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Abstract: We prove the equality between the statistics phase and the conformal
univalence for a superselection sector with finite index in Conformal Quantum Field
Theory on Sι. A relevant point is the description of the PCT symmetry and the
construction of the global conjugate charge.

Introduction

During recent years Conformal Quantum Field Theory has become a widely studied
topic, especially on low dimensional space-times because of physical motivations
such as the desire of a better understanding of two-dimensional critical phenomena,
and also for its rich mathematical structure providing remarkable connections with
different areas such as Hopf algebras, low dimensional topology, knot invariants and
subfactors, among many others.

The Operator Algebra approach furnishes a powerful tool of investigation in this
context, not only because it naturally leads to a model independent and intrinsic
analysis, focusing on essential aspects such as the relative position of the local
von Neumann algebras, but also because it makes visible otherwise hidden natural
structures yielding results inaccessible by different methods.

Two examples of this kind, the geometric description of the Tomita-Takesaki
modular structure of the local von Neumann algebras [1,18,4], and the connection
of the statistics of a superselection sector with the Jones index theory of subfactors
[20], will play a fundamental role in this paper. These methods are present and
important in general Quantum Field Theory, but provide an even richer structure in
the low-dimensional case, conformal theories on Sι in particular.

In the early seventies Doplicher, Haag and Roberts [7,8] developed a theory of
superselection sectors, in the sense of [31], in the algebraic framework proposed by
Haag and Kastler [17] starting from first principles. They described a superselection
sector by a localized endomorphism p of the C*-algebra generated by the local
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observable von Neumann algebras on the usual Minkowski space. In particular
they showed that the statistics of p, a representation of the permutation group, is
intrinsically encoded in p and classified it by an associated statistical parameter λp.

It was more recently realized that in the low dimensional case the statistics
becomes a representation of the Artin braid group. By applying generalized DHR
methods, a first analysis in this case was given in [20,11]. In the simplest cases
(small index or few channels) the statistics parameter classifies the braid group
statistics by the Jones polynomial invariant for knots and links and its generaliza-
tions, see [21,23].

A key point in the analysis of superselection sectors is the index-statistics
theorem [20] showing that, in any space-time dimension,

Ind(p) = d(p)2 ,

where Ind(p) is the minimal index of p, an extension of the Jones index [19], and
d(p) := l^pl"1 is the DHR statistical dimension of p. We refer to [23] for a survey
and for references on the index theory for infinite factors, but we recall that the
square root of the minimal index of an endomoφhism of a factor has the meaning
of a dimension, that finds an identification in this context by the above equation.

On the other hand important information on the statistics is also contained in
the statistics phase κp := λp/\λp\ of p: on the 4-dimensional space-time κp = ±1,
a sign labeling the fundamental Fermi-Bose alternative. Therefore it is natural to
look at a counteφart of the index-statistics relation for the statistics phase.

Based on the classical spin-statistics connection (see [28]), one may easily con-
jecture that in a conformal theory on Sι the statistics phase has to agree with the
univalence of the sector p

sp = κp ,

where sp := e2πιLp (Lp the conformal spin, the lowest eigenvalue of the conformal
Hamiltonian in the sector p) is a label for the central extension associated with the
occurring projective representation of the Mόbius group PSL(2,R).

Attempts to prove this relation have been made in particular by Fredenhagen,
Rehren and Schroer [12] and, in the related 2 + 1-dimensional context, by Frόhlich,
Gabbiani and Marchetti [13]. Starting with assumptions on the existence of a global
conjugate charge and of complete reducibility, they obtained a spin summation rule,
which implies the equality up to a sign sp = ±κp. But the conformal spin-statistics
theorem remained unproven unless adding ad hoc undesirable assumptions.

Based on different ideas, this paper will show how the full strength of Operator
Algebras provides the general and intrinsic spin and statistics relation, namely the
equality sp = κp. We deal with conformal theories on Sι (one-dimensional compo-
nents of two-dimensional chiral conformal theories) and base our analysis only on
first principles: isotony of the local von Neumann algebras, locality, conformal in-
variance with positive energy, existence of the vacuum. We thus obtain the complete
relation

. . univalence
statistics parameter = , . .

V minimal index
Note that κp has a local nature while sp is a global invariant. This is reminiscent

of familiar situations in Geometry and suggests that extensions of our result to more
general (curved) space-times should reveal further geometrical aspects. Our theorem
is not only a prototype for further generalizations, but it already provides a number
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of immediate extensions or variants, like for the case of topological charges on a 2 +
1-dimensional space-time [5]. This is due to the fact that we shall use the conformal
invariance only indirectly, not in an essential way. For convenience we shall discuss
these aspects together with related points and examples in a separate paper.

Our paper follows a previous work [15] where we reconsidered the classical
spin and statistics theorem in Quantum Field Theory [28] and derived it in the al-
gebraic setting assuming the "modular covariance property," namely the geometric
meaning of the modular groups of the von Neumann algebras associated with wedge
regions, consistently to the Bisognano-Wichmann theorem. That work, not directly
extendible to the lower dimensional case due to the occurrence of the braid group
statistics, focused however on the role played by the modular covariance property.
The latter was shown to hold in conformal field theory on general grounds [4,14],
and set thus the basis for the present analysis. Ultimately only the geometric de-
scription of the modular conjugations is essential in our analysis.

We now pass to the description of specific contents of this paper. In Sect. 1
we recall the basic properties shared by the local von Neumann algebras srf(I)
associated with intervals / of Sι.

