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Abstract: Covariant differential calculi and exterior algebras on quantum homoge-
neous spaces endowed with the action of inhomogeneous quantum groups are clas-
sified. In the case of quantum Minkowski spaces they have the same dimensions
as in the classical case. Formal solutions of the corresponding Klein-Gordon and
Dirac equations are found. The Fock space construction is sketched.

0. Introduction

It is well known that lattice-like theories serve as regularization schemes in quantum
field theory. But after introducing the lattice, we no longer have the full symmetry
of the original theory. On the other hand, there was a lot of interest in quantum
spacetimes endowed with the actions of quantum groups which are deformations
of the objects used in the standard field theory (cf. [20,3,8,7,24,13,9,5,29,19]).
There were two motivations of such a development: providing naive models of
changed geometry at the Planck scale and attempts to regularize the theory while
preserving the "size" of the symmetry group in such a way that the regularized
theory could still be imagined as the theory of our universe. Although the present
paper doesn't provide support for any of these claims, we find a lattice-like behavior
of certain quantum Minkowski spaces. It has two aspects:

1. It was found [12] that in the differential calculus on R corresponding to the
one-dimensional lattice one has

xdx = (dx}x + Idx ,

where x is the identity function and / is the lattice constant. In Sect. 1 we
describe differential calculi on quantum Minkowski spaces by a very similar
relation (1.7).
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2. For the above differential calculus on R one has df — dxd(f) = d(f)dx, where

/ is a function on R, d ( f ) = (f(x + /) - f(x))/l, d(f) = (/(*) - /(* ~ /))//
(cf. [12]). Setting A = dd = dd, one gets

Δe-iι* = sL(-p2)e-iP^

where k = pl/2. Thus we obtain an additional factor ^j^ (comparing with the

action of the usual Laplacian d2/dx2). In Sect. 4 similar factors appear in the
description of eigenvalues of the Laplacian on quantum Minkowski spaces.

In Sect. 1 we recall the definition of homogeneous quantum spaces M (e.g.
quantum Minkowski spaces) endowed with the action of inhomogeneous quantum
groups G (e.g. quantum Poincare groups). We classify the differential calculi on
M which have the same properties as in the classical case. They exist if and only
if a certain matrix F (related to the existence of quasitriangular structure on G
[17]) vanishes, in which case they are unique. In Sect. 2 we prove that each such
calculus has a unique natural extension to an exterior algebra of differential forms.
In the case of quantum Minkowski spaces the modules of A -forms have the classical

dimensions (*). In Sect. 3 the properties of partial derivatives, Laplacian and the
Dirac operator are investigated. We heuristically assert hermiticity of the momenta
and Laplacian. In Sect. 4 we find formal solutions of Klein-Gordon and Dirac
equations for two special classes of M. They are obtained from the plane waves
e~ipaX\ but the eigenvalues of the momenta are related to pa in a complicated way
in general. The sketch of the Fock space construction is provided in Sect. 5.

We sum over repeated indices (Einstein's convention). If V, W are vector spaces
then τ\V®W-*W®V\s given by τ(x ® y) = y <g) x, x G V, y G W. We denote
the unit matrix by ft, t®k = I ® - - 0 1 (k times). If ««/ is an algebra, v G Af#(«s/)5

w G MK(^\ then the tensor product υ 0 w G MNK(s/) is defined by

(v (8) w)iju = vl

kwih i,k= !,...,# J,l= l,...,K .

We set dim v = N. If ja/ is a *-algebra then the conjugate of v is defined as v G
MTV(J/), where vlj = (vlj)*. We also set υ* = ϋτ (vτ denotes the transpose of v, i.e.

(i/y = vΊ).
Throughout the paper quantum groups H are abstract objects described by the

corresponding Hopf (*-) algebras Po\y(H) = (jtf,A). We denote by A,ε,S the co-
multiplication, counit and the coinverse of Pόly(H). We say that v is a representation
of H (i.e. v G Rep H) if v G MN(s/)9 TV G N, and

in which case S ( v l j ) = (v~l)lj. Matrix elements of all v G Rep H linearly span
j/. The conjugate of a representation and tensor products of representations are
also representations. The set of nonequivalent irreducible representations of H is
denoted by Irr H. If v, w G Rep H, then we say that A G Mdimι xdimw(C) intertwines
υ with w (i.e. A G Mor(f,w)) if Av = wA. For p,pf G stf' (the dual vector space of
J3/) one defines their convolution p * p1 = (p ® p')Δ. For p G j/y ', a G J/, we set
p * a = (id 0 p)^0, β * p = (p
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1. The Covariant Differential Calculi on Quantum Homogeneous Spaces

In this section we recall the definition of the quantum homogeneous space M en-
dowed with the action of the inhomogeneous quantum group G [18]. The cor-
responding unital algebra ^ = Poly(M) is generated by quantum coordinates xl,
i = 1,... ,7V. We prove that there exists a covariant differential calculus on M which
has dx*9 i = 19...9N9 as the basis of the module of 1-forms if and only if a cer-
tain matrix F = 0. Moreover, such a calculus is unique. We specify the quantum
Minkowski spaces endowed with the action of quantum Poincare groups [19] for
which F = 0.

