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Abstract: Covariant differential calculi and exterior algebras on quantum homoge-
neous spaces endowed with the action of inhomogeneous quantum groups are clas-
sified. In the case of quantum Minkowski spaces they have the same dimensions
as in the classical case. Formal solutions of the corresponding Klein—Gordon and
Dirac equations are found. The Fock space construction is sketched.

0. Introduction

It is well known that lattice-like theories serve as regularization schemes in quantum
field theory. But after introducing the lattice, we no longer have the full symmetry
of the original theory. On the other hand, there was a lot of interest in quantum
spacetimes endowed with the actions of quantum groups which are deformations
of the objects used in the standard field theory (cf. [20,3,8,7,24,13,9,5,29,19]).
There were two motivations of such a development: providing naive models of
changed geometry at the Planck scale and attempts to regularize the theory while
preserving the “size” of the symmetry group in such a way that the regularized
theory could still be imagined as the theory of our universe. Although the present
paper doesn’t provide support for any of these claims, we find a lattice-like behavior
of certain quantum Minkowski spaces. It has two aspects:

1. It was found [12] that in the differential calculus on R corresponding to the
one-dimensional lattice one has

xdx = (dx)x + ldx ,

where x is the identity function and / is the lattice constant. In Sect. 1 we
describe differential calculi on quantum Minkowski spaces by a very similar
relation (1.7).
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2. For the above differential calculus on R one has df = dxd(f) = o(f)dx, where
f is a function on R, 0(f) = (f(x+ 1) — f(x))/l, o(f) = (f(x) = fx = D)/
(cf. [12]). Setting 4 = 0 = 00, one gets

)

where k = pl/2. Thus we obtain an additional factor Sizzk (comparing with the

action of the usual Laplacian 0%/dx?). In Sect. 4 similar factors appear in the
description of eigenvalues of the Laplacian on quantum Minkowski spaces.

In Sect. 1 we recall the definition of homogeneous quantum spaces M (e.g.
quantum Minkowski spaces) endowed with the action of inhomogeneous quantum
groups G (e.g. quantum Poincaré groups). We classify the differential calculi on
M which have the same properties as in the classical case. They exist if and only
if a certain matrix F (related to the existence of quasitriangular structure on G
[17]) vanishes, in which case they are unique. In Sect. 2 we prove that each such
calculus has a unique natural extension to an exterior algebra of differential forms.
In the case of quantum Minkowski spaces the modules of k-forms have the classical
dimensions (2). In Sect. 3 the properties of partial derivatives, Laplacian and the
Dirac operator are investigated. We heuristically assert hermiticity of the momenta
and Laplacian. In Sect. 4 we find formal solutions of Klein—-Gordon and Dirac
equations for two special classes of M. They are obtained from the plane waves
e~ 7" but the eigenvalues of the momenta are related to p, in a complicated way
in general. The sketch of the Fock space construction is provided in Sect. 5.

We sum over repeated indices (Einstein’s convention). If V, W are vector spaces
thent: VW - W@Visgivenby t(x @ y)=yQx,x €V, y € W. We denote
the unit matrix by 1, 1% =1® --- ® 1 (k times). If .« is an algebra, v € My(Z),
w € Mg(/), then the tensor product v @ w € Myx (/) is defined by

W)y =vw, iLk=1,..,N,jl=1,..,K.

We set dimv = N. If ./ is a x-algebra then the conjugate of v is defined as v €
My(o/), where 0'; = (v';)*. We also set v* = o7 (v denotes the transpose of v, i.e.
") =v)).

Throughout the paper quantum groups H are abstract objects described by the
corresponding Hopf (x-) algebras Poly(H) = (&, 4). We denote by 4,¢,S the co-
multiplication, counit and the coinverse of Poly(H ). We say that v is a representation
of H (ie. ve Rep H) if v € My(), N € N, and

At =@t , (W) =68, ij=1...,N,

in which case S(v';) = (v™');. Matrix elements of all v € Rep H linearly span
/. The conjugate of a representation and tensor products of representations are
also representations. The set of nonequivalent irreducible representations of H is
denoted by Irr H. If v,w € Rep H, then we say that 4 € Myim yxdim w(C) intertwines
v with w (i.e. 4 € Mor(v,w)) if Av = wA. For p,p’ € o/’ (the dual vector space of
o) one defines their convolution p *x p’ = (p @ p')4. For p € o', a € o, we set
pxa=(0d® p)da, a*p = (p®id)4a.
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1. The Covariant Differential Calculi on Quantum Homogeneous Spaces

In this section we recall the definition of the quantum homogeneous space M en-
dowed with the action of the inhomogeneous quantum group G [18]. The cor-
responding unital algebra % = Poly(M) is generated by quantum coordinates x',
i=1,...,N. We prove that there exists a covariant differential calculus on M which
has dx, i = 1,...,N, as the basis of the module of 1-forms if and only if a cer-
tain matrix # = 0. Moreover, such a calculus is unique. We specify the quantum
Minkowski spaces endowed with the action of quantum Poincaré groups [19] for
which F = 0.