Like in the classical case, the spin-statistics relation is strictly tied up with
the PCT symmetry. Section 2 is indeed devoted to the construction of a global
conjugate charge for a superselection sector p with finite statistics, a key point
relevant in itself, previously an assumption in the related literature. As shown in
[15], the sector

P'=j'p'j

is locally a conjugate of p in the sense that if p is an endomorphism localized in an
interval IQ and j is the adjoint (geometric) action given by the modular conjugation
of an interval, one has the identity

where / is any interval containing IQ and its reflection by j ; the bar on the right-hand
side denotes the conjugate endomorphism in the sense of the sectors of the factor
j/(7) [21], a framework equivalent to the setting of the correspondences of Connes.
In the irreducible case p is characterized by the existence of an isometry Vj G <£/(/)
that intertwines the identity and pp\^{iy But the problem remained whether there
is a global intertwiner V independent of /. We solve this problem positively by
using an argument inspired by the "vanishing of the matrix coefficient theorem" for
connected simple Lie groups, see Appendix B.

We prove in fact the equivalence between the local and the global intertwiners
for superselection sectors with finite index, namely the embedding into the sec-
tors (endomorphisms modulo inners) of the factor M := stf(I) determined via the
restriction map

Superselection sectors —> Sect(M)

corresponds by the index-statistics theorem to a faithful functor of tensor
C*-categories with conjugates which is full (no new intertwiner arises in the range).
This implies that the fusion rules of the superselection sectors are entirely described
by the theory of subfactors.

As a first consequence we shall see in Sect. 3 that the (internal) intertwiner
property of the above isometry V is equivalent to the (spatial) property of being
the standard implementation of p, according to Araki, Connes and Haagerup, see
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Appendix A, with respect to the vacuum vector. To extract information from this
fact we localize p in the upper-right quarter-circle and consider the standard im-
plementations V\ and Vi of p as an endomorphism of the upper and of the right
semicircle von Neumann algebra respectively and observe that

is a scalar invariant for p that reflects both analytic-algebraic and geometric aspects.
It is indeed natural to look at μp as a generalized multiplicative commutator of local
intertwiners, in the spirit of the statistics, and identify it with the statistics parameter
λp, or as an invariant obtained by reversing the orientation, in the spirit of the spin,

and identify μp with Ind(p)~2-times the univalence of p.
In more detail we shall obtain the spin-statistics relation by "squaring" a more

primitive identity between operators (see Eq. (3.8)) where a further invariant cp

enters. Our result is then completed by showing that cp is a conjugate-invariant
character on the semi-ring of the superselection sectors, so that it takes only the
values ± 1 . This reaches the goal of our paper, but leaves out the full understanding
of the invariant cfi9 in particular whether the value cp — — 1 might actually occur.
We think this is the case and that reflects a cohomological obstruction, and hope
to return to this point somewhere else.

Our work has been announced in [23].

1. General Properties of Conformal Precosheaves on S1

In this section we recall the basic properties enjoyed by the family of the von
Neumann algebras associated with a conformal Quantum Field Theory o n S 1 .

By an interval we shall always mean an open connected subset / of Sι such
that / and the interior /' of its complement are non-empty. We shall denote by J
the set of intervals in S1.

A precosheaf j / of von Neumann algebras on the intervals of Sι is a map

from J> to the von Neumann algebras on a Hubert space 2tf that verifies the fol-
lowing property:

A. Isotony. If I\, h are intervals and I\ C h, then

£0 is a conformal precosheaf of von Neumann algebras if the following prop-
erties B-E hold too.

B. Conformal invariance. There is a unitary representation U of G {the universal
covering group of PSL(2,R)) on J f such that

U(g)^(I)U(θy = s/{gl\ g € G, / e J .

The group PSL(2,Έi) is identified with the Mόbius group of Sι

9 i.e. the group
of conformal transformations on the complex plane that preserve the orientation and
leave the unit circle globally invariant. Therefore G has a natural action on Sι.
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C. Positivity of the energy. The generator of the rotation subgroup U(R( )) is
positive.

Here R(ΰ) denotes the (lifting to G of the) rotation by an angle ϋ. In the
following we shall often write U(ϋ) instead of U(R(ϋ)). We may associate two
one-parameter groups with any interval /. Let I\ be the upper semi-circle, i.e. the
interval {e'^τ? £ (0,π)}. We identify this interval with the positive real line R+ via
the Cayley transform C : Sι -• R U {00} given by z -> -i(z - l)(z + I ) " 1 . Then
we consider the one-parameter groups Λjχ(s) and Tjχ(t) of diffeomorphisms of Sι

(cf. Appendix B) such that

CΛIχ(s)C~ιx = Λ , CTIχ(t)C~xx =x + t9 t,s,x £ R .

We also associate with I\ the reflection r/1 given by

rhz = z ,

where z is the complex conjugate of z. We remark that ΛIχ restricts to an ori-
entation preserving diffeomorphisms of l\9 rjχ restricts to an orientation reversing
diffeomorphism of I\ onto /[ and TIχ(t) is an orientation preserving diffeomoφhism
of Iχ into itself if t ^ 0.

Then, if / is an interval and we chose g £ G such that / = gl\ we may set (see
also Appendix B)

Λj = gAhg~\ n = grhg~\ 7} = gThg~ι .

The elements Λ/(s), s £ R, and 77 are well defined, while the one parameter group
Tj is defined up to a scaling of the parameter. However, such a scaling plays no role
in this paper. We note also that T//(t) is an orientation preserving diffeomorphism
of / into itself if t ^ 0.

Lemma B.4 in Appendix B states the equivalence between the positivity of the
conformal Hamiltonian, i.e. the generator of the rotation group U(R( )), and the
positivity of the usual Hamiltonian, i.e. the generator of the translations on the real
line in the above specified identification of Sι with RU {00}.

D. Locality. If IQ9 I are disjoint intervals then ^/(/o) and A(I) commute.

The lattice symbol V will denote "the von Neumann algebra generated by."

E. Existence of the vacuum. There exists a unit vector Ω (vacuum vector) which
is U(Gyinvariant and cyclic for \JIeJf

Let r be an orientation reversing isometry of Sι with r2 = 1 (e.g. rIχ). The
action of r on /\SL(2,R) by conjugation lifts to an action σr on G, there-
fore we may consider the semidirect product of G xσr Z2. Any involutive ori-
entation reversing isometry has the form R(u)rIxR(—u), thus G x σ r Z 2 does not
depend on the particular choice of the isometry r. Since G xσr Z 2 is a cover-
ing of the group generated by PSL(2,R) and r, G x σ r Z 2 acts on Sι. We call
(anti-)unitary a representation U of G xσr Z 2 by operators on 2tf such that U(g)
is unitary, resp. antiunitary, when g is orientation preserving, resp. orientation
reversing.