Throughout the section Poly(//) = (j/, zl) is any Hopf algebra with invertible S
(we need invertibility of S in the proof of Theorem 1.1, it was not needed in [18])
such that

(a) each representation of H is completely reducible,
(b) A is an irreducible representation of //,
(c) Mor(ι; 0 w, Λ 0 t; 0 w) = {0} for any two irreducible representations of H.

Moreover, we assume that f l j 9 ηl G J/', Tij G C, ij = 19...9N = dim/I, are
given and satisfy

1. j/ 3 a —» p(a) = ( Λ ( \ ) ^ MN+\(C) is a unital homomoφhism,
V υ £W /

2. As

t(fr * a) = (a * fs

t)A'r for a G j/,
3. R2 = 11 where Wsm = fm(Aj

s),
4. (/I (g A)klίj(τlJ * a) = a* τkl for α G J/, where

τ?J = (R- Wj

mn(ηn *ηm - ηm(An

s)ηs + Tmnε - fn

b * fm

aT
ab) ,

5. ^sF = 0, where A^ =10101— /? 0 11 —

(1 0 Λ)(Λ 0 1) - (Λ 0 U)(l (g) R)(R 0 11), = &(Λk

m)9

6. y^3(Z 0 1 - 1 0 Z)Γ = 0, ΛΓ = -Γ, where

In particular, 4-5 are satisfied if τij = 0. The inhomogeneous quantum group
G corresponds to the Hopf algebra Poly(G) = (@,A) defined (cf. Corollary 3.8.α
of [18]) as follows: ^ is the universal unital algebra generated by j/ and y\
ί — 1, . . . , d, satisfying the relations I@ =7^,

fa = (a * /*,)/ + α * ̂ 5 - (̂̂  * α), a G ̂  , (1.1)

(/? - i)w

l7(yy - ̂ '(^)/ + Γ' - ̂ ^r^) = o . (i.2)
Moreover, (j/5 A ) is a Hopf subalgebra of (^,Δ) and Zl yl = A1 j (g) y + y 0 / (note
that the yl were denoted by pi in [18]). We define ^ = Poly(^) as the universal
unital algebra generated by xl, ί = 19...9N9 satisfying

(R - Wjki(xkxl - Zkl

sx
s + Tkl) = 0 . (1.3)

The action of G on M is described by the unital homomoφhism Ψ : Ή -
such that

Ψ(xl) = AJ 0x j + y 0 / , (1.4)
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(ε®id)Ψ = id, (id <g> Ψ)Ψ = (A ®id)Ψ. The pair (#, Ψ) was investigated in
Sect. 5 of [18]. We assume

) = {0} , (1.5)

Mor(/,Λ (S) vl) Π ker(Λ + 1) = {0} (1.6)

((1.5)-(1.6) are satisfied for G being quantum Poincare groups [19]). Then M
is called a quantum homogeneous space and has the properties analogous to the
Minkowski space (cf. Sect. 5 of [18], Sect. 1 of [19]). The 'sizes' of Λ and #
were described in Corollary 3.6 and Proposition 5.3 of [18].

Motivated by [27,21, 15] we have

Definition 1.1. We say that ΓΛ1 = (ΓΛ1, ΨM,d) is a covarίant differential calculus
on M if

1. ΓΛ1 is a Ή-bimodule, ωl^ = I^ω = ω for ω G ΓΛ1,
2. <FΛ1 : ΓΛ1 -> Ά ® ΓΛ1 satisfies
(a) (ε <g> id)<FΛ1 = id, (id ® <FΛ1)<FΛ1 - (zl ® id)<FΛ1,
(b) <FΛl(ωfl) = <PΛ1(ω)y(ίi), <FΛ1(αω) = ϊ/(α)lί/Λ1(ω)/or ω e ΓΛ1, α G ,̂
3. d : # — > ΓΛ1 is a linear map such that
(a) d(ab) = a(db) + (rfα)6, a,be%,
(b) (id®rf)y = ?PΛ1rf,
(c) ΓΛ1 = span{(da)b : a,b G }̂.

We s<2y ί/zαί ΓΛ1 w N -dimensional ifdx\ ί = l,...,N9form a basis of ΓΛ1 (ΛΛ the
right <$ -module).

Theorem 1.1. There exists N -dimensional covarίant differential calculus on M iff
F = 0. In that case it is uniquely determined by

xldxj = Rίjkidxkxl + Zίj

kdxk, ij = 1, ... ,N , (1.7)

i=l,...,N. (1.8)

Proof. Let ΓΛ1 be TV-dimensional covariant differential calculus on M. Using (1.4)
and condition 3b) of Definition 1.1, one gets (1.8). The linear mappings dl : Ή — > ,̂
p/7 : # — > ,̂ /,y = 1, . . . , A/", are uniquely defined by

rfα = dxldi(a\ adx* = dxjp/(a) . (1.9)

Using condition 3a) of Definition 1.1 and (ab)dxl = a(bdxl), one gets that

(1.10)

is a unital homomorphism. Conditions 2b) and 3b) of Definition 1.1 imply

(1.11)

(1.12)

α € ^. Moreover,
(1.13)
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Conversely, any unital homomorphism (1.10) satisfying (1.11)-(1.13) for α G ^
defines, through (1.9), a covariant TV-dimensional differential calculus on M. So we
need to find all such homomorphisms. Let us notice that it is sufficient to check
(1.11)-(1.12) for a = xl

