 1)(c + 2) . . . (c + n − 1), (c)0 = 1 (3.71)

is the Pochhammer symbol [83]. The second linearly independent solution will be
chosen either as

U(a, b, ξ) =
π

sinπb

[

1F1(b − a, b, ξ)

Γ(1 + a − b)Γ(b)
− ξ1−b

1F1(1 − a, 2 − b, ξ)

Γ(a)Γ(2 − b)

]

(3.72)

or as

ξ1−b
1F1(1 − a, 2 − b, ξ). (3.73)

The choice of which two linearly independent solutions to use is discussed in ap-
pendix C.1. For our equation (3.67), the three solutions are

1F1

(

− λn

2gL
,
1

2
, z2

)

, U

(

− λn

2gL
,
1

2
, z2

)

, and, |z|1F1

(

− λn

2gL
+

1

2
,
3

2
, z2

)

, (3.74)

where the replacement ζ = z2 has been made.
The second and third functions in (3.74) are not smooth at z = 0, since the map-

ping of z → ζ is 2-1, rather than 1-1. As the solutions of (3.67) must be continuously
differentiable at z = 0, two different linear combinations must be taken for z > 0 and
z < 0, with function and derivative matching at z = 0. For any given basis of y1(z)
and y2(z), the solution is written as

Q̃n(z) =

{

c1y1(z) + c2y2(z) for z ≤ 0,
c3y1(z) + c4y2(z) for z > 0.

(3.75)
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Fig. 3.6. (Left) Equation (3.78) is plotted using the basis 1F1 and z1F1, the zeros of which

are the eigenvalues. (Right) Plotted on a log scale with the transformed variable z, from z(VR) to
z(VT ), are the absolute values of the first 5 eigenfunctions, |Q̃n(z)|, of the KBE using basis 1F1 and
U in equation (3.74) for f = 0.01 and ν = 80.

In general, the eigenvalues are determined by requiring the boundary conditions
together with the matching conditions at z = 0 to be met. This gives the following
4 × 4 system of equations for c1, c2, c3, and c4, which must be singular,













dy1(zR)
dz

dy2(zR)
dz 0 0

0 0 y1(zT ) y2(zT )
lim

z→0−

y1(z) lim
z→0−

y2(z) − lim
z→0+

y1(z) − lim
z→0+

y1(z)

lim
z→0−

dy1

dz
lim

z→0−

dy2

dz
− lim

z→0+

dy1

dz
− lim

z→0+

dy2

dz





















c1

c2

c3

c4









=









0
0
0
0









.

(3.76)
Rather than take the determinant of this system, it can be simplified and row reduced

to a simple equation for the eigenvalues. The choice of y1(z) = 1F1

(

− λn

2gL
, 1

2 , z2
)

and

y2(z) = |z|1F1

(

− λn

2gL
+ 1

2 , 3
2 , z2

)

is explained in appendix C.1, which simplifies the

system to








1 0 0 −α1(λn)
0 1 0 1
0 0 1 −α1(λn)
0 0 0 α1(λn) + α2(λn)

















c1

c2

c3

c4









=









0
0
0
0









, (3.77)

where α1(λn) = dy2(zR)
dz /dy1(zR)

dz and α2(λn) = y2(zT )/y1(zT ). The equation of the
simple form,

α1(λn) + α2(λn) = 0, (3.78)

is solved numerically for the eigenvalues. Equation (3.78) along with the absolute
value of the first few eigenfunctions appear in figure 3.6. The stiffness of the problem
is evident in the log plot of the eigenfunctions in figure 3.6, which shows that the local
and global maxima of their absolute values vary over 10 to 15 orders of magnitude
over the finite interval. We address numerically evaluating these eigenfunctions in
appendix C.
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Fig. 3.7. Solutions to the KFE (3.53) for a single neuronal voltage which has one absorbing
boundary condition at VT , f = 0.05, and fν = 0.91 at four times. The integral of pv(x, t) over the
domain [0, 1] is the probability that the voltage has not yet crossed threshold at time t.

The solution, pv(x, t), to equation (3.53) is obtained numerically by first obtaining
a finite number of solutions to equation (3.78) for the eigenvalues, λn. For each
value of λn, the corresponding eigenfunction, Qn(x), is evaluated with an appropriate
linear combination of the functions in (3.74). The coefficient, An, is determined from
equation (3.65) by numerically evaluating the integral. These values are used to
compute the terms in (3.62) which are added together to form pv(x, t) (see figure 3.7)
and are used to compute the terms in (C.14) and added together to form pT (t) (see
figure 3.8). Details on numerically computing the confluent hypergeometric functions
appear in appendix C.2. The validity of this solution and the firing rates computed
with it are discussed next.

3.2.4. Firing rate. Having outlined the solution procedure to obtain the mean
exit time of the first neuron from the network in section 3.2.1 and 3.2.2, we proceed to
compare this solution from the approximation of the KFE to measurements obtained
from simulations of system (2.1) and (2.3) under the Poisson spike train drive. We
compare the PDFs for the first exit time of the N neurons as well as the average
firing rate with emphasis on the subthreshold regime, where we use the results of the
detailed calculation of the exit time PDF.

The mechanism for synchrony predicts the firing rate of the network to be the
inverse of the time the first of N neurons fire on average, 1/

〈

T (1)
〉

. We first compare
the predicted first exit time PDF, equation (3.38), to that obtained from the simu-
lations of system (2.1), (2.3). These are plotted in figure 3.8 for two different values
of f . For the larger value of f , the diffusion approximation of the KFE is less accu-
rate. The numerically measured exit times are shifted to smaller times, as the discrete
jumps in potential cause the voltage to jump above threshold sooner than the voltage
under the continuous diffusion approximation. Thus the neuronal voltages driven by
Poisson spikes exit sooner, this shift being more noticeable with larger discontinuities
(larger values of f) in the voltage.

The solution to the KFE is used to evaluate equation (3.36) for the average time
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Fig. 3.8. Comparison of the predicted distribution for the first exit times (p
(1)
T

(t) from equation
(3.38)) to those obtained from numerical simulations of networks driven by Poisson point processes
(N = 100 and coupling strength S = 2.0). The figure on the right is well within the small-fluctuation
regime, where the diffusion approximation is valid. The figure on the left is the case for which f is
relatively large, and the diffusion approximation remains reasonable. However, the Poisson driven
neurons exit slightly sooner than the smooth diffusion approximation.

between synchronous firing events. The firing rate, computed as the inverse of this
average time, is in good agreement with the firing rate measured from simulations
of the network of neuronal voltages driven by Poisson spikes (see figure 3.9). The
difference between the theoretically predicted firing rate and the numerically measured
firing rate arises from the approximation of the KFE. The error between the two
becomes negligible as the fluctuations become smaller, as seen in the case of f = 0.002
in figure 3.9. For larger values of f , the diffusion approximation is no longer valid. In
addition, when f = 0.01, the numerically measured firing rate begins to deviate from
the theoretical firing rate as fν decreases. This deviation from the theory can be
attributed to the fact that the network becomes less synchronizable as fν decreases
for fixed f in the subthreshold regime.

4. Asynchronous regime

In this section, we discuss the properties of the steady, asynchronous solutions of
the I&F model (2.1), (2.3), both because they are interesting in their own right and
to contrast them with the synchronous solutions discussed in the previous section.
In particular, as will be seen below, for sufficiently small external drive fluctuations
the gain curves corresponding to steady asynchronous solutions exhibit bistability and
hysteresis, which we have not been able to find for the gain curves of the synchronized
solutions. Moreover, in the regime of sufficiently strong average external current, fν,
the gain curves asymptotically depend on the mean of the drive alone in contrast
to the gain curves for the synchronized solutions, which are always sensitive to the
fluctuations of the drive. Analogous results for the conductance-based I&F model are
described in [49].

