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HYDRODYNAMIC MODEL FOR CHARGE CARRIERS*

ISABELLE CHOQUET ', PIERRE DEGOND ¥, AND CHRISTIAN SCHMEISER }

Abstract. A set of hydrodynamic equations modeling strong ionization in semiconductors is
formally derived from a kinetic framework. To that purpose, a system of Boltzmann transport equa-
tions governing the distribution functions of conduction electrons and holes is considered. Apart from
impact ionization, the model accounts for phonon, lattice defects, and particle-particle scattering.
Also degeneracy effects are included. The band diagram models are approximations close to the
extrema of actual band diagrams. Ionization initiated by a charge carrier (and its reverse recom-
bination) is the leading order collisional process. The resulting set of hydrodynamic equations for
strong ionization differs from the usual hydrodynamic system for semiconductors, which corresponds
to weak ionization. Indeed, it governs the total charge, the crystal momentum, and the energy, but
the total mass is not a conservation variable. This system is supplemented by an entropy inequality
and proved to be hyperbolic. The particular case of a parabolic band diagram is discussed.

1. Introduction

This study continues the investigation of macroscopic models for semiconductors
when impact ionization is a dominant collisional process. The diffusion limit can be
found in [10], and the present paper is devoted to the hydrodynamic limit.

Let us first briefly recall that impact ionization takes place in semiconductors
under relatively high electric fields. A charge carrier can then reach a kinetic energy
larger than the ionization threshold, and thus generate a conduction electron and a
hole while it collides with a lattice atom. As this process can occur in transistors and
diodes (cf. [10] for further details) and modify the current density, its control is an
important challenge. Impact ionization has been indeed widely investigated during
the past five decades; examples of studies are given in [10].

Hydrodynamic models have been developed to describe semiconductors involving
high field phenomena such as heat generation in the bulk device, hot electron effects, or
impact ionization. These models are derived from the Boltzmann transport equation
for conduction electrons. A system of Boltzmann transport equations involving holes
has been likewise investigated assuming a weak coupling between conduction electrons
and holes. The set of hydrodynamic conservation equations is obtained retaining
at least the first three moments of the Boltzmann transport equations with respect
to the momentum variable. The resulting system of conservation laws governs the
carrier concentrations, the crystal momentum, the carrier energy or temperature, and
eventually higher moments.

A first difficulty arises due to the source terms, since they can hardly be expressed
as functions of the conservation variables. To avoid this problem, source terms are
often replaced by relaxation time approximations, with relaxation times fitted to
experimental data, as in [5].

Moreover, as the number of equations is lower than the number of moments they
contain, closure equations are also required. For overcoming this major difficulty,
various approaches intended to derive the constitutive relations can be found in the
literature. One of the first approaches has been proposed by Blgtekjaer [8]. It assumes
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that the momentum distribution function is a shifted Maxwellian, see also [26], [13].
The parameters of this Maxwellian are set to coincide with the retained moments.
Later, Baccarani and Wordeman [5] proposed phenomenological closure relations,
such as a Fourier law to model the heat flux. Other models are extracted from Monte
Carlo simulations [17] or developed to handle nonparabolic effects as in [26] and [27] for
example. As underlined in [1], most of these models suffer from theoretical drawbacks
concerning both constitutive relations and source terms. The hydrodynamical models
proposed more recently by Anile and coworkers do not meet with these drawbacks
since they are consistent with the theory of nonequilibrium thermodynamics. The
derivation of closure relations, cf. [2]-[4], is based on the maximum entropy principle
within the frame of extended thermodynamics.

All these hydrodynamical models can handle the ionization process and its reverse
recombination through source terms. But they are seldom applied to the numerical
simulation of devices involving this scattering process, cf. [14].

Independently of the treatment of the closure problem, the hydrodynamic mod-
els mentioned above share a common property: They are derived from Boltzmann
transport equations assuming weak electron-hole coupling. The scattering operators
allowing this coupling, such as carrier-carrier interaction or generation-recombination,
are assumed to have a lower order of magnitude than the scattering operators gov-
erning the system.