9 1= l,...,N (they are trivial for a = I and if a,b satisfy
them then-using the homomorphism property-α b does also). But for a = xl (1.11)
is trivial. Moreover, ^ is determined by

L o xι

1= 1,...,7V, where Kt

lJ = pij(xl). Equation (1.13) and the existence of ££ (for
given K) are equivalent to (1.3) with xl replaced by hl. This can be translated to

d[(R - %yjki(xkxl - Zkl

sx
s + Tkl)] = 0 , (1.14)

[(R - iyj

kl(xkxl - Zkl

sx
s + Tkl)]dxm = 0 , (1.15)

where the left-hand sides should be expanded using condition 3a) of Definition 1.1
and (1.9) so that dxs appear on the very left of the equations. Then the condition
means that the total coefficient multiplying dxs from the right is zero. The condition
(1.12) for a — xl means

Al

tA*j <8> Kk

tj + ylAl

k <8> / = (Aj

k

i.e.

Ψ(Km

li) = (G <8> A <g> A)m

lik

 tj®Kk

tj + Gm

kylAl

k®I , (1.16)

where (G~l V = A^ (G = [S-l(Λ)]τ = (AT)~l\ Thus we need to find K satisfying
(U4)-(1.16).

Now (1.7) is equivalent to Kk

lJ = ρk

j(xl) = Rlj

kϊx
l + Zlj

k. It is easy to check
that such a K satisfies (1.14) and (1.16). Suppose there exists another K satisfy-
ing (1.16). Then M = K-K satisfies Ψ(Mm

li) = (G®Λ®Λ)m

li,k

tj®Mk

tJ. Us-

ing Condition 2 of Sect. 5 of [18], one gets Mm

lί G C, Gm

k A1

 tA* jMβ =Mm

lί.

Multiplying from the left by Am

s = (G~l)s

m and setting UtJ's=Ms

tJ', one gets
Λ'tΛtjU'J's = Un

mΛm

s, i.e.

U G Mor(Λ A®A) = {0}, £7 = 0, M = 0, K = K .

Therefore uniqueness follows. Expanding (1.15) and using (1.7), one gets that (after
a long computation) the total coefficients multiplying dxs from the right are zero if
and only if F = 0 (we use the results of [18]: Proposition 5.3 and Remark 5.4 for
N = 1, (3.61) and (3.30)). Thus the existence statement and (1.7) are proved. D

All the assumptions (including (1.5)-(1.6)) are fulfilled if H is a quantum
Lorentz group [28], G is a quantum Poincare group and M is the corresponding
unique quantum Minkowski space [19]. According to Theorem 1.1, there exists
4-dimensional covariant differential calculus on the quantum Minkowski space iff"
F = 0, iff λ = 0 (see the proof of Theorem 1.6 of [19]), which holds for all cases
except of the following:

i), ί = 1 , 5 = 1 , ί0
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5), t = 1, S = ±1, ft, € R\{0},
4), s = 1, b φ 0,

(in the terminology of Theorem 1.6 and Remark 1.8 of [19]). Then N = 4. Such a
calculus is unique.

Let («β/, zl) be a Hopf *-algebra. Then S is always invertible. We also assume

Λ = Λ, f j ( S ( a * ) ) = f*j(a), ηl(S(a*)) = ιf(a\ TV = Γ", ij = 1,...,7V, a G ̂  .

In that case [18] (&,A) has a unique Hopf *-algebra structure such that (jtf,A) is
its Hopf *-subalgebra and yl* = yl. Moreover, ^ is a *-algebra with * defined by
xl* = χl and Ψ is a *-homomorphism.

Proposition 1.1. Under assumptions as above the N -dimensional covariant differ-
ential calculus on M described in Theorem 1.1 possesses a unique * : ΓΛ1 — > ΓΛ1

such that:

1. (ωaγ = α*ω*, (αω)* - ω*α*, ω G ΓΛ1, α G #,

2. (dά)*=d(a*\ flG^,
3. !PΛ1(ω*) = (Ψ^(ω)Y®\ ω e ΓΛ1.

Proof. We must define * : ΓΛ1 -> ΓΛ1 by

(έ/jc'α/)* = β* '̂, αf e # . (1.17)

By virtue of (1.7) of the present paper, (4.14) and the next formula of [18]

(xfdxJγ = (Rίjkidxkxl + ZlJkdxkY = RJ'iιk(xldxk - Zlk

sdxs) =

But

Therefore ps

k(pkJ'(aY) — a*& s for a = xl and hence (p is a unital homomorphism)
for all a G stf . This means (ajdxjY = dxja*j, aj G ̂ . This and (1.17) prove condi-

tion 1 for any ω = dxlai G ΓΛ1. Writing a G # as a polynomial in jc 7', using condi-
tion 1 and (dxιγ = dxl (see (1.17)), one gets condition 2. By virtue of (1.17) and
(1.8) we obtain condition 3. D

In particular, all the above *-structures exist for quantum Poincare groups [19],
quantum Minkowski spaces [19] and 4-dimensional covariant differential calculi on
them.