Throughout the section Poly(H) = (<, 4) is any Hopf algebra with invertible S
(we need invertibility of S in the proof of Theorem 1.1, it was not needed in [18])
such that

(a) each representation of H is completely reducible,
(b) A is an irreducible representation of H,
(¢) Mor(v®@w, A®v®w)= {0} for any two irreducible representations of H.

Moreover, we assume that f7;, n' € o', TV € C, i,j=1,...,N = dim A, are
given and satisfy
Sf(a) n(a)
0 ea)
2. A5(f'y xa)=(ax f5)A", fora € o,
3. R?> =1 where RV, = fi,(A),
4. (A® AW (1Y xa) = ax 17 for a € o, where

1. o/ 5a— p(a) = ( € My.1(C) is a unital homomorphism,

,L.ij — (R _ ]l)ijmn(?ln " nm _ nm(Ans)r’s 4 e fnb * fmaTab) ,

5. 43F =0,  where A3=19101-Ro1-1®R+(R®I)(I1QR)+
AQRR®1) — (RIY1®RYR 1), F, = (A,

6. A3(Z@1—1®2Z)T =0, RT = —T, where ZU} = n'(A/y).

In particular, 4-5 are satisfied if 7/ = 0. The inhomogeneous quantum group
G corresponds to the Hopf algebra Poly(G) = (%4, 4) defined (cf. Corollary 3.8.a

of [18]) as follows: 2 is the universal unital algebra generated by o/ and ',
i=1,...,d, satisfying the relations Iy = I,

va=(ax* )y +axn — A *xa), acd, (1.1)

(R =DM/ Y =0 (W)Y + TV — Ay, T™) = 0. (12)

Moreover, (7, 4) is a Hopf subalgebra of (%, 4) and 4y’ = A'; ® y/ + y' ® I (note
that the )" were denoted by p; in [18]). We define % = Poly(.#) as the universal
unital algebra generated by x', i = 1,..., N, satisfying

(R -1 u(x*x' —ZMx + THy =0. (1.3)

The action of G on M is described by the unital homomorphism ¥ : 4 — ZQ €
such that
Yo =A 00 +yel, (1.4)
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(e®id)? =id, (Id® V)Y =(4®id)¥Y. The pair (¥,¥) was investigated in
Sect. 5 of [18]. We assume

Mor(I, A® A® A) = {0}, (1.5)

Mor(I, A ® A) Nker(R+ 1) = {0} (1.6)

((1.5)—(1.6) are satisfied for G being quantum Poincaré groups [19]). Then M
is called a quantum homogeneous space and has the properties analogous to the
Minkowski space (cf. Sect. 5 of [18], Sect. 1 of [19]). The ‘sizes’ of # and ¥
were described in Corollary 3.6 and Proposition 5.3 of [18].

Motivated by [27,21,15] we have

Definition 1.1. We say that T'"' = (I'"', ¥, d) is a covariant differential calculus
on M if

1. '\ is a €-bimodule, wly = Iyw = o for w € T',

2. YA TN s BTN satisfies

(@) ®id)PN = id, (id @ PAHPN = (4 ®id)P",

(b) M (wa) = PN(0)¥P(a), " (aw) = P(a)P"(0) for o € TN, a € G,
3.d:% — I'" is a linear map such that

(a) d(ab) = a(db) + (da)b, a,b € &,

(b) (id ® &) — ¥4,

(c) '\ = span{(da)b : a,b € €}.

We say that I'"! is N-dimensional if dx', i = 1,...,N, form a basis of I'"! (as the
right €-module).

Theorem 1.1. There exists N-dimensional covariant differential calculus on M iff
F =0. In that case it is uniquely determined by

x'dx = RVydx*x' + ZV,dx*, ij=1,...,N, (1.7)
PMax = A @dx/, i=1,...,N. (1.8)

Proof. Let I'"! be N-dimensional covariant differential calculus on M. Using (1.4)
and condition 3b) of Definition 1.1, one gets (1.8). The linear mappings 0, : € — ¥,
pi/ € —%,i,j=1,...,N, are uniquely defined by

da = dx'0(a), adx' = dxjpji(a) . (1.9)
Using condition 3a) of Definition 1.1 and (ab)dx’ = a(bdx'), one gets that
J(a))N. (a))Y
:65a | POhm GO ) (1.10)

is a unital homomorphism. Conditions 2b) and 3b) of Definition 1.1 imply
(id® 0,)¥(a) = (A; ®)¥(0:(a)), j=1,...,N, (1.11)

(d®pd)P(a)(A; ®1) = (N @DP(p/(a)), iLk=1,... N, (1.12)

a € €. Moreover, ' ‘
6j(x’):5’j, l,]= 1,...,N . (113)
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Conversely, any unital homomorphism (1.10) satisfying (1.11)—(1.13) for a € ¥
defines, through (1.9), a covariant N-dimensional differential calculus on M. So we
need to find all such homomorphisms. Let us notice that it is sufficient to check
(1.11)—=(1.12) for a =x', I =1,...,N (they are trivial for @ = I and if a,b satisfy
them then—using the homomorphism property—a - 5 does also). But for a = x’ (1.11)
is trivial. Moreover, . is determined by