We have observed that our idealized I&F model, (2.1) and (2.3), operates asyn-
chronously only for small network coupling strengths and relatively large external
drive fluctuations. When the external drive fluctuations become small, i.e., f ≪ 1,
numerical simulations indicate that the basin of attraction of the asynchronous so-
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Fig. 3.9. For the network of N = 100 neurons with network coupling strength S = 2.0, the firing
rate determined by the procedure of section 3.2 is in good agreement with measurements obtained
from numerical simulation of system (2.1) in the small-fluctuation regime for which the diffusion
approximation is valid.

lution also becomes small. In particular, any chance of observing this solution and
its bistability appears to be diminished by the model’s tendency to synchronize. We
therefore incorporate some more realistic physiological effects into the model that sup-
press the synchrony and enlarge the basin of attraction of the asynchronous solution.
Instead of increasing the size of f and decreasing the network size N , we will see
that synaptic transmission delays sustain the asynchronous dynamics in this work.
We postulate the relevant KFE, study its steady dynamics, and compute gain curves
in order to determine the voltage PDF and the firing rate of a typical neuron in the
network.

We should point out two immediate differences between the synchronous and
asynchronous regimes. First, the network activity in the asynchronous regime can be
described by a steady-state voltage PDF, while, as we have seen in the synchronous
regime, the voltage PDF depends on time in a nearly periodic fashion. Also, the main
statistical quantity we will directly compute for the asynchronous regime is the average
firing rate of the network, as opposed to the average time between synchronous total
firing events.

4.1. Network with transmission delays. The simplest description of the
asynchronous regime in the network (2.1), (2.3) can be obtained if the train of current
spikes received by any neuron in the network can be assumed to satisfy Poisson
statistics in time. Under this assumption, we can find a KFE that describes the
voltage PDF in the asynchronous regime. We have been modeling the spike times
of the external drive as a Poisson train from the outset, and the internal spikes can
be approximated by such a process if they come from a large number of independent
weak sources. That is, each neuron in the network must fire independently, and a large
number of infrequently firing neurons must contribute to the current of every neuron
in the network [25,53], [44, Sec. 5.9]. Note that this assumption is clearly violated in
the synchronous regime. However, another intrinsic obstacle to independent firing of
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neurons in the network (2.1), (2.3), is that any neuron can only spike precisely at the
moment when an external spike or a spike from another network neuron arrives. This
may well be the reason underlying the difficulty, if not impossibility, of finding a regime
in which the spike train of the total output generated by the entire network (2.1), (2.3)
obeys Poissonian statistics. In particular, we observe that numerical simulations of the
network (2.1), (2.3) lock onto synchronous or near-synchronous operation much more
readily than asychronous operation for small external drive and very small network
coupling.

Several heretofore ignored physiological phenomena can be included in the model
(2.1), (2.3) that remove the strong tendency of the network to synchronize and ren-
der the asynchronous state more easily observable. One such effect is sparsity of the
neuron-to-neuron connections in the network, so that the connectivity of the network
ceases to be all-to-all [5, 13, 93, 94]. Another is significant synaptic transmission fail-
ure (2.3), i.e., random failure of a neuron’s synaptic response to a presynaptic spike.
To model this failure, the current driving the jth neuron in equation (2.3) is replaced
with a current of the form

Ij(t) = f
∑

l

δ(t − sjl) +
S

Np

∑

i6=j

∑

k

pjikδ(t − τik),

where pjik is a Bernoulli-distributed stochastic variable modeling the synaptic release
probability, i.e., the probability of current activation upon receiving a spike [3, 41,
62, 69, 74, 96]. In particular, pjik = 1 with probability p and 0 with probability
1 − p. However in our simulations these two effects, synaptic sparsity and synaptic
failure, are not very effective in preventing the system from locking onto synchronous
dynamics.

We find that inserting transmission delays into the currents driving the neurons in
the network can efficiently sustain the network dynamics in an asynchronous regime.
Rather than for one neuron to instantaneously pass information to another, the pass-
ing of information takes a random amount of time due to the axonal velocity and
axonal length distribution [12, 29, 56]. Random transmission delays in the jth neu-
ron’s synaptic current are modeled by replacing the current (2.3) with

Ij(t) = f
∑

l

δ(t − sjl) +
S

N

∑

i6=j

∑

k

δ(t − τik − Tjik), (4.1)

where Tjik is a non-negative stochastic variable taken from some appropriate distri-
bution. In this work, we model each delay time Tjik to be exponentially distributed
with common mean. Note that, as these delay times are all assumed to be indepen-
dent, it is possible for the spikes to be transmitted in a different order than they were
originally generated.

Including random transmission delays into the model does however present one
theoretical difficulty to the KFE approach. Namely, the input from other neurons to
a neuron in the network would be a convolution of firing history in time. However,
in the steady state where the firing rate, m, does not depend on time, each neuron is
effectively driven by a mean firing rate, m, regardless of the delay dynamics. Moreover,
if the average delay time is significantly shorter than the time scale on which the
network firing rate, m(t), varies, we can also assume to a good degree of approximation
that each neuron is driven by a mean firing rate, m(t). In what is to follow, we will
assume that the network satisfies one of these conditions, usually the steady-state
one.
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In the forthcoming sections we first derive the KFE, in the diffusion approx-
imation, describing the steady voltage PDF in the asynchronous state of the net-
work (2.1), (4.1) with random transmission delays. We then present the exact, explicit
formulas for the voltage PDF and gain curves in the limit of vanishing fluctuations,
the exact voltage PDF solution of the full KFE in the diffusion approximation, and
an exact implicit equation for the gain curves, which we solve numerically. Finally, in
two asymptotic regimes that cover almost the entire gain curve, we find approximate
expressions for the voltage PDF and the gain curve shape in terms of elementary
functions, which are valid asymptotically for small drive fluctuations.

4.2. Steady Kolmogorov forward equation. We are interested in obtaining
the voltage PDF of a typical neuron and studying the firing rate of the asynchronous
current-based network, both of which can be derived from the solution to the KFE.
In a large network of coupled neurons which fire asynchronously, the average network
firing rate appears as a self-consistent part of the driving term in the KFE. Thus
by solving the steady-state KFE with the appropriate boundary and normalization
conditions as discussed below, the steady-state average network firing rate of the net-
work as well as the stationary distribution of a typical neuronal voltage are obtained.
We first postulate the KFE that takes into account finite voltage jumps due to the
external drive and network spikes. We then approximate these jumps by drift and
diffusion terms in the limit of small fluctuations, and finally derive a simplified KFE
satisfied by the steady voltage PDF.

When the network, (2.1), (4.1), fires asynchronously, a KFE can be derived [57,58]
for the PDF of the voltage of a typical neuron in the network, pv(x, t). This equation
is

∂

∂t
pv(x, t) =

∂

∂x

[

gL(x − VR)pv(x, t)
]

+ ν [pv(x − f, t) − pv(x, t)]

+Nm(t)

[

pv

(

x − S

N
, t

)

− pv(x, t)

]

+ m(t)δ(x − VR). (4.2)

Here, Nm(t) is the instantaneous firing rate of the entire network, so that m(t) is the
population-averaged firing rate per neuron. The delta-function term is the probability
source due to the resetting of the neuronal voltages at VR after they have crossed the
firing threshold, VT .

Equation (4.2) can be written in the conservation form

∂

∂t
pv(x, t) +

∂

∂x
J [pv](x, t) = m(t)δ(x − VR) (4.3)

using the probability flux

J [pv](x, t) = Jd[pv](x, t) + Ju[pv](x, t). (4.4)

Here,

Jd[pv](x, t) = −gL(x − VR)pv(x, t) (4.5)

is the downwards flux of the neuronal voltages due to the relaxation dynamics in
equation (2.1), and

Ju[pv](x, t) = ν

∫ x

x−f

pv(s, t) ds + Nm(t)

∫ x

x−S/N

pv(s, t) ds (4.6)
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is the flux due to upwards jumps induced by the delta-function currents arriving from
both the external input and the spikes of the network neurons.

We now consider the boundary conditions for equation (4.2). The I&F mech-
anism resets the voltages of all neurons that have crossed the firing threshold, VT ,
immediately to the value VR. Therefore, there are no neuronal voltages above VT to
relax down past the boundary VT , and thus no downward flux at VT . From equation
(4.5), we thus find

Jd[pv](VT , t) = −gL(VT − VR)pv(VT , t) = 0, (4.7)

and hence,

pv(VT , t) = 0, (4.8)

which is an absorbing boundary condition for the KFE (4.2) at VT . The second
boundary condition for (4.2) is derived by noting that the voltage probability flux
over the threshold, VT , must equal the firing rate,

J [pv](VT , t) = Ju[pv](VT , t) = m(t). (4.9)

As mentioned above, the reinjection of these voltages into the equation at the reset
value, VR, is taken care of by the delta-function term in equation (4.2).

