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DIFFUSION LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK
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Abstract. We study the diffusion limit of the Vlasov-Poisson-Fokker-Planck System. Here, we
generalize the local in time results and the two dimensional results of Poupaud-Soler [F. Poupaud
and J. Soler, Math. Models Methods Appl. Sci., 10(7), 1027-1045, 2000] and Goudon [T. Goudon,
Math. Models Methods Appl. Sci., 15(5), 737-752, 2005] to the case of several space dimensions.
Renormalization techniques, the method of moments and a velocity averaging lemma are used to
prove the convergence of free energy solutions (renormalized solutions) to the Vlasov-Poisson-Fokker-
Planck system towards a global weak solution of the Drift-Diffusion-Poisson model.
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1. Introduction

In this paper, we study the diffusion limit of the Vlasov-Poisson-Fokker-Planck
system (VPFP for short). This generalizes the study done in Poupaud-Soler [30] and
in Goudon [17] where the same problem was treated in the two-dimensional case. In
these works the authors proved the convergence of regular enough solutions to the
VPFP system towards a solution to the Drift-Diffusion-Poisson model, which is a
standard model for plasmas and very well suited for numerical computations. In [30]
Poupaud and Soler established convergence on a small enough time interval in 2 and
3 dimensions, under a suitable regularity assumption on the initial data. Here, we
wish to prove a global convergence result, without any restriction on the time interval
or on the dimension.

We consider the following rescaled VPFP system on R
d×R

d where d≥2,











∂tf
ε +

1

ε
v ·∇xf

ε− 1

ε
∇xφ

ε ·∇vf
ε =

LFP (fε)

ε2
,

LFP (f)=∇v ·(βvf+σ∇vf),
−△φε =ρε−p(x),

(1.1)

where ε is a small parameter related to the mean free path, fε(t,x,v)≥0 denotes the
scalar distribution of particles, ρǫ =

∫

Rd fǫdv is the density of electrons, and p(x) is the
density of a background of positive charges which is assumed to be fixed. Here σ>0
is the thermal diffusion coefficient and β>0 is the friction coefficient. For simplicity,
we take σ=β=1. The time variable t is nonnegative, the position x belongs to R

d

and the velocity v belongs to R
d (see [9] for a derivation of the model and its scaling).

The VPFP is one of the fundamental systems used in plasma physics. It models
the evolution of the distribution function f(t,x,v) of electrons which are subject to
the electrostatic force coming from their Coulomb interaction and to a Brownian
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force which models their collisions. The electrostatic force is responsible for the self-
consistent force term ∇xφ

ε ·∇vf
ε where φε solves the Poisson equation. The Brownian

force is modeled by the Fokker-Planck term LFP (fε). We point out that there are
other ways of modeling the collisions, for instance by a Boltzmann kernel (see [24] for
some related results about the diffusion limit.)

We also point out that there is an attractive VPFP which is also widely used
in stellar physics. For that case the repulsive electrostatic force is replaced by the
attractive gravitational force, which is responsible for a change of sign in the Poisson
equation. In this paper, we only consider the repulsive case.

There are many works dealing with the existence and uniqueness of solutions to
the VPFP system as well as to systems close to it such as the Vlasov-Poisson system
(VP). As we are only interested in VPFP, we will not detail results about VP. Global
existence results for VPFP were obtained by Neunzert, Pulvirenti and Triolo [25]
in 2D using some probabilistic methods. This result was also obtained by Degond
[11] using deterministic arguments, when β=0. Degond also studied the convergence
of solutions to VPFP towards a solution to VP when the diffusion σ goes to zero.
Classical solutions were also constructed by Victory and O’Dwyer [36] in 2D and
by Rein and Weckler [33] globally for small data (or for nearly neutral data) in 3D.
Existence and uniqueness of global smooth solutions to VPFP in 3D is due to Bouchut
[5]. These solutions are such that the initial data f0 satisfies f0∈L1∩L∞(R6) and
|v|mf0∈L1(R6) and the solution (f,E=∇φ) satisfies that f ∈C([0,T );L1(R6)) and
E∈L∞((0,T )×R

6) for all T >0. The proof was inspired by the result of Lions and
Perthame concerning VP [22] where global existence and uniqueness of solution were
proved for VP (see also Pfaffelmoser [28] for a different proof and the simplifications
in Schaeffer [34] and Horst [19]). Also, in [27], optimal time decay of the solution was
obtained.

Parallel to the results about classical solutions, there are many papers dealing
with weak solutions. We can mention for instance DiPerna-Lions [12, 13] where similar
systems were considered, namely Vlasov-Poisson type systems and Boltzmann-Fokker-
Planck. The two main ideas of DiPerna-Lions are the use of the averaging lemma to
gain some compactness on v averages of f and the use of renormalization techniques
to give sense to terms which are otherwise not well defined in the distribution sense.
Let us also mention the work of Victory [35], Carrillo and Soler [8], and Bouchut
[6] where some smoothing effect was also observed. There are also results about the
global existence of solutions with measures as initial data in 1D due to Zheng and
Majda [37] (see also [23]). These solutions have some similarity with vortex sheet
initial data for 2D Euler.