1.1 Proposition. Let stf be a conformal precosheaf. The following hold:

(a) Reeh-Schlieder theorem [10]: Ω is cyclic and separating for each von
Neumann algebra s/(I)9 I £ </.
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(b) Bisognano-Wichmann property [4, 14]: U extends to an (anti-)unitary rep-
resentation of G xσr Z2 such that, for any I e «/,

U(Λj(2πt)) = 4 ' , (1.1)

Jl9 (1.2)

zl/, 7/ are ί/ze modular operator and the modular conjugation associated
with (s/(I),Ω) [29]. For eac/z g eGxσrZ2,

U(g)s/(I)U(gT =

(c) Additivity [10]: if a family of intervals /, covers the interval I, then

c

(d) *S/?/H and statistics for the vacuum sector [16]: (7 w indeed a representation
ofPSL(2,R), i.e. U(2π) = 1.

(e) /iaag duality [4, 14]:

We sketch here only the proof of (d) and refer to the original literature
for the rest. Note however that: the usual Reeh-Schlieder argument shows that (c)
implies (a); (b) is proved by using a theorem of Borchers [2]; (e) is an immedi-
ate consequence of (b). To get (d) let I\ and h be the upper and the right semi-
circle respectively, then Jjλ fixes Ω and implements an anti-automorphism of «s/(//2),
thus it commutes with Jj2. By property (b) JiχJi2 = U(π)9 thus U(π) is an
involution. D

F. Uniqueness of the vacuum (or irreducibility). The only U(G)-invariant vectors
are the scalar multiples of Ω.

The term irreducibility is due to the following.

1.2 Proposition. The following are equivalent:

(i) CΩ are the only U(G)-invariant vectors.
(ii) The algebras <£/(/), / G «/, are factors. In this case they are type III]

factors.
(iii) If a family of intervals It intersects at only one point £ then f]f s^{It) = C.
(iv) The von Neumann algebra \/s0(J) generated by the local algebras coin-

cides with 38(#?) (jtf is irreducible).

Proof, (i) => (ii). Indeed (i) implies (c) of Corollary B.2 in Appendix B, hence the
modular group of «c (̂/) with respect to Ω is ergodic, showing that stf(I) is a type
IIIi factor.

(ii) =̂> (iii). If C is a boundary point of an interval /, then by additivity and
duality p | ja/(//) commutes both with s/(I) and srf{I'\ and is therefore trivial.

(iii) ^ (iv). We have \JIeJ s/(I) D VC(f/ ^ 0 0 = « ( ^ )

(iv) =^ (i). Let / be an interval and x G ̂ {1) such that U(g)xΩ = xΩ for all
g G G. Since Ω is locally separating, we have x= U(g)xU(g)~ι. Since G acts
transitively on the intervals, x is in the commutant of \JIey <$#(!), and is therefore
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a scalar. Since stf(I)Ω is dense in Jf7, by the Ergodic Theorem Ω is the only
£/(G)-invariant vector. D

By Corollary B.2 the irreducibility of jrf is also equivalent to Ω being unique
invariant for any of the one-parameter subgroups of U corresponding to 7>, Λj
or R.

Now any conformal precosheaf decomposes uniquely into a direct integral of
irreducible conformal precosheaves. This can be seen as in Proposition 3.1 of [16].
We will therefore always assume that our precosheaves are irreducible.

2. Superselection Structure. Constructing the Global Conjugate Charge

2.1. Generalities on superselection sectors with finite index. In this section s/ is
an irreducible conformal precosheaf of von Neumann algebras as defined in Sect. 1.

A covariant representation π of J / is a family of representations π7 of the von
Neumann algebras J / ( / ) , / G / , on a Hubert space J^π and a unitary representation
Uπ of the covering group G of P5L(2,R), with positive energy, i.e. the generator
of the rotation unitary subgroup has positive generator, such that the following
properties hold:

/ c I => π/l , m = π7 (isotony) ,

ad Uπ(g) π7 = πgI ad U(g) (covariance) .

A unitary equivalence class of representations of s/ is called superselection sector.
Assuming Jfπ to be separable, the representations π7 are normal because the

j/(/) ' s are factors [30]. Therefore for any given TQ, π7/ is unitarily equivalent to

i&st{i') because J/(/Q) is a type III factor. By identifying Jfπ and 2tf, we can thus
assume that π is localized in a given interval 1$ e */, i.e. π7/ = id^//) (cf. [6]).
By Haag duality we then have π 7(j/(/)) c stf(I) if / D IQ. In other words, given
/ Q G / we can choose in the same sector of π a localized endomorphism with
localization support in /Q, namely a representation p equivalent to π such that

/ G / , / D Io^ pi e End J / ( / ) , p7/ = id7/ .

In the following (with the exception of Subsect. 2.4) representations or endomor-
phisms are always assumed to be covariant with positive energy1.

To capture the global point of view we may consider the universal algebra
C*(jtf). Recall that C * ( J / ) is a C*-algebra canonically associated with the
precosheaf stf (see [9,15]). There are injective embeddings ι7 : stf(I) —» C * ( J / ) so
that the local von Neumann algebras s/(I), I e J, are identified with sub-
algebras of C * ( J / ) and generate all together a dense *-subalgebra of C*(stf), and ev-
ery representation of the precosheaf J / factors through a representation of C * ( J / ) .
Conversely any representation of C * ( J / ) restricts to a representation of jtf. The

1 Assuming strong additivity (i e. Haag duality on the real line) the covariance property with
positive energy follows automatically in the finite index case; in fact the weaker assumption of
^-regularity is sufficient (cf. [15]). s$ is said to be ^-regular if, after removing n points from Sι,
the C*-algebra generated by the local operators is irreducible By Haag duality and factoriality
any conformal precosheaf is 2-regular. An example violating will be discussed in [33].
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vacuum representation πo of C * ( J / ) corresponds to the identity representation of
si on &?, thus πo acts identically on the local von Neumann algebras. We shall
often drop the symbols ij and πo when no confusion arises.