In addition to the boundary conditions (4.8) and (4.9), the voltage PDF, pv(x, t),
must also be non-negative in the x-interval [VR, VT ], and satisfy the normalization
condition

∫ VT

VR

pv(x, t) dx = 1. (4.10)

It is through this normalization condition, computed over the voltage interval [VR, VT ],
that the firing rate m(t) is self-consistently determined.

Normalization (4.10) stands in contrast with the voltage PDF which solves the
KFE obtained in sections 3.2.2. In this latter PDF, the neurons which traversed
the firing threshold were not returned to the interval [VR, VT ], thus the area under
the curve pv(x, t) in the voltage interval, [VR, VT ] decreased with time and was only
normalized to unity initially at t = 0. For the purpose of the analysis in section
3.2.2, the reinjection of neuronal voltages at reset VR is irrelevant, and the leaking
of the voltage PDF determines, through (3.42), the probability distribution for the
first neuron firing time through the rate of decrease of the integral in equation (3.39).
This was one of the crucial ingredients in our calculation of the period between two
total firing events. The voltage PDF, pv(x, t), derived in this section describes the
actual distribution of the neuronal voltages complete with the reseting of voltage to
VR upon crossing the threshold, VT , thus it remains normalized to unity for all time.

In the present work, rather than try to solve the difference equation (4.2) directly,
we will follow the procedure in section 3.2.2, when the voltage jumps f and S/N are
small (small-fluctuation regime), and Taylor expand the difference terms in equation
(4.2) to second order. The delta function is treated in the new boundary condition,
as explained below. This leads to the approximate KFE

∂

∂t
pv(x, t) =

∂

∂x

[(

gL(x − VR) − fν − Sm(t)
)

pv(x, t)
]

+
1

2

(

f2ν +
S2m(t)

N

)

∂2

∂x2
pv(x, t),
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which we rewrite in the form

τ
∂

∂t
pv(x, t) =

∂

∂x

[

(

x − µ(t)
)

pv(x, t) + σ2(t)
∂

∂x
pv(x, t)

]

, (4.11)

with the new parameters

τ = 1/gL, µ(t) = VR +
fν + Sm(t)

gL
, σ2(t) =

1

2gL

(

f2ν +
S2m(t)

N

)

. (4.12)

Under the assumption that the average external current fν, the network coupling
coefficient S, and the population-averaged firing rate m(t) all remain O(1), the above
assumption of small jumps implies that σ2(t) ≪ 1 and µ(t) is of O(1). In other words,
we consider equation (4.11), which is of Fokker-Planck type, in the small-fluctuation
regime. We generally also wish to consider the mean input current Sm arriving from
other neurons to be O(1), otherwise the network is operating in an essentially trivial
feedforward mode. This means that the diffusion approximation (4.11) is appropriate
for networks with f small and N large, with fν, m, and S order unity. In particular, a
necessary asymptotic condition is that f ≪ (VT −VR) and S/N ≪ (VT −VR), meaning
that a large number of incoming spikes from either the external input or other neurons
is needed to drive a given neuron from the reset voltage up to threshold.

We remark that a KFE similar to equation (4.11) can also be derived for more
general I&F type systems, for example, those with a finite conductance or current
time course, via kinetic theory [1,5,6,14,21–24,33,36,42,46,57,58,60,61,68,70,72,98].
For conductance-based networks, the equation corresponding to (4.11) is derived via
a closure that eliminates the conductance variables and a subsequent assumption of
infinitely short conductance time-scales [21,22,70].

The conservation form of equation (4.11) is

∂

∂t
pv(x, t) +

∂

∂x
J [pv](x, t) = 0 (4.13)

with the approximate probability flux

J [pv](x, t) = −1

τ

[

(

x − µ(t)
)

pv(x, t) + σ2(t)
∂

∂x
pv(x, t)

]

(4.14)

being the counterpart of the flux (4.4).
The boundary conditions for equation (4.11) are different from those for equation

(4.2). Consider the lower boundary where, previously, a delta function took care
of reset neurons. By integrating across the boundary, this term is replaced by the
flux across the boundary, namely m(t), the rate at which neurons are reset. At the
upper boundary, the boundary condition on the flux remains the same. This gives
the boundary condition

J [pv](VT , t) = J [pv](VR, t) = m(t), (4.15)

which states that the rate at which neurons leave the upper boundary (fire) is the rate
at which they appear at the lower boundary (reset). The absorbing boundary condi-
tion (4.8) is kept for the approximate equation (4.11), as is the normalization (4.10).

For constant Poisson rate, ν, of the external forcing spike train, it is natural to seek
the simplest solution of the approximate KFE (4.11), which is its steady state. In this
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state the firing rate m as well as µ and σ are no longer time dependent. Since the time-
derivative on the left-hand-side of (4.11) (or (4.13)) is absent we can integrate (4.13)
once and use the flux definition (4.14) and the boundary condition (4.15) to find the
equation for the stationary PDF of the voltage, ps(x), which reads

(x − µ)ps(x) + σ2 ∂

∂x
ps(x) = −τm. (4.16)

The solution of equation (4.16) must also satisfy the absorbing boundary condi-
tion (4.8) at the firing threshold VT and the normalization (4.10).

In what is to follow, we will address the solutions of equation (4.16), in particular,
the gain curves depicting the dependence of the steady-state firing rate m on the
external input strength fν, beginning with the zero-fluctuation limit in section 4.3,
exact solution of equation (4.16) in section 4.4, and two asymptotic approximations
in section 4.5.

4.3. Zero-fluctuation limit. Before addressing the exact solution of
equation (4.16), we consider the limit in which the fluctuations in the driving current
go to zero, such that the overall drive strength fν + Sm(t) remains order unity.
In this limit, the coefficient σ2 defined in equation (4.12), which measures the size
of the fluctuation term in equations (4.11) and (4.16), vanishes. The size of the
fluctuations is governed by the size of the terms f2ν and S2m(t)/N in σ2, so the
relevant limit is f → 0, ν → ∞, and N → ∞, while fν + Sm(t) remains order unity.
The average network firing rate is equivalent to the firing rate of the same network
driven by an effective constant external current of strength fν + Sm(t). As we will
see, the gain curve in this limit consists of two segments: a vanishing segment in the
interval 0 < fν < gL(VT −VR), and a mean-driven segment emanating from the point
fν = gL(VT − VR), m = 0. (The term “mean-driven” will be explained below.)

Equation (4.16) in the zero-fluctuation limit loses its derivative term and becomes

ps(x) =
τm

µ − x
. (4.17)

The boundary condition (4.8) must naturally be dropped. If the firing rate m does
not vanish, this solution is non-singular for x ∈ [VR, VT ] only when µ > VT . According
to equation (4.12), this occurs when

fν + Sm > gL(VT − VR), (4.18)

i.e., when the combined external and network spikes drive the voltage of a single
network neuron across threshold on average. The normalization condition (4.10)
applied to the PDF (4.17) yields the equation

1 = mτ ln
µ − VR

µ − VT
= mτ ln

fν + Sm

fν + Sm − gL(VT − VR)
, (4.19)

which is an implicit equation for the firing rate m. Since only the mean of the external
drive, fν, enters this equation, we refer to the regime described by equation (4.19),
in which m > 0, as the mean-driven regime.

Defining the parameter

∆ = gL(VT − VR), (4.20)
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Fig. 4.1. (Left) Gain curves computed via formula (4.21) for left to right: S = 2.0, 1.5, 1.0, 0.5,
and S = 0. The light grey (green online) dashed curve indicates the location of the turning point.
(Right) A representative graph of voltage PDF computed from (4.17) with its location along the gain
curve with S = 0.2 in the inset.

which is the threshold for the external drive strength, we find that equation (4.19)
can be solved exactly in the form

fν =
∆

1 − exp (−1/mτ)
− Sm. (4.21)

A number of representative gain curves, computed from equation (4.21), for dif-
ferent values of the network coupling constant S are displayed in figure 4.1, which also
shows a representative graph of the voltage PDF as computed from formula (4.17).
The gain curves all begin at the point fν = ∆, m = 0, and go backwards in fν along
the unstable stretch of the bistable region. For each value of the network coupling
constant S, the derivative of the corresponding gain curve at this point equals −1/S.
For large values of the firing rate m, each gain curve approaches its straight-line
asymptote given by the equation

m =
fν − ∆/2

τ∆ − S
.