X

KN (DY
IN 7] — 1,j=1 i=1
Py =h = [ )" =

I=1,...,N, where K;" = p;/(x'). Equation (1.13) and the existence of % (for
given K) are equivalent to (1.3) with x’ replaced by A’. This can be translated to

d[(R — 1) y(x*x! = ZH x> + T =0, (1.14)

[(R — 1)V (xFx! — ZF x* + T*]dx™ = 0, (1.15)

where the left-hand sides should be expanded using condition 3a) of Definition 1.1
and (1.9) so that dx* appear on the very left of the equations. Then the condition
means that the total coefficient multiplying dx* from the right is zero. The condition
(1.12) for a = x' means

A A @KY + Y Ay @1 = (M@ DKM,

i.e.
YK, )= (GR AR N, F i @K + Grfy' Ay @1, (1.16)

where (G™1)/ = A/; (G = [S~H(A)]" = (AT)~"). Thus we need to find K satisfying
(1.14)~(1.16).

Now (1.7) is equivalent to K;¥ = p/(x') = RV;yx! + Z¥,. 1t is easy to check
that such a K satisfies (1.14) and (1.16). Suppose there exists another K satisfy-
ing (1.16). Then M = K — K satisfies ¥(M,,"") = (G ® A ® A),",*,; @ M. Us-
ing Condition 2 of Sect. 5 of [18], one gets M, € C, G, A" A" ;MY = M,,".
Multiplying from the left by A" = (G~ !)" and setting UY; = M,", one gets
AU = Ul Am e,

UeMor(4,A®A4)={0}, U=0,M=0, K=K.

Therefore uniqueness follows. Expanding (1.15) and using (1.7), one gets that (after
a long computation) the total coefficients multiplying dx® from the right are zero if
and only if ¥ =0 (we use the results of [18]: Proposition 5.3 and Remark 5.4 for
N =1, (3.61) and (3.30)). Thus the existence statement and (1.7) are proved. [

All the assumptions (including (1.5)—(1.6)) are fulfilled if H is a quantum
Lorentz group [28], G is a quantum Poincaré group and M is the corresponding
unique quantum Minkowski space [19]. According to Theorem 1.1, there exists
4-dimensional covariant differential calculus on the quantum Minkowski space iff
F =0, iff =0 (see the proof of Theorem 1.6 of [19]), which holds for all cases
except of the following:

1), t=1,s=1, to € R\{0},
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5), t=1,s==l1, tp € R\{0},
4),s=1,b+#£0,
(in the terminology of Theorem 1.6 and Remark 1.8 of [19]). Then N = 4. Such a

calculus is unique.
Let (o, 4) be a Hopf x-algebra. Then § is always invertible. We also assume

A=A, fi(Sa") = fij(a), #'(S@*)) =ni(a), TV =T", i,j=1,...,N, a€ o .

In that case [18] (£, 4) has a unique Hopf *-algebra structure such that (o7, 4) is
its Hopf *-subalgebra and y™* = )*. Moreover, ¢ is a *-algebra with * defined by
x* =x' and ¥ is a *-homomorphism.

Proposition 1.1. Under assumptions as above the N-dimensional covariant differ-
ential calculus on M described in Theorem 1.1 possesses a unique * : I'"' — '
such that:

1. (wa)* = a*0*, (aw)* = w*a*, ® € ', a € G,
2. (da)* = d(a*), a € %,
3. Y N (0*) = (PN (0))*®*, o € TN

Proof. We must define x : I'"! — I'"! by
(dx'a)* =aldx', a; €. (1.17)
By virtue of (1.7) of the present paper, (4.14) and the next formula of [18]
(xdx’ ) = (R7ydx*x' + ZVdx*)* = R (x'dx* — Z™dx®) = dx/x’ .

But
(dx )" = (dxk pd (x))* = pid (') dxk = dx*[psk (pid (') *)].

Therefore p*(pi/(a)*) = a*&’; for a = x' and hence (p is a unital homomorphism)
for all a € /. This means (q;dx/)* = dxja;‘, a; € . This and (1.17) prove condi-
tion 1 for any o = dx'a; € I'"!. Writing a € € as a polynomial in x/, using condi-
tion 1 and (dx')* = dx' (see (1.17)), one gets condition 2. By virtue of (1.17) and
(1.8) we obtain condition 3. [

In particular, all the above *-structures exist for quantum Poincaré groups [19],
quantum Minkowski spaces [19] and 4-dimensional covariant differential calculi on
them.