Remark. In the case of Z = T = 0 formulae (1.7), (2.4), (3.1), (3.8), (3.9), (3.13)
and the second formula of (3.2) or their analogues were studied in several contexts
in [21,26,4,13,24,5,1].
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2. Exterior Algebras

In this section we construct the exterior algebras for the TV-dimensional covariant dif-
ferential calculi described in the previous section. In the case of quantum Minkowski
spaces the right ^-module of A -forms has dimension (*) as in the classical case.

Throughout this section TΛ1 = (ΓΛ1, *FΛ l,d) is an TV-dimensional covariant dif-
ferential calculus on quantum homogeneous space M endowed with the action of
the inhomogeneous quantum group G as described in Theorem 1.1. In particular,
we assume all the conditions introduced before Theorem 1.1 and that F = 0.

Definition 2.1 (cf. [27,21,15]). We say that ΓΛ = (ΓΛ,Ψ*,d) is an exterior al-
gebra on M iff

1. ΓΛ = 0 0̂ ΓΛ" is a graded algebra such that ΓΛO = <e and the unit of <β
is the unit of ΓΛ,

2. ΨΛ : ΓΛ — >• & ® ΓΛ is a graded homomorphίsm such that

(ε <g> id)^Λ = id, (id <g> <FΛ)<FΛ = (A ® id)!PΛ, ΨΛO = Ψ ,

3. ί / : Γ Λ — > Γ^ is a linear mapping such that
(a) d(ΓΛΛ) C ΓΛ<Π+1>, w = 0,l,2,...,

(b) d(β Λ 0') = dθΛθ' + (-l)kθ Λ dθ1, 0 e ΓM, θ' e ΓΛ (Λ denotes multipli-
cation in ΓΛ),

(c) (id®d)Ψ* = ΨAd,
(d) dd = 0,
4. ΓΛ77 = span{(da\ Λ . . . Λ dan)a$ : a§,a\, . . . , απ G ̂ } (we ora/Y Λ if one of

multipliers belongs to <6\
5. ΓΛ1, !PΛ1, d : % -> ΓΛ1 are as in Definition 1.1 and Theorem 1.1,

6. // (Γ ,Ψ ,d) also satisfies 1-5 then there exists a graded homomorphism
~Λ ~ Λ ~

p : ΓΛ -+ Γ which is an identity on %> and satisfies Ψ p = (id ® p)Ψ^, dp = pd
(universality condition).

We set Rnk = 1^-D ®R 0 fl®(«-*-i)? ̂ wπ = ̂  ..... ̂  for any permuta-

tion π = th ..... tks eΐln where tk is the transposition £ <-> & -f- 1, An =

^T ΣπGH,(-1)S8nπΛ»«' ̂  =4" RnkAn=AnRnk = -An, k = 1,2,. ..,n - 1.
Let α7 = {α : / = l,...,dimAn} be a basis of im An, βf = {βj ', : j — 1,...,

dim(l-Λ)} be a basis of im(l-^Λ). Then α7 U j87 is a basis of (C*)®Λ. We
denote by α U jβ the dual basis. Therefore

of An = of, βJAn = Q, (2.1)

^Λ = α '̂ . (2.2)

Theorem 2.1. There exists a unique exterior algebra ΓΛ on M. The n-forms

ωy = al"^kndxk[ Λ Λ dxk"9 y = 1, . . . , dimΛ , (2.3)

o/ the right Ή -module ΓΛ". Moreover,

dxl Λ Jjc-7' = -Rlj

kϊdxk Λ ί/ c', /,y = 1, ... ,N . (2.4)
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Remark. The first statement of the theorem follows also from the general consid-
erations (cf. e.g. [2]).

Proof. Assume that SΛ = (S^,ψ£,ds) satisfies conditions 1-5 of Definition 2.1.
Acting ds on (1.7), one gets (2.4). Set dxj

s = dxh Λ - - - Λ dxin

9 where J =
(/!,. . . ,/„) G {l,...,N}n =N(n\ They generate the right ^-module ΓΛn. We obtain
dxj

s = -(RnkYκdxj, dxj

s = (-iγ^π(Rnπyκdxjy dxj

s = (An)
J

κdxj, (2.3) gener-
ate the right ^-module SΛn. Moreover, SΛn = {dx*saj : J G N™}9 formulae for
ds(dxj

saj\ Ψs(dx$aj) are determined by conditions 2 and 3(b)(c)(d) of Defini-
tion 2.1. Thus it suffices to construct ΓΛ = (ΓΛ,ΨΛ,d) which satisfies the condi-
tions 1-5 of Definition 2.1 and such that ωy, y = l,...,dim^w, are independent in
the right ^-module ΓΛw.

We set Γ - ΓΛ1, ΓΘO = <g, Γ®n = Γ ®% . . . ®% Γ, Γ® = 0 0̂ Γ®", dx1 = dxil

Λ - - - Λ dx1" for / = (/i, . . . ,/„) G N(n\

LI = span{dxj - (An)
J

κdxκ : J G N^} ,

OO CXD

L" = Ln^, L=@Ln, ΓΛ" = r®"/IB, ΓΛ = φ ΓΛB = Γ®/L .