In this paper, we will deal with renormalized solutions as constructed by DiPerna
and Lions [12], which we also call free energy solutions. The terminology was for
instance used by Bouchut and Dolbeault [15, 7]. We insist on the fact that we only
assume that the initial data has a finite free energy (see the definition below). It is
important to insist on the fact that for more regular initial data (or more precisely for
initial data such that f0 is also in L∞), one can define the solution in the weak sense
without the need of renormalizing it since the product f E fully makes sense. In that
case, the solutions we are considering are even unique if for instance f0∈L1∩L∞(R6)
and |v|mf0∈L1(R6). However, even in this case one has to use renormalization tech-
niques to pass to the limit since we can only use bounds which are uniform in ǫ to
pass to the limit, and it seems to us that the free energy is the only quantity which
is uniformly bounded. Notice that due to the friction term, one cannot use the maxi-
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mum principle to deduce that the L∞ norm of f is uniformly bounded. It seems to us
a nice open question to see whether one can obtain bounds for f in L∞, for instance,
which are uniform in ǫ using the representation formula given by Bouchut [5, 6]. An-
other way of approaching the problem is to use the result of Pulvirenti and Simeoni
[31], which uses a stochastic differential extension of the notion of characteristics used
in the work of Pfaffelmoser [28]. It gives an L∞ estimate on the density ρ=

∫

fdv

which is uniform in σ and β, if they are smaller than some σ0 and β0 and the data
is compactly supported in v. Here, we are actually in the case where both σ and β

go to infinity. In any case, we did not pursue this direction since it was not necessary
for our problem, and the notion of free energy (or renormalized) solutions seems very
natural for this problem.

Concerning the asymptotic behavior of the solutions, we mention for instance [7,
9, 3] where the long time behavior is studied. Here we are interested in hydrodynamic
limits. There are two very important scalings of the VPFP (see [30]). The first one is
called the low field limit (or the drift-diffusion limit, or the parabolic limit). This is
actually the case we consider in this paper. There are many results about this limit.
We refer to Poupaud [29] for the case of semi-conductor Boltzmann, and to Poupaud
and Soler [30] and Goudon [17] for the case of VPFP. In these two works only the
2D case was considered (or the 3D case locally in time). One of the difficulties to
extend their result to higher dimensions was that the term fE can not be uniformly
bounded. Here, the main idea to extend the result to higher dimensions is the use of
renormalization techniques and averaging lemma in addition to estimates coming from
the entropy dissipation. There are also many works dealing with the second scaling,
namely the high field limit (or the drift limit, or the hyperbolic limit) [26, 1, 4, 18].
The high field limit leads to a hyperbolic system.

2. Main result

2.1. Free energy. As discussed in the introduction, we will work with solu-
tions to the VPFP system which are defined in the renormalized sense. Before stating
our main result about the VPFP system, let us mention that Drift-Diffusion-Poisson
model can also be derived from other singular limits. We refer for instance to [24]
where the Drift-Diffusion-Poisson model is derived from a semiconductor Boltzmann-
Poisson system and where the notion of free energy solutions was also used.

We supplement the VPFP system (1.1) with an initial data which is assumed to
be known and depend on the mean free path ε:

fε(t=0,x,v)=fε
0 (x,v). (2.1)

Remarking that the Fokker-Planck operator can be rewritten as follows

LFP (f)=∇v ·(e−
|v|2

2 ∇v(fe
|v|2

2 )), (2.2)

we can guess on formal grounds that the penalization ε→0 leads to

fε(t,x,v)≃ρ(t,x)M(v), (2.3)

where M is the normalized Maxwellian with zero mean velocity:

M(v)=
e−

|v|2

2

(2π)
d
2

. (2.4)
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Let us also define the charge and current densities associated to the distribution
fε

ρε(t,x)=

∫

Rd

fε(t,x,v)dv, Jε(t,x)=
1

ε

∫

Rd

vfε(t,x,v)dv.

In the case where we take the background of positive charges p(x)≡0, the free energy
functional is defined by

Eε(t)=

∫

Rd

∫

Rd

fε

( |v|2
2

+
φǫ

2
+log(fε)

)

dvdx. (2.5)

We recall here that φǫ is given by

φǫ =Φ∗ρǫ =

∫

Φ(x−y)ρǫ(y)dy,

where Φ is the fundamental solution of the Laplace equation, namely −∆φ= δ0. It is
given by

Φ(x)=

{− 1
2π

log |x| d=2
1

d(d−2)ωd

1
|x|d−2 d≥3,

(2.6)

where ωd denotes the volume of the unit ball in R
d. In particular in the case where

d=3, Φ(x)= 1
4π

1
|x| .