By the universality property, for each g G PSL(2,R) the isomorphism ad U(g) :
j / ( / ) —> si(gl)9 I G J lifts to an automorphism ocg of C*(si). It will be convenient
to lift the map g —>• otg to a representation, still denoted by α, of the universal
covering group G of P5L(2,R) by automorphisms of C*(si).

The covariance property for an endomorphism p of C*(si) localized in 70 means
that oίg p ag-\ is equivalent to p for any # G G, i.e.

adzp(#)* p = ocg p ag-ι geG (2.2)

for a suitable unitary zp(#) G C*(si). The map # —> zp(^) can be chosen to be a
localized α-cocycle, i.e.

U g 0 ) ^ o ^ ,

) 9 g,heG. (2.3)

The relations between (π, £/π) and (p,zp) are

π = π 0 p ,
(2.4)

πQ(zp(g)) = Uπ(g)U(gT .

As is known ([27], see also [15]) the localized cocycle zp reconstructs the endo-
morphism p via

(2.5)

A localized endomorphism of C*(s#) is said to be irreducible if the associated
representation π is irreducible.

Note that the representations πo pi and πo pi associated with the endomor-
phisms pi, p2 of C*(s/) are unitarily equivalent if and only if p\ and p 2 are
equivalent endomoφhisms of si, i.e. p2 is a perturbation of p\ by an inner auto-
morphism of si.

An endomorphism of C*(si) localized in an interval IQ is said to have finite
index if p/ (= p\^(i)) has finite index, IQ C I (see [20,23]). The index is indeed
well defined due to the following.

2.1 Proposition. Let p be an endomorphism localized in the interval IQ. Then the
index Ind(p) := Ind(p/), the minimal index of p/, does not depend on the interval

Proof. We show indeed that all the inclusions p(j/(/)) c ^/(/) are isomorphic if
I Ώ IQ (they are isomorphic to the inclusion π(s/(I)) c π{si{Ir))f for all / G «/).
This follows because, if g G G and zp(g) are chosen as in (2.2), (2.3) with I D IQ
and gl = IQ, then

C U(g)s/(I)U(gT}

{ p ( ( ) ) C ( ι )

and zp(0) e =s/(/). D
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2.2 Proposition. Let p be a covarίant {not necessarily irreducible) endomor-
phίsm with finite index. Then the representation Up described before is unique.
In particular, any irreducible component of p is a covariant endomorphism.

Proof If p is localized in Io and has finite index the following inclusion shows
that π(C*(j/)) / is finite-dimensional, π := πo p:

C (π(jtf(/)) U π(s/(I')))' = π(jtf(/))' Π s/(I), 70 C / . (2.6)

Since ί/π implements automorphisms of π(jaf), it implements an action of G by
automorphisms of π(s/)\ that must be trivial because G has no non-trivial action
by automorphisms of a finite-dimensional C*-algebra. Indeed such an action should
be trivial on the center because G is connected, thus it admits a faithful invari-
ant trace that defines a scalar product unitarizing the representation, but the only
finite-dimensional unitary representation of G is the identity. Therefore we proved
that Uπ G π(C*(ja/))//, and this fact implies that any irreducible subsector of p is
covariant.

Let U'π be another representation of G as in (2.1). Then, for each x G

K(g)Uπ(gTπ(x) = Uf

π(g)π(ag{x))Uπ{gγ = π(x)

which implies U^{g)Uπ{gy to belong to the center of π(C*(ja/))". Therefore

Uπ(g)U'π(gγu'π(h)Uπ{hγ = U'π(g)Uf

π(h)Uπ(hγUπ(gγ = Uf

π{gh)Uπ(ghT ,

i.e. g —> Uπ(g)Uπ(g)* is a representation of G. Since G is perfect, any abelian
representation is trivial, i.e. Uπ — lJ'π. D

By the above proposition the unίvalence of an endomorphism p is well de-
fined by

sp = Up(2π) .

By definition sp belongs to π(C*(ja/))/ therefore, when p is irreducible, sp is a
complex number of modulus one

sp = e2πίLP

with Lp the lowest weight of Up. In this case, since Up/(g) := πo(u)Up(g)πo(u)*,
where pf( ) := up( )w*, u G C*(s/)9 then sp depends only on the superselection
class of p.

Let pi, p2 be endomorphisms of an algebra ^ . Their intertwiner space is
defined by

(puP2) = {Te@: P2(x)T = TPι(x), x G ̂ } . (2.7)

In case & = C * ( J / ) , pz localized in the interval It and T G (pi,p2), then π o(Γ) is an
intertwiner between the representations πo p/. If / D /i U/2, then by Haag duality
its embedding 1/ πo(Γ) is still an intertwiner in (pi,p2) and a local operator. We
shall denote by {p\,p2)i the space of such local intertwiners

If 11 and I2 are disjoint, we may cover I\ UI2 by an interval 7 in two ways: we adopt
the convention that, unless otherwise specified, a local intertwiner is an element of
(pι,p2)i, where I2 follows I\ inside / in the clockwise sense.
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We now define the statistics. Given the endomorphism p of $0 localized in
/ e </, choose an equivalent endomorphism p 0 localized in an interval / 0 G / with

/ 0 π / = 0 and let w be a local intertwiner in (p, po) as above, namely w G (p, po)/
with /o following clockwise / inside /.

The statistics operator ε := u*p(u) = u*pj(u) belongs to (pj,ρj). An elemen-
tary computation shows that it gives rise to a presentation of the Artin braid group

fiίef+iε,- = fii+ifi/βf+i, ε/ε// = ε, /ε, if \i - i'\ ^ 2 ,

where εz = p ' - 1 (ε) . The (unitary equivalence class of the) representation of the
braid group thus obtained is the statistics of the superselection sector p.