Then Γ0W are ^-bimodules, Γ0 is a graded algebra, ωy, y = l,...,dim^«, form
a basis of the right ^-module ΓΛ" (cf. (2.1)). We see that Ln

Q = spanj dxj +
(RnkYκdxκ :J eN(n\ k= l,...,N - 1}. Thus L is the right ideal generated by
dxκ®ωik, KeN(s\ s = Q,l,...9i9k=l9...9N, where ωik = dx1 ̂  dxJ +
Wkidx* ̂  dx1. Using (1.7) and (3.11), (3.61) of [18], one shows that

xm

ω

ίk = Rsk

nbR
mί

jsaϊnxb + ωablmίk

ab,

where / = Z <8> 1 + (Λ ® U)(l 0 Z). That and (1.7) prove that L is the ideal generated
by ωlk and condition 1. of Definition 2.1 follows. Moreover, (2.4) is satisfied.

We define a linear mapping Ψ® : Γ® -> Γ0 by

^Θ(ωι 0^ - - - (g% ωΛ) = ω^ω^ ...... ω(

n

l} ® ω^ <8>* <8>* ω^2) , (2.5)

where ωs G ΓΛ1, ^H^) = c4υ 0 ωf} (Sweedler's notation), s=l9...9n. Then
?P® is well defined, Ψ®ωik = Λί

jΛ
k

m 0 αVm (see (1.8)), ίP®(L) C ̂  (g)L, ^^ de-
fines *FA : ΓΛ = Γ®/Z -> ̂  0 ΓΛ which satisfies condition 2 of Definition 2.1.

We set d(ώίay) = (-l)nω? Λda79 i.e. (see (2.3), (2.2))

d(dxjaj} - (-\Ϋ\dxJ Λ Jαy, aj G ,̂ J G 7V(n), |/| = w . (2.6)

Conditions 5, 4 and 3(a)(c) follow. Moreover,

ddxj = 0 . (2.7)

We shall prove
d(ajdxj) = daj Λ dxj . (2.8)

Due to (1.7), (2.6) and (2.4)

d(xidχJ) = d[RlJ kι(dxk)xl + Z^Ίdx1] = -Rij

kldxk Λ dx1 = dx1 Λ dχJ\
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Thus xl G E — {a G ̂  : d(adxl) = da Λ dxl, i = 1, ... ,7V}. Moreover, E is a unital
algebra (we use (1.9) and (2.6) in order to find LHS in the definition of E and
perform a direct computation). Hence (2.8) for \J\ = 1 follows. According to (2.6),
d(dxl Λ ω) = — dxl Λ dω for ω G ΓΛ. Using this, (1.9) and the mathematical induc-
tion w.r.t. |/|, a simple calculation proves (2.8) in the general case. Then it is easy
to check condition 3(b).

We set F = {a G # : dda = 0}. Then xl G F (see (2.7)) and F is a unital algebra
(we use (2.6), (2.8)). Thus F = <#. This and (2.7) show ddω = 0 for any ω = drV
and also condition 3(d) follows. D

We also have

Proposition 2.1. Under the assumptions of Proposition 1.1 ί/zere exists a unique
graded antilίnear involution * : ΓΛ — » ΓΛ swc/z

(a) (θ Λ θ7)* = (-l)^'* Λ θ*, 0 G ΓM, 0' G ΓΛ /,
(b) <FΛ(<9*) = (¥^(0))*®*, θ G ΓΛ,

(c) d(θ*) = d(θ)*9 θ G Γ Λ ,
(d) * 6>« ΓΛO, ΓΛ1 coincides with the original one.

Proof. We use the notation of the proof of Theorem 2.1. We define * : Γ®n -> Γ®n

by

(ωi 0^ 0^ ωnγ = (— 1) 2 ω* ®<^ 0^ ω:

for ωi, . . . , ωn G ΓΛ1. Using (4.14) of [18], (ω1-7)* = ̂  0^ dx* +
αy\ Hence L* C L and we get * : ΓΛ/1 — > ΓΛw satisfying conditions (a)(d). Condition
(b) follows from (2.5). We see that conditions (a)(d) imply

, (2.9)

where I' = (/„,. . . , / Ί ) for 7 = (/Ί,. . . ,4). Therefore * is unique. Set Θ = dxIaI.
According to (2.9), (2.8), condition (a) and (2.6),

d(θ*) = (-l) l/ l( l/ |-1)/2J(α/)* Λ dx? = ((-l^dx1 Λ datf = (dθ)*

and condition (c) follows. D

In particular, quantum Minkowski spaces with F — 0 (described after the proof
of Theorem 1.1) admit a unique exterior algebra as described in Theorem 2.1 and
Proposition 2.1. Moreover, using the arguments of the proof of Theorem 1.9 of [19],
we get

Proposition 2.2. Let M be a quantum Minkowski space. Then
£ = 0,1,2,3,4, άimAk = 0 for k > 4.
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3. Differential operators

Here we introduce and investigate the properties of the momenta Pj = idj, PJ — zδ7,
the Laplacian D and the Dirac operator /. In particular, the momenta commute with
D. We heuristically show that PJ\ D are hermitian.

Throughout the section we deal with the exterior algebra on M as described
in Theorems 1.1 and 2.1. Further assumptions will be made later on. Let us recall
that the partial derivatives 5Z were defined by (1.9) and satisfy (1.13), (1.11). Their
values can be computed using the unital homomorphism (1.10). They satisfy the
following.