Impact ionization takes place under high energy scales (i.e. large applied biases)
since the kinetic energy of charge carriers has to reach the ionization threshold. The
order of magnitude is above around 1.5 eV cm~! in silicon or gallium-arsenide devices
[16], [21]. We shall thus consider a typical kinetic energy for charge carriers eq varying
from 1 to 5 eV and a crystal temperature of 300 K. From experiments, the order of
magnitude of the phonon collision frequency then is approximately 10** s~ in Si (cf.
[19], [15]) and it lies within the range 1012 to 10'* s71 in GaAs (cf. [19]). The order of
magnitude of the lattice defect frequency (cf. [19]) is always much smaller. Referring
to [23], [24], we know that the carrier-carrier collision frequency is small for low carrier
density and can reach the phonon frequency for very high carrier density. In contrast,
the ionization collision frequency does not depend on the carrier density. It is nearly
equal to zero as long as the typical kinetic energy of charge carriers is smaller than the
ionization energy. Above that value, it increases strongly and reaches values larger
than the phonon collision frequency: 1016 s=! in silicon when g¢ ~ 5 eV (cf. [25], [15]
and references within). A similar behavior is observed in gallium-arsenide (cf. [22]).

These results indicate that, when investigating energy scales reaching the ioniza-
tion threshold, the ionization-recombination operator becomes a leading order term.
The purpose of the present paper is thus to derive a system of conservation equa-
tions from a system of Boltzmann transport equations with a dominating ionization-
recombination operator.

This paper is organized as follows: The scaled system of Boltzmann transport
equations for conduction electrons and holes is presented in Section 2. It contains
models for phonon scattering, lattice defect scattering, particle-particle scattering,
as well as impact ionization. It is assumed that, apart from energy, the ionization
process also preserves momentum. Since, for a periodic band diagram, the possibility
of umklapp processes would destroy macroscopic momentum conservation, we restrict
our discussion to approximations of the band diagrams close to the bottom of the
conduction band and close to the top of the valence band.

The ionization collision operator is then studied in Section 3. The properties it
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has to satisfy in order to perform an hydrodynamic approximation are established.
The remaining sections are concerned with the hydrodynamic limit of the system of
Boltzmann transport equations. We first consider the case of arbitrary band diagrams
in Section 4. The resulting set of conservation equations governs the total charge
density, the crystal momentum, and the energy of charge carriers. This system is
supplemented by an entropy evolution equation and proved to be hyperbolic. The
last section corresponds to the particular case of a parabolic band diagram.

2. Scaled System of Boltzmann Equations

The detailled presentation of the system of Boltzmann transport equations taking
into account impact ionization can be found in [10]. We shall simply give the scaled
kinetic system we shall start from, in order to derive an hydrodynamic model for
strong ionization in semiconductors.

We shall study the behavior of a coupled system of Boltzmann transport equations
governing the distribution functions for conduction electrons f, = fn(z,k,t), and
holes f, = fp(x, k,t). Boundary conditions are not investigated here, and the position
variable z lies in IR? as well as the pseudo wave-vector k. Time is denoted by t € IR.

The equations for the distribution functions are scaled in accordance with hot-
electron transport in semiconductors. This corresponds to applied biases allowing a
typical kinetic energy of charge carriers larger than the ionization threshold. Then,
ionization-recombination can be the leading order collision process, as shown in [25],
[15], [22] for instance. The applied biases under consideration, however, are such that
the collision operator dominates the acceleration by the electric field. The collision
mechanisms met in this framework are thus: lattice-defects and phonon scatterings,
carrier-carrier interactions, ionization and its reverse recombination process.

In dimensionless form, the resulting coupled system of Boltzmann transport equa-
tions reads,

Ofn
L N AR
= éngr(fna fp) + Qn,ph(fn) + Qn,ld(fn) + Qn,c(fn: fp): (21)
oy — .V
5t T Ve Valp = V.V - Vily

= éQp,gr(fn: .fp) + Qp,ph(fp) + Qp,ld(fp) + me(fn: fp)a

where « is a small parameter. It reflects the importance, relative to impact ionization,
of the other scattering processes. It can also be interpreted as a Knudsen number
defined by the ratio of the mean free path of ionizing charge carriers to the macroscopic
length scale. The subscripts n and p denote quantities associated with the negative
and positive carriers, respectively. The kinetic energies e,(k),e,(k) > 0, k € IR® have
to be understood as approximations of the band diagrams close to their extrema. The
electric potential V' (z,t) will be considered as given.