Notice that one can also write
∫

Rd

∫

Rd

fεφ
ǫ

2
=

1

2

∫

Rd

ρǫφǫ =−1

2

∫

Rd

φǫ∆φǫ.

We are then tempted to integrate by parts and write it as 1
2

∫

Rd |∇φǫ|2. This is actually
justified if d≥3. However, when d=2 this is in general wrong since ∇φǫ is only in
L2,∞ due to the fact that ∇Φ=− 1

2π
x

|x|2 and hence only decays like 1
|x| when d=2.

When p(x)≡0 in the system (1.1), only the self consistent interaction of the
electrons with themselves is taken into account. If one takes also into account their
interaction with a fixed background of positive charges then the Poisson equation
−∆φǫ =ρǫ has to be replaced by −∆φǫ =ρǫ−p(x). If we also make the global neu-
trality assumption, namely

∫

Rd

p(x)=

∫

Rd

∫

Rd

f(x,v), (2.7)

then the potential energy term can be written as

1

2

∫

Rd

(ρǫ−p(x))φǫ =−1

2

∫

Rd

∆φǫφǫ =
1

2

∫

Rd

|∇φǫ|2 (2.8)

and this now holds in any dimension d≥2 since now ∇φǫ has a better decay when x
goes to infinity.

In the following we will always make the global neutrality assumption (2.7) and
hence the free energy will be given by
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Eε(t)=
1

2
‖∇xφ

ε‖2
L2(Rd) +

∫

Rd

∫

Rd

fε

( |v|2
2

+log(fε)

)

dvdx. (2.9)

From mathematical point of view, this slightly simplifies the proof of a priori
estimates in dimension d=2 since we do not have to bound the potential energy from
below. In the case p=0 and d=2, we refer to [17] where a bound from below on the
potential energy is given using the fact that |x|ρǫ is also controlled in L1.

2.2. Statement of the main result

We will assume that the sequence of initial data satisfies:

A1 : fε
0 ≥0,

∫

Rd

∫

Rd

fε
0 (1+ |x|+ |v|2

2
+ |log(fε

0 )|)dvdx<C,

for some constant C>0 independent of ε.

A2 :
∫

Rd

∫

Rd f
ε
0dvdx=

∫

Rd p(x)dx and ∇xφ
ε
0 is uniformly bounded in L2(Rd)

where φε
0 =Φ∗(ρε

0−p).
The main result of the paper is the following

Theorem 2.1. Assume that assumptions A1 and A2 are satisfied. Let (fε,φε) be
a free energy, renormalized solution (see the definition below) of the VPFP system
(1.1)–(2.1). Then,

fε →ρM(v)∈L1(0,T ; L1(Rd×R
d)),

φε →φ∈L2(0,T ;W 1,p
loc (Rd)); ∀p<2.

In particular, ρε converges weakly in L1(0,T ; L1(Rd)) towards ρ and (ρ,φ) is a
weak solution of the Drift-Diffusion-Poisson system



















∂tρ+∇x ·J =0,
J =−∇xρ−ρ∇xφ,

−△xφ=ρ(x)−p(x),
ρ(t=0,x)=ρ0(x)=

∫

Rd

f0(x,v)dv,

(2.10)

where f0 is the weak limit of fε
0 . Moreover, (ρ,φ) satisfies the free energy bound

∫

Rd

ρlogρ+
1

2
|∇φ|2(t)+

∫ t

0

∫

Rd

ρ|∇(logρ+φ)|2≤C. (2.11)

Remark 2.2. In the case where there is no background positive charges, assumption
A2 should be replaced by

∫

Rd

∫

Rd

ρǫ
0(x)ρ

ǫ
0(y)|log |x−y||dxdy≤C

in 2d and just by the uniform boundedness of ∇xφ
ε
0 in L2(Rd) for d≥3.

The proof of Theorem 2.1 is as follows. In section 3, we recall some useful proper-
ties of the Fokker-Planck operator. In section 4, we recall the existence of free energy
(or renormalized) solutions to the VPFP system. Then, in section 5, we establish
some a priori uniform estimates. In section 6, we prove the compactness of ρε using
an averaging lemma. This result will be essential to pass to the limit in the equation
which will be done in section 7. In the last section we prove the regularity estimates
on (ρ,φ), which will end the proof of Theorem 2.1.
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3. The Fokker-Planck operator

In this section, we shall present the spectral properties of LFP allowing us to
describe the limit model. Let us define the Hilbert space L2

M (Rd) as

L2
M (Rd)={f ∈L2(Rd)|

∫

Rd

f2 dv

M
<+∞},

equipped with the inner product

<f,g>L2

M
(Rd)=

∫

Rd

fg
dv

M
.