Remark. 1In the case of Z =T = 0 formulae (1.7), (2.4), (3.1), (3.8), (3.9), (3.13)
and the second formula of (3.2) or their analogues were studied in several contexts
in [21,26,4,13,24,5,1].
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2. Exterior Algebras

In this section we construct the exterior algebras for the N-dimensional covariant dif-
ferential calculi described in the previous section. In the case of quantum Minkowski
spaces the right ¥-module of k-forms has dimension (:) as in the classical case.

Throughout this section T"' = (I'"!, WA d) is an N-dimensional covariant dif-
ferential calculus on quantum homogeneous space M endowed with the action of
the inhomogeneous quantum group G as described in Theorem 1.1. In particular,
we assume all the conditions introduced before Theorem 1.1 and that ' = 0.

Definition 2.1 (cf. [27,21,15])). We say that '™ = (I'",¥",d) is an exterior al-
gebra on M iff

L. I =@, """ is a graded algebra such that I\’ = € and the unit of €
is the unit of I'",
2. YN TN - BQ T is a graded homomorphism such that

(eRid)P" =id, (d® YHP"=Uxid)P", ¥V=y,

3.d:T™ —T" is a linear mapping such that

(a) d(I'™) C TAFD = 0,1,2,...,

(b) dONO)Y=dONO + (=1 OO, 0 € T™, 0 € I (A denotes multipli-
cation in I'),

(c) (id ® )P = P'd,

(d) dd =0,

4. I''" = span{(da) \ ... Nday)ag : ag,ai,..., a, € €} (we omit A if one of
multipliers belongs to €),

5. 7N, WAL d & — TN are as in Definition 1.1 and Theorem 1.1,

6. if (I A, 'f’A,ci) also satisfies 1-5 then there exists a graded homomorphism
p: TN — 7" which is an identity on € and satisfies ¥~’Ap = (id ® p)¥P", dp = pd
(universality condition).

We set Ry = 186D @ R 1®" k=D R = Ry, - --- - Ry, for any permuta-
tion m=1"ty -t €1, where ¢ is the transposition k< k+1, 4, =
L3 en, (Z 1B Ry, A2 = Ay, Rupdy = AR = —An, k= 1,2,...,n— 1.

Let of ={oj:i=1,...,dim4,} be a basis of im4,, f' ={p:j=1,...,
dim(1 — 4,)} be a basis of im(1 — 4,). Then o« LS’ is a basis of (C")®". We
denote by a U f§ the dual basis. Therefore

oA, = o, f4,=0, (2.1)

A, = ool . (2.2)

1

Theorem 2.1. There exists a unique exterior algebra I' on M. The n-forms

o =o' A A-NdxR, =1, dim4,, (23)

J PR

Jorm a basis of the right €-module I'™". Moreover,

dx' Ndx) = —RVydx* Ndx!, ij=1,...,N. (2.4)
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Remark. The first statement of the theorem follows also from the general consid-
erations (cf. e.g. [2]).

Proof. Assume that S™ = (", ¥{,ds) satisfies conditions 1-5 of Definition 2.1.
Acting ds on (1.7), one gets (2.4). Set dx} =dx" A---Adx", where J =
G1,...,in) € {1,...,N}" = N They generate the right %-module I'". We obtain
dxf = —(Ru ) kdx¥, dxf = (1) " (Run ) kdxs, dxf = (4n) kdx§, (2.3) gener-
ate the right #-module S"". Moreover, " = {dxja, : J € N™}, formulae for
ds(dxtay), Y2 (dxlay) are determined by conditions 2 and 3(b)(c)(d) of Defini-
tion 2.1. Thus it suffices to construct I' = (I'\, ¥/, d) which satisfies the condi-
tions 1-5 of Definition 2.1 and such that w’, y =1,...,dim 4,, are independent in
the right €-module I'\".

Weset I =TM, T® =4, T®" =T ®q...0¢, I'® =@, '®", dx' = dx"
A---Ndx™ for I = (iy,...,i,) € N,

» = span{dx’ — (4,) gdx* :J € NW},
o0 o0
["=11¢, L=@L', I'"=r®/0, 1m=@r"=reL.
n=0 n=0

Then I'®" are %-bimodules, I'® is a graded algebra, «’, y = 1,...,dim4,, form
a basis of the right @-module I'™" (cf. (2.1)). We see that L} = span{dx’ +
(R Y xdxX :J € N®, k=1,...,N —1}. Thus L is the right ideal generated by
X @o*, KeN®, s=01,...0,k=1,..,N, where o*=dx®¢dx +
RYdx* @4 dx'. Using (1.7) and (3.11), (3.61) of [18], one shows that

X" a)ik — Rsknb Rmijs a)jnxb + CL)ab lmkab,

where / =Z @1+ (R® 1)(1® Z). That and (1.7) prove that L is the ideal generated
by ™ and condition 1. of Definition 2.1 follows. Moreover, (2.4) is satisfied.
We define a linear mapping ¥® : I'® — I'® by

P (W, Qg Qg wp) = V0 oD © 0P @@ 0@, (25)
where wy € I'", PN (w;) = oV @ o (Sweedler’s notation), s = 1,...,n. Then
P® is well defined, PP = A‘ AX, ® o™ (see (1.8)), YO(L)C BRL, P® de-
fines Y : I =T®/L - BT A which satisfies condition 2 of Definition 2.1.