The dominating collision operator (Qy,¢r, @p,¢r) models ionization and its reverse
recombination process. The generation and recombination of charge carriers requires
an additional particle to satisfy the energy conservation. In the present study, this
particle is a charge carrier. The carrier transition mechanisms can be schematized by
the following reactions:

n <— n+n+p, p —— p+p+n, (2.2)

where n represents a conduction electron and p a hole. Let us recall that for high car-
rier concentrations, the reactions (2.2) are usually called Auger generation-
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recombination. For a large current density, the (reverse) recombination reactions
get negligible compared with the (direct) generation mechanisms. When reduced to
the generation reactions, these processes are generally called impact ionization.

Electron-hole pairs can be created through ionization reactions triggered by elec-
trons as well as by holes. The generation-recombination collision integral for electrons
Qn,gr, thus, involves the two corresponding terms:

Qn:QT(f’na.fp) = th]r(fn:fp)+Q£L,gr(f’n7fp)7

where the superscripts n and p indicate the additional carrier allowing to satisfy the
energetic requirement of the reaction. The operator @ ., describing the effect of
electron triggered ionization events on the electron distribution, can be written as

Qarllond) =2 [ Gugr b S [73 11 (1= nf) (1= £ =)
~fa f5 fF (- nf,g)] k' dk* dk+
b [ G b (11 5 S5 (1= 0h)

~FE fa (U =nf) (0= nf) (L= nf)] di? dk” di*,
where the superscripts /, *, and T denote evaluation at k', k*, and kT, respectively.
bn.gr and @, . stand for ¢y, g (k, k*, k75 k'), and ¢p 4 (K, k*, k™5 k), respectively. As
a consequence of the principle of detailed balance, the forward and reverse reaction
rates are the same up to the constant factor F2. Moreover, the indistinguishability

of electrons implies that
Gn,gr (b, K5 KT E) = brgr (K%, K, KT R, (2.3)

The energy balance in recombination-generation events is reflected by the delta-
distributions d.,, = d(en + €, +6f + A —e)) and 8., = 6(e), + e + & + A —ep).
The ionization energy A (i.e., the width of the band gap) is supposed to be constant.
The parameter 17 measures the level of degeneracy of the electron and hole gases. The
classical nondegenerate statistics are recovered when 7 tends to zero.

In the literature, Monte Carlo simulations of impact ionization are reported, ne-
glecting [11] and enforcing [15] momentum conservation. It is the main purpose of
this work compared to the previous study [10], to describe the macroscopic effects
of including the momentum conservation assumption. For periodic band diagrams
microscopic momentum conservation does not imply a macroscopic conservation law
because of the possibility of umklapp processes. This is the reason for assuming non-
periodic dispersion relations, which can be interpreted as approximations of the band
diagrams close to their extrema. Momentum conservation is expressed by the supports
of the delta distributions 0y ,, = 0x (k' —k —k* — k™) and &}, = (k= k' —k* — k).

The operator QF .. contains the electron gain and loss terms due to generation

n,gr
initiated by a hole and the corresponding recombination reaction,

Qpr s = [ Gpor be b [78 13 (L= g0 = 0f)0 = 0£,)
—fF fr fa (- nf,',)] k' dk* dikt.

The properties and definitions of the scattering rate and of the delta distributions are

analogous to those in @} ...
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The remaining operators have a lower order of magnitude. @, ;4 models collisions
with lattice defects,

Quanlf) = [ dnia d(et =) (£ = £.)

The scattering matrix element ¢y, 1q(k; k') = ¢ 14(k'; k) is the sum of the transition
rates associated with the various types of lattice-defects.

The phonon collision operator reads,

Qmph (fn)
= [ o [(Non + 1) 860 = &1+ £n) + Non 8o = 21 = )] £ (1= nf)
R
— [(Non + 1) 82}, = 0+ 2pn) + Non 0(eh, = 20 = )| fu (1= 03) } W,
where €, is the phonon energy. The collision cross section satisfies the symmetry
property ¢n pn (ks k') = én pn(k'; k). The phonon occupation number Ny, is given by

the Bose-Einstein statistics

1
b= exp (epn/Tr) — 1~

Np

with the scaled lattice temperature T7,.