This asymptote has a positive slope if S < τ∆ and negative slope if S > τ∆. If
S = τ∆, the asymptote is the vertical line fν = ∆/2. This shows that, for S < τ∆,
the gain curve exhibits bistability and has a hysteretic regime for fν < ∆, as its
slope turns from negative to positive in a saddle-node bifurcation. For S > τ∆,
the gain curve has a negative slope along its entire length, and intercepts the line
of vanishing firing rate. The curve corresponding to an uncoupled neuron, S = 0,
has no bistability region. With its derivative being infinite at fν = ∆,m = 0, this
gain curve increases monotonically with a monotonically decreasing slope, eventually
approaching the straight line

m =
fν − ∆/2

τ∆
.

Bistability in a similar model was found in [50]. We should also remark that, in
network simulations, downward sloping segments (i.e. with negative derivatives) of
the gain curves are unstable and therefore cannot be directly observed.
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Fig. 4.2. The fν-coordinate, fν, of the gain-curve turning point as a function of the parameter
ratio S/τ where τ = 1/gL.

The external drive strength corresponding to the turning point on the gain curve,
i.e., the saddle node bifurcation, can be determined by finding the minimum of the
expression in equation (4.21). From this equation, it is clear that the fν-coordinate,
fν, of the turning point is only a function of the parameter ratio S/τ . In figure 4.2,
we display the functional dependence of fν on S/τ . The bifurcation curve begins at
the point S/τ = 0, fν = ∆, slopes downwards, and ends at the point fν = ∆/2,
S/τ = ∆.

When the firing rate, m, vanishes, equation (4.17) cannot be used to determine the
voltage PDF. Instead, we study this situation directly using the network (2.1), (2.3).
Replacing the Poisson external drive train in the current (2.3) by the mean current
fν and taking into account that network spikes do not occur, we find that in this case
all the neuronal voltages in the network are driven towards the equilibrium voltage
VR + fν/gL, where, clearly, we must have fν/gL < VT − VR, or else the assumption
m = 0 would be violated. As a consequence, in this subthreshold driving regime, the
steady voltage PDF becomes

ps(x) = δ

(

x − fν

gL

)

. (4.22)

Thus, all gain curves share an additional segment, which is the interval 0 < fν < ∆
with m = 0. As will be seen in sections 4.4 and 4.5.1, this segment is the limiting
case of the fluctuations-driven regime along the gain curve: the firing rate m vanishes
along this segment in the present case because the fluctuations are absent.

The assumption of vanishing fluctuations made in this section gave us an approx-
imate explicit description of the gain curves and voltage PDFs. In the next section,
we will find the exact solution of equation (4.16) for the voltage PDF, and from it
compute a more accurate set of gain curves.

4.4. Exact voltage PDF and gain curves. The above zero-fluctuation limit
does not describe why the network fires when fν + Sm < ∆, i.e., in the fluctuations-
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driven regime. To accurately describe the fluctuations-driven regime dynamics, we ad-
dress the exact solution to the steady-state KFE (4.16) and compute the corresponding
gain curves. Using equation (4.16) and the absorbing boundary condition (4.8), we
find the stationary voltage PDF, ps(x), to be

ps(x) =

√
2mτ

σ
exp

(

− (x − µ)2

2σ2

)∫ (VT −µ)/
√

2σ

(x−µ)/
√

2σ

exp(s2) ds, (4.23)

which agrees with the result of [14]. This PDF can be rewritten as

ps(x) =

√
2mτ

σ

[

exp

(

(VT − µ)2

2σ2

)

D

(

VT − µ√
2σ

)

exp

(

− (x − µ)2

2σ2

)

− D

(

x − µ√
2σ

)]

,

(4.24)
where D(·) denotes the Dawson integral

D(z) = e−z2

∫ z

0

ey2

dy, (4.25)

and µ is defined in (4.12).
To find an equation for the corresponding gain curve, we use the normalization

condition (4.10) and integrate equation (4.24). Defining the parameter

a = fν + Sm, (4.26)

which denotes the average current arriving at a network neuron, and noticing that
equation (4.12) is equivalent to µ = VR +a/gL = VR +τa, we thus obtain the equation
∫ VT

VR

ps(x)dx = mτ

{√
π exp

(

(∆ − a)2

2σ2g2
L

)

D

(

∆ − a√
2σgL

)[

erf

(

∆ − a√
2σgL

)

+erf

(

a√
2σgL

)]

− 2

∫ (∆−a)/
√

2σgL

−a/
√

2σgL

D(s) ds

}

= mτ

{√
π exp

(

(∆ − a)2

2σ2g2
L

)

D

(

∆ − a√
2σgL

)[

erf

(

∆ − a√
2σgL

)

+erf

(

a√
2σgL

)]

− (∆ − a)2

2σ2g2
L

2F2

(

[1, 1],

[

3

2
, 2

]

,− (∆ − a)2

2σ2g2
L

)

+
a2

2σ2g2
L

2F2

(

[1, 1],

[

3

2
, 2

]

,− a2

2σ2g2
L

)}

= 1.

(4.27)
Here, erf(·) denotes the error function, defined in equation (3.21), and we have used
the formula [97]

∫

D(z) dz =
z2

2
2F2

(

[1, 1],

[

3

2
, 2

]

,−z2

)

,

where kFl is the generalized hypergeometric function

kFl ([α1, . . . , αk] , [β1, . . . , βl] , z) =

∞
∑

n=0

(α1)n · · · (αk)n

(β1)n · · · (βl)n

zn

n!
,
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Fig. 4.3. Gain curves for different strengths of fluctuations. Left to right: f = 0.1, N = 10;
f = 0.01, N = 100; f = 0.001, N = 1000; f = 0.0005, N = 2000; f = 0.0002, N = 5000;
no fluctuations. Solid and dashed curves: theory; squares, triangles and circles: measurements
from numerical simulations. For all curves S = 0.2. For the invalid value of f , the diffusion
approximation no longer holds. The insert zooms in around fν = 0.95.

with (γ)j being the Pochhammer symbol defined in equation (3.71). Upon express-
ing the parameters a and σ in terms of the driving strength fν and firing rate m
from equations (4.12), (4.26), and (4.20), formula (4.27) gives an implicit equation
connecting m and fν.

To compute the gain curves in practice, it is more convenient to numerically
compute the root of equation (4.10) after first numerically integrating equation (4.24),
with the parameters µ and σ again expressed in terms of the average external current
fν and firing rate m from equation (4.12). The resulting gain curves are depicted in
figure 4.3 for different values of the external spike strength, f , and correspondingly
large network sizes, N . The gain curves corresponding to small values of f and large
values of N are close to their zero-fluctuation limit counterparts, except that they are
smooth near the point fν = ∆ = gL(VT − VR), m = 0. Thus, they still behave in a
hysteretic, bistable fashion. The gain curves for larger values of f and smaller N lose
their bistable stretches.

Figure 4.3 also shows comparison of the gain curves predicted theoretically with
those obtained from simulations for different strengths of fluctuations. We see that,
indeed, the agreement is excellent for small values of the external spike strength, f ,
and large network sizes, N , i.e., small fluctuations. When the fluctuations increase,
there is a discrepancy, which is the most pronounced in the location of the gain curve
at high values of the external drive: the true gain curve obtained from the simulations
follows closely the zero-fluctuation limiting curve for large fν. This discrepancy is the
result of the failure of the diffusion approximation when the voltage jumps induced
by incoming currents, i.e., the individual voltage fluctuations, are large.

Figure 4.4 shows a comparison of the theoretically-predicted and simulated gain
curves for different values of the network coupling strength, S, in the small-fluctuations
regime. The agreement is excellent, including the existence and endpoints of the
bistability intervals. Note that the two stable simulated gain curve branches have been
obtained by ramping the external drive strength, fν, up and down. The downwards
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Fig. 4.5. Three voltage PDF curves along a gain curve. Solid curves were obtained from
formula (4.24), symbols from numerical simulations. The black curve (blue online) and squares
are in the fluctuations-driven regime, the other two are in the mean-driven regime. The inset plots
the corresponding locations on the gain curve. The parameter values are f = 0.001, S = 0.6, and
N = 100.

sloping middle branch of the gain curve is always unstable and cannot be obtained
directly via numerical simulations.