We set d(w’a,) = (—1)'w’ Ada,, i.e. (see (2.3), (2.2))
d(dx’a;) = (—DVYldx’ Nda;, a; €%, JeND, |J|=n. (2.6)
Conditions 5, 4 and 3(a)(c) follow. Moreover,

ddx’ =0. 2.7)

We shall prove
d(aydx’y=da; Ndx’ . (2.8)

Due to (1.7),(2.6) and (2.4)
d(x'dx’) = d[RY (dxF)x' + Z,dx'] = —RY ydx* A dx' = dx' A dx/.
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Thus ¥ e E={a € ¥: d(adx’) =daNdx', i = l,...,N}. Moreover, E is a unital
algebra (we use (1.9) and (2.6) in order to find LHS in the definition of E and
perform a direct computation). Hence (2.8) for [J| = 1 follows. According to (2.6),
d(dx* A w) = —dx' Adw for w € T'\. Using this, (1.9) and the mathematical induc-
tion w.r.t. |J|, a simple calculation proves (2.8) in the general case. Then it is easy
to check condition 3(b).

We set F = {a € € : dda = 0}. Then x' € F (see (2.7)) and F is a unital algebra
(we use (2.6), (2.8)). Thus F = €. This and (2.7) show ddw = 0 for any v = dx’a,
and also condition 3(d) follows. [

We also have

Proposition 2.1. Under the assumptions of Proposition 1.1 there exists a unique
graded antilinear involution * : I'" — I'™ such that

(@) (ONO) = (=10 N0, 0 € TN, 0 e TN,
(b) PN0*) = (PN0))®*, 0 €T,

(¢) d(0*) = d(B)*, 0 € T'™,

(d) * on I'"°, I'"' coincides with the original one.

Proof. We use the notation of the proof of Theorem 2.1. We define * : I'®" — ['®"
by

n(n—1) * *
(W Qg - Qg wy)" =(—1)"2 W, Qg -+ Qg W

for wy,...,w, € I'\'. Using (4.14) of [18], (w")* = dx/ Q¢ dx' + R/ jdx' Q¢ dx* =

@'. Hence L* C L and we get * : I'" — I'’V" satisfying conditions (a)(d). Condition
(b) follows from (2.5). We see that conditions (a)(d) imply

(dx'a;)* = af(dx’ )" = (= D)IUI=DR2gx gyl | (2.9)

where I’ = (iy,...,i1) for I = (i1,...,i,). Therefore * is unique. Set 0 = dx'a;.
According to (2.9), (2.8), condition (a) and (2.6),

d(6*) = (=DMI=D2g(a,y* Adx" = (=D)dx! Aday)* = (d6)*,

and condition (c) follows. [

In particular, quantum Minkowski spaces with ' = 0 (described after the proof
of Theorem 1.1) admit a unique exterior algebra as described in Theorem 2.1 and
Proposition 2.1. Moreover, using the arguments of the proof of Theorem 1.9 of [19],
we get

Proposition 2.2. Let M be a quantum Minkowski space. Then dimA; = (2),
k=0,1,2,3,4, dimA; =0 for k > 4.
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3. Differential operators

Here we introduce and investigate the properties of the momenta P; = id;, P/ = id/,
the Laplacian OJ and the Dirac operator P. In particular, the momenta commute with
(0. We heuristically show that P/, (J are hermitian.

Throughout the section we deal with the exterior algebra on M as described
in Theorems 1.1 and 2.1. Further assumptions will be made later on. Let us recall
that the partial derivatives 0; were defined by (1.9) and satisfy (1.13), (1.11). Their
values can be computed using the unital homomorphism (1.10). They satisfy the
following.

Proposition 3.1. 1. One has

010k = RV40;0;, i,j=1,...,N . (3.1)
2. There exist X/, Y; € &' such that
o = (X ®id)Y, 0 =(Y®id)Y. (3.2)
3. One has
0cpa’ = Pa'0sR" se;  Rpapc?pa” = pa'po’RM e . (33)

Proof. Ad 1. Let a € 4. Using (1.9) and (2.4), we get
0 = dda = d(dx'0;(a)) = —dx' A d(0:(a)) = —dx' A\ dx/d;0:(a)
= —1(dx' Ndx/ — RVydx* A dx")0;0(a) .
But i . )
E(dx’ Adx' — RYydx* A dx'y = (d2) ydx* A dx! = (o) w®

(we have used (2.2), (2.3)). By virtue of the independence of w*, (a})Y0;0; = 0.
Multiplying by (o) and using (2.2), we get (3.1).