The carrier-carrier binary collision integral @ . includes a contribution due to
electron-electron interactions as well as a coupling term modeling collisions between
electrons and holes. Details can be found in [10], but are not needed in the present
study.

The collision operators for holes can be immediately obtained from the previous
expressions exchanging n and p.

The aim of this paper is to investigate the hydrodynamic limit from the system
of Boltzmann transport equations (2.1). The properties of the collisional operators,
except the one weighted by the inverse of the small parameter «, are already available
in the literature. The lattice defects and elastic phonon collision operators are studied
in [18] for instance. Carrier-carrier collision operators have been investigated in [6],
[7]. Due to the weighting factor, these operators will only lead to source terms in the
hydrodynamic limit.

The dominating generation-recombination operator is studied in the following
section.

3. Properties of the Collision Operators

The properties derived below apply to the full system made of electrons and holes,
but not to electrons or holes when considered separately. Let us first recall a result
obtained in [10], which will be useful in the following.

LEMMA 3.1. (H-Theorem) Let h(f) = log [fFy " (1 —nf)~t]. Let ¢n,gr, Gp,gr be
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nonnegative and satisfy the symmetry relation (2.3). Then
[ Quar s )k [ Qe F 05 =
R3 R3
[ b [F A0 =0t )0 =)0 =08 = Sty 0= 0]
x[log (fufiifif (1= nf)) —1og(F3£(1 = nfu) (1 = nf7)(1 = nfy))] di?
+ / Bp,gr0c.p [fgfé(l - nfp)(l - Wf;)(l - nfrf) - fpf;frj(l - nf,',)]
m12
xtog (£l £ (1= nfy)) —log(F2 11 = nfp)(1 =01 =nf))]dkt <0,

with dk* = dk dk' dk* dk™.

For the determination of the collisional invariants associated with the generation-
recombination operator we need a preliminary result.

LEMMA 3.2. Let f: [0,00) = IR be continuous at 0 and satisfy f(z) = f(z + \/x)
for all z > 0 and for a positive constant A\. Then f is a constant function.

Proof. Choose an arbitrary xzy > 0 and define the sequence {z,} recursively
by Zpt1 = Tn + A/zp, n > 0. Then z, — oo and f(zg) = f(z,). However, for

w% > 4\, &, = yn + Ay, holds for y, = 2X\/ (;gn+ w%_4>\)’ and therefore
f(zo) = flyn) — f(0) as n = occ. -

THEOREM 3.1. Assume that ¢, 4 and ¢, 4 are positive and bounded from below.
Let the energy bands be parabolic: e, (k) = |k|[>/(2my), €,(k) = |k|*/(2m,). Then,
for continuous vy, ¥,

/ Qugr (s fo)ndlle + / Quar (s f)pdk =0 Yfurfy  (3.1)
IR3 IR3

Yn(k) = a+b-k+clen(k) +A/2),

3.
<~ da,celR, belR": {¢p(k):—a+b-k+c(5p(k)+A/2)-

Proof. The <-part holds by a simple computation. Assuming (3.1) and setting
fn=h""(n), fp = h~'(¢p), Lemma 3.1 implies that

Un + Y5+ =4,
holds whenever & + k* +k* = k' and €, + ¢}, + ¢, + A = ¢},. In terms of the function
¢(k) := Pn(k — kF) + 1 (kT),

(where for the moment k% is considered as a parameter), the above becomes

¢(k) + ¢(k") = d(k + £7), (3.2)
for all k, k* € IR® satisfying
+12
n-ﬁ*:)\::mnA+<%+l>M. (3.3)
my 2
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Now for every & # 0 we introduce the notation k¥ = zw with w € S and z > 0. The
vectors r, s € S? are chosen such that {w,r, s} is an orthonormal basis of IR®. Then
every k* satisfying (3.3) can be written in the form x* = (A/2)w + ar + 8s and (3.2)
becomes