Proposition 3.1. 1. One has

dιdk=Wkldjdi9 iJ=l,...9N. (3.1)

2. There exist Xt

k, 7/ £ & such that

Pi

k = (χk <g> id)y, dt = (Yt ® id)y . (3.2)

3. One has

δcPa = PddbR
bd

ac, RstbdPcdpab = PdPbSRbdac . (3.3)

Proof. Ad 1. Let a G <β. Using (1.9) and (2.4), we get

0 = dda = d(dxίdi(a)) = -dxl Λ </(d, (α)) = -dx* Λ dxjdjdi(a)

- -\(dxl Λ dxJ - Rlikιdxk Λ dxl)djdi(a) .

But

-(dxl Λ dxj - Rij

kιdxk /\dxl) = (A2j
j

kιdxk Λ dxl = (α '̂α/

(we have used (2.2), (2.3)). By virtue of the independence of α/, (α^'d/3/ = 0.
Multiplying by (us)ki and using (2.2), we get (3.1).

Ad 2. We set

f ( f l j(S(a)))" i 0 \
X(a)= A V , J, aes/, (3.4)

V 0 ε(a)J

( (7ίlΛN (ti }N \

0 0 )' i = l'-'N ^

There exists a unital homomorphism X : & —> Mτv+ι(C) which satisfies (3.4)— (3.5)
(X(Ij) = 1; using F = 0 and (2.18) of [18] for b = vk

h v £ Rep H, we show that
X(a\ X(yl) satisfy (1.1)-(1.2) for a = ι/y, v G Rep H). We have

where A}', Yj •• & 3&' . By a direct computation (cf. the proof of Theorem 1.1)

jS?(jc) = (Jf ® id)y(x) (3.6)
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for x = xl G #. But <£ , X are both unital homomoφhisms. Hence (3.6) follows for
all x G <&. This proves (3.2).

Ad 3. We set X+ = Yf, X+

l = 0, X+

 + = s. We claim that

(Xa

b *Xc

d)Kbd

st=Kac

bd(Xb

s *Xd<), a,c9s9t = !,...,#,+ , (3.7)

where

I
RT 0 0 0
0 0 11 0
0 11 0 0
0 0 0 1

Indeed, since X is a homomorphism, it is enough to check (3.7) on a G 30 (which
follows from (3.4) and the last formula before Proposition 3.14 of [18]), and on yl

9

i = 1,.. .,7V, (which can be obtained by a direct computation - see (3.61) of [18]).
Using (3.7) and (3.2), one easily gets (3.3) and also (3.1). D

Let us notice that

dxldi(xka) = d(xka) = (dxk)a+xkdxldι(a)

.e.
dtx

k = δki + (Rkl

inx
n + Zkli)dι . (3.8)

In the following we assume that g = (gab)ab=ι ^ Mor(/, A ® A) is a fixed
invertible matrix. It is called the metric tensor. Then (see (1.12) of [18] and
(1.6)) Rg = g. Moreover g~l = (gab)a,b=\ G Moτ(Λ®Λ9I) (ΛgAτ = g implies
A~l = gAτg~l

9 Aτg~lA = g~l). In the case with * (as in Propositions 1.1 and
2.1) one has g G Mor(7, A 0/1), where glj = gjί. Then we also assume g = g. Such
g exists e.g. for quantum Poincare groups and in this case is given (up to a nonzero
real multiplicative factor) by ql/2m, where m is given after Theorem 1.12 of [19]
(we use (2.2) of [19], m~l = (E' ® E'τ)(t ®X~λ 0 ί)(V 0 F)).

We set da = gabdb, Pa = ida, P
a = ida, D = giJ'djdi = g^dJ. Moreover, && =

Rikid
kdl (we use (3.1) and twice gjbRdc

ba = Rjd

ak9kc, which follows from RJd

ak =
(R-Ύak = fda((A~lyk) and A'1 = gATg~l). Using (3.64) of [18] for m = g and
(3.1), one easily gets

Ώdk = dkΠ . (3.9)

Therefore D commutes with all dk, dk, Pk, P
k. Moreover, (1.11) implies

= Ψ(Ώ(a))9 (3.10)

(id 0 d>)Ψ(a) - ( ( A - l y i ® I ) Ψ ( f f ( ά ) ) . (3.11)

The momenta PJ9 Pj transform under the action of the inhomogeneous quantum
group G in the same way as the partial derivatives $/, & in (1.11), (3.11).

The Dirac gamma matrices are defined as matrices ya G M^(C), a = 1,. . . ,7V,
satisfying

yV + Rba

dcy
cyd = 2gbat a9b=l9...9N9 (3.12)

(cf. [22,23]). It seems that one can analyze irreducible representations of the re-
lations (3.12) only case by case for particular matrices R. In the following we
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assume that such an irreducible representation has been chosen. Then the Dirac
operator ^ = day

a satisfies

f = dcddfy
d = \(dcdd+Rba

dcdadb)fyd

= \Sadb(yayb + Rba

dcf /) = gbadadb 1 = D 11

(cf. [23]). Let /> = tf. Then f> 2 = -D - U.
Later on we shall need the following.