Ad 2. We set
X~ ((f’j(sw)) Yoo 0 ) ve o (3.4)
0 &(a) ’
il \N i W
X(y') = ((z JO,;z:l (51())1':1)’ i=1,...,N. (3.5)

There exists a unital homomorphism X : # — My1(C) which satisfies (3.4)—(3.5)
(X(Iy) = 1; using F =0 and (2.18) of [18] for b = %1, v € Rep H, we show that
X(a), X(y') satisfy (1.1)=(1.2) for a =v';, v € Rep H). We have

X = (/le);\,/1=l (Yj)jvzl
0 s )

where X,/,Y; € #'. By a direct computation (cf. the proof of Theorem 1.1)
Lx) = ®id)P(x) (3.6)
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for x = x' € €. But £, X are both unital homomorphisms. Hence (3.6) follows for
all x € €. This proves (3.2).
Ad 3. We set X;" =Y, X, =0, X;+ = ¢. We claim that

Xa? * X. DK = Ko oP (X « XD, a,e,s,t=1,...,N,+, 3.7)

where
RT 0 0 0
0 0 1 0
=19 100
0 0 0 1

Indeed, since X is a homomorphism, it is enough to check (3.7) on a € &/ (which
follows from (3.4) and the last formula before Proposition 3.14 of [18]), and on y’,
i=1,...,N, (which can be obtained by a direct computation — see (3.61) of [18]).
Using (3.7) and (3.2), one easily gets (3.3) and also (3.1). O

Let us notice that
dx'0;(x*a) = d(x*a) = (dx*)a + x*dx'0,(a)
= dx'[6%;a + R ux"0)(a) + ZM;0/(a)),

ie.
0k = oF + (RM ,x" + Z¥ )0, . (3.8)

In the following we assume that g = (g% )fX b1 € Mor(,A® A) is a fixed
invertible matrix. It is called the metric tensor. Then (see (1.12) of [18] and
(1.6)) Rg =g. Moreover g~' = (gap)y,_y € Mor(A® A,I) (AgA” =g implies
A~V =gATg=!, ATg='A =g~ '). In the case with % (as in Propositions 1.1 and
2.1) one has § € Mor(I, A ® A), where §” = g//. Then we also assume § = g. Such
g exists e.g. for quantum Poincaré groups and in this case is given (up to a nonzero
real multiplicative factor) by ¢'/2m, where m is given after Theorem 1.12 of [19]
(we use (2.2) of [19], m™! = (E' @ E't)(M@X ' @ 1)(V @ V)).

We set 0% = g®0p, P, = i0,, P* = i0“, O = ¢"9,;0; = g;;0'¢'. Moreover, 0'¢/ =
R, 0%0" (we use (3.1) and twice ¢/?R%,, = R/ g%, which follows from R/, =
(R = flu((A71Y) and A~' = gATg™ ). Using (3.64) of [18] for m = g and
(3.1), one easily gets

(0, = 0,00 (3.9)

Therefore [J commutes with all d;, o, P;, P¥. Moreover, (1.11) implies
(id ® O)¥(a) = ¥((Xa)), (3.10)
(id ® ¢)¥(a) = (A7, @ DP((a)) . (3.11)

The momenta P;, P/ transform under the action of the inhomogeneous quantum
group G in the same way as the partial derivatives d;, ¢/ in (1.11), (3.11).
The Dirac gamma matrices are defined as matrices y* € My(C), a=1,...,N,
satisfying
Y9+ R¥yoy? = 2¢"0, a,b=1,....N, (3.12)

(cf. [22,23]). It seems that one can analyze irreducible representations of the re-
lations (3.12) only case by case for particular matrices R. In the following we
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assume that such an irreducible representation has been chosen. Then the Dirac
operator J = 0,7 satisfies

§ = 0:007°" = 1(8:04 + R 4:0,05)yy*

= J0a05(r"7" + RMcy*y) = ¢70,05 - 1 = 0 1

(cf. [23]). Let P=ig. Then P* = —O- 1.
Later on we shall need the following.

Proposition 3.2. One has
Ixk = g* + R* x40° — (RZY*,0° . (3.13)
Proof. According to (3.8), &xF = g/¥ + G/ ,,x20> + V7*,0b, where
Gy = 'R iagi = f* (@' Aignn) = f*a((A7") ) = (R™") oy = R o,
Viky = ¢ ZM g1 = n (¢ Aign) = n*((A7")/p) = —(RZY*,

(cf. the proof of Proposition 4.5.2 of [18]). O

In the remaining part of the section we shall heuristically prove that the op-
erators P?, [ are hermitian. A strict proof of that fact would need the existence
of topological structures on the quantum spaces G,M. Therefore the considerations
below serve as a motivation for such a topological approach. We shall assume the
existence of a G-invariant measure u defined on some “functions” x on M (elements
of & are also “functions” on M but we don’t expect u to act on them; nevertheless

we shall disregard such subtleties here). Thus (id ® u)¥x = u(x)lz. One has the
scalar product (x | y) = u(x*y). Using (3.2), we obtain

(I | 0x) = p(0x) = w(Y; ® id) ¥ (x)
= Yi[(id ® p)¥(x)] = Yi(Iz)(x) = 0

(0 =01 = Y:«(DI), (I|P?x) =0, (P*)*I = 0. Also P*I = 0. Moreover, the hermitian
conjugate of (3.13) yields

xk(ﬁj)* = gkj + Rkjba(ab)*xa + ijb(ab)* B
i.e.
(0b)*xa — _gba +Rbaijk(aj)* _ (RZ)bas(aS)* .
This means that P® and (P?)* commute with x? in the same way. Thus they act in

the same way on all elements of ¥ and P® is hermitian. This and g, = g, show
that O is also hermitian.