¢(zw)+¢<§w+ar+ﬁs>:¢<<z+§>w+ar+ﬁs>, (3.4)

now holding for every z > 0; o, € IR; and w € S? (determining r and s). In
the following, the difference operator Dy pf := f(t = ¢t + h) — f will be used (with
the subscript ¢ omitted for functions f of one variable). Taking differences with
respect to @ and S in (3.4) shows that f(z) = Dy pd(2w + ar + Bs) and f(x) =
Dg nd(xw + ar + fBs) satisfy the assumptions of the previous lemma and are therefore
both independent of z. With w = ey, this implies ¢(k) = X (k1) + W (k2, k3), which,
by setting w = ez, can be strengthened to ¢(k) = X (k1) + Y (k2) + Z(k3). However,
with w = #4222, w = 31752, also ¢(k) = X (k1 — k2) + Y (k1 + k2) + Z(k3) holds.
Equating both representations of ¢ and taking differences with respect to k1 and ks
gives

D%Y(Iil — I<.‘,2) = D%?(Iﬂ)l + Ko + h) R

implying that X and Y are second order polynomials with the same leading order
coefficient. By rotation, this argument can be easily extended to show that ¢ is of
the form
k>, 5 .
=c— +b- .
(k) chn +b-k+a
A straightforward computation shows that a ¢ of this form satisfies (3.4), iff a =
Ac/my, holds. .
Since so far k™ has been a parameter, ¢ and b can depend on k*. Going back to
the definition of ¢, we obtain

5 ~ +12 -
e L B O R R AR

My Lz My

This implies (e.g., by taking differences with respect to k) that ¢ and b = b + <kt
are independent of k. The above equation can then be written as

Yn —clen +A/2) —b-k=—¢f +clef +A/2) +b-kT.

Since the left-hand side only depends on k and the right-hand side only on k™, both
have to be equal to a constant a, which is equivalent to the statement of the theorem.
]

Note that the proof only used information from the electron-triggered events.

Thus, a stronger result considering just one of the two types of ionization effects
holds.

COROLLARY 3.3. With the assumptions of Theorem 3.1,

ngr(fn?fp) = Qp,gr(fn,fp) =0
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holds if there exists 4 € IR and T' > 0 such that

Fulk) = :
T+ Fy texpl(en(k) + A/2 —k-u—p) /T]
1
k) = .
Tolk) n+ Fylexp[(ep(k) + AJ2 — Kk -u+p) /T]
Proof. The proof follows directly from Lemma 3.1 and Theorem 3.1. ]

We only have a proof for the case of parabolic bands. In the following, however,
the results of Theorem 3.1 and Corollary 3.3 will also be assumed valid for general
band diagrams.

The collision invariants (1,—1)!", (k, k)", and (e,(k) + A/2,e,(k) + A/2)P
correspond to conservation of charge, momentum, and energy, respectively, by the
generation-recombination mechanisms. The behavior of the other scattering mecha-
nisms with respect to these quantities is as follows. Electron and hole densities are
conserved individually by lattice defect, phonon, and carrier-carrier scattering. Thus,
(1,—1)!" is a collision invariant for all considered processes. The total momentum
is only conserved by carrier-carrier scattering. Finally, phonon scattering is the only
inelastic process. So (e, (k) + A/2,e,(k) + A/2)!" is a collision invariant for lattice
defect and carrier-carrier scattering. H-theorems for the different scattering operators
can be found in [6] and [7]. As a consequence, we have that

L@ (0 + 2 ) + Qe (n 4 2 ) [ar<o @)
R3 L L
holds for z = ld, ph, c.

4. Hydrodynamic Model for Strong Ionization

Motivated by Theorem 3.1, we define the macroscopic quantities conserved by
the generation-recombination mechanisms, the total charge density x, the crystal
momentum density K and the total energy density &£:

X 1 -1

K | = / fn k dk + / o k dk. (4.1)
£ R? en+A/2 R? ep+A/2

The balance equations for these quantities are computed by taking the scalar product
of (2.1) with (1, -1)!", (k,k)!", and (e, + A/2,e, + A/2)!", and by integration with
respect to the wave vector:

ox
e +V,-Jy =0,
oK
e + Ve Jx =xVeV + Rpp + Ryq, (4.2)
o€
e + Ve Je=Jy - Vo,V + Wpp.
The fluxes are given by
Jx
Jx
Je
1 -1
= fnVien ®k dk + pViep ®k dk. (4.3)
R3

en+A/2 R? ep+A/2
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Since particle-particle scattering conserves charge, momentum, and energy, it does
not contribute to (4.2). Phonon scattering, on the other hand, only preserves charge
and contributes to the momentum and energy balance by the source terms