Finally, figure 4.5 displays three voltage PDFs at various locations along the gain
curve in the limit of small fluctuations. Note that, in the fluctuations-driven regime,
the PDF strongly resembles a Gaussian, while deep into the mean-driven regime, the
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PDF resembles the solution (4.17) displayed in figure 4.1, except for a thin boundary
layer near the firing threshold, VT .

The exact solutions obtained in this section are really only necessary to accurately
describe the transition between the fluctuations-driven regime and the unstable branch
of the mean-driven regime near the corner point, fν = ∆, m = 0, of the zero-
fluctuation gain curve. Along the stable branches of both the fluctuations- and mean-
driven regimes, the expressions for both the voltage PDFs and gain curves will simplify
considerably, as we will see next.

4.5. Asymptotic regimes. The results of section 4.4 are valid for all values
of the external drive fν, in both the fluctuations- and the mean-driven regimes, as
long as the network operates in the small-fluctuations regime, which is equivalent to
σ2/a ≪ 1. In this section we consider approximations of the exact voltage PDF and
gain curves by elementary functions in both the fluctuations-driven regime, 0 < a < ∆,
and the mean-driven regime, a > ∆.

In both regimes, we use the following asymptotic expressions:

D(z) ∼ 1

2z
, |z| ≫ 1, (4.28)

and

erf(z) ∼ sign(z) − 1√
πz

e−z2

, |z| ≫ 1, (4.29)

and thus avoid needing to evaluate either of these two functions directly.
We remark that neither of the two asymptotic approximations of the gain curve

we compute below are valid near the turning point between the lower stable branch
and the unstable branch in the vicinity of the point fν = ∆, m = 0. The exact gain
curve must be used to connect these two approximations there.

4.5.1. Fluctuations-driven regime: 0 < a < ∆. We begin by considering
the limit of the voltage PDF, equation (4.24), in this regime, using equation (4.28).
Clearly for small values of the fluctuation parameter σ the expression in formula (4.24)
is the sum of a Gaussian function with the peak amplitude

∼ mτ

∆ − a
exp

(

(∆ − a)2

2σ2g2
L

)

and a function whose size is at most O(m/σ), since the Dawson integral (4.25) is
known to be a bounded function [2]. After normalizing, the Gaussian thus clearly
dominates over the voltage interval [VR, VT ], therefore

ps(x) ∼ mτ

∆ − a
exp

(

(∆ − a)2

2σ2g2
L

)

exp

(

− (x − µ)2

2σ2

)

∼ 1√
2πσ

exp

(

− (x − µ)2

2σ2

)

,

(4.30)
where the prefactor in the expression on the right follows from the normalization
condition (4.10).

Using equation (4.30), we can now compute the explicit dependence of the firing
rate, m, on the external drive strength, fν, without having to use equation (4.27).
In particular, comparing the two prefactors in (4.30) and using the formula τ = 1/gL

immediately implies that the equation for the gain curve is

m ∼ (∆ − a)gL√
2πσ

exp

(

− (∆ − a)2

2σ2g2
L

)

. (4.31)
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Fig. 4.6. Comparison between the exact voltage PDF in (4.24) (black) and its Gaussian ap-
proximation in (4.30) (grey, green online) near the lower turning point of the gain curve. The two
gain curves are shown in the inset. The parameter values are f = 0.001, S = 0.6, N = 1000, gL = 1.

Here, we must use the self-consistent asymptotic values

a ∼ fν, and 2σ2 ∼ f2ν/gL, (4.32)

which follow from equations (4.26) and (4.12) and the fact that the firing rate, m, is
exponentially small in σ, which makes the dependence of m on fν in equation (4.31)
explicit. This is in agreement with [14].

Figure 4.6 shows the comparison between the exact voltage PDF in (4.24) and its
Gaussian approximation in (4.30) near the very end of the external drive interval in
which formula (4.31) can serve as an approximation to the exact gain curve and for a
small values of f . We can see that the agreement between the Gaussian approximation
and the exact PDF is still quite good.

In the zero-fluctuation limit, σ → 0 or f → 0 and N → ∞, the firing rate in
equation (4.31) tends to zero in the interval 0 < fν < ∆, which reproduces the
straight-line, m = 0, segment of the gain curve discussed in section 4.3. Likewise, the
voltage PDF (4.30) in this limit approaches the delta-function PDF in (4.22).

4.5.2. Mean driven regime: a > ∆. To compute the small-fluctuations
approximation in this regime, we notice that now (VT −µ)2 < (x−µ)2 throughout the
voltage range. Therefore, the first term inside the square brackets in formula (4.24) is
exponentially small compared to the second, except at x = VT . Using the asymptotic
expressions (4.28) and (4.29), we find from equation (4.24) for the voltage PDF, ps(x),
the asymptotic expression

ps(x) ∼ τm

µ − x

[

1 − exp

(

− (a − ∆)(VT − x)

σ2gL

)]

. (4.33)

Here, we have also used the asymptotic estimate

(VT − µ)2 − (x − µ)2 ∼ 2(VT − VR − a/gL)(VT − x) = 2(∆ − a)(VT − x)/gL,
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Fig. 4.7. Comparison between the exact voltage PDF in (4.24) (black) and its mean-driven
approximation in(4.33) (dark grey, red online) near the lower turning point of the gain curve. The
two gain curves are shown in the inset. The parameter values are f = 0.001, S = 0.6 and N = 1000.

which is valid to O((VT − x)2) when x ∼ VT .
Expression (4.33) reduces to the zero-fluctuation expression (4.17) away from the

firing threshold x = VT . The approximate voltage PDF, ps(x) in (4.33), contains an
O(σ2) thin boundary layer near the firing threshold x = VT . This layer ensures that
the boundary condition (4.8) is satisfied.

To find the formula for describing the gain curve, we use the asymptotic expres-
sions (4.28) and (4.29) on the expression in the top two lines of equation (4.27), and
integrate the 1/s term obtained from (4.28). Also using (4.26), we find the asymptotic
equations for the firing rate in terms of the parameters a and σ2 in this regime are

m ∼ 1

τ

[

σ2g2
L

(a − ∆)2
+ ln

a

a − ∆

]−1

(4.34a)

and

fν ∼ a − S

τ

[

σ2g2
L

(a − ∆)2
+ ln

a

a − ∆

]−1

. (4.34b)

At the leading order, which is the same order to which equation (4.33) is valid, a
becomes a parameter in (4.34), and after eliminating it we recover the explicit solution
along the zero-fluctuation limit gain curve, given by equation (4.21).

A comparison between the exact voltage PDF (4.24) and the approximate voltage
PDF (4.33) in the mean-driven regime, when the fluctuations are small, is displayed
in figure 4.7. We see that even near the lower turning point on the gain curve, the
agreement between the two PDFs is excellent.

5. Absence of chaotic dynamics

In this section, we show that the current-based I&F network (2.1), (2.3) coupled
with infinitely-fast delta-impulses cannot exhibit chaotic dynamics. We use Lyapunov
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exponents to show this fact, which, as we should point out, is also true in the analogous
conductance-based I&F network [100].

It is well known that Lyapunov exponents measure the average divergence or
convergence of nearby orbits in an attractor along the transverse directions in the state
space [65, Sec. 3.4.3], [4, Sec. 3.1]. Positive Lyapunov exponents measure the average
exponential spreading of nearby trajectories, and negative exponents measure the
exponential convergence of trajectories onto the attractor. Generically, the attractor
is defined to be chaotic if Lyapunov exponents contain at least one positive exponent,
which is also related to the property of sensitive dependence on initial conditions.
For non-chaotic attractors, such as periodic or quasi-periodic, Lyapunov exponents
contain only vanishing or negative exponents.