Proposition 3.2. Owe has

dJχk = gik + RJk

abx
adb - (RZyk

bd
b . (3.13)

Proof. According to (3.8), &xk = gjk + GJk

abx
adb + Vjk

bd
b, where

b = ab = ab,

lyb) = -(RZyk

b

(cf. the proof of Proposition 4.5.2 of [18]). D

In the remaining part of the section we shall heuristically prove that the op-
erators Pa, D are hermitian. A strict proof of that fact would need the existence
of topological structures on the quantum spaces G,M. Therefore the considerations
below serve as a motivation for such a topological approach. We shall assume the
existence of a G-invariant measure μ defined on some "functions" c on M (elements
of ^ are also "functions" on M but we don't expect μ to act on them; nevertheless
we shall disregard such subtleties here). Thus (id ® μ)Ψx = μ(x)I@. One has the
scalar product (x \ y) = μ(x*y\ Using (3.2), we obtain

μ)ψ(xy\ = W*)X*) = o

(0 = dil = Yi(I)I\ (I\Pax) = 0, (Paγi = 0. Also Pal = 0. Moreover, the hermitian
conjugate of (3.13) yields

i.e.
\ba-(Rzγa

s(dsγ.

This means that Pb and (Pb)* commute with xa in the same way. Thus they act in
the same way on all elements of # and Pb is hermitian. This and gab = l^a show
that D is also hermitian.
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4. Solutions of Klein-Gordon and Dirac Equations

We shall consider formal solutions φ of the Klein-Gordon equation (D-h m2)φ = 0
and Dirac equation l?φ = mφ obtained using the plane waves e~lp°x . But now pa

are not (in a general case) eigenvalues of Pa.
Setting Fil(xk) = Rkl

inx
n+Zkli and using dix

k = δk

t + Fi

l(xk)dl (see (3.8)), one
gets

dj(x*> - •**•) = Σ fyV1 WV2) > Fim_k^(xk")xk^ .**- , (4.1)
m=0

where the m = 0 term reads δkljXk2 jt*n. We shall consider two cases: Z = 0 and
Λ = τ.

1. Z = 0. Let J^ be a new *-algebra generated by //, A: = 1,...,7V, satisfying
(/?*)* = // and pk pl — Rlkjipl pi (same relations as for Pk but w.r.t. the opposite

multiplication). Set pa = gabPb, ϊ>= Pj : ® 7J Then

PaPb = PkPιRklab . (4.2)

We put x®p=xa®pae
(&®^:. So in a sense we assume that pa commute

with all xb and dm. This doesn't seem to be the case in [10,6,11,1] (cf. also
[4,14,5]) although calculations in the present case 1 (up to the moment when
we use π) are quite similar as in these papers. Using (4.1) and (4.2), one ob-
tains

(dj <8> id)(* <8> p)n = Σ (/ ® pjXx <8> /O11""1 - Λ(/ (8) /?y)(^ ® p)n~l - (4.3)
m=0

Thus in the sense of the formal power series w.r.t. t

(dj (g) idy-1'**®^ = -ιϊ(/ (8) prfe-^ri , (4.4)

(D (g) id)*-'**®^ = -ί2(7 0 s)e-it(x®p}

 ? (4.5)

where 5 = gij Ptpj = QimPmPl = Pip1 is a central, hermitian element of 2F . Let π
be an irreducible * -representation of 2F in a Hubert space // with an orthonormal
basis ek, k e K. We denote π^/(^) = (e^ π(jc)β/), c G ̂  . In the remaining part
of the Z = 0 case we assume that all performed operations are well defined and
have "good" properties. Acting id (£> UM on (4.5) and setting π(s) = m2 G R, (id 0

πki)(e~lt(χ®pϊ) = φ%ι, one obtains Πφj^ = —t2m2φ^. In a topological approach one

should be able to put t = 1. Then φ — φ[/=1) is a solution of the Klein-Gordon
equation Dip = —m2φ in a usual sense (if m ^ 0). Also (see (4.4))

so one should get a real spectrum of PJ (pi are selfadjoint).

Let us pass to the Dirac equation. We denote the canonical basis in C by εm,

m— l,...,d, φfιm = φ^ 0 εm. Tensoring (4.3) by y^m, one obtains

0 p)n~l 0 εm] ,
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where e.g. (13) means that $ acts in the first and the third factors of the tensor
product. Thus

Acting by id ® nkί ® id, we get

M/L = tπks(pa}(yajmφ^ . (4.6)

Set Usιkn = nks(pa)(yayn. One has U2 = m2!. The possible eigenvalues of U are

±m. Suppose Uυ = mv for υ G H 0 C*. Put φ(// = Vs1 φ^. Then /φ(// = ίwιφ^}. In a

topological approach one should be able to put t = 1 and find a solution φ = φj,/=1)

of Dirac equation Pφ = mφ (if m ^ 0).