Recall that if p is an endomorphism of a C*-algebra ^ , a left inverse of p is
a completely positive map Φ from J* to itself such that Φ p = id.

We shall see in Corollary 2.12 that if p is irreducible there exists a unique left
inverse Φ of p and that the statistics parameter

λp := Φ(ε) (2.8)

depends only on the sector of p.
The statistical dimension d(p) and the statistics phase κp are then defined by

Kp=

We shall indeed prove the equality between the statistics phase and the univa-
lence while the statistical dimension equals the square root of the index [20] (see
Corollary 3.7).

2.2. Equivalence between local and global intertwiners. If p, σ are endomorphisms
of C * ( J / ) localized in the interval /, we may consider their intertwiner space
(pl9σi):={Tes/(I):σ(x)T = Tp(x),Vxes/(I)}. We always have (p,σ)7 C
(p/,σ7).

2.3 Theorem. Let p, σ be endomorphisms with finite index localized in 70. Then

for any I G «/ ίAαί contains IQ. In other words ifTζ (p/,σ/) ίΛe« ϊ/(^) intertwines
p and σ in C*(«s/).

The proof of this theorem will be carried on in a few steps. In the following
p denotes an endomorphism of C * ( J / ) with finite index localized in an interval /o.
Let ζ £ IQ and identify 5 ! \ζ with R. Then p restricts to an endomorphism of each
von Neumann algebra s/(—oo, /), for sufficiently large / G R, hence it gives rise to
an endomorphism pζ the C*-algebra stfζ, the norm closure of | J / G R J/(—ex),/). Let
P be the stabilizer of the point ζ for the PSL(2,'R) action, namely the semidirect
product of the translations T(t) and dilations Λ(s) on R: each g e P is written
uniquely as a product # = T(t)Λ(s). Notice that P is canonically embedded in G
since P is simply connected and its Lie algebra is a subalgebra of the Lie algebra
of PSL(29R) that coincides with the Lie algebra of G. It follows that Up restricts
to a representation of P and we set

ββ{x) = Up(g)xUp(g)* = zp{g)U{g)xU{gTzp{g)*, xG^ζ,geP,
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so that β is an action of P by automorphisms of s/ζ, due to the fact that the cocycle
zp consists of local operators.

We consider now the semigroup Po, the semidirect product of negative dilations
with positive translations. Po is an amenable semigroup and we need an invariant
mean m constructed as follows: first we average (with an invariant mean) on positive
translations and then over negative dilations. Observe that / —• / p f(g)dm(g) gives
an invariant mean on all P vanishing on / if, for any given s G R, the map t —>
f(T(t)Λ(s)) has support in a left half line.

Then we associate to m the completely positive map Φζ of s/ζ to ̂ ( J f )
given by

Φζ(x) := / zp(g)*xzp(g)dm(g\ x G i ( . (2.9)
Po

2.4 Lemma. Φζ is a left inverse of pζ. Moreover Φζ is locally normal, i.e. has
normal restriction to stf(—oo, /), / G R, and V-invariant, namely

Proof Let x belong to ja/(-oo, /), / G R. By formula (2.2),

Φc(Pί(*)) = / <Xg(Pζ(<xg-i(x)))dm(g) = x ,

because of the above property of m since the integrand is constantly equal to x on
the set g G Po : g~ι(—oo,α) Π/o = 0. Then the localization of pζ and Haag duality
imply that the range of Φζ is contained in jtfζ.

Setting E = pζ Φζ we have a conditional expectation of j/ζ onto the range of pζ
that restricts to a conditional expectation E^-ooj^ of «β/(—oo, /) onto p(j/(—oo, /))
if (—00, /) D /o Since P(-oo,/) is assumed to have finite index, E^-^) is automat-
ically normal [21]. Therefore Φζ|^(-oo,/) = P^oo/)^(-oo,/) is normal for / large
enough, hence for any /.

Concerning the P-invariance of Φζ we have, making use of the cocycle condi-
tion,

oc;ιΦζβg(x) = α"1 ί fzp(hTβg(x)zp(h)dm(h) J

= α"1 I f zp(hTzp(g)ag(x)zp(g)%(h)dm(h) j

= f zp(hg-ιyxzp(hg-ι)dm(h) = Φζ(x). D
Po

2.5 Corollary, φ — ωΦζ is a locally normal β-invariant state on s/ζ, where
ω = ( Ω,Ω).

Proof. We have φβg = ωΦζβg — ωocgΦζ = ωΦζ = φ and φ is locally normal be-
cause both ω and Φζ are locally normal. D

Let \jiφ,ζφ^φ\ be the GNS triple associated with the above state φ and V
be the unitary representation of P on Jfφ given by Vgxξφ — βg(x)ξφ for x e stfζ.
Notice that V is strongly continuous because φ is locally normal. We now need a
variation of known results, see [8,5].
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2.6 Lemma. If pζ is irreducible then

Ψ(x) = I βg(x)dm(g\ xe*/ζ.
Po

Proof. If x G $t(—oo, /) and y G J ^ is localized in a bounded interval, the com-

mutator function t -> [/?r(ίM(s)(*)>P(j')] = i^r(ίM(5)(fcp(α^M ( 5 )(j)]) vanishes on a

right half line, hence [/PQ βg(x), p(y)dm(g)] = fVQ[βg(x)9 p(y)]dm(g) = 0.

