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Abstract: We prove the equality between the statistics phase and the conformal
univalence for a superselection sector with finite index in Conformal Quantum Field
Theory on S'. A relevant point is the description of the PCT symmetry and the
construction of the global conjugate charge.

Introduction

During recent years Conformal Quantum Field Theory has become a widely studied
topic, especially on low dimensional space-times because of physical motivations
such as the desire of a better understanding of two-dimensional critical phenomena,
and also for its rich mathematical structure providing remarkable connections with
different areas such as Hopf algebras, low dimensional topology, knot invariants and
subfactors, among many others.

The Operator Algebra approach furnishes a powerful tool of investigation in this
context, not only because it naturally leads to a model independent and intrinsic
analysis, focusing on essential aspects such as the relative position of the local
von Neumann algebras, but also because it makes visible otherwise hidden natural
structures yielding results inaccessible by different methods.

Two examples of this kind, the geometric description of the Tomita—Takesaki
modular structure of the local von Neumann algebras [1, 18,4], and the connection
of the statistics of a superselection sector with the Jones index theory of subfactors
[20], will play a fundamental role in this paper. These methods are present and
important in general Quantum Field Theory, but provide an even richer structure in
the low-dimensional case, conformal theories on S' in particular.

In the early seventies Doplicher, Haag and Roberts [7, 8] developed a theory of
superselection sectors, in the sense of [31], in the algebraic framework proposed by
Haag and Kastler [17] starting from first principles. They described a superselection
sector by a localized endomorphism p of the C*-algebra generated by the local

* Supported in part by MURST and CNR-GNAFA



12 D Guido, R Longo

observable von Neumann algebras on the usual Minkowski space. In particular
they showed that the statistics of p, a representation of the permutation group, is
intrinsically encoded in p and classified it by an associated statistical parameter 4,.

It was more recently realized that in the low dimensional case the statistics
becomes a representation of the Artin braid group. By applying generalized DHR
methods, a first analysis in this case was given in [20,11]. In the simplest cases
(small index or few channels) the statistics parameter classifies the braid group
statistics by the Jones polynomial invariant for knots and links and its generaliza-
tions, see [21,23].

A key point in the analysis of superselection sectors is the index-statistics
theorem [20] showing that, in any space-time dimension,

Ind(p) = d(p)*,

where Ind(p) is the minimal index of p, an extension of the Jones index [19], and
d(p) = |)u,,|_1 is the DHR statistical dimension of p. We refer to [23] for a survey
and for references on the index theory for infinite factors, but we recall that the
square root of the minimal index of an endomorphism of a factor has the meaning
of a dimension, that finds an identification in this context by the above equation.

On the other hand important information on the statistics is also contained in
the statistics phase x, := 4,/|4,| of p: on the 4-dimensional space-time x, = %1,
a sign labeling the fundamental Fermi—Bose alternative. Therefore it is natural to
look at a counterpart of the index-statistics relation for the statistics phase.

Based on the classical spin-statistics connection (see [28]), one may easily con-
jecture that in a conformal theory on S' the statistics phase has to agree with the
univalence of the sector p

S, =Ky,

where s, 1= e*™Le (L, the conformal spin, the lowest eigenvalue of the conformal
Hamiltonian in the sector p) is a label for the central extension associated with the
occurring projective representation of the Mobius group PSL(2,R).

Attempts to prove this relation have been made in particular by Fredenhagen,
Rehren and Schroer [12] and, in the related 2 + 1-dimensional context, by Frohlich,
Gabbiani and Marchetti [13]. Starting with assumptions on the existence of a global
conjugate charge and of complete reducibility, they obtained a spin summation rule,
which implies the equality up to a sign s, = *x,. But the conformal spin-statistics
theorem remained unproven unless adding ad hoc undesirable assumptions.

Based on different ideas, this paper will show how the full strength of Operator
Algebras provides the general and intrinsic spin and statistics relation, namely the
equality s, = k,. We deal with conformal theories on S! (one-dimensional compo-
nents of two-dimensional chiral conformal theories) and base our analysis only on
first principles: isotony of the local von Neumann algebras, locality, conformal in-
variance with positive energy, existence of the vacuum. We thus obtain the complete

relation )
univalence

vminimal index

Note that %, has a local nature while s, is a global invariant. This is reminiscent
of familiar situations in Geometry and suggests that extensions of our result to more
general (curved) space-times should reveal further geometrical aspects. Our theorem
is not only a prototype for further generalizations, but it already provides a number

statistics parameter =
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of immediate extensions or variants, like for the case of topological charges on a 2 +
1-dimensional space-time [5]. This is due to the fact that we shall use the conformal
invariance only indirectly, not in an essential way. For convenience we shall discuss
these aspects together with related points and examples in a separate paper.

Our paper follows a previous work [15] where we reconsidered the classical
spin and statistics theorem in Quantum Field Theory [28] and derived it in the al-
gebraic setting assuming the “modular covariance property,” namely the geometric
meaning of the modular groups of the von Neumann algebras associated with wedge
regions, consistently to the Bisognano—Wichmann theorem. That work, not directly
extendible to the lower dimensional case due to the occurrence of the braid group
statistics, focused however on the role played by the modular covariance property.
The latter was shown to hold in conformal field theory on general grounds [4, 14],
and set thus the basis for the present analysis. Ultimately only the geometric de-
scription of the modular conjugations is essential in our analysis.

We now pass to the description of specific contents of this paper. In Sect. 1
we recall the basic properties shared by the local von Neumann algebras 7([)
associated with intervals / of S'.

Like in the classical case, the spin-statistics relation is strictly tied up with
the PCT symmetry. Section 2 is indeed devoted to the construction of a global
conjugate charge for a superselection sector p with finite statistics, a key point
relevant in itself, previously an assumption in the related literature. As shown in
[15], the sector

pi=j-pj
is locally a conjugate of p in the sense that if p is an endomorphism localized in an

interval I and j is the adjoint (geometric) action given by the modular conjugation
of an interval, one has the identity

Plauy = plaay »

where I is any interval containing I and its reflection by j; the bar on the right-hand
side denotes the conjugate endomorphism in the sense of the sectors of the factor
&/(I) [21], a framework equivalent to the setting of the correspondences of Connes.
In the irreducible case p is characterized by the existence of an isometry V; € <Z(1)
that intertwines the identity and pp|. (). But the problem remained whether there
is a global intertwiner ¥ independent of I. We solve this problem positively by
using an argument inspired by the “vanishing of the matrix coefficient theorem” for
connected simple Lie groups, see Appendix B.

We prove in fact the equivalence between the local and the global intertwiners
for superselection sectors with finite index, namely the embedding into the sec-
tors (endomorphisms modulo inners) of the factor M := /() determined via the
restriction map

Superselection sectors — Sect(M)

corresponds by the index-statistics theorem to a faithful functor of tensor
C*-categories with conjugates which is full (no new intertwiner arises in the range).
This implies that the fusion rules of the superselection sectors are entirely described
by the theory of subfactors.

As a first consequence we shall see in Sect.3 that the (internal) intertwiner
property of the above isometry V' is equivalent to the (spatial) property of being
the standard implementation of p, according to Araki, Connes and Haagerup, see
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Appendix A, with respect to the vacuum vector. To extract information from this
fact we localize p in the upper-right quarter-circle and consider the standard im-
plementations ¥} and ¥, of p as an endomorphism of the upper and of the right
semicircle von Neumann algebra respectively and observe that

‘up = Vl* V2* V[ V2

is a scalar invariant for p that reflects both analytic-algebraic and geometric aspects.
It is indeed natural to look at u, as a generalized multiplicative commutator of local
intertwiners, in the spirit of the statistics, and identify it with the statistics parameter
Ap, OF as an invariant obtained by reversing the orientation, in the spirit of the spin,

and identify u, with Ind(p)’%-times the univalence of p.