For a smooth dynamical system,

dx(t)

dt
= f(x(t)), x(t0) = x0, (5.1)

where f is a continuously differentiable n-dimensional vector field, the time evolution
of a perturbation (or tangent) vector, δx(t), can be represented by the linearization
of equation (5.1) as

δẋ(t) = Df(x(t)) · δx. (5.2)

Here, Df is the Jacobian matrix of the vector field f . The classical largest Lyapunov
exponent is defined as

λmax = lim
T→∞

lim
ǫ→0

1

T
ln

(

∥

∥x(T ) − x̃(T )
∥

∥

ǫ

)

with the initial perturbation satisfying
∥

∥x(t0) − x̃(t0)
∥

∥ = ǫ, and x̃(t) denoting the
perturbed trajectory nearby the reference trajectory x. Although this definition is
constrained to smooth dynamical systems, we have shown that it can be extended to
I&F network dynamics [101].

In what is to follow, we show that the largest Lyapunov exponent of the net-
work (2.1), and (2.3) is negative and in fact approaches negative infinity for any spike
train input. This means that the reference voltage trajectory,

v(t) =
(

v1(t), v2(t), . . . , vN (t)
)

,

and the perturbed voltage trajectory,

ṽ(t) = (ṽ1(t), ṽ2(t), . . . , ṽN (t)) ,

will converge together after a finite time, provided the magnitude of the initial pertur-
bation size, ǫ, is sufficiently small. Given that the perturbed initial condition, ṽ(t0),
of the network (2.1), (2.3), is a distance ǫ away the from the reference trajectory,
v(t0), the dynamics of the perturbed trajectory, ṽ(t0), is described by the equation

dṽi

dt
= −gL(ṽj − VR) + f

∑

l

δ(t − sil) +
S

N

∑

j 6=i

∑

k

δ(t − τ̃jk) (5.3)

where τ̃jk is the kth spike of the jth neuron along ṽ(t0). The spike times sil of any
(not necessarily Poisson) feedforward input to the ith neuron are the same as those
along the unperturbed reference trajectory, v(t).
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First, we show that the spikes of the reference trajectory, v(t), and the corre-
sponding spikes of the perturbed trajectory, ṽ(t), remain O(ǫ)-apart for any fixed
finite time T as long as ǫ is sufficiently small, and both the network and feedforward
strengths, S and f , are finite. Next, we can sort the spike times of both the reference
and perturbed trajectories into increasing lists as τp1q1

≤ τp2q2
≤ · · · ≤ τpM qM

and
τ̃p1,q1

≤ τ̃p2q2
≤ · · · ≤ τ̃pM qM

. Notice that a neuron may fire at exactly the same time
as another neuron (say, pth

k neuron and pth
l neuron), thus we have τpkqk

= τplql
. We

sort such a case according to the label of the neuron, meaning pk < pl in the list if
τpkqk

= τplql
. Therefore the above ordered sequences are unique for each trial.

We now use mathematical induction to prove that the spike times of the reference
and perturbed trajectories are exactly the same, namely,

τ̃pmqm
= τpmqm

for any m. (5.4)

In particular, from the dynamics of equations (2.1), (2.3), and (5.3), we can see that
the voltage of both the reference and the perturbed trajectories of any neuron will
cross the threshold voltage, VT only when receiving spikes either from the feedforward
or network input. Otherwise it will always approach the reset value, VR, which is lower
than the threshold, VT . First, we consider the case m = 1. Since this is the first firing
event, both τp1q1

and τ̃p1q1
should be equal to some feedforward input spike time sjk.

Because the reference and perturbed trajectories receive the same feedforward input,
for a sufficiently small difference size, ǫ, we must have τ̃p1q1

= τp1q1
.

Next, suppose we have τ̃pmqm
= τpmqm

, and we want to show that τ̃pm+1qm+1
=

τpm+1qm+1
. If the spike of the pth

m+1 neuron is caused by the network input (i.e., the
spike of the pth

m neuron), we must have τpm+1qm+1
= τpmqm

and also τ̃pm+1qm+1
= τ̃pmqm

for sufficiently small ǫ. Therefore we obtain τ̃pm+1qm+1
= τpm+1qm+1

. If the spike of the
pth

m+1 neuron is caused by the feedforward input, we still have τ̃pm+1,qm+1
= τpm+1,qm+1

since the reference and perturbed trajectories receive the same feedforward input.
Therefore, equation (5.4) always holds, and we obtain that τjk = τ̃jk in equations
(2.1), (2.3), and (5.3).

As a result of the discussion in the preceding paragraphs, we conclude that the
time evolution of the perturbation, δv(t) = ṽ(t) − v(t), can be obtained from the
system of equations

d

dt
δvi(t) = −gLδvi(t). (5.5)

It is now easy to see that the largest Lyapunov exponent is always negative in equation
(5.5).

Incidentally, the largest Lyapunov exponent approaches negative infinity because
the voltage of both the reference and perturbed trajectories of any neuron (say jth

neuron) will be reset to VR after its firing and will no longer separate from one-another.
Therefore, the difference of the reference and perturbed trajectories of the jth neuron
will converge together after its first firing event.

6. Discussion and conclusions

Oscillations in neuronal networks present a vast subject of intense current re-
search, both theoretical and experimental [8, 9, 18, 19, 28, 30, 31, 34, 38, 48, 64, 76, 79,
80,85,89,90]. They represent a number of fundamental rhythms in the brains of ver-
tebrates [45, 51, 89] and insects [45, 66]. These rhythms are conjectured to function
as “clocks” and means of information encoding for various brain areas, yet, it is not
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completely clear whether this is indeed the case or whether they are mere epiphe-
nomenon [80]. Clearly, this paper cannot even begin to address the form or function
of all types of neuronal network oscillations, or analyze all possible mechanisms that
may cause them.

Instead, we have focused on the oscillation mechanism in the oldest and most
basic version of a neuronal network model, the all-excitatory, current-based, all-to-all
coupled, I&F network, with instantaneous injected currents. We found robust os-
cillations even in the case when each neuron in the network is driven by a random
Poisson-distributed train of external spikes. While the mechanism that sustains the
oscillations is clearly identified, even in this simplest model the mathematical solu-
tions describing it are only approximate. These approximations include the diffusion
approximation in the KFE in section 3.2.2, the cascade-susceptibility condition in
section 3.1.3, the assumption that no neuronal voltage reenters the interval [VR, VT ]
before all the neurons have fired in section 3.1.2, the Gaussian form of the voltage
PDF in section 3.1.1, and the Poisson nature of the train of the network spikes in
section 4. These approximations apply to both the oscillatory and steady solutions.
More accurate solutions are not currently available, with the exception of the sta-
tionary voltage PDF, which was found for the differential-difference KFE in [82] for a
single (i.e. uncoupled) neuron. Nevertheless, comparison with numerical simulations
shows that the approximations we made are very accurate and we still capture many
phenomena of the network dynamics.

We emphasize that the main characteristic of the oscillations, their period, is
always determined by fluctuations of the voltage and much less by its mean, which
are determined by the respective variance and mean of the external driving force, as
discussed in section 3. The voltage PDF mean does enter the description in that it
is driven towards a value past the firing threshold in the superthreshold and a value
below it in the subthreshold driving regime, which both increases the importance of
the fluctuations in the latter regime and prompts the use of different mathematical
techniques in the two regimes. Yet, in both cases it is the first neuronal voltage to
reach threshold that triggers a total firing event. This is in strong contrast to the
asynchronous dynamics. There, for the stationary solution deep into the mean-driven
regime, the mean external driving force clearly determines the firing rate and its
fluctuations have no influence, as discussed in section 4.4.

Finally, our proof in section 5 that chaotic dynamics are absent from the type of
networks investigated in this paper points to the regular nature of the attractors that
such networks possess. Our numerical computations show many regimes in which
near-synchronized oscillations take place in addition to the regimes supporting syn-
chronization via total firing events. This poses the broad question of what precisely
is the attractor of an I&F nework, and what bifurcations it undergoes as the net-
work parameters change. In particular, on the one hand, chaos is absent even from
conductance-based I&F networks as long as their conductances act instantaneously or
else on very short time scales, yet it is present in such systems in moderate network
coupling regimes if the conductance time scale is sufficiently long. Presenting a co-
herent picture of the attractors for I&F networks thus clearly furnishes a challenging
theoretical problem that we intend to explore in the future.