Let also define the space

L
2,1
M (Rd)={f ∈L2

M (Rd)|
∫

Rd

M |∇v

f

M
|2dv<+∞}.

The operator LFP acting on L2
M (Rd) is unbounded, with domain

D(LFP )={f ∈L2
M (Rd)|∇v(e−

|v|2

2 ∇v(fe
|v|2

2 ))∈L2
M (Rd)},

and it satisfies the following.

Proposition 3.1. The operator −LFP is self adjoint on L2
M (Rd) and satisfies

1. Ker(LFP )=RM,

2. R(LFP )={g∈L2
M (Rd)|

∫

Rd

g(v)dv=0},

3.For all g∈R(LFP ), there exists f ∈D(LFP ) such that LFP (f)=g.

This solution is unique under the solvability condition

∫

Rd

f(v)dv=0. We denote it

by f =L−1
FP (g).

Proof. Let f and g be in D(LFP ). Then we have

∫

Rd

LFP (f)
g

M
dv=−

∫

Rd

M∇v

(

f

M

)

·∇v

( g

M

)

dv=

∫

Rd

LFP (g)
f

M
dv.

In particular,

−
∫

Rd

LFP (f)
f

M
dv=

∫

Rd

M |∇v

(

f

M

)

|2dv≥0.

This implies that −LFP is symmetric and positive and that Ker(LFP )=RM . Then
we notice that D(LFP ) is dense in L2

M (Rd) since C∞
0 (LFP )⊂D(LFP ). Using the

Riesz representation (or Lax-Milgram) theorem, we deduce that for all f ∈L2
M (Rd)

there exists a unique ψ∈L2,1
M (Rd) such that for all φ∈L2,1

M (Rd)

∫

Rd

M∇v

(

ψ

M

)

·∇v

(

φ

M

)

dv+

∫

Rd

ψφ

M
dv=

∫

Rd

fφ

M
dv.

Hence

(1−LFP )ψ=f.
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This ensures that 1−LFP is closed. Indeed, if (φn,(1−LFP )φn) converges to (φ,f)
in L2

M (Rd)×L2
M (Rd). Then, using the Riesz representation theorem, there exists a

ψ∈L2,1
M (Rd) such that (1−LFP )ψ=f. Since f ∈L2

M (Rd) this also implies that ψ∈
D(LFP ). Hence, we deduce that (1−LFP )(φn−ψ) goes to 0 in L2

M (Rd) which also
implies that (φn−ψ) goes to 0 in L2

M (Rd), namely φ=ψ∈L2
M (Rd).

Hence, we also deduce that −LFP is closed. Moreover, −1 is in the resolvent of
−LFP . Hence −LFP is self-adjoint (see for instance [32, Chap. X, p. 137]). Using
that −LFP is self-adjoint, we deduce that R(LFP )=Ker(LFP )⊥. Hence points 2 and
3 follow easily.

Another useful property of LFP is taken from [30]:

Lemma 3.2. The operator LFP satisfies, for all f ∈L1(dv)∩D(LFP ), f ≥0 and
LFP (f), f(|v|2 + |log(f)|)∈L1(dv),

∫

Rd

LFP (f)dv=0 and H(f)=

∫

Rd

LFP (f)log

(

f

M

)

dv≤0.

Moreover,

H(f)=0 ⇔ LFP (f)=0 ⇔ f(v)=ρM(v).

4. Existence of renormalized solutions

Now let us give the definition of renormalized solutions.

Definition 4.1. We say that (fε,φε)∈L∞(L1×Ḣ1) is a renormalized solution to
the VPFP system (1.1)-(2.1) if it satisfies

1. ∀β∈C1(R+), |β(t)|≤C(
√
t+1), |

√
tβ′(t)|≤C, and |tβ′′(t)|≤C, β(fε) is a

weak solution of











ε∂tβ(fε)+v ·∇xβ(fε)−∇v ·(∇xφ
εβ(fε))=β′(fε)

LFP (fε)

ε
β(fε)(t=0)=β(fε

0 ).
−∆φε =

∫

fεdv−p(x).
(4.1)

2. ∀λ>0, θε,λ =
√
fε +λM satisfies

ε∂tθε,λ +v ·∇xθε,λ−∇v ·(∇xφ
εθε,λ)=

LFP (fε)

2εθε,λ

+
λM

2θε,λ

v ·∇xφ
ε. (4.2)

Notice that we need two types of renormalization, namely β(f ǫ) and γ( fǫ

M
) where

γ(t)=
√
t+λ. The next proposition states the existence of free energy renormalized

solutions:

Proposition 4.2. The VPFP system (1.1)–(2.1) has a renormalized solution in the
sense of Definition 4.1 which additionally satisfies

1. The continuity equation

∂tρ
ε +∇x ·Jε =0, (4.3)
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2. The entropy, or more precisely the free energy inequality
∫

Rd

∫

Rd

( |v|2
2

+log(fε)

)

fεdvdx+
1

2

∫

Rd

|∇xφ
ε|2dx

+
4

ε2

∫ t

0

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdxds

≤
∫

Rd

∫

Rd

( |v|2
2

+log(fε
0 )

)

fε
0dvdx+

1

2

∫

Rd

|∇xφ
ε
0|2dx. (4.4)

This solution will be called free energy (renormalized) solution.