In more detail we shall obtain the spin-statistics relation by “squaring” a more
primitive identity between operators (see Eq.(3.8)) where a further invariant c,
enters. Our result is then completed by showing that ¢, is a conjugate-invariant
character on the semi-ring of the superselection sectors, so that it takes only the
values 1. This reaches the goal of our paper, but leaves out the full understanding
of the invariant c,, in particular whether the value ¢, = —1 might actually occur.
We think this is the case and that reflects a cohomological obstruction, and hope
to return to this point somewhere else.

Our work has been announced in [23].

1. General Properties of Conformal Precosheaves on S!

In this section we recall the basic properties enjoyed by the family of the von
Neumann algebras associated with a conformal Quantum Field Theory on S!.

By an interval we shall always mean an open connected subset / of S' such
that / and the interior I’ of its complement are non-empty. We shall denote by .#
the set of intervals in S'.

A precosheaf o/ of von Neumann algebras on the intervals of S! is a map

[ — ()

from £ to the von Neumann algebras on a Hilbert space # that verifies the fol-
lowing property:
A. Isotony. If I}, I, are intervals and I, C I, then

(L) C (L) .

&/ is a conformal precosheaf of von Neumann algebras if the following prop-
erties B-E hold too.

B. Conformal invariance. There is a unitary representation U of G (the universal
covering group of PSL(2,R)) on # such that
UgI)U(g)" = (gl), g€G, 1€ S.

The group PSL(2,R) is identified with the Mobius group of S!, i.e. the group
of conformal transformations on the complex plane that preserve the orientation and
leave the unit circle globally invariant. Therefore G has a natural action on S'.
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C. Positivity of the energy. The generator of the rotation subgroup U(R(-)) is
positive.

Here R(?¥) denotes the (lifting to G of the) rotation by an angle ¢. In the
following we shall often write U(19) instead of U(R(+})). We may associate two
one-parameter groups with any interval /. Let /; be the upper semi-circle, i.e. the
interval {e,9 € (0,m)}. We identify this interval with the positive real line R, via
the Cayley transform C : S! — R U {oo} given by z — —i(z — 1)(z + 1)~!. Then
we consider the one-parameter groups Ay, (s) and T7,(¢) of diffeomorphisms of S!
(cf. Appendix B) such that

CAL(s)C'x=e'x,  CT,(t)C'x=x+1t tsx€eR.
We also associate with /; the reflection 7, given by
mz=z,

where Z is the complex conjugate of z. We remark that A; restricts to an ori-
entation preserving diffeomorphisms of I, 7, restricts to an orientation reversing
diffeomorphism of /; onto I] and Ty (¢) is an orientation preserving diffeomorphism
of I into itself if t+ = 0.

Then, if I is an interval and we chose g € G such that I = gI; we may set (see

also Appendix B)

A =gAng™", r=grng", T, =gTg " .
The elements A;(s), s € R, and r; are well defined, while the one parameter group
T; is defined up to a scaling of the parameter. However, such a scaling plays no role
in this paper. We note also that 7y/(¢) is an orientation preserving diffeomorphism
of I into itself if + < 0.

Lemma B.4 in Appendix B states the equivalence between the positivity of the
conformal Hamiltonian, i.e. the generator of the rotation group U(R(-)), and the
positivity of the usual Hamiltonian, i.e. the generator of the translations on the real
line in the above specified identification of S' with R U {oo}.

D. Locality. If Iy, I are disjoint intervals then </(ly) and A(I) commute.
The lattice symbol V will denote “the von Neumann algebra generated by.”

E. Existence of the vacuum. There exists a unit vector Q (vacuum vector) which
is U(G)-invariant and cyclic for \/,c , A(I).

Let 7 be an orientation reversing isometry of S' with > =1 (e.g. r;,). The
action of » on PSL(2,R) by conjugation lifts to an action o, on G, there-
fore we may consider the semidirect product of G X,, Z,. Any involutive ori-
entation reversing isometry has the form R(9)r;R(—), thus G x,, Z, does not
depend on the particular choice of the isometry r. Since G X,, Z, is a cover-
ing of the group generated by PSL(2,R) and r, G X,, Z, acts on S!. We call
(anti-)unitary a representation U of G X,, Z, by operators on S such that U(g)
is unitary, resp. antiunitary, when ¢ is orientation preserving, resp. orientation
reversing.

1.1 Proposition. Let o/ be a conformal precosheaf. The following hold:

(a) Reeh—Schlieder theorem [10]: Q is cyclic and separating for each von
Neumann algebra (1), I € 4.
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(b) Bisognano—Wichmann property [4, 14]: U extends to an (anti-)unitary rep-
resentation of G X4, Z, such that, for any I € £,

U(A;(2nt)) = AY, (1.1)
U(}”]):JI, (12)

where Aj, J; are the modular operator and the modular cownjugation associated
with (L), Q) [29]. For each g € G X, Z,,

U(g)I)U(g)" = (g]) .
(¢) Additivity [10]: if a family of intervals I; covers the interval I, then
A1)\ AT;) .

(d) Spin and statistics for the vacuum sector [16]: U is indeed a representation
of PSL(2,R), ie. U(2n) = 1.
(e) Haag duality [4, 14]:

A =AY, 1€ 5.

Proof. We sketch here only the proof of (d) and refer to the original literature
for the rest. Note however that: the usual Reeh—Schlieder argument shows that (c)
implies (a); (b) is proved by using a theorem of Borchers [2]; (e) is an immedi-
ate consequence of (b). To get (d) let /; and I, be the upper and the right semi-
circle respectively, then J;, fixes Q and implements an anti-automorphism of ./(I;, ),
thus it commutes with J,. By property (b) J;J, = U(n), thus U(n) is an
involution. [

F. Uniqueness of the vacuum (or irreducibility). The only U(G)-invariant vectors
are the scalar multiples of Q.

The term irreducibility is due to the following.
1.2 Proposition. The following are equivalent:

(1) CQ are the only U(G)-invariant vectors.
(ii) The algebras (1), I € F, are factors. In this case they are type 11
factors.
(iil) If a family of intervals I; intersects at only one point {, then (\; #(I;) = C.
(iv) The von Neumann algebra N /() generated by the local algebras coin-
cides with B(H) (A is irreducible).

Proof. (i) = (ii). Indeed (i) implies (c¢) of Corollary B.2 in Appendix B, hence the
modular group of /(1) with respect to £ is ergodic, showing that 2/(7) is a type
III; factor.

(ii) = (iii). If { is a boundary point of an interval I, then by additivity and
duality ();&/(I;) commutes both with /(1) and </(I’), and is therefore trivial.

(iii) = (iv). We have \/,., #(I) D \/(eﬂ A1) = B(H).

(iv) = (i). Let I be an interval and x € 2/(I) such that U(g)xQ = xQ for all
g € G. Since Q is locally separating, we have x = U(g)xU(g)~!. Since G acts
transitively on the intervals, x is in the commutant of | J,. , (1), and is therefore
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a scalar. Since (/)2 is dense in #, by the Ergodic Theorem Q is the only
U(G)-invariant vector. [

By Corollary B.2 the irreducibility of </ is also equivalent to Q being unique
invariant for any of the one-parameter subgroups of U corresponding to 7;, A;
or R.

Now any conformal precosheaf decomposes uniquely into a direct integral of
irreducible conformal precosheaves. This can be seen as in Proposition 3.1 of [16].
We will therefore always assume that our precosheaves are irreducible.

2. Superselection Structure. Constructing the Global Conjugate Charge

2.1. Generalities on superselection sectors with finite index. In this section </ is
an irreducible conformal precosheaf of von Neumann algebras as defined in Sect. 1.

A covariant representation © of o/ is a family of representations 7; of the von
Neumann algebras «/(I), I € #, on a Hilbert space J#, and a unitary representation
U, of the covering group G of PSL(2,R), with positive energy, i.e. the generator
of the rotation unitary subgroup has positive generator, such that the following
properties hold:

ICi=m; =mn; (isotony),
o @1
ad Uy(g) - m; = myr -ad U(g) (covariance) .