Since pζ is locally normal, J p βg(x)dm(g) commutes with every ρ(stf(—oo, /)),
thus with pζ(stfζ); since p^ is irreducible it is therefore a scalar equal to its vacuum
expectation value:

/ βg(x)dm(g) = J ω(βg(x))dm(g) = J ω(z*xzg)dm(g) = ωΦζ(x) = φ(x),
Po Po Po

due to the fact that ω is normal and α-invariant. D

2.7 Corollary. If pζ is irreducible, the one-parameter {translation) unitary group
V(T(t)) has positive generator.

Proof If / G Lι(R) has Fourier transform / with support in (—oo, 0), we have
to show that Vf := fRf(t)V(T(t))dt = 0. Choose by Lemma B.4 a non-zero

φ G J4? such that spjy (φ) + supp/ C (—oo,0), where sp^ denotes the spectrum

relative to UP(T( )). Setting βf := fRf(t)βT(t)dt, for any j e i ( the vector

βg(βf(x))φ = 0, for all g G Po, since it has negative spectrum relative to UP(T( )).

By averaging over P o the vector βg(βf(x*)βf(x))φ, Lemma 2.6 implies | | ϊ ^x^ | | 2 =

βf(x)) = O. •

2.8 Corollary. If pζ is irreducible, φ is faithful on

Proof stfζ is a simple C* -algebra since it is the inductive limit of type III factors
(that are simple C*-algebras). Therefore πφ is one-to-one and the statement will
follow if we show that ζφ is cyclic for J1/ := p(j/(—oo, /))', / > 0. To this end we
may use a classical Reeh-Schlieder argument. If φ G J^ is orthogonal to ϋSιζφ, and
/o > /, then for all x G #/ 0 we have (x£φ, V(T(t))φ) = 0 for Mn a neighborhood
of 0, thus for all t G R by positivity of the generator shown by Corollary 2.7.
Hence, setting at = dτ(t) and βt = βT(t), Φ is orthogonal to (\Jtβt(3$ι0))ζφ9 thus
φ = 0 because [J, βt(βι§) is irreducible since

V I J t

-oo, /o))J = n ̂ (-oo, /) = C

by the local normality of p. D

2.9 Proposition. (pi,pi) does not depend on the interval I D 70.

Proof. We begin with the case in which pζ is irreducible and assume for conve-
nience that ΪQ C (—OO,0). Notice then that (p(_OOj0),P(_oθ50)) is finite-dimensional
and, by covariance, globally /^-invariant with g in the subgroup of dilations be-
cause these transformations preserve (—oo,0). Therefore (p(_ o o ? 0),P(-Oo,0))^ is
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a finite-dimensional subspace of Jfφ globally invariant for V(Λ(s)), s G R. By
Proposition B.3 of Appendix B we thus have V(T(t))xξφ = xξφ for every element
x G (p(_oo,θ)>P(-oo,θ))> thus βτ(t)(x) =x because ξφ is separating. It follows that if
x G (p(_oo,o),P(-oo,o)) and y G J / ( - O O , 0 )

[χ,p(*g(y))] = βg{[β-\χ\p{y)}) = j8,([*,pϋ>)]) = 0

namely

X G (P(-oo,0),P(-oo,0)) =* * Ξ (PC?PC) = C /

Since the converse implication is obvious by Haag duality we have the equality of
the two intertwiner spaces.

Now if p is any endomorphism with finite index, (pζ,pζ) is finite-dimensional
by the inclusion (2.6), and pζ decomposes into a direct sum of irreducible endo-
morphisms of srfζ which are covariant by Proposition 2.2, therefore the preceding
analysis shows that also in this case (p(_OOj0),P(-Oo,0)) = (Pζ,Pζ)- Since (pζ,Pζ)
is translation invariant, we get (p(_oo>/),p(_OOj/)) = (pζ,Pζ) whenever 70 C (—oc,/)
and, since ζ was arbitrary, we get the thesis. D

Proof of Theorem 2.3. The case σ = p follows immediately by Proposition 2.6:
if T G (pi,Pi) then T also belongs to (pf,pj) for any interval / D / , hence by
additivity T is a self-intertwiner of p on the whole algebra C*(ja/).

To handle the general case consider a direct sum endomorphism η := p Θ σ
localized in 7, then

ηfi = dim(p7, p 7) + dim(σ7, σ7) + 2 dim(p7, σ7)

while
dim(ιy, i/)/ = dim(p, p) 7 -f dim(σ, σ)7 + 2 dim(p, σ)7 ,

therefore dim(p7, σ7) = dim(p, σ)7, and since we always have (p, σ)7 c (p7, σ7) these
two intertwiner spaces coincide. D

In particular we have proved the following.

2.10 Corollary. Let p be an endomorphism of C*(jtf) with finite index localized
in IQ. The following are equivalent:

(i) πo p is an irreducible representation of
(ii) ρ(s/(I))' Π J / ( 7 ) = C for some, hence for all, I D 70,

(iii) pζ(^ζ)
f Πs/ζ = C,

(iv) pζ is an irreducible representation of

Moreover any finite index representation π of C*(<$/) is the direct sum of irre-
ducible representations.

2.3. The conjugate sector. Let p be an endomorphism of C * ( J / ) with finite index
and localized in the interval 70 as before. We shall say that the endomorphism p is
a conjugate of p if there exist isometries V G (id, pp) and V G (id, pp) such that

V*p{V) = i , V*p(V) = i , (2.10)

where d is a positive scalar. In this case one can in fact choose V, V so that d is
the square root of the minimal index of p.
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Denote by jj the lifting to an anti-automorphism of C*(s#) of the adjoint action
of the modular conjugation Jj on the precosheaf s/.

2.11 Theorem. Let p be a covariant endomorphism with finite index. There exists
a conjugate endomorphism p, unique as super selection sector, p is covariant with
positive energy and is given by the formula

where j — jj. If both p and p are localized in the interval I, then there exist
ίsometries V G (id, pp)/ and V G (id, pp)ι such that the conjugate equations (2.10)
holds with d = ylnd(p).

If moreover p is irreducible, then p is the unique irreducible endomorphism of
C*(srf\ up to inner automorphisms, such that pp contains the identity and in this
case there exists a unique {up to a phase) isometry V G (id, pp)/.