Sketch of the proof. We will only present the formal calculation which leads
to (4.4). These calculations also appear in [30]. We refer to [12, 7] for the proof
of existence using those a priori estimates. The first estimate can be deduced by
multiplying the first equation from VPFP system by |v|2 and integrating the result
with respect to x and v. Thus we obtain

d

dt

∫

Rd

∫

Rd

|v|2
2
fεdvdx+

∫

Rd

∫

Rd

(v ·∇xφ
ε)fεdvdx

=− 1

ε2

∫

Rd

∫

Rd

(vfε +∇vf
ε) ·v dvdx (4.5)

the second term on the left-hand side of (4.5) can be written as follows:
∫

Rd

∫

Rd

(v ·∇xφ
ε)fεdvdx=ε

∫

Rd

φε∂tρ
εdx

=
ε

2

d

dt

∫

Rd

|∇xφ
ε|2dx.

Finally, the entropy inequality is formally obtained by multiplying the first equation
from VPFP system by log(fε) and integrating the result with respect to x and v. We
obtain

d

dt

∫

Rd

∫

Rd

fε log(fε)dvdx=− 1

ε2

∫

Rd

∫

Rd

(vfε +∇vf
ε) · ∇vf

ε

fε
dvdx.

Therefore, summing up these relations yields

d

dt

(

∫

Rd

∫

Rd

( |v|2
2

+log(fε)

)

fεdvdx+
1

2

∫

Rd

|∇xφ
ε|2dx

)

=− 1

ε2

∫

Rd

∫

Rd

(vfε +∇vf
ε) ·

(

v+
∇vf

ε

fε

)

dvdx

=− 1

ε2

∫

Rd

∫

Rd

(v
√

fε +2∇v

√

fε)2 dvdx

=− 4

ε2

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdx.

We point out that the logarithmic Sobolev inequality, implies that

4

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dv≥2

∫

Rd

fε log

(

fε

ρεM

)

dv,

which yields a bound on the relative entropy of f ǫ with respect to ρǫM .
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5. Uniform estimates

The aim of this section is the derivation of a priori estimates, uniform with respect
to ε, on these renormalized solutions. More precisely, we will justify the following
claim.

Proposition 5.1. Assume that assumptions A1 and A2 are satisfied. Then there
exists a renormalized solution (fε,φε) of the VPFP system (1.1)–(2.1) which satisfies
the conclusions of Proposition 4.2.

Additionally, the following quantities are bounded for any t∈ [0,T ], with bounds
which are independent of ε and t:

∫

Rd

∫

Rd

(1+ |x|+ |v|2 + |log(fε)|)fε dvdx,

∫

Rd

|∇xφ
ε|2 dx

and

1

ε2

∫ t

0

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdxds.

Moreover, fε is weakly relatively compact in L1((0,T )×R
d×R

d).

Proof. The proof is similar to the proof of Lemma 2.3 in [30]. From Proposition
4.2, we deduce that

Eε(t)+
4

ε2

∫ t

0

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdxds≤Eε(0).

Let

log(fε)= log+(fε)− log−(fε),

where log−(fε) :=max{−log(fε),0} and log+(fε) :=max{log(fε),0}. Then we split

the domain into two parts {fε>e−(
|x|
2

+
|v|2

4
)} and {fε ≤e−(

|x|
2

+
|v|2

4
)}. In the first part

we have

fε log−(fε)≤
( |x|

2
+

|v|2
4

)

fε

and in the second part

fε log−(fε)≤C
√

fε ≤Ce
−

0

@

|x|
4

+
|v|2
8

1

A

.

Therefore we obtain

Eε(t)+

∫

Rd

∫

Rd

|x|fε dvdx

≥
∫

Rd

∫

Rd

( |x|
2

+
|v|2
4

+log+(fε)

)

fε dvdx−C
∫

Rd

∫

Rd

e
−

„

|x|
2

+
|v|2

4

«

dvdx.