2. R = τ, i.e. tf^/ = ̂ Λ Then Λ0 = 0 implies #flZ? = 0te = ~g"*. According to
the proof of Proposition 4.5.2 of [18], RZ = -τZ, Z = -Z, Zab

c e iR. Let ph G R,
k = 1, . . . ,N, PJ = gjkp

k e R. Setting ί/ ' = Z^/^ 6 /R, jc /? = ̂ >y G #, we get

Ff'Cjc /?) = δ'/C c /?) + Ui1. This and (4.1) yield ((£/*y - ί//'1 CV> ..... ^_/')

Σ
\-ar=m— r

Let G = Σs=0(tU)s (in the sense of formal power series w.r.t. t). Since x p com-
mutes with U,

oo oo I

3jE(tx PT = ΣE(Gr+lV
/ι=0 /=0 r=0

But using mathematical induction,

r=0 k=\ V

Therefore

" 7 ^—fc-κ*,

Λ:=l

>^e-to'P = [p(-itUy\jb(-itp,,)e-itx'P, (4.7)

where p(x) = Σtli £IΓ = ^F^ Using (3.62) of [18] for m = g, one obtains

Z*V = -Z*^flffa , (4.8)

t/rV = -glsUsJ. By virtue of the mathematical induction (Um)r

lgrj = g!s[(-U)m]s

J,
p(-ίtU\lgrJ - glsp(itU)sJ. Thus

= gash(-itU)s

b(-t2papb )e-itχ P ,
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where h(x) = p(-x)p(x) =

m2 = gash(-iU\bpaPb G R . (4.9)

In a topological approach one should be able to put t = I and find a solution
φ __ e-ίχ p Of the Klein-Gordon equation (D + m2)φ = 0 (if m ^ 0).

Using (4.7), one would also have

pjφ = &M=Vφ ,

where ^=1) = gjs p(-iU)s

b pb G R.
Let us pass to the Dirac equation. Setting φr = e~

ιtχ'p <g> εr? one gets JPφr =
(0f>)k

rφk, where ^ = ̂ y, SPj — p(-itU)jbtpb G R[[f]]. In a topological approach

one should be able to put t = 1. Then ̂  = gj's^j^sί.9 the possible eigenvalues of tf

are ±/H, m = ^/g^J^~s. Suppose ^υ = mv for v G C*. Put φ = vrφr = e~ίx' p ® t;.
Then φ is a solution of the Dirac equation Pφ = mφ (if m ^ 0).

Let us notice that spectra of PJ, D obtained (formally) above are real in agree-
ment with hermiticity of those operators, heuristically asserted at the end of Sect. 3.

The case R = τ covers e.g. the quantum Poincare groups of case I), s = I, t = I,
to = 0. Many of them are described by Remark 1.8 of [19] and [30]. Then eigenval-

ues λ of -iU are real or imaginary which yields factors (sin^/2)) , (^j^)

in (4.9) (when U is diagonalizable). Despite the sine factors, m2 of (4.9) is never
bounded in the cases given by [30]. Hyperbolic sine factors can improve the proper-
ties of the propagator qashί_iυ^

lbp pb-M2 (̂  = 0) (although it is never integrable in
the cases given by [30]) e.g. b = εe\ Λ //, a = 0, c = 0 in [30] (ε G R) corresponds
to UQ = ί/3° = /£/?ι/2, other U% are 0 and we get the propagator

(r)2 2 Λ I" sinh(fi/?ι/4)1 2(Po-P3)[ εpl/4 \ -Pi

A detailed analysis of Feynman diagrams is not yet possible since the measure
in the j9-space and interaction factors are not known. Let us also notice that for
H — 5Ό(4), U is antisymmetric and we can have only factors of the second type.

Remark. In [25] differential calculi corresponding to a quantum Minkowski space
of [8] are considered. Despite other choices of axioms the result is the same as
here: there are no 4-dimensional covariant differential calculi in that case (due to
[30] to φ 0 for [8]). But nevertheless a different approach suggests a similar form
for the propagator as above [8].

5. The Fock Space

Here we define the Fock space for noninteracting particles on M. We assume that
G has CT Hopf *-algebra structure 0t as in Theorem 3.1.3-4 of [17] which is the
case e.g. for quantum Poincare groups of cases 1) 2) 3) 4) (except 1), s = 1, t = 1,
to Φ 0 and 4), s = 1, b ̂  0) as proved in Theorem 3.2.3 of [17].
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We follow the scheme of [16] but now we have the left (instead of right) action.
The particles interchange operator K : Ή ® Ή -^ Ή ® %> is defined by

K(x ®y)

where Ψ(x) = ;c(1) ®x(2\ Ψ(y) = y™ ® /2\ We set K™ = l®^-1) ®K ®
flΘ(«-m-i) . ^Θ« _^ ^®«? m = ι ?2,...,« - 1. Then one obtains the representation of

the permutation group

π : ΠΠ 3 fw - (m,m + 1) -» π(w,w+i) - ^(m)

acting in ̂  which defines the boson subspace <g®*n. The group G acts on <$®n

by the linear mapping Ψ®n : #®Λ -> <# ® ̂ Θ" defined by

*!,...,*„ 6 if. One has ψ®nK^ = (id®K™)Ψ®n, i.e. the actions of G and Un

agree. In particular, one can restrict Ψ®n to «7®*11 getting Ψ®>» : ̂ ΘίW -̂  Sί 0 «'®'/I.
If FT : ̂  — ̂  ̂  is an operator related to a single particle then the corresponding
^-particle operator is given by

w=ι

χπ-l

(the mth term in the first sum is the operator in ^®n corresponding to the wth parti-
cle). We can also define the Fock space F = 0 0̂ %®*n and the operator 0 0̂ W™
acting in F.

For particles of mass m we should consider ker(D + w2) instead of ^ and a
scalar product there but it would lead us beyond the scope of the present article
(heuristically e.g. W = Pk, k= 1,...,7V, would be hermitian operators in such a
space - see (3.9)).
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