()
B /m Onpnlfn) < €n +kA/2 >dk+ /m @rpn(fy) < ., +k AJ2 )dk. (4.4)

Finally, the interaction with lattice defects is elastic and, therefore, only leads to a
source term in the momentum equation:

R = | (@ualF) + Quual )k db 45)

The definition of a macroscopic entropy density is motivated by Lemma 3.1 and
by (3.5):

Sl @t = [ Aok, fylo b2, 8)

with the distribution

ﬁ(fnafpaxakat)

= H(f,) + H(f,) + en(k) + A2 V(1) . ep(k) +A/2+V (1)

Ty, Ty,

fo

where

H(f):fln?o—l-

is a primitive of h(f). With Lemma 3.1, Theorem 3.1, and (3.5), a straightforward
computation leads to the entropy inequality

f 1 —nnf In(1 -nf)

oS x oV
AT, S T < -
o Ty e TV s s0 (4.6)
with the entropy flux
Je =VJ
Js = / (H(fn)Vien + H(f)Viep)dk + “5——2X
IR Ty,

The hydrodynamic model for strong ionization is now derived by the limit a — 0 in
(2.1) and in (4.2)—(4.5). By Corollary 3.3, f,, and f, tend to

-1
fOn:<77+-7:o_lexp[8”+A/2;k'u_'uj|> ;

-1
fOp:<7]+-7:0_16Xp|:8p+A/2;k‘u+u:|> )

with arbitrary position and time-dependent functions p, 7', and u. Note that we
assume the validity of Theorem 3.1 (and, thus, Corollary 3.3) also for general band-
structure. If (f,, f,) is replaced by (fon, fop), in (4.1), (4.3)-(4.5), (4.2) becomes a
closed system for the macroscopic quantities p, T, and wu.



ISABELLE CHOQUET, PIERRE DEGOND, AND CHRISTIAN SCHMEISER 83

A connection between the densities (x,K,E) of the conserved quantities and
(1, u,T) is provided by the observation that the equilibrium distributions solve the
minimization problem for the entropy S[fn, fp] with the side condition (4.1) for given
(x, K, E). The vector (u/T—V/Tr,u/T,1/Tr—1/T) can be interpreted as a Lagrange
multiplier. By the strict convexity of the entropy (following from the strict convex-
ity of the function H) the minimization problem has a unique solution. This shows
the invertibility of the map (u,uw,T) — (x,K,E), defined by substituting (fon, fop)
in (4.1). Thus, the densities (x,K,&) can be used as the unknowns in (4.2). In
particular, the limiting entropy density can be considered as a function of (x, K, ).
Its convexity now follows from a standard argument which we shall outline in the
following: Let the vector of densities be denoted by w = (x,K,&) and let wi # we
be 2 such vectors, such that w = aw; + (1 — a)w, for 0 < a < 1. Let (gin,g1p) and
(92n, 92p) denote the minimizing equilibrium distributions corresponding to w; and
wy, respectively. Then the pair (agi, + (1 — @)gon, @g1p + (1 — @) gap) realizes w and,
therefore S(w) < S[agin + (1 — @)gan, @g1p + (1 — @)gap] holds. By the convexity of
S depending on (fy, fp) on the other hand,

S[agln + (]- - a)g2n7aglp + (]- - a)g2p]
< aS[gin, g1p] + (1 = @)S[gan, g2p]) = aS(w1) + (1 — a)S(w2)

holds, proving strict convexity of S as a function of (x, K, ).
For the derivation of the limiting balance equation for the entropy, only the source
terms in the limit of (4.6) have to be computed. This is facilitated by the observation

(i V ou 1 1
V(x,K,S)S—<T T T T)

As a consequence, for smooth solutions of (4.2), the entropy density satisfies

oS x oV 1 1 1
2y AT . = _ - [ <0.
i + T, ot + V- Js Tu (Rph +Rld) + <TL T) Wpr <0

Weak solutions are admissible (as limits of the kinetic model) if the equality is replaced
by <.

Since (S, Su) is a strictly convex Lax entropy pair, classical arguments (see [12])
imply that the hydrodynamic system for strong ionization (4.2) is hyperbolic.