On the other hand, we have

d

dt

∫

Rd

∫

Rd

|x|fε dvdx=
1

ε

∫

Rd

∫

Rd

v · x|x|f
ε dvdx

=
1

ε

∫

Rd

∫

Rd

(v
√

fε +2∇v

√

fε) · x|x|
√

fε dvdx

≤ 1

2

∫

Rd

∫

Rd

fε dvdx+
1

2

∫

Rd

∫

Rd

∣

∣

∣

v
√
fε +2∇v

√
fε

ε

∣

∣

∣

2

dvdx.



472 DIFFUSION LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM

Hence, we obtain

∫

Rd

|x|fε dvdx≤
∫

Rd

|x|fε
0 dvdx

+
t

2
‖fε

0‖L1(Rd×Rd) +
2

ε2

∫ t

0

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdxds.

Finally, we obtain

1

2

∫

Rd

|∇φǫ|2 +

∫

Rd

∫

Rd

( |x|
2

+
|v|2
4

+log+(fε)

)

fε dvdx

+
1

2ε2

∫ t

0

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdxds

≤C+‖( t
2

+ |x|)fε
0‖L1(Rd×Rd) +Eε(0),

which leads to the desired results.

Lemma 5.2. [30] The current density Jε can be estimated by

‖Jε(t,·)‖L1(Rd)≤
2

ε2

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdx+
1

2
‖fε

0‖L1(Rd×Rd).

Proof. The current density can be written as follows

Jε =
1

ε

∫

Rd

(v
√

fε +2∇v

√

fε)
√

fε dv

and using the Cauchy-Schwartz inequality and mass conservation, we obtain the es-
timate.

Corollary 5.3. Assume that assumption A1 is satisfied. Then, |∇v

√
fε|2 is bounded

in L1((0,T )×R
d×R

d).

Proof. We note that

0≤
∫ t

0

∫

Rd

∫

Rd

|∇v

√

fε|2 dvdxds

=

∫ t

0

∫

Rd

∫

Rd

(1

4
|v

√

fε +2∇v

√

fε|2− 1

4
|v|2fε−v

√

fε ·∇v

√

fε

)

dvdxds

≤ 1

4

∫ t

0

∫

Rd

∫

Rd

|v
√

fε +2∇v

√

fε|2dvdxds+
d

2

∫ t

0

∫

Rd

∫

Rd

fε dvdxds.

Hence, we conclude by using Proposition 5.1.

Corollary 5.4. The renormalized solution (fε,φε) satisfies

1. ρε is weakly relatively compact in L1((0,T )×R
d)

2. ∇φε is relatively compact in L2(0,T ; Lp
loc(R

d)) for all 1≤p<2.

Proof. See [24] Proposition 3.3. The only difference is that here we are in the
whole space in x and hence we need to localize the conclusion.
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Let us define

rε =
1

ε
√
M

(
√

fε−
√

ρεM).

Proposition 5.5. rε is such that |rε|2M is bounded in L1((0,T )×R
d×R

d),
ε|rε|2|v|2M is bounded in L1((0,T )×R

d×R
d), and

√
ε|rε|2|v|M is bounded in

L1((0,T )×R
d×R

d).

Proof. The proof uses Young inequality (see [2] and [21] where a similar argument
is used to control the distance to the Maxwellian in the hydrodynamic limit of the
Boltzmann equation). Denote h to be the nonnegative convex function defined for all
z∈]−1,+∞[ by

h(z)=(1+z)log(1+z)−z.

We also denote gε =
fε

ρεM
. Hence rε =

√
ρε

ε
(
√
gε−1) is actually controlled by the

relative entropy from the inequality h(z)≥2(
√

1+z−1)2, which holds for all z∈]−
1,+∞[. We indeed deduce that

r2εM =
ρεM

2ε2
2(
√
gε−1)2≤ ρεM

2ε2
(gε log(gε)−gε +1).

Then we use the logarithmic Sobolev inequality, which yields
∫

Rd

r2εM dv≤ 1

2ε2

∫

Rd

(gε log(gε)−gε +1)ρεM dv

≤ 1

2ε2

∫

Rd

fε log

(

fε

ρεM

)

dv

≤ 1

ε2

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dv.

We conclude by integrating with respect to x and t. This proves the first assertion.
Denote the Legendre transform of the convex function h by h∗. An explicit compu-
tation gives h∗(z)=exp(z)−z−1 for all z∈R. In particular, h∗ is superquadratic:
h∗(λz)≤λ2h∗(z) for all λ∈ [0,1] and all z≥0. By Young’s inequality,

ε|rε|2|v|2≤
ρε

ε
|gε−1||v|2

≤ 4ρε

ε2
[h(|gε−1|)+h∗

(ε

4
|v|2

)

]

≤ 4ρε

ε2
[h(gε−1)+ε2h∗

( |v|2
4

)

],

from which we deduce that

ε

∫

Rd

|rε|2|v|2M dv≤ 8

ε2

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dv

+4ρε

∫

Rd

exp

(

−|v|2
4

)

dv.