Proof. As shown in [15], β := ji p ji is an endomorphism of C * ( J / ) locally
conjugate to p, namely p/ is a conjugate endomorphism of pf according to [21],
for any interval / such that both p and p are localized in /. Fixing such an interval

/, since pi has finite index, there exist isometries V G (id/, p/p/), V G (id/, Pjβf)
such that V*p(V) = \, V*p(V) = \, with d = y/Ind(pr) [21]. By Theorem 2.3
V and V are global intertwiners, namely p is a global conjugate. The uniqueness
of p, the characterization of p in the irreducible case and the uniqueness of V
follow again by the corresponding statements for sectors of factors [21] because of
Theorem 2.3. The covariance of p follows by the formula p = j p •/, see [15]. D

2.12 Corollary. If p is a endomorphism of C*(stf) with finite index, there exists
a (global) faithful left inverse Φ of p which is given by the formula

Φ=V*p( )V, (2.12)

where V G (id, pp) verifies the conjugate equations (2.10) and all faithful left in-
verses have this form. If p is localized in I, also Φ is localized in I and Φ\^φ is

normal if I D /.

If V,V are chosen so that the constant d in (2.10) is equal to ^/lnd(p/), then
Φ is uniquely determined. In particular if p is irreducible then Φ is the unique left
inverse of p.

Proof Only the uniqueness of Φ needs still to be proved. We assume that p is
localized in / and V G s$(I). By the same argument as in Corollary 5.7 of [20],
essentially the push-down lemma in [25], every element x G C * ( J / ) can be written
as

x = Inά(p)pΦ(xV*)V. (2.13)

If Ψ is a left inverse of p and satisfies the conjugate equations with d = y/lnd(p),
then Ψ and Φ have the same restriction to srf(I) because the corresponding statement
is true for endomorphisms of factors [21] and, by Corollary 2.10, Ψ(V) = Φ(V).
Thus, by formula (2.13),

Ψ(x) = Ind(p)Φ(xV*)Ψ(V) = lnd(p)Φ(xV*)Φ(V) = Φ(x). D

If p is a finite index endomorphism of C * ( J / ) , we define λp = Φ(ε) where Φ
is the unique "minimal" left inverse provided by Corollary 2.12. As shown in [20],
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Φ is a standard left inverse in the sense of [8], namely λp is a positive scalar
multiple of a unitary κp e (p,p)i and the statistical dimension is then defined by
d(p) = ll^pl!"1. By the index-statistics theorem (see Corollary 3.7) if p has finite
index, then also d(p) is finite.

2.13 Corollary. If p is irreducible with finite index, the statistics parameter λp in
formula (2.8) is a non-zero scalar.

Proof λp — Φ(ε) = Φζ(s) belongs to (pi,pi) thus is a scalar by Corollary 2.10. λp

does not vanish as mentioned above. D

2.4. Equivalence between finite index and finite statistics. If a covariant, positive
energy superselection sector p has finite index, then also the statistical dimension
is finite. In fact Corollary 3.7 will relate the two quantities in the general reducible
case. For completeness, in this subsection we will outline an argument showing a
converse of this assertion. We shall say that a localized endomorphism p of C*(jtf)
has finite statistics if there exists a left inverse Φ of p such that the statistical
parameter λp := Φ(ε) is an invertible operator; even in the irreducible case we do
not know a priori that λp is a scalar since the equivalent of Corollary 2.10 has not
been proved.

In the following proposition p is a covariant endomorphism of C * ( J / ) , but
positive energy is not assumed.

2.14 Proposition. If p is covariant with finite statistics, then p has finite index
and positive energy.

Proof Let p be localized in 70, ζ G IQ and Φζ :— Φ\^ζ. Because of finite statistics
the DHR inequality holds:

||ΦC(*)|| £ φ | | , xerf, (2.14)

where c = \\λ~x\\~2 > 0, by reasoning as in [8]. Indeed if x = JC* G sί{—oo, /) with
/o C (—oo,/) and u is a unitary such that up( )w* is localized in (/,oo), so that
p(x) = u*xu and ε = u*p(u), we have Φ(u*x) = Φ(p(x)u*) — Φ(p(x)εp(u*)) =
xλpu* and therefore | |Φ(x2)| | ^ ||Φ(JCM)Φ(K*JC)J| = \\λ*px

2λp\\ = \\xλμpx\\ = ^ φ 2 | | .
As pζ is isometric, the inequality (2.14) is clearly equivalent to the Pimsner-

Popa inequality [25]

\\E(x)\\ ^ φ | | , x G stf\ ,

with E — pζ- Φζ the associated conditional expectation onto the range of pζ, and it
is also equivalent to

E(x) ^cx, x e si\ , (2.15)

(see [20] for the version of these inequalities on infinite factors). In particular E\^j)
is normal and pi has finite index I D Io.

We can now replace Φζ by its average Φζ over P with respect to an invariant

mean, e.g. the m in the previous section, Φ[ := / p oc~ιΦζβgdm(g). Since p is locally

normal pΦζ still satisfies the inequality (2.15) and hence Φ£ the inequality (2.14).
At this point the state φ = ωΦ£ in Corollary 2.5 is again locally normal

and faithful, thus Proposition 2.9 applies and provides the global conjugate in
Theorem 2.11. The usual additivity of the spectrum argument then shows that p
is a positive energy representation. D
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3. The Conformal Spin-Statistics Theorem

3.1. A first relation between spin and statistics. In this subsection we prove a first
relation between spin and statistics. We shall not use the full conformal invariance,
but only the covariance with respect to the rotation subgroup and the geometric
interpretation of the modular conjugations.

In the following I\ and h always denote the upper semicircle {eiθ, ϋ e (0, π)}
and the right semicircle {eιϋ,ϋ £ (—|, | ) } respectively and p is an irreducible co-
variant endomoφhism of C*(ja/) with positive energy and finite index localized in
an interval whose closure is contained in I\ 1Ί/2. Then pj. = p\^{it) is an irreducible
finite-index endomoφhism of sί{I{) and we denote by Vi the standard implemen-
tation of pj., ί = 1,2, with respect to the vacuum vector, see Appendix A. We also
shorten the notations: J[ stands for the modular conjugation JIι9 ~pt for the conjugate
jipji of p, where j t is the promotion to an anti-automoφhism of C*(s/) of the
precosheaf anti-automoφhism J/ J/. The symbol ad U denotes the automoφhism
of C*(«β/) corresponding to a unitary U (e.g. ad Up(g) := adzp(g) ocg).