5. Low Densities and Parabolic Bands

We specialize the above results to the low density limit = 0 and to parabolic
bands e,(k) = |k|*/(2my), ep(k) = |k[*/(2m,). Then the equilibrium distribution
functions become Maxwellians:

fon(k) = Foexp (’”’“'“‘ "“'QT/@”") ‘M), (5.1)
fop(k) = Foexp <_“+k'“_ |k|T2/(2m”) _A/2>. (5.2)

As a consequence, the macroscopic electron and hole densities

pn:/ fOndka pp:/ fOpdka
R3 1IR3
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satisfy the generalized Saha law

n 2 —2A
pnpp = ni(u, T)?  with n;(u,T) = ]—'O(Qﬂ-T\/m)3/2 exp ((m + mﬁlm ) -

The quantities in the hydrodynamic system can be written in terms of the unknowns
X, %, and T'. In particular, for the macroscopic densities, we have

po=5 (X VEFIRTE), =5 (x+ VA I 1)

The hydrodynamic system for strong ionization (4.2) can be written as

ox B
oK
E-sz . (’C@U)-l-vzp:XVzV-FRph-l-Rld, (53)
o€
E+Vz-[(5+p)u] =xu-V,V+Wp,
with
K = (mupn +myppp)u, p=(pn +pp)T,

2
&= (mppp + mppp)% + (pn + pp) 3T;_ S :

The source terms in the momentum and energy equations have to be determined
from (4.4) and (4.5). For the derivation of typical examples, we make several ap-
proximations. First we assume small mean velocities and replace the equilibrium
distributions (5.1), (5.2) by their quadratic Taylor polynomials about u = 0. For the
matrix element for scattering of electrons with lattice defects we assume that ¢, ;4 is
proportional to €0, and analogously for the scattering of holes with lattice defects.
Then the momentum source term due to scattering with lattice defects has the form

Rig = —VT (e, T pp + ¢, T p,) . (5.4)

The phonon collision operators can be written as the sum of an elastic operator of
the form of the collisions with lattice defects and an inelastic part. For simplicity,
we make the assumption that the phonon energy is small compared to the thermal
energy of the lattice, i.e., /T < 1. If we also assume that the scattering matrix
element only depends on the kinetic energy, the inelastic part of the electron-phonon
collision operator can be approximated by a term of the form (see [20]).

) | 41|

9% T, (5.5)

Qn,phjnelastic(fn) = % |:\/g¢n7ph(5) (
where (f,,) denotes the mean value of f,, over the sphere corresponding to kinetic
energy €. The elastic parts of the phonon collision operators contribute to the mo-
mentum source term R, (an additional term of the form (5.4)), but not to the energy
source term Wp;. On the other hand, the inelastic parts do not contribute to R,p.
With the final assumption that ¢, ,,(€) is proportional to %, (5.5) produces the
energy source term

N A 11 |u?
Whph = dpy T 120 [ 3TT246,) + =T(146,) ) (= — =— — =) .
ph =d P (3 (2+Bn) + 5T+ 5 )) <T T, T2
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A second term of the same form originates from hole-phonon interaction.

Finally, we outline the computation of the characteristic speeds of the left-hand
side of (5.3) for the spatially one-dimensional case. More details can be found in [9].
The Jacobian F' of the flux vector F' = (yu,Ku + p, (€ + p)u)?” with respect to the
conserved quantities (x, K, £) can be written as

FI

uld+ (x, K, € +p) @ Vu+ (0,1,u) ® Vp
uld+a; ® by + as ® by, (5.6)

where the gradients are with respect to the conserved quantities. It is easily seen that
u is an eigenvalue of this matrix. The other eigenvalues are of the form u + A where

A is an eigenvalue of
a - bl as - b1
ay - b2 as - bQ ’

Thus, for the strict hyperbolicity of (5.3) it would be necessary that a; and as as
well as b; and by are linearly independent. However, for y = 0 and (m,, +m,)u? =
2(5T + A), the vectors (x,X,€ + p) and (0,1, u) are linearly dependent, and u is a
double eigenvalue of F'.

In strictly hyperbolic situations, the form (5.6) of the Jacobian shows that the
eigenvectors corresponding to the eigenvalue u are orthogonal to Vu and Vp. There-
fore, the field corresponding to the eigenvalue u is linearly degenerate, and the pressure
p is constant across a contact discontinuity.
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