The third assertion is a consequence of the Cauchy-Schwarz inequality which gives

√
ε|rε|2|v|M ≤ 1

2
|rε|2M+

ε

2
|rε|2|v|2M.
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We conclude by using the first and second bound. This ends the proof of the propo-
sition.

6. Compactness of the density

Proposition 6.1. The density ρε is relatively compact in L1((0,T )×R
d). There

exists ρ∈L1((0,T )×R
d) such that, up to extraction of a subsequence if necessary,

ρε →ρ in L1 and a.e.

In the following, we will use

β(s)=
s

1+s
, βδ(s)=

1

δ
β(δs), ∀s>0.

We recall that for every fixed δ>0, we have

1. 0≤βδ(s)≤min(s, 1
δ
),

2. |βδ(s)|≤Cδ(
√
s+1),

3. |√sβ′
δ(s)|≤Cδ,

4. |sβ′′
δ (s)|≤Cδ.

We remark that if we want to prove Proposition 6.1, we only need to show
for all δ>0, the compactness of the density associated to (βδ(f

ε))ε. This is a
consequence of the following averaging lemma (see [16, 14]).

Lemma 6.2. Assume that hε is bounded in L2((0,T )×R
d×R

d), hε
0 and hε

1 are
bounded in L1((0,T )×R

d×R
d), and

ε∂th
ε +v ·∇xh

ε =hε
0 +∇v ·hε

1. (6.1)

Then, for all ψ∈C∞
0 (Rd),
∥

∥

∥

∥

∫

Rd

(hε(t,x+y,v)−hε(t,x,v))ψ(v)dv

∥

∥

∥

∥

L1
t,x

→0 (6.2)

when y→0 uniformly in ε.

We refer to [24] for the proof of this lemma.

Proof of Proposition 6.1.

Proof. Let δ be a (fixed) nonnegative parameter. Let us verify that the rescaled
VPFP system (in the renormalized sense) satisfies the assumptions of the previous
lemma. Indeed, βδ(f

ε) is a weak solution of

ε∂tβδ(f
ε)+v ·∇xβδ(f

ε)=hε
0 +∇v ·hε

1, (6.3)

where

hε
0 =− (vfε +∇vf

ε)

ε
∇vf

εβ′′
δ (fε)

and

hε
1 =∇xφ

εβδ(f
ε)+

(vfε +∇vf
ε)

ε
β′

δ(f
ε).
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The sequence (βδ(f
ε))ε is bounded in L∞∩L1((0,T )×R

d×R
d) and hence in

L2((0,T )×R
d×R

d). Moreover, by applying Hölder’s inequality and using the uniform

bound of βδ(f
ε) in L2 (for fixed δ) and by using the uniform estimates:

(vfε +∇vf
ε)

ε
√
fε

,

∇v

√
fε, and ∇xφ

ε are bounded in L2, we see that

hε :=βδ(f
ε), hε

0 =−2
(vfε +∇vf

ε)

ε
√
fε

∇v

√

fεβ′′
δ (fε)fε

and

hε
1 =∇xφ

εβδ(f
ε)+

(vfε +∇vf
ε)

ε
√
fε

β′
δ(f

ε)
√

fε

satisfy the assumptions of the above lemma. Applying this lemma we deduce the
compactness in x of

∫

Rd βδ(f
ε)ψ(v)dv for all ψ∈D(Rd), namely (6.2) holds with hε

replaced by βδ(f
ε).

Next, using that (βδ(f
ε))ε is bounded in L∞(0,T ; L1((1+ |v|2)dxdv)), we see that

we can take ψ(v) to be a constant equal to 1 in (6.2) and hence we deduce, after also
sending δ to 0 and using the equi-integrability of fε, that

‖ρε(t,x+y)−ρε(t,x)‖L1
t,x

→0 when y→0 uniformlyin ε.

Finally, using that ∂tρ
ε =−∇x ·Jε is bounded in L1(0,T ;W−1,1(Rd)), we deduce that

ρε is relatively compact in L1((0,T )×R
d) which ends the proof of the proposition.

We also point out here that the bound ∂tρ
ε in L1(0,T ;W−1,1(Rd)) justifies that we

can also pass to the limit in the initial data, and that ρ(t=0)=ρ0.

7. Passage to the limit

We would like to pass to the limit in the continuity equation

∂tρ
ε +∇x ·Jε =0.

The question is to identify the limit of the current density. Let us denote J to be the
weak limit of Jε when ε goes to zero and r is the weak limit of rε in L2((0,T )×R

d×
R

d, M(v)dtdxdv), then we have the following proposition

Proposition 7.1. The electric current satisfies

Jε⇀2
√
ρ

∫

Rd

rvM dv, in L1
t,x.