A unitary equivalence class of representations of o7 is called superselection sector.
Assuming 5%, to be separable, the representations n; are normal because the
o/(I)’s are factors [30]. Therefore for any given I, n is unitarily equivalent to

id 1Y) because /(I;) is a type III factor. By identifying 5, and 5, we can thus
assume that 7 is localized in a given interval [ € .4, i.e. = id A1} (ct. [6]).
By Haag duality we then have m;(/(1)) C /() if I D Iy. In other words, given

Iy € # we can choose in the same sector of 7 a localized endomorphism with
localization support in [y, namely a representation p equivalent to 7 such that

1€ s, 120 = p €Bndst(I), py=idy.

In the following (with the exception of Subsect.2.4) representations or endomor-
phisms are always assumed to be covariant with positive energy’.

To capture the global point of view we may consider the universal algebra
C*(</). Recall that C*(«/) is a C*-algebra canonically associated with the
precosheaf .o/ (see [9,15]). There are injective embeddings 1; : /(1) — C*() so
that the local von Neumann algebras /(I), I € #, are identified with sub-
algebras of C*(/) and generate all together a dense *-subalgebra of C*(), and ev-
ery representation of the precosheaf .o/ factors through a representation of C*(.<7).
Conversely any representation of C*(./) restricts to a representation of /. The

! Assuming strong additivity (i e. Haag duality on the real line) the covariance property with
positive energy follows automatically in the finite index case; in fact the weaker assumption of
3-regularity is sufficient (cf.[15]). &/ is said to be n-regular if, after removing » points from S,
the C*-algebra generated by the local operators is irreducible By Haag duality and factoriality
any conformal precosheaf is 2-regular. An example violating will be discussed in [33].
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vacuum representation 7y of C*(./) corresponds to the identity representation of
o/ on #, thus my acts identically on the local von Neumann algebras. We shall
often drop the symbols 1; and 7y when no confusion arises.

By the universality property, for each g € PSL(2,R) the isomorphism ad U(g) :
AA) — A (gl), I € £ lifts to an automorphism o, of C*(o7). It will be convenient
to lift the map g — o, to a representation, still denoted by a, of the universal
covering group G of PSL(2,R) by automorphisms of C*(&/).

The covariance property for an endomorphism p of C*(&) localized in /, means
that o - p - ;-1 is equivalent to p for any g € G, ie.

adzy(9)* -p=0a5-p-0,-1 g€G 22)

for a suitable unitary z,(g) € C*(/). The map g — z,(g) can be chosen to be a
localized a-cocycle, i.e.

z,(9) € ALy Ugly) VgeG:LhUgl e S,
zp(gh) = 2p(9)2g(2p(h)) , ;R € G . (2.3)
The relations between (7, Uz) and (p,z,) are
T="m-p,
mo(zp(9)) = Un(9)U(9)" .

As is known ([27], see also [15]) the localized cocycle z, reconstructs the endo-
morphism p via

(2.4)

pld(g]é) = adzp(g)ld(glé) . (2.5)

A localized endomorphism of C*(&/) is said to be irreducible if the associated
representation 7 is irreducible.

Note that the representations 7p - p; and 7 - p» associated with the endomor-
phisms p;, p; of C*(&/) are unitarily equivalent if and only if p; and p, are
equivalent endomorphisms of &, i.e. p, is a perturbation of p; by an inner auto-
morphism of .

An endomorphism of C*(.«/) localized in an interval Iy is said to have finite
index if p; (= plw)) has finite index, Iy C I (see [20,23]). The index is indeed
well defined due to the following.

2.1 Proposition. Let p be an endomorphism localized in the interval Iy. Then the
index Ind(p) := Ind(p;), the minimal index of p;, does not depend on the interval
1D 1.

Proof. We show indeed that all the inclusions p(</(I)) C &/(I) are isomorphic if
I D Iy (they are isomorphic to the inclusion n(</(I)) C n(Z(I')) for all I € .#).
This follows because, if g € G and z,(g) are chosen as in (2.2),(2.3) with I D I,
and gl = Iy, then

{p((I0)) C (L)} = {Ux(g)p(L(I))U)(9)" C U(g)/(1)U(9)"}
~ {p(L(I)) Czp(g )AL T)z,(97")"}
and z,(g9) € Z(I). O
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2.2 Proposition. Let p be a covariant (not necessarily irreducible) endomor-
phism with finite index. Then the representation U, described before is unique.
In particular, any irreducible component of p is a covariant endomorphism.

Proof. If p is localized in Iy and has finite index the following inclusion shows
that n(C*(/))’ is finite-dimensional, 7 := 7 - p:

n(C*(A)) C ((LINUR(LI))) = (L) NAT), Ly CI. (2.6)

Since U, implements automorphisms of m(e7), it implements an action of G by
automorphisms of 7(</)’, that must be trivial because G has no non-trivial action
by automorphisms of a finite-dimensional C*-algebra. Indeed such an action should
be trivial on the center because G is connected, thus it admits a faithful invari-
ant trace that defines a scalar product unitarizing the representation, but the only
finite-dimensional unitary representation of G is the identity. Therefore we proved
that U, € n(C*(/))", and this fact implies that any irreducible subsector of p is
covariant,

Let U, be another representation of G as in (2.1). Then, for each x € «/(I),
le”s,

Un(9)Un(9)" 1(x) = Up(g)m(og(x))Un(9)* = m(x)Ur(9)Ux(9)"
which implies U,(g)Un(g)* to belong to the center of n(C*(#))". Therefore
Un(9)Ur(9)" Un(h)Uz(h)* = Un(g)Up(h)Ur(h)*Un(g)* = Uy(gh)Ux(gh)* ,

ie. g — ULg)Ur(g)* is a representation of G. Since G is perfect, any abelian
representation is trivial, i.e. U, = U.. O

By the above proposition the univalence of an endomorphism p is well de-
fined by
s, = U,(2m) .

By definition s, belongs to n(C*(s7)) therefore, when p is irreducible, s, is a
complex number of modulus one
sp = eZnin
with L, the lowest weight of U,. In this case, since Uy (g) := mo(u)U,(g)mo(u)*,
where p'(+) :=up(-)u*, u € C*(), then s, depends only on the superselection
class of p.
Let p;, p» be endomorphisms of an algebra . Their intertwiner space is
defined by
(p1,p2) ={T € B : py(x)T = Tpi(x), x € B} . (2.7)

In case # = C*(), p; localized in the interval J; and T € (p1, p2), then mp(7') is an
intertwiner between the representations 7o - p;. If 7 D I U L, then by Haag duality
its embedding 1; - mop(7T') is still an intertwiner in (pi, p2) and a local operator. We
shall denote by (p1, p2); the space of such local intertwiners

(p1,p2)r = (pr,p2) N ) .

If I; and I, are disjoint, we may cover I; U I, by an interval / in two ways: we adopt
the convention that, unless otherwise specified, a local intertwiner is an element of
(p1,p2)r, where I, follows I inside I in the clockwise sense.
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We now define the statistics. Given the endomorphism p of &/ localized in
1 € 4, choose an equivalent endomorphism pg localized in an interval [y € # with
IoNI =0 and let u be a local intertwiner in (p, po) as above, namely u € (p, po);
with I following clockwise I inside /.

The statistics operator ¢ := u*p(u) = u*p;(u) belongs to (p}, p%). An elemen-
tary computation shows that it gives rise to a presentation of the Artin braid group

. . .
§i8ir18i = €i416i€ix1, gigy = ¢epg if |i—1'| 22,

where & = p'~!(¢). The (unitary equivalence class of the) representation of the
braid group thus obtained is the statistics of the superselection sector p.

Recall that if p is an endomorphism of a C*-algebra %, a left inverse of p is
a completely positive map @ from £ to itself such that @ - p = id.