Appendix A. Associated stationary distribution. We note that the problem
of interest, equation (3.53) with boundary conditions (3.56), does not have a nontrivial
stationary distribution. The stationary distribution for the same partial differential
equation with reflecting boundary conditions (zero flux) at both ends of the domain
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[VR, VT ] is found by integrating

0 =
d

dx

[

(gL(x − VR) − fν)ps(x)
]

+
f2ν

2

d2

dx2
ps(x) (A.1)

once, which results in

c =
(

gL(x − VR) − fν
)

ps(x) +
f2ν

2

d

dx
ps(x). (A.2)

For the reflecting boundary conditions, the constant, c, must be zero. Integrating
once more we obtain the stationary distribution,

ps(x) = N exp

(

− (gL(x − VR) − fν)2

f2νgL

)

, (A.3)

where the constant N would normally be chosen so that ps(x) integrates to one over
the domain. However, our use of the stationary distribution to transform the equations
for the eigenfunctions, Pn(x), does not rely on it being properly normalized, so we
choose N = 1 for simplicity. If we shift and rescale the variable x so that

z =
gL(x − VR) − fν

f
√

gLν
, (A.4)

the stationary distribution has the compact form

p̃s(z) = Ñ e−z2

. (A.5)

In terms of the variable z, the system is driven to z = 0 by the average drift, and x
is essentially rescaled by the standard deviation.

Appendix B. Simultaneous solution of KFE and KBE. Here we show
how to simultaneously find the solution of the KFE (3.53) with the boundary condi-
tions (3.56) and the corresponding KBE

∂

∂t
q(x, t) = [−gL(x − VR) + fν]

∂

∂x
q(x, t) +

f2ν

2

∂2

∂x2
q(x, t), (B.1a)

with the adjoint boundary conditions

∂

∂x
q(x, t)

∣

∣

∣

∣

x=VR

= 0 (B.1b)

and

q(VT , t) = 0. (B.1c)

In particular, the solution pv(x, t), can be written in terms of the solution q(x, t) to
the KBE problem (B.1) as [35, Sec. 5.2.5],

pv(x, t) = ps(x)q(x, t), (B.2)

where ps(x) is the stationary solution to the KFE (3.53) with reflecting boundary
conditions

J [ps](VR) = J [ps](VT ) = 0. (B.3)
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The stationary distribution, equation (A.3), is derived in appendix A.
This result is especially useful because it implies that only one set of eigenfunctions

from the two eigenvalue problems, (3.59) and (3.63), is needed to form the solution
to (3.53). Also, it suggests an equivalent self adjoint form which will be derived
later. Due to its importance, we show this result in a slightly more general form. In
particular, we consider a general KFE of the form

∂

∂t
p(x, t) = − ∂

∂x

(

A(x)p(x, t)
)

+ B
∂2

∂x2
p(x, t), (B.4)

and corresponding equation for the steady state probability density function

0 = − d

dx

(

A(x)ps(x)
)

+ B
d2

dx2
ps(x), (B.5)

where A(x) is an arbitrary smooth function of x and B is a constant. Equation (B.5)
can be integrated once, and with reflecting boundary conditions (zero flux for only

the steady state solution) simplifies to

0 = −A(x)ps(x) + B
d

dx
ps(x). (B.6)

We now take the ansatz ps(x)q(x, t) and insert it into equation (B.4) for p(x, t)
to obtain an equation for q(x, t), which reads

ps
∂

∂t
q = −Aps

∂

∂x
q − q

∂

∂x
(Aps) + B

(

ps
∂2

∂x2
q + 2

∂

∂x
ps

∂

∂x
q + q

∂2

∂x2
ps

)

= q

[

− ∂

∂x
(Aps) + B

∂2

∂x2
ps

]

− Aps
∂

∂x
q + B

(

ps
∂2

∂x2
q + 2

∂

∂x
ps

∂

∂x
q

)

(B.7)

where the explicit dependence on x and t has been suppressed. The expression on the
last line in brackets vanishes because of equation (B.6), which also makes it possible
to replace the last term by 2Aps∂q/∂x. After canceling the factor ps, which does not
vanish, we find for the function q(x, t) the equation

∂

∂t
q(x, t) = A(x)

∂

∂x
q(x, t) + B

∂2

∂x2
q(x, t), (B.8)

which is exactly the KBE (adjoint operator) for the given KFE. We note that no
assumptions on the boundary condition of pv(x, t) nor q(x, t) have been made, only
that ps(x) has reflecting boundary conditions.

The requirements of the boundary conditions come into play in the orthogonal-
ity of the eigenfunctions. At this point, let us investigate the case when pv(x, t) =
Pn(x)e−λnt and q(x, t) = Qm(x)e−µmt, where Pn(x) and Qm(x) solve their corre-
sponding eigenvalue problems. Consider the inner product of the two eigenfunctions,

(µm − λn)

∫ b

a

Pn(x)Qm(x)dx =

∫ b

a

− d

dx
(APn) Qm − APn

d

dx
Qm

+ B

[

Qm
d2

dx2
Pn − Pn

d2

dx2
Qm

]

dx.

(B.9)

Integrating by parts, and simplifying, we obtain the following conditions:

[

− APn + B
d

dx
Pn

]

x=VR

Qm(VR) − BPn(VR)
d

dx
Qm

∣

∣

∣

x=VR

= 0 (B.10)
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and

[

− AQm − B
d

dx
Qm

]

x=VT

Pn(VT ) + B
d

dx
Pn

∣

∣

∣

x=VT

Qm(VT ) = 0. (B.11)

In equation (B.10), the probability flux generated by Pn(x) vanishes at VR by as-
sumption, thus for this equation to be satisfied the requirement on Qm(x) is

d

dx
Qm(x)

∣

∣

∣

x=VR

= 0. (B.12)

In equation (B.11), the function Pn(x) vanishes at VT , which we assumed for our KFE
eigenvalue problem (3.59) thus for this equation to be satisfied the requirement on
the eigenfunction Qm(x) is

Qm(VT ) = 0. (B.13)

These are precisely the boundary conditions (3.63b) and (3.63c). Thus, the problem
is reduced to finding the stationary solution ps(x) and and the eigenfunctions Qm(x).

The solution to the KFE (3.53) with boundary conditions (3.56) can now be
written in the form pv(x, t) = ps(x)q(x, t), where q(x, t) is the solution of the KBE
with the corresponding boundary conditions, (B.1). This suggests that there exists
a self-adjoint operator for which w(x, t) = pv(x, t)ps(x)−1/2 = q(x, t)ps(x)1/2 is the
solution. To find this operator we follow the standard symmetrization procedure for
stochastic systems with detailed balance [40, Sec. 4.7]. We begin by substituting
pv(x, t) = ps(x)1/2w(x, t) into equation (3.53). Using the non-normalized stationary
distribution from equation (3.61), the resulting equation for w(x, t) is

∂

∂t
w(x, t) =

f2ν

2

∂2

∂x2
w(x, t) +

gL

2






1 −

(

gL(x − VR) − fν
)2

f2gLν






w(x, t). (B.14)

This equation is self adjoint, with a compact evolution operator, therefore the eigen-
functions of both this and the original problem form an orthonormal complete set with
the same spectrum of eigenvalues. This symmetrization procedure works broadly for
Markov processes with detailed balance [40, Sec. 4.7].
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Appendix C. Computational details of obtaining the solution. In this
section the solutions to various numerical difficulties encountered while evaluating the
solution to the KFE (3.53) are presented. First we discuss why different sets of basis
functions are useful for computing at different stages of the solution process. The
next discussion is related to the numerical evaluation of the confluent hypergeometric
function. Last, a different form for the flux at the boundary is presented in terms of
the series expansion, equation (3.62).

C.1. Choice of basis functions. The solution to equation (3.69) can be
written in various forms. Any two linearly independent forms could be taken as the
basis for the solution. Various difficulties are encountered depending on the choice.

The solutions 1F1(a, b, ζ) and ζ1−b
1F1(a+1− b, b+1, ζ) both grow exponentially

for large ζ and negative a. Recalling that the left boundary in the physical variable
x is a large positive number in the transformed variable ζ, in order to satisfy the
left boundary condition (zero derivative) the linear combination must cancel this
exponential growth. Numerically this is difficult to compute accurately, so selecting a
basis where one function does not contain exponential growth is better. This function
is U(a, b, ζ), which grows like ζ−a for large ζ (recall that for our purposes a < 0). The
basis 1F1(a, b, ζ) and U(a, b, ζ) is used for |a| < 52; the large (negative) a asymptotics
for the basis 1F1(a, b, ζ) and ζ1−b

1F1(a+1−b, b+1, ζ) are better suited for numerical
evaluation.