Proof. Using the previous section, there exists ρ∈L1((0,T )×R
d) such that

ρε →ρ in L1
t,x anda.e.

The inequality (
√
a−

√
b)2≤|a−b| leads to

√
ρε →√

ρ in L2
t,x anda.e.

The entropy dissipation given by (4.4) leads to

fε →ρM in L1
t,x,v anda.e.
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Indeed, we expand

fε−ρM =(fε−ρεM)+(ρε−ρ)M

where we already know that ρε−ρ tends to 0, in L1
t,x. Hence, it remains to study the

difference fε−ρεM . This can be controlled by the entropy dissipation. We use the
logarithmic Sobolev inequality as in [17], which yields

∫

Rd

∫

Rd

fε log

(

fε

ρεM

)

dvdx≤2

∫

Rd

∫

Rd

∣

∣

∣

∣

∇v

√

fεe
|v|2

2

∣

∣

∣

∣

2

e−
|v|2

2 dvdx,

and we conclude by using the Csiszar-Kullback-Pinsker inequality (see [10, 20, 17]),
which implies that

(
∫

Rd

∫

Rd

|fε−ρεM |dvdx
)2

≤4

∫

Rd

∫

Rd

fε log

(

fε

ρεM

)

dvdx.

Using rε, we can write

fε =ρεM+2εM
√
ρεrε +ε2r2εM.

Then, we obtain

Jε =2
√
ρε

∫

Rd

rεvM dv+ε

∫

Rd

r2εvM dv.

Thus, using Proposition 5.5 leads to

Jε =2
√
ρε

∫

Rd

rεvM dv+O(
√
ε)L1

t,x,v
⇀2

√
ρ

∫

Rd

rvM dv in L1
t,x.

We denote χ to be the unique solution in [R(LFP )∩D(LFP )]d of

LFPχ=vM.

It is well known that χi =−viM .

Proposition 7.2.

Jε⇀D′ J :=−2
√
ρD ·(∇x

√
ρ+

1

2
∇xφ

√
ρ),

where D is the diffusion matrix defined by D=−
∫

Rd

χ(v)⊗v dv= I.

Proof. Using that ρε converges to ρ up to extraction of a subsequence, we deduce

that θε,λ converges to
√

(ρ+λ)M . Then using that LF P (fε)
2ε

=LFP (M
√
ρrǫ + 1

2r
2
ǫM),

we deduce that it converges to
√
ρLFP (rM). Hence, we can pass to the limit in (4.2)

for λ>0, up to extraction of a subsequence, and we obtain

v ·∇x

√

(ρ+λ)M−∇v ·(∇xφ
√

(ρ+λ)M)=

√
ρLFP (rM)

√

(ρ+λ)M
+

λMv ·∇xφ

2
√

(ρ+λ)M
, (7.1)

where ∇xφ is the L2
t,x-weak limit of ∇xφ

ε. Sending λ to 0, we infer that

(∇x

√
ρ+

1

2
∇xφ

√
ρ) ·vM =LFP (rM). (7.2)
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Let us go back to the expression of the current density computed in Proposition 7.1.
Using (7.2), we obtain

J =2
√
ρ

∫

Rd

rvMdv

=2
√
ρ

∫

Rd

rM
LFPχ

M
dv

=2
√
ρ

∫

Rd

LFP (rM)χ
dv

M

=2
√
ρ

∫

Rd

[(∇x

√
ρ+

1

2
∇xφ

√
ρ) ·vM ]χ

dv

M

=−2
√
ρ [−

∫

Rd

χ⊗v dv] ·(∇x

√
ρ+

1

2
∇xφ

√
ρ)

=−2
√
ρ ·(∇x

√
ρ+

1

2
∇xφ

√
ρ).

Now we would like to explain how we can rewrite the current J . More precisely, we
shall prove that the limit ρ∈L2(0,T ; L2(Rd)) and that

√
ρ∈L2(0,T ;H1(Rd)).

Lemma 7.3. Let ρ be a positive function such that ρ∈L∞(0,T ; L1(Rd)), satisfying











∇x
√
ρ+

1

2
∇xφ

√
ρ=G∈L2(0,T ; L2(Rd)),

−△xφ=ρ,

∇xφ∈L∞(0,T ; L2(Rd)).

(7.3)

Then

ρ∈L2(0,T ; L2(Rd)),
√
ρ∈L2(0,T ;H1(Rd)),

and

∇xφ
√
ρ∈L2(0,T ; L2(Rd)).

Proof. We refer to [24] for the proof of this lemma.
Now, using the previous lemma, we can see easily that we can rewrite the current

J =−2
√
ρ [∇x

√
ρ+

1

2

√
ρ∇xφ]

=−[∇xρ+ρ∇xφ].

This ends the proof of the main Theorem 2.1.
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