We shall see in Corollary 2.12 that if p is irreducible there exists a unique left
inverse @ of p and that the statistics parameter

Ay = &(c) (2.8)

depends only on the sector of p.
The statistical dimension d(p) and the statistics phase «, are then defined by

_ A
Aoy =14~ k=
p

We shall indeed prove the equality between the statistics phase and the univa-
lence while the statistical dimension equals the square root of the index [20] (see
Corollary 3.7).

2.2. Equivalence between local and global intertwiners. If p,c are endomorphisms
of C*(o/) localized in the interval I, we may consider their intertwiner space
(pr,01) :={T € A1) : a(x)T = Tp(x), Vx € o/(I)}. We always have (p,0); C
(p1,01).

2.3 Theorem. Let p,0 be endomorphisms with finite index localized in Iy. Then

(pr,01) = (p,0);

for any I € # that contains Iy. In other words if T € (py, 01) then 1;(T) intertwines
p and 6 in C*().

The proof of this theorem will be carried on in a few steps. In the following
p denotes an endomorphism of C*(.«7) with finite index localized in an interval I,.
Let { € I} and identify S'\{ with R. Then p restricts to an endomorphism of each
von Neumann algebra .o/(—o0, /), for sufficiently large / € R, hence it gives rise to
an endomorphism p; the C*-algebra /¢, the norm closure of | J;cg #(—00,1). Let
P be the stabilizer of the point { for the PSL(2,R) action, namely the semidirect
product of the translations 7'(¢) and dilations A(s) on R: each g € P is written
uniquely as a product g = T(¢)A(s). Notice that P is canonically embedded in G
since P is simply connected and its Lie algebra is a subalgebra of the Lie algebra
of PSL(2,R) that coincides with the Lie algebra of G. It follows that U, restricts
to a representation of P and we set

By(x) = U(g9)xUy(9)* = z,(9)U(9xU(9)*z,(9)*, x€ A, g€ P,
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so that f is an action of P by automorphisms of o/;, due to the fact that the cocycle
z, consists of local operators.

We consider now the semigroup Py, the semidirect product of negative dilations
with positive translations. Py is an amenable semigroup and we need an invariant
mean m constructed as follows: first we average (with an invariant mean) on positive
translations and then over negative dilations. Observe that f — fPO f(g)dm(g) gives
an invariant mean on all P vanishing on f if, for any given s € R, the map ¢ —
f(T(¢)A(s)) has support in a left half line.

Then we associate to m the completely positive map @; of /; to B(HX)
given by

Dr(x) ::l;fzp(g)*xzp(g)dm(g), x€ ;. (2.9)
0
2.4 Lemma. @; is a left inverse of p;. Moreover ®; is locally normal, i.e. has
normal restriction to /(—oo,1), | € R, and P-invariant, namely

;=o' fy, geP.

Proof. Let x belong to &/(—00,!), [ € R. By formula (2.2),
(pr(x)) = [ ag(p(o,-1(x)))dm(g) = x ,

Py

because of the above property of m since the integrand is constantly equal to x on
the set g € Py : g~ !(—00,a) NIp = 0. Then the localization of p; and Haag duality
imply that the range of @, is contained in ;.

Setting E = p; - @; we have a conditional expectation of ., onto the range of p,
that restricts to a conditional expectation E(_o ;) of &/(—00, I) onto p(oZ(—o0, 1))
if (=00, I) D Iy. Since p(—oo,1y is assumed to have finite index, E(_ o, ;) is automat-
ically normal [21]. Therefore @¢|y(—oo,i) = p(__loo, ,)E(_Oo,l) is normal for / large
enough, hence for any /.

Concerning the P-invariance of ®; we have, making use of the cocycle condi-
tion,

o P By(x) = oy ( [ zp(h)* ﬁg(x)zp(h)dm(h))

Po

=o' (f Zp(h)*Zp(g)‘xg(x)Zp(g)*zp(h)dm(h))

Py

[ zy(hg™ " Y*xz,(hg™ " )dm(h) = P¢(x) . O

Py

2.5 Corollary. ¢ = w®; is a locally normal p-invariant state on </, where
w=(-92,0).

Proof. We have ¢fi; = o®¢f,; = wou,P; = 0®; = ¢ and ¢ is locally normal be-
cause both w and @; are locally normal. [

Let {ny,&,, #,} be the GNS triple associated with the above state ¢ and V
be the unitary representation of P on J#, given by Vyx&, = B4(x)&, for x € ;.
Notice that 7 is strongly continuous because ¢ is locally normal. We now need a
variation of known results, see [8,5].
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2.6 Lemma. If p; is irreducible then

o(x) =Pf By(x)dm(g), x € .

Proof. If x € /(—00,l) and y € o/, is localized in a bounded interval, the com-
mutator function ¢ — [Br()as)(X), pP(P)] = Bryaes)([*, p(a;(lt) A(S)( y)]) vanishes on a
right half line, hence [ fPo By(x), p(y)dm(g)] = fPo [By(x), p(¥)ldm(g) = 0.

Since p¢ is locally normal, fl’o By(x)dm(g) commutes with every p(/(—00,1)),

thus with p¢(</;); since p; is irreducible it is therefore a scalar equal to its vacuum
expectation value:

Pf Boy(x)dm(g) = [ a(By(x))dm(g) = [ w(zjxzg)dm(g) = wPi(x) = @(x),

Py Py
due to the fact that w is normal and «-invariant. [J

2.7 Corollary. If p; is irreducible, the one-parameter (translation) unitary group
V(T(t)) has positive generator.

Proof. If f € L'(R) has Fourier transform f with support in (—o0,0), we have
to show that Vy := fR f@OV(T(t))dt =0. Choose by Lemma B.4 a non-zero
Y € # such that SPy, (¥) + supp f C (—00,0), where SPy, denotes the spectrum
relative to Uy(T(-)). Setting B, := [p f()Brydt, for any x € o/ the vector
By(Br(x))y = 0, for all g € Py, since it has negative spectrum relative to U,(T( - )).
By averaging over Py the vector B,(B/(x*)B/(x))y, Lemma 2.6 implies ||V;x&,||* =
e(Br(x)*Pr(x))=0. O

2.8 Corollary. If p; is irreducible, ¢ is faithful on | p(o/(—00,1)).

Proof. o is a simple C*-algebra since it is the inductive limit of type III factors
(that are simple C*-algebras). Therefore m, is one-to-one and the statement will
follow if we show that &, is cyclic for 4, := p(/(—o0,1)), I > 0. To this end we
may use a classical Reeh—Schlieder argument. If y € 5 is orthogonal to %;¢,, and
lo > 1, then for all x € 4,, we have (x,, V(T(¢))y) = 0 for ¢ in a neighborhood
of 0, thus for all t € R by positivity of the generator shown by Corollary 2.7.
Hence, setting o, = az() and f; = Prq), ¥ is orthogonal to (|, B(%1,))Ey, thus
¥ = 0 because | J, f:(4,,) is irreducible since

<LtJﬂz(e%o))' = Oﬁ:(ﬂ(&/(—oo, lo))) = Op(at(ﬂ(—oo, l)))
=p (O o (A (=00, lo))) = O&/(—Oo, H=C

by the local normality of p. O
2.9 Proposition. (p;, p;) does not depend on the interval I D .

Proof. We begin with the case in which p; is irreducible and assume for conve-
nience that Iy C (—00,0). Notice then that (P(=o00,0) P(—00,0)) is finite-dimensional
and, by covariance, globally f,-invariant with g in the subgroup of dilations be-
cause these transformations preserve (—o00,0). Therefore (p(—co,0), P(=00,0))Ep 18
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a finite-dimensional subspace of 3, globally invariant for V' (A(s)), s € R. By
Proposition B.3 of Appendix B we thus have V(T (¢))x, = x&, for every element
X € (P(—00,0) P(—o0,0)), thus Br(;(x) = x because &, is separating. It follows that if
X € (P(=00,0) P(~0,0)) and y € (—00,0)

[x, p(og (V)] = Bo([By (), o) = By([x, p(»)]D) = 0

namely
X € (P(~00,0), P(~o00,0)) = X € (pr, pr) = CI .