The basis of 1F1(a, b, ζ) and U(a, b, ζ) is not a good choice in evaluating the
determinant and finding eigenvalues. There are many zeros to the resulting equation
which do not correspond to eigenvalues of the problem. These extraneous zeros lead to
“eigenfunctions” which do not satisfy the required boundary and matching conditions.
Therefore, it is better to use the basis 1F1(a, b, ζ) and ζ1−b

1F1(a + 1 − b, b + 1, ζ) in
order to determine the eigenvalues. This basis causes the determinant equation to have
vertical asymptotes with one eigenvalue between each consecutive set of asymptotes.
The basis of 1F1(a, b, ζ) and U(a, b, ζ) also has asymptotes, but may have one or more
crossings between consecutive sets of asymptotes, none of which are guaranteed to be
eigenvalues.

C.2. Asymptotic forms and recursion relations of 1F1. For many values
of a and x the infinite series representation of 1F1, equation (3.70), is either slow to
converge or introduces dynamic range error. Often this occurs for large values of a
and x, where asymptotic relations are available for computational use instead. When
evaluating between two asymptotic regions, recursion relations are used to move the
parameters of 1F1 into the asymptotic region. Various asymptotics and recursion
relations which are used to compute 1F1 are given.

When only x is large and a and b are fixed, the confluent hypergeometric function
can be approximated by a truncated series given in [2]. For real x, this series is

1F1(a, b, x)

Γ(b)
=

exxa−b

Γ(a)

[

S−1
∑

n=0

(b − a)n(1 − a)n

n!
x−n + O(|x|−S)

]

. (C.1)

A finite number of terms are used such that the relative error of the function is
less then O(10−10). For large eigenvalues, the confluent hypergeometric function
is evaluated at large negative values of a. For these large real values of a and x,
asymptotic approximations [83, Sec. 4.5] are used for the confluent hypergeometric
function, 1F1(a, b, x). These asymptotics are valid inside wedges in the x − k plane,
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Fig. C.1. Regions in the k−x plane where the asymptotic expansions of 1F1 are valid. Between
regions of validity, recursion relation (C.2) is used to move evaluation in the direction indicated.
Within each region, the corresponding equations are: A1 - equation (C.3), A2 - equation (C.4) and
A3 - equation (C.11)

.

where k = b/2 − a, depicted in figure C.1. As the wedges do not overlap, in between
each region the recurrence relation [2]

(b − a)1F1(a − 1, b, x) + (2a − b + x)1F1(a, b, x) − a1F1(a + 1, b, x) = 0 (C.2)

is used to send the evaluation of the function to smaller values of a. Wedges are se-
lected so that the resulting function evaluation formed a close match to Mathematica’s
Hypergeometric1F1 function. We proceed to define the wedges and the asymptotic
form within each wedge.

The first wedge is defined for x ≥ (1+η)4k. We define
√

x/4k = cosh θ and write
the asymptotic form of the confluent hypergeometric functions as [83, Sec. 4.5]

1F1(a, b, x) = Γ(b) sin aπ exp

[

2k(
1

2
sinh 2θ − θ + cosh2 θ)

]

× (2k cosh θ)1−b

√
πk sinh 2θ

(1 + O(k−1)). (C.3)

For the next wedge, 4k ≈ x, we specify the region where this approximation is
valid by first defining t in terms of x by

x = 4k − 2

(

2k

3

)1/3

t.

The wedge includes x and k such that −1.5 ≤ t ≤ 0.8. For the asymptotics, we define
α = (5b−2)/10, β = Γ(1/3)/2Γ(2/3) and t′ = −3−1/3t. The confluent hypergeometric
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function is then written in the form [83, Sec. 4.5.1]

e−x/2

Γ(b)
1F1(a, b, x) = γ1

[

Ai(t′) + 3−1/3

(

t2

5
Ai′(t′) + α(t − β)Ai(t′)

+αβ3−1/2 Bi(t′)
)

(2k)−2/3 + O(k−4/3)
]

+γ2

[

Bi(t′) + 3−1/3

(

t2

5
Bi′(t′) + α(t + β) Bi(t′)

−αβ3−1/2 Ai(t′)
)

(2k)−2/3 + O(k−4/3)
]

, (C.4)

where the coefficients are given by

γ1 =
1

31/3(2k)b−2/3

[

31/3 cos aπ + 2αβ
sin(aπ + π/6)

(2k)2/3
+ O(k−4/3)

]

(C.5)

and

γ2 =
1

31/3(2k)b−2/3

[

31/3 sin aπ − 2αβ
sin(aπ + π/6)

31/2(2k)2/3
+ O(k−4/3)

]

. (C.6)

The functions Ai(x) and Bi(x) are the Airy functions [2], which are linearly indepen-
dent solutions to the differential equation

d2

dx2
w(x) − xw(x) = 0. (C.7)

The Airy functions can be written in terms of two other functions, f(x) and g(x), as

Ai(x) = c1f(x) − c2g(x) and Bi(x) =
√

3(c1f(x) + c2g(x)) (C.8)

where

f(x) =

∞
∑

k=0

3k

(

1

3

)

k

z3k

(3k)!
and g(x) =

∞
∑

k=0

3k

(

2

3

)

k

z3k+1

(3k + 1)!
(C.9)

with

c1 = Ai(0) =
3−2/3

Γ(2/3)
and c2 = −Ai′(0) =

3−1/3

Γ(1/3)
. (C.10)

The last wedge is given by1, 4ηk ≤ x ≤ (1 − η)4k. Defining

cos θ =

√

x

4k
and Θ = k(2θ − sin 2θ) + π/4,

the asymptotics are [83, Sec. 4.5.2]

1F1(a, b, x)

Γ(b)
=

exp(2k cos2 θ)(2k cos θ)1−b

(πk sin 2θ)1/2

×
{

sin(Θ + aπ) − A1(θ)
cos(Θ + aπ)

k sin 2θ
+ O(k−2)

} (C.11)

1missing 4 in [83], ηk replaced by 4ηk
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where

A1(θ) =
1

12

{

5

4 sin2 θ
+ (3b2 − 6b + 2) sin2 θ − 1

}

.

For small eigenvalues (λn ≪ 1), the confluent hypergeometric function is evalu-
ated at small negative values of a. In this region, when x is also small to moderate
size, the series representation is slow to converge. For this reason, the recurrence
relation (C.2) is used to send evaluation to larger values of a.

C.3. Numerical evaluation of the flux at the boundary. In order to
obtain the PDF of the first exit time, equation (3.44), the voltage probability flux
at the upper boundary, VT , is required. To avoid the error in numerically evaluating
derivatives, we differentiate the terms in the sum analytically. Also, evaluating 1 −
FT (t) is numerically easier than evaluating FT (t), the CDF of the first exit time, T .

First we consider the form of the series expansion which will be easiest to evaluate
numerically. Returning to the expression for the PDF of the exit time for a single
neuron, equation (3.44):

pT (t) = J [pv](VT , t), (C.12)

we write this in terms of the series expansion, equation (3.62), as

pT (t) = −
∞
∑

n=0

An

[

f2ν

2

d

dx
(ps(x)Qn(x))

∣

∣

∣

∣

x=VT

+(gL(VT − VR) − fν)ps(VT )Qn(VT )
]

e−λnt. (C.13)

We denote this by

pT (t) =

∞
∑

n=0

AnJn(VT )e−λnt, (C.14)

where both An and Jn(VT ) are constants which do not depend on t. The CDF can
then be computed by integrating the PDF from 0 to t. Numerically, this is not in a
good form to evaluate, as the infinite series decays slowly, requiring many terms to
be included for an accurate evaluation. If instead, equation (C.14) is integrated from
t to infinity, we obtain

1 − FT (t) =

∫ ∞

t

pT (t′)dt′ =
∞
∑

n=0

An

λn
Jn(VT )e−λnt, (C.15)

which requires inclusion of fewer terms for the same numerical accuracy.
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