Klein—Gordon and Dirac Equations on Quantum Minkowski Spaces 581
4. Solutions of Klein—-Gordon and Dirac Equations

We shall consider formal solutions ¢ of the Klein-Gordon equation ((J+ m?)p = 0
and Dirac equation Pp = m¢ obtained using the plane waves e~ . But now p,
are not (in a general case) eigenvalues of P,.

Setting F;/(x*) = R¥;,x" 4+ Z¥; and using 0;x* = 6%, + F;/(x*)0; (see (3.8)), one
gets

n—1 . .
8,0 Xy = S PR, (R Fy, e (b e e (4.1)
m=0

kr ... xkn We shall consider two cases: Z = 0 and

where the m = 0 term reads 6% x
R=r.

1. Z=0. Let # be a new *-algebra generated by P*, k=1,...,N, satisfying
(P)* = p* and p*p' = R*,;p'p/ (same relations as for P¥ but w.r.t. the opposite

multiplication). Set p, = gap’, p= p; ®7/. Then

PaPb = PePIR o . (4.2)

We put x@ p=x*® p, € 4®%. So in a sense we assume that p, commute
with all x® and 0,. This doesn’t seem to be the case in [10,6,11,1] (cf. also
[4,14,5]) although calculations in the present case 1 (up to the moment when
we use m) are quite similar as in these papers. Using (4.1) and (4.2), one ob-
tains

n—1

G RIDEep) =X (R p)xp) '=nl® p)xep) . (4.3)

m=0
Thus in the sense of the formal power series w.r.t. ¢

(0, ®id)e™ 8P — _if(] ® p;)e 16®P) (4.4)

O®id)e " ®P) = (] @ 5)e™1®P) | (4.5)

where s = ¢" p,p; = gimp™p' = p:ip' is a central, hermitian element of #. Let n
be an irreducible *-representation of & in a Hilbert space H with an orthonormal
basis e;, k € K. We denote m(x) = (ex | m(x)e;), x € #. In the remaining part
of the Z =0 case we assume that all performed operations are well defined and
have “good” properties. Acting id ® m; on (4.5) and setting n(s) = m? € R, (id ®

(e @Ry = ) one obtains Ool) = —2m?¢{Y). In a topological approach one
should be able to put t = 1. Then ¢ = @5{:1:1) is a solution of the Klein—Gordon

equation (g = —m?¢ in a usual sense (if m = 0). Also (see (4.4))

i =1 i =1
Pl = m(p)el™"

so one should get a real spectrum of P/ (p/ are selfadjoint).
Let us pass to the Dirac equation. We denote the canonical basis in C¢ by &,

m=1,...,d, go,(ctlzn = (og,) ® &. Tensoring (4.3) by /¢, one obtains

Janlx ® p)' @ en] = npos)l(x ® P ®enl,
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where e.g. (13) means that ¢ acts in the first and the third factors of the tensor
product. Thus
P(B)[e—it(x(@.v) ® em] = tpm)[e—it(xobp) ® &m] -

Acting by id ® my ® id, we get
P, = ()1 ) (4.6)

Set U%}, = mis(pa)(7?) n. One has U? = m?1. The possible eigenvalues of U are

+m. Suppose Uv = mv forv € H ® C?. Put (pff,) =% (pgz Then P(pff,) = tm(pffl). Ina

topological approach one should be able to put # = 1 and find a solution ¢ = (pfff”
of Dirac equation Po = me (if m = 0).

2. R=r1,ie RV} = ,0,. Then Rg = g implies g = g** = g®. According to
the proof of Proposition 4.5.2 of [18], RZ = —1Z, Z = —Z, Z%. € iR. Let p* € R,
k=1,...,N, p;=gup* €R. Setting U;' =Z¥,p, € iR, x- p=x/p; € €, we get
Fi'(x- p) = 8's(x+ p) + U;'. This and (4.1) yield (U*)/ = U - U2+ --- - U, _7)

0;(x- p)y' = > UG pUtxp)e s (e pUYY
r‘g(;,' Ozrrn_gm n——rl

Xpb(x . p)n—m—l .