Since the converse implication is obvious by Haag duality we have the equality of
the two intertwiner spaces.

Now if p is any endomorphism with finite index, (p¢, p¢) is finite-dimensional
by the inclusion (2.6), and p; decomposes into a direct sum of irreducible endo-
morphisms of /; which are covariant by Proposition 2.2, therefore the preceding
analysis shows that also in this case (0(—co,0), P(—00,0)) = (P, p¢). Since (p¢, p¢)
is translation invariant, we get (p(—oo, ), P(~o0,1)) = (Pr, p¢) Whenever Iy C (—oo0, /)
and, since { was arbitrary, we get the thesis. O

Proof of Theorem 2.3. The case o = p follows immediately by Proposition 2.6:
if T € (ps,pr) then T also belongs to (p;,py) for any interval I DI, hence by
additivity T is a self-intertwiner of p on the whole algebra C*(<7).

To handle the general case consider a direct sum endomorphism #:=p®a
localized in I, then

dim(ny, n;) = dim(py, pr) + dim(ay, 07) + 2 dim(py, o7)
while
dim(n,n); = dim(p, p); + dim(o, 6); + 2 dim(p, o), ,

therefore dim(p;, a;) = dim(p, 0);, and since we always have (p,a); C (p;, o) these
two intertwiner spaces coincide. [

In particular we have proved the following.

2.10 Corollary. Let p be an endomorphism of C*(sZ) with finite index localized
in Iy. The following are equivalent:

(i) mo - p is an irreducible representation of C*(),
(i) p(L )Y N L) = C for some, hence for all, I D I,
(iii) pe(A) Nty =C,
(iv) p¢ is an irreducible representation of /.
Moreover any finite index representation n of C*(f) is the direct sum of irre-
ducible representations.

2.3. The conjugate sector. Let p be an endomorphism of C*(</) with finite index
and localized in the interval Iy as before. We shall say that the endomorphism p is
a conjugate of p if there exist isometries V' € (id, pp) and V € (id, pp) such that

P = V)=, (2.10)

where d is a positive scalar. In this case one can in fact choose ¥,V so that d is
the square root of the minimal index of p.



24 D Guido, R. Longo

Denote by j; the lifting to an anti-automorphism of C*(/) of the adjoint action
of the modular conjugation J; on the precosheaf .o7.

2.11 Theorem. Let p be a covariant endomorphism with finite index. There exists
a conjugate endomorphism p, unique as superselection sector. p is covariant with
positive energy and is given by the formula

p=Jj-p-J, (2.11)

where j = j;. If both p and p are localized in the interval I, then there exist
isometries V € (id, pp); and V € (id, pp); such that the conjugate equations (2.10)
holds with d = \/Ind(p).

If moreover p is irreducible, then p is the unique irreducible endomorphism of
C*(), up to inner automorphisms, such that pp contains the identity and in this
case there exists a unique (up to a phase) isometry V € (id, pp);.

Proof. As shown in [15], p:=j;-p-j; is an endomorphism of C*(&/) locally
conjugate to p, namely p; is a conjugate endomorphism of p; according to [21],
for any interval [ such that both p and j are localized in /. Fixing such an interval
I, since p; has finite index, there ex1st isometries ¥ € (idz, pyp7), V € (idz, p;py)
such that 7" (V)= %, Vp(V) = d, with d = \/Ind(p;) [21]. By Theorem 2.3
V and V are global intertwiners, namely j is a global conjugate. The uniqueness
of p, the characterization of p in the irreducible case and the uniqueness of V'
follow again by the corresponding statements for sectors of factors [21] because of
Theorem 2.3. The covariance of p follows by the formula p = j.p-j, see [15]. O

2.12 Corollary. If p is a endomorphism of C*(/) with finite index, there exists
a (global) faithful left inverse @ of p which is given by the formula

O =V*p(- )V, (2.12)

where V € (id, pp) verifies the conjugate equations (2.10) and all faithful left in-
verses have this form. If p is localized in I, also @ is localized in I and |, is

normal if I > I.

If V,V are chosen so that the constant d in (2.10) is equal to \/Ind(p;), then
D is uniquely determined. In particular if p is irreducible then ® is the unique left
inverse of p.

Proof. Only the uniqueness of @ needs still to be proved. We assume that p is
localized in I and V € /(). By the same argument as in Corollary 5.7 of [20],
essentially the push-down lemma in [25], every element x € C*(&7) can be written
as

x =Ind(p)pdxV*)V . (2.13)

If ¥ is a left inverse of p and satisfies the conjugate equations with d = /Ind(p),
then ¥ and @ have the same restriction to .o/(/) because the corresponding statement
is true for endomorphisms of factors [21] and, by Corollary 2.10, ¥ (V) = @(V).
Thus, by formula (2.13),

P(x) = Ind(p)@V*)P(V) = Ind(p)dV*)®(V) = &(x). O

If p is a finite index endomorphism of C*(/), we define 1, = @(¢) where &
is the unique “minimal” left inverse provided by Corollary 2.12. As shown in [20],
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@ is a standard left inverse in the sense of [8], namely A, is a positive scalar
multiple of a unitary x, € (p,p); and the statistical dimension is then defined by
d(p) = ||4,]|”". By the index-statistics theorem (see Corollary 3.7) if p has finite
index, then also d(p) is finite.

2.13 Corollary. If p is irreducible with finite index, the statistics parameter A, in
formula (2.8) is a non-zero scalar.

Proof. 1, = ®(e) = P¢(e) belongs to (p;, pr) thus is a scalar by Corollary 2.10. 4,
does not vanish as mentioned above. [J

2.4. Equivalence between finite index and finite statistics. If a covariant, positive
energy superselection sector p has finite index, then also the statistical dimension
is finite. In fact Corollary 3.7 will relate the two quantities in the general reducible
case. For completeness, in this subsection we will outline an argument showing a
converse of this assertion. We shall say that a localized endomorphism p of C*(.</)
has finite statistics if there exists a left inverse @ of p such that the statistical
parameter A, := @(¢) is an invertible operator; even in the irreducible case we do
not know a priori that 4, is a scalar since the equivalent of Corollary 2.10 has not
been proved.

In the following proposition p is a covariant endomorphism of C*(&/), but
positive energy is not assumed.

2.14 Proposition. If p is covariant with finite statistics, then p has finite index
and positive energy.

Proof. Let p be localized in Iy, { € I; and &; := P|,,. Because of finite statistics
the DHR inequality holds:

@@l = clxll, xeo], (2.14)

where ¢ = ||A;']| 7> > 0, by reasoning as in [8]. Indeed if x = x* € &/(—o0, /) with
Iy C (—o0,/) and u is a unitary such that up( - )u* is localized in (/,00), so that
p(x) =u*xu and ¢ = u*p(u), we have ®(u*x) = P(p(x)u*) = P(p(x)ep(u*)) =
xApu* and therefore || @(x*)|| = (| @(xu)P(u*x)|| = (45> 4|l = [lxA3A,x] =2 c|l¥?].
As p; is isometric, the inequality (2.14) is clearly equivalent to the Pimsner—
Popa inequality [25]
IEG Z cllxll, x €.,

with E = py - @ the associated conditional expectation onto the range of p, and it
is also equivalent to
Ex)=cx, xes;, (2.15)

(see [20] for the version of these inequalities on infinite factors). In particular E| )
is normal and p; has finite index I D Iy.

We can now replace @; by its average @, over P with respect to an invariant
mean, e.g. the m in the previous section, <1>2 = fPo a;1¢gﬁgdm(g). Since p is locally
normal pd?z still satisfies the inequality (2.15) and hence @2 the inequality (2.14).

At this point the state ¢ = w®; in Corollary 2.5 is again locally normal
and faithful, thus Proposition 2.9 applies and provides the global conjugate in
Theorem 2.11. The usual additivity of the spectrum argument then shows that p
is a positive energy representation. [
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3. The Conformal Spin-Statistics Theorem

3.1. A first relation between spin and statistics. In this subsection we prove a first
relation between spin and statistics. We shall not use the full conformal invariance,
but only the covariance with respect to the rotation subgroup and the geometric
interpretation of the modular conjugations.

In the following I; and I, always denote the upper semicircle {e’?,%9 € (0,7)}
and the right semicircle {e”, € (=%, 5)} respectively and p is an irreducible co-
variant endomorphism of C*(«7) with positive energy and finite index localized in
an interval whose closure is contained in /; N J>. Then p;, = p| ;) is an irreducible
finite-index endomorphism of 2/(l;) and we denote by V; the standard implemen-
tation of py, i = 1,2, with respect to the vacuum vector, see Appendix A. We also
shorten the notations: J; stands for the modular conjugation J;, p; for the conjugate
Jipji of p, where j; is the promotion to an anti-automorphism of C*(</) of the
precosheaf anti-automorphism J; - J;. The symbol ad U denotes the automorphism
of C*(&/) corresponding to a unitary U (e.g. ad U,(g) := ad z,(g) - og).

3.1 Lemma. We have V| € (1), V, € /(I}) and V; is the unique isometry (up
to a phase) with this localization support that intertwines the identity and pp;,
i=1,2

Proof. By the geometric meaning of J;, both p and p; are localized in I, thus by
Theorem 2.11 we can take an isometry v € (id, p;p)y,, in fact v belongs to /(1) if
I is any subinterval of I, that contains both the localization support of p and of p;.
Since pj, is irreducible, v is uniquely determined (up to a phase) by such properties.
Therefore we may choose v so that jj(v) = v. By additivity v implements p; and
since it also commutes with J; we have V; = v by Lemma A.3. The argument
for 7, is similar. O

Since p, p,, p, are localized in disjoint intervals, they pairwise commute, thus
V1V, and V,V; both belong to (id, p*p, P, )1, us,» hence
Hp = ViV ViV2 3.1

is a scalar. It is an invariant for p that, by construction, reflects algebraic, an-
alytical and geometric aspects. By looking at u, from these different points of
view we shall identify it, with different arguments, with the statistics parameter
and with the univalence of p times d(p)~!, proving the conformal spin-statistics
theorem.

3.2 Lemma. The following identities between endomorphisms of C*(/) hold:
(a) pp, = ad Uy(m)pp,ad U(m),
(b) pP1J2PP1J2 = PP2J1PP2I1-

Proof. By formula (1.2) we have J1J, = U(xn), hence jijr = joj1 = ad U(n),
therefore
p; = adU(n)p,adU(m) .

Thus by covariance

PPy = padU(n)p,adU (r) = adUj(n)pp,adU ()
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and, since p; and p, are localized in disjoint intervals and thus commute,

pP1J2PP L2 = pp pradU(n)padU(m)
= pp,p1adU(n)padl(n) = pp,j1pP2J1 - )

3.3 Lemma. We have
Up(m)U(m) = ¢, V7, (3.2)

where c, is a complex number of modulus one.

Proof. By Lemma 3.1, V7 is the unique isometry (up to a phase) in (id, pp; );,. By
Lemma 3.2 (a), also U,(n)V,U(m) belongs to (id, pp,). Moreover, if x € (1),
then adU(n)(x) € (1), hence

adU,(n)VU(n)(x) = adU,(n)padU(m)(x) = adU,(2n)p(x) = p(x) = x,

showing that U,(7)V,U(w) belongs to 2/(l;) too, thus it coincides with ¥} up to a
phase. O

3.4 Lemma. ﬂp = (V]Jz V]Jz)* Vo1 Vadh belongs to (0, 1]

Proof. According to Lemma 3.2 (b), V1J,V1J; and VaJ;V,J) are both isometries
in (id, pp,j2pp,j2) and both belong to the same local von Neumann algebra 2/(/),
where pp,j2pp,j2 is localized in I € .#, therefore f, is a complex scalar.

Setting e; := V;V;* we deduce that

v

ﬁp V1J2 V]Jz = €1J2€1J2 V2J1 V2J1 . (33)

Since V; is the standard implementation of p;, V; preserves the positive cone
P (A (1), Q). Moreover J; preserves 2°(o/(I,),2) because it implements an anti-
automorphism of /() and fixes Q, and J, preserves 2%(/(I;), ) analogously.
By the definition of the natural positive cones and the relations Vi,e; € (L),
V, € (1)), we have that V,J,V,J1Q2 and V1J,V1J,Q belong to .@h(&/(ll ), )N
t@h(df(lz),g) and e]Jz@]JzQ € .@h(&/(b), Q)

Since the scalar product of non-zero vectors in a natural cone is non-negative,
and furthermore positive if one of the vectors is cyclic (equivalently separating),

1
and since (eyJierJ1Q,Q) = ||A;‘le2§2||2=|=0 we have
(V|J2V1J2.Q,.Q) > 0, (e2J1e‘2J1 VoJi V2J1.Q,Q) = (V2J1 Vleg,eleeleg) >0

that entails f, > 0 by comparing with (3.3), provided we show that V,J,V>J,2 is
separating for o/(/;). But this is true because if x € &/(;) and xV>J,V2J12 = 0,
then

(1 @H P(x™x)Q, Q) = (ST V3 W VSx*xVa1 VaJ12,2) =0, 34)

and this implies x = 0 because the left inverse @ of p is faithful. The rest is clear
since by definition ||B,|| < 1. O

3.5 Lemma. 4, = p, = V' VSV V).

Proof. As in [7] we get A, = p(V*)V; indeed if p’ is localized in J; NI} and u is
a unitary in (p,p’)y,, then ad w*| ) = pr,, thus p(ViW, = w*ViuV, = w* d(u) =
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P(e,) = Ap. Since Vy € /(1) and V, implements p on 2/(l;), we thus have

Vi =vien) = o(p(ViV) = 2(4,)=4,. O (3:5)
3.6 Proposition. The following relations hold.

B, =d(p)", (3.6)

2Kp s (3.7)

Sp=Cp

where i, is the phase of the statistical parameter.

Proof. Taking adjoints in (3.2), we have U(n)V{'U,(n) = c, V5, and multiplying
side by side this expression with formula (3.2) we have

AV Vi = s, UMV V,U(m) (3.8)

because s, := U,(27).
Since J; commutes with V; and J1J, = J,J; = U(n), we have

Bo = JiBpJ1 = (VI LV LVadi Vo) )y = VU@V VL,U(r)Vs (3.9)

therefore, by inserting formula (3.8) in the expression for 4, given by Lemma 3.5
and comparing with (3.9) we obtain

Ay = ViV ViV = ¢ s, ViUV aU(m)Va = ¢, %5, (3.10)
and the thesis easily follows. O

3.7 Corollary (Index-statistics theorem). For every covariant endomorphism p of
C*() we have Ind(p) = d(p)*.

Proof. If p is irreducible we have VTpIZ(Vl)zé with d = 4/Ind(p) by
Corollary 2.12 and comparing with formula (3.5) we have the thesis since 7,
and ¥, are equal up to a phase. The general case follows by additivity of both
the statistical dimension and the square root of the minimal index (or by a direct
argument). The case of infinite index is treated in Subsect.2.4. O

3.2. The spin-statistics theorem. We prove now that cf, = 1, completing our result.
In this step the role of the conformal invariance is to fix uniquely the representation
of the rotation group U,(¥), otherwise defined up to a one-dimensional representa-
tion, as the restriction of the unique representation of G. We could nevertheless fix
U,(¥9) by using the positivity of the conformal Hamiltonian.