Let G =) 2,(tU) (in the sense of formal power series w.r.t. t). Since x - p com-
mutes with U,

) oo I
9 2 (oxpY' =3 S (G tpy(ix - p)' .
n=0 1=0 r=0
But using mathematical induction,
] < [k
Z Gr+1 — z (+ )(tU)k_l .
r=0 k=1 \ k

Therefore

o p = £ ()Wt o

dje™™ P = [p(—itU)],>(—itpp)e ™" P, (4.7)
where p(x) = 121 )% = %. Using (3.62) of [18] for m = g, one obtains
Mg = -7Y 4", (4.8)

U,'g7 = —g"Uy. By virtue of the mathematical induction (U™),'g"”7 = ¢g"[(=U)"]¢,
p(—itU), g7 = g"p(itU)s/. Thus

Ce™™"7 = g" p(~itU ) p(~itU);*(~ paps)e™™"?

= g°h(—itU)s"(~1* papp)e™™" 7 ,
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. 2
h(x/2
where A(x) = p(—x)p(x) = (ﬁx%ﬁ) . Set

m? = ¢*h(—iU)" papr €R . (4.9)

In a topological approach one should be able to put =1 and find a solution
@ = e ™" P of the Klein—Gordon equation ((J+ m?)p = 0 (if m = 0).
Using (4.7), one would also have

pj(p — g)j(t=1)(p ,

where 2/(=D) = gis p(—iU),® p, € R.

Let us pass to the Dirac equation. Setting ¢, = e™"? ® ¢,, one gets Pp, =
(?)",q)k, where Q‘ =Py, P = p(—itU)jbtpb € R[[7]]. In a topological approach
one should be able to put t = 1. Then ﬁ‘z = g#2P, 21, the possible eigenvalues of 4
are +m, m = \/¢”*P;P;. Suppose ?v = mo for v € C?. Put p=vp, =" PR
Then ¢ is a solution of the Dirac equation P = mo (if m = 0).

Let us notice that spectra of P/, [J obtained (formally) above are real in agree-
ment with hermiticity of those operators, heuristically asserted at the end of Sect. 3.

The case R = t covers e.g. the quantum Poincaré groups of case 1), s =1,¢1 =1,
to = 0. Many of them are described by Remark 1.8 of [19] and [30]. Then eigenval-

. 2, 2
ues / of —iU are real or imaginary which yields factors (Sm}fﬁfy 2)) , (s1r1|9r}|2/2) )

in (4.9) (when U is diagonalizable). Despite the sine factors, m? of (4.9) is never
bounded in the cases given by [30]. Hyperbolic sine factors can improve the proper-
ties of the propagator m (M = 0) (although it is never integrable in
the cases given by [30]) e.g. b =ee; AH, a=0, c =0 in [30] (¢ € R) corresponds
to U3 = U = igp;/2, other U} are 0 and we get the propagator

i

sinh(ep;/4)1* '
(p%—pﬁ)[—glgf%] ~ P -y M

A detailed analysis of Feynman diagrams is not yet possible since the measure
in the p-space and interaction factors are not known. Let us also notice that for
H = S0(4), U is antisymmetric and we can have only factors of the second type.

Remark. In [25] differential calculi corresponding to a quantum Minkowski space
of [8] are considered. Despite other choices of axioms the result is the same as
here: there are no 4-dimensional covariant differential calculi in that case (due to
[30] o # O for [8]). But nevertheless a different approach suggests a similar form
for the propagator as above [8].

5. The Fock Space

Here we define the Fock space for noninteracting particles on M. We assume that
G has CT Hopf *-algebra structure # as in Theorem 3.1.3—4 of [17] which is the
case e.g. for quantum Poincaré groups of cases 1) 2) 3) 4) (except 1), s=1,¢t=1,
to #0 and 4), s =1, b # 0) as proved in Theorem 3.2.3 of [17].
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We follow the scheme of [16] but now we have the left (instead of right) action.
The particles interchange operator K : ¥ ® € — ¢ ® € is defined by

Kax®y)=2" 0x)® 0x®),

where P(x) =xD ex®, P()=yDey?. We set KM =19""DoKg
1®0—m=1) . g®n _, ¥ m =1,2,...,n — 1. Then one obtains the representation of
the permutation group

T, Dty = (mym+ 1) — Tmiry = K™

acting in ¥®" which defines the boson subspace ¥®s". The group G acts on €%"
by the linear mapping P®" : 4" — B ® €©" defined by

PO @ @x) =x eV @D @ @2

X1y..., X, € €. One has P®"K™ = (id ® K™ )P®" ie. the actions of G and II,
agree. In particular, one can restrict P®" to €% getting P& : 9" — B R GO,
If W:% — € is an operator related to a single particle then the corresponding
n-particle operator is given by

“ 1
WO =3 mamW @1 N = — 3 m(W @ 1%07D)
m=1 (n — 1) o€ll,

xm; @O s g

(the m™ term in the first sum is the operator in ¥®" corresponding to the m™ parti-
cle). We can also define the Fock space F = @D, , ¢®" and the operator (P, , W™
acting in F.

For particles of mass m we should consider ker((D+ m?) instead of % and a
scalar product there but it would lead us beyond the scope of the present article
(heuristically e.g. W = P*, k=1,...,N, would be hermitian operators in such a
space — see (3.9)).
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