It is convenient to extend the definition of ¢, to the case of a reducible finite
index p. To this end notice that, as in the proof Lemma 3.3, both U,(n)V,U(n)
and ¢,V belong to (id, pp, )y, thus there exists ¢, € (pp;, pp;)s, such that formula
(3.2) holds. Replacing c, by its push-down if necessary, we may further assume
that ¢, € (p, p) and this condition define it uniquely, see [24].

In the following p, ¢ are finite index endomorphisms of C*(.</).

3.8 Lemma. Let p and o be localized in I N I, with p an irreducible subsector
of 0 and p, € (I} N L) is the minimal idempotent in (0,0)n1, corresponding
to p, then ¢, p, = c,p,. In particular, if c, is a scalar, then c, = c,.

Proof. With w € (p,0) an isometry in /(I; N 1), we have by Proposition A.4 of
the appendix

V)V = \/d(e)w w* V7 . (3.11)
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The projection p, = w*w € &/(I; N1,) commutes with the range of o, hence it
commutes with U, (see the proof of Proposition 2.2), therefore

W Us(gW)w*Us(h)w) = w*Us(gh)w, g,h € G, (3.12)

namely g — w*U,;(g)w is a unitary representation. Since for every x € C*(</) we
have

(W Us(g)W)p(x)W*Us(g)*w) = w*Us(9)a(x)U,(9)*w
=w"a(U(g)xU(g)")w = p(U(9)xU(9)") ,
we get by the uniqueness of the representation in Proposition 2.2,
Up(g) = w"Us(g)w . (3.13)

Since ¢, lives in a finite-dimensional algebra, we may assume that p, is an eigen-
projection of ¢, namely ¢, p, = Ip, with [ € C. Making substitutions in the formula
(3.2) according to Egs. (3.12), (3.13), we then get

Va(p)e,Vf = \/d(o)w* U,(m)ww* ow* VU ()
= /d(a)w* Us(m)ow* S V5 U(m)
= /d(oW Us(m)Jow* o Us(—)co VY
= /(o)W U(m)ze(r)ow"Joz; (1)U (1), Vi
= Vd(o W U(n)ow* LU(m)c, VY
= \/d(a W )w*Jic VY

= d(oW cehw* 1V = +/d(p)IV],

where we have used in particular that [J,w*J,,z,(n)] = 0 due to the localization
in disjoint intervals and again of the identity JyJ, = U(x), and this concludes the
proof. O

Our choice of the intervals /; and I is, of course, conventional. If we replace
them by their rotates R(9)I;, R(¥)L, we would get a priori another invariant c,(2)
for a p localized in their intersection. But this is soon seen to be equal to c,,, the
old invariant for py := ad U(—9)pad U(¥) = ad z,(—9)p (because U(?}) establishes
an isomorphism between the old and the rotated structures). Next lemma implies
that ¢,, = ¢, if also py is localized in [; N L.

3.9 Lemma. c, depends only on the superselection class of p and not on its rep-
resentative p nor on the choice of I, and I, as above.

Proof. If p is localized in 1N, and ¢ =adW -p for some unitary W €
(I} N 1) then Vf = W*JW*JV and by a computation similar to the one in the
Lemma 3.8 we see that ¢, = c,. By the comment preceding this lemma it thus
follows that ¢, remains unchanged if we rotate the /;’s provided p stays localized
in the intersection of the intervals. Thus, in finitely many steps, replacing p by an
equivalent endomorphism and making small rotations of the intervals, we see that

¢, does not vary in its superselection class. O

3.10 Lemma. c, = c;.
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Proof. By Lemma 3.9 we may choose p = p, = jipji1. Thus p is localized in I N I,
and ¢, is definable with respect to the intervals I, = R(—3)I1,I{ = R(—})L. The
standard implementations of p relative to these intervals are respectively given by
JVEJy and JiVEJy = VY, moreover Uy(9) = JiUp(—9)J1, see [15]. Inserting these
identities in the defining expression (3.2) for ¢; we thus have J, Uy(—n)J; V{ U(n) =
¢/ V2” J1 and after cancellations this gives the stated equality. O

3.11 Lemma. Let p, ¢ be irreducible and localized in Iy N I,. Then c,; = cycq.
Proof. By the cocycle equation z;,(g) = z,(9)p(z;(g9)) and the multiplicativity of
the standard implementations V/° = V/V?, Eq. (3.2) for pa gives
o UmWVIVIU(R) = z3(n)V5z;(n)V5 = z,(m)p(z;(m))V3 V5
=2;,(MV}° = ¢, c U(mV{°U(n), (3.14)

where we used that z,(n) € (L, UI]) and that V} implements p on /(L UI)).
Since ¥’ = V¥V we have the thesis. O

3.12 Corollary. 2 = 1.

Proof. If p is irreducible, then by Lemmas 3.8 and 3.9 we have ¢3 = c,c; = ¢pp =
1. The general case follows by Lemma 3.8. O

Now the spin and statistics relation immediately follows immediately by
Proposition 3.6.

3.13 Theorem (Spin and Statistics). Let p be a superselection sector with finite
statistics. Then x, = s,.

Appendix A. Standard Implementation of Left Inverses

We will deal here with the notion of standard implementation (see e.g. [3]) in the
endomorphism case.

Let M be a von Neumann algebra on a Hilbert space # and p a unital injec-
tive endomorphism of M. The left inverses @ of p correspond bijectively to the
conditional expectations £ of M onto p(M):

®—>E=p-9,
E—-®=p'.E. (A1)
We shall say that an isometry V € %(H) implements the left inverse @ if
V*xV = ®(x), xEM. (A2)
A.1 Lemma. Let the isometry V implement ®. Then

(@) Vx = p(x)V, x € M,
(b) exe = E(x)e, x € M,

where e = VV™* and E = p®. Conversely if (a) and (b) hold then V implements ®.
Proof. If we set x = p(y) in (A.2) we have V*p(y)V = y for all y € M, hence

ep(V)V =Vy. (A3)
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In particular, if y is unitary, |lep(V)VE|| = [[VyE|| = [I¢]| = [p(0IVE|, &€ #,
showing that ep(y)VE = p(¥)VE, hence ep(y)e = p(y)e, so we have

ep(y) = (p(y™)e)* = (ep(y*)e)* = ep(y)e = p(»)e,

which implies e € p(M)’ because M is generated by its unitaries. Formula (A.3)
then entails (a). To check (b) notice that

exe = VV*xVV* = VOx)V* = p(P(x))VV* = E(x)e .
Conversely, assuming (a) and (b), we have
V*xV = V*exeV = VEX)V = V*p(®d(x))V = d(x), xEM. O

We shall say that an isometry V implements the endomorphism p and that the
projection e implements the conditional expectation E if the equations (a) and (b)
of Lemma A.1 are respectively satisfied.

We now fix a unit cyclic and separating vector Q2 € # for M and its corre-
sponding natural cone 2°(M, Q).

If @ is a normal left inverse of p let us consider the state

p=w-0,

where @ = (-Q,Q) and the corresponding vector &€ 2°(M,Q) such that
o =(-&9).

Let e := [p(M)&] € p(M) and let Vg be the isometry of # with final projection
e such that Vp : # — e is the Araki-Connes-Haagerup standard implementation
of p as an isomorphism of M with p(M) with respect to the positive cones (M, Q)
and 2%(p(M),&). Then Vg is given by

VexQ = p(x)é, xeM.

We check that Vg implements @. To this end note first that £ = p® is ¢-invariant
since
o E=0-®-p-P=w-d=9¢.

Then
(xp(b)¢, p(a)l) = p(p(a*xp(b)) = @ - E(p(a” )xp(b))
= @(p(a”)E(x)p(b)) = (E(x)p(b)E, p(a)l) a,b,xeM,

i.e. eE(x)e = exe, x € M, but e € p(M), hence e implements E; in particular, if @
is faithful, e is the Takesaki projection for E.
Moreover Vg implements @ because

px)WVayQ = p(x)p(y)e = p(xy) = VoxyQ x,y €M .

The isometry Vo will be called the standard implementation of @ with respect to
Q. In case M is a factor and p has finite index, namely p(M) is a finite index
subfactor of M, and @ = @y, the minimal left inverse of p, we shall denote Vo _
by ¥, and call it the standard implementation of p with respect to Q.

We collect here some properties of the standard implementations.
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A.2 Proposition.

(a) Vg is the unique isometry that implements ® and sends P*(M,Q) into
itself. In particular Vy depends on P*(M,Q) but not on the particular vector Q.

(b) Vo is the unique isometry that implements @ and verifies VpQ € P*(M, Q).

(c) Vo,0, = Vo,Va,, with ®1,P, normal left inverses of pi,ps. In particular,
if p1,p2 have finite index, V, ,, = V,, Vp,.

(d) JVoJ = Vg, where J is the modular conjugation of (M, Q).

Proof. By construction Vg implements @ and maps 2°(M, Q) into itself, in par-
ticular VQ € 2°(M, Q). Now suppose that an isometry ¥ implements & and
VQ € 2%(M, Q). Then

(VV=V*"-VQND=w-=0¢p,

thus VQ is the unique vector & € (M, Q) associated with ¢ and VxQ = p(x)VQ
= p(x)&, namely V' = V. This proves (a) and (b).

(c) is a consequence of (a) and of the multiplicativity of the minimal index
[22].

(d) J restricted to the range of e = V¥V coincides with the modular conjugation
of M, because ¢ preserves the conditional expectation E, thus VgJVe = J because
Vg is the standard implementation of p as an isomorphism of M with p(M). O

A.3 Lemma. Let M be a factor and p a finite index endomorphism. If W is an
isometry that implements p and commutes with J, then W implements a left inverse
@ of p and W = mV, for some m € (p,p), which is invertible iff ® is faithful. In
particular, if p is irreducible, then W = £V,

Proof. The partial isometry Z = WV commutes with J and belongs to p(M)',
thus Z € N’ N M, where we set N = p(M) and M; = JN'J denotes the Jones basic
extension of N C M. Clearly we have W = ZV,,. Let m be the Pimsner—Popa push-
down of Z, namely the unique element m € M such that mV, = ZV,. We have
m = Ind(p)E(Ze) with E = p®Ppjin, thus m € p(M) N M and W = mV, showing in
particular that W implements a left inverse @ of p. Clearly @ is faithful if m is
invertible. Conversely, if @ is faithful, p € (p,p) is a projection and pm = 0 then
D(p) =V, m*pmV, =0, thus p =0 so m is invertible.

If moreover p is irreducible, then m € C, thus m = £1 because both W and V),
are isometries commuting with J. O

Recall now that the dimension d(p) of p is defined as the square root of the
minimal index of p.

A.4 Proposition. Let o be a finite index endomorphism of the factor M and p an
irreducible subsector of o. If w is an isometry in (p, o), then

_ Ja@....
V,= d(p)w JWIV, .

If o= @fi L mip;i is an irreducible decomposition of o and for each i {w,(‘i),k =
1,...,n;} is an orthonormal basis of isometries in (p;,0), then

5 1d(pi) @y, )
Ve = ——w_ Jw. IV, . A4
L 2\ oy " A4
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Proof. We prove the second assertion that implies the first one. Set I equal to the
right-hand side in (A.4). The ranges of the w,({’)’s are pairwise orthogonal and the

coefficients verifies S | ni%L)) =1, thus W is an isometry and a direct verifica-
tion shows that it implements ¢. Moreover W commutes with .J, thus Lemma A.3
shows that W implements a left inverse @ of . But W also preserves the natural
cone 2%(M,Q), because this is true for each of its terms, thus W is the standard
implementation of @ by Proposition A.2. It remains to show that @ is the minimal
left inverse. Now a left inverse is determined by the state obtained by restricting
it to (o,0). The value of @ on the minimal projection w,((’)w,(c’)* is %)—), hence it is

the minimal left inverse. O

Appendix B. Invariant Vectors for Representations of SL(2,R)

We start by recalling the “vanishing of the matrix coefficient theorem” for a con-
nected simple Lie group G with finite center, see [32].

B.1 Theorem. Let U be a unitary representation of G on a Hilbert space #. If
U does not contain the identity, then (U(g)¢,n) — 0 as g — oo for all £,n € H.

As a consequence, if U is a unitary representation of G and & € # then the
subgroup {g € G, U(g)¢ = &} is either compact or equal to G.

In the following G always denotes the universal covering group of SL(2,R)
and we state an explicit corollary in this case. Let us consider the one-parameter
subgroups of G of the translations, dilations and rotations defined as the lifting to
G of the one-parameter subgroups of SL(2,R),

9

s 9 :
(1 ¢ _(exz 0 _ [ cosy siny
T(Z)—<O 1)7 A(S)—<0 e_%), R(ﬂ)—(—SIng cosg),
(B.1)
and we still denote them by the same symbols T, A, R (cf. the definitions in Sect. 1).

B.2 Corollary. Let U be a unitary representation of G and Q a vector of the
Hilbert space #. The following are equivalent:

(i) CQ are the only U invariant vectors.
(ii) CQ are the only U(T(-)) invariant vectors.
(iii) CQ are the only U(A(-)) invariant vectors.
If moreover the generator of U(R(+)) is positive then the former statements are
also equivalent to
(iv) CQ are the only U(R(-)) invariant vectors.

Proof. Although the cardinality of the center Z of G is infinite, we check that
Theorem B.1 still applies. By decomposing U into a direct integral of irreducible
representations, it is sufficient to consider the case in which U is irreducible. Since
U is infinite-dimensional, the tensor product with its conjugate representation U @ U
does not contain the identity. Now U ® U is trivial on the center Z, hence defines
a representation of PSL(2,R). If £ € & then by Theorem B.1,

I(U@EOP = U@ T@E®EERE =0 asg— oo.
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Then the first set of equivalences is then clear. Furthermore (i) is equivalent to (iv)
if the conformal Hamiltonian is positive because the identity is the only irreducible
unitary representation of G with lowest weight 0. O

In this paper we need a result in the spirit of Theorem B.1 concerning repre-
sentations of the subgroup P of the upper triangular matrices in SL(2,R), namely
the group generated by the translations and the dilations.

B.3 Proposition. Let U be a unitary representation of P on a Hilbert space #.
If F C & is a finite-dimensional subspace which is globally U(A( - ))-invariant,
then F is left pointwise fixed by U(T(+)).

Proof. Setting u(t) := U(T(t)) and v(s) := V(A(s)) we have two one-parameter
unitary groups on S satisfying the commutation relations
v(s)u(t)v(—s) = u(e’t), t,seR. (B.2)

Since F is finite dimensional, we need to show that u(z)¢ = & if £ is a v-eigenvector,
i.e. there exists a character y € R such that

v(s)E = yx(s)é, seR. (B.3)
Indeed in this case by the formula (B.2) we have
u(e't)e = v(s)u(t)o(—s)& = y()o(s)u(t)é ,
hence
(u(e’t), &) = (u()¢, &), tseR.

As s — —oo we thus have

(&,8) = (u(t)¢, )
that implies u(¢#)¢ = & by the limit case of the Schwartz inequality. O
Before concluding this appendix, we recall a known fact needed in the text.

B.4 Lemma. Let U be a unitary representation of G. The following are equivalent:

(i) The generator of U(R(-)) is positive.
(ii) The generator of U(T(-)) is positive.

In this case, if U is non-trivial, the spectrum of the generator of U(T(-)) is
[0, 00).

Proof. For the equivalence (i) < (ii) see e.g. [26]. The last statement follows
because the spectrum of U(T(-)) has to be dilation invariant because of the com-
mutation relations (B.2). O
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