3.1 Lemma. We have V\ e <stf(h), V2 G stf(l\) and V{ is the unique isometry (up
to a phase) with this localization support that intertwines the identity and p~p^
i=l92

Proof By the geometric meaning of J\9 both p and ~pλ are localized in 72, thus by
Theorem 2.11 we can take an isometry v e (id,'ριp)j29 in fact v belongs to srf(I) if
I is any subinterval of I2 that contains both the localization support of p and of ~px.
Since p/2 is irreducible, v is uniquely determined (up to a phase) by such properties.
Therefore we may choose υ so that j\(v) = v. By additivity υ implements plχ and
since it also commutes with J\ we have V\ = ±v by Lemma A.3. The argument
for V2 is similar. D

Since /?,p1?p2 are localized in disjoint intervals, they pairwise commute, thus
V\V2 and F2F1 both belong to (id, p 2pjp 2 )/i u/2 ? hence

μp=VΐV2*VιV2 (3.1)

is a scalar. It is an invariant for p that, by construction, reflects algebraic, an-
alytical and geometric aspects. By looking at μp from these different points of
view we shall identify it, with different arguments, with the statistics parameter
and with the univalence of p times d(p)~ι

9 proving the conformal spin-statistics
theorem.

3.2 Lemma. The following identities between endomorphisms of C*(s/) hold:

(a) ppλ = ad Up(π)pp2sid C/(π),

(b) PPJ2PP1J2 = PPiΆPPiΆ

Proof. By formula (1.2) we have J1J2 = U(π)9 hence j\J2= jτj\ =
therefore

~pχ =

Thus by covariance

ρ~ρx — d
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and, since ~px and p 2

 a r e localized in disjoint intervals and thus commute,

PPxhPPxh = pPiP2ad£/(π)padt/(π)

= pp2pxadU(π)padU(π) = ρρ2jιpρ2jι
 Π

3.3 Lemma. We have

Up(π)V2U(π) = cpV, , (3.2)

where cp is a complex number of modulus one.

Proof. By Lemma 3.1, V\ is the unique isometry (up to a phase) in (id,pPi)/ 2 . By
Lemma 3.2 (a), also Up(π)V2U(π) belongs to (id,p~px). Moreover, if x G ^ ( )
then ad(7(π)(x) G s/(I2), hence

ad£/p(π)F2£/(π)(jc) = ad£/p(π)pad£/(π)(jc) = adt/p(2π)p(jc) = p(x) - x

showing that Up(π)V2U(π) belongs to <srf(h) too, thus it coincides with Vx up to a
phase. D

3.4 Lemma. βp := ( F Ί J 2 F i Λ ) * ^ i ^ i fce/owflw to (0,1].

Proof. According to Lemma 3.2 (b), V\J2V\J2 and V2JXV2JX are both isometries
in (ΐ&,p~pxj2p~pxj2) and both belong to the same local von Neumann algebra s/(I)9

where p~pxj2p~pxj2 is localized in / e J>, therefore βp is a complex scalar.
Setting et := F}^* we deduce that

βPVχJ2VλJ2 = exJ2exJ2 V2JXV2JX . (3.3)

Since V\ is the standard implementation of p/., Fi preserves the positive cone
^ ( j / ( / ; ) , Ώ ) . Moreover Jx preserves ^(s/(I2),Ω) because it implements an anti-
automorphism of s/(I2) and fixes Ω, and J2 preserves ^(<stf(Ix),Ω) analogously.
By the definition of the natural positive cones and the relations Vx,ex e s^(I2),
V2 G i ( / i ) , we have that V2JXV2JXΩ and VXJ2VXJ2Ω belong to 0>\<stf(Ix\Ω)n
0>\sf(I2),Q) and exJ2exJ2Ω e 0>\s/(I2),Ω).

Since the scalar product of non-zero vectors in a natural cone is non-negative,
and furthermore positive if one of the vectors is cyclic (equivalently separating),

1

and since (e2Jxe2JxΩ,Ω) = | |z l/^2^ | | 2 +0 we have

(VXJ2 VXJ2Ω,Ω)> 0, (e2Jxe2Jx V2JX V2JX β, Q) = ( V2JX V2JX Ω, e2Jxe2Jx Ω) > 0

that entails βp > 0 by comparing with (3.3), provided we show that V2JXV2JXΩ is
separating for J / ( / I ) . But this is true because if x G stf(I\) and xV2JxV2JxΩ — 0,
then

(71 Φjx Φ(x*x)Ω, Ω) = (Ji K2Vi F2*Jc*xF2t/i F2JiΩ, β ) = 0 , (3.4)

and this implies x = 0 because the left inverse Φ of p is faithful. The rest is clear
since by definition \\βp\\ ^ 1. •

3.5 Lemma. λp - μp = V{V^VXV2.

Proof As in [7] we get λp = p(Vx)Vx; indeed if p' is localized in Ix Π/2 and u is
a unitary in (ρ,ρ')il9 then adw*|^(/2) = p/2, thus p(K*)Ki = u*V*uV\ = u*Φ(u) =
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Φ(ε

3.6

p) = λp. Since V\ £ Λ/(/2) and V2

VΪV;vιV2 = Vι*Φ(Vι) = 4

implements p on sέ

mvΐ)vx) = Φ{λp)

Proposition. The following relations hold:

Sp =

= d{Py
x,

= clκp ,

D. Gmdo, R

'(/2); we thus have

= λp. Ώ

Longo

(3.5)

(3.6)

(3.7)

where κp is the phase of the statistical parameter.

Proof Taking adjoints in (3.2), we have U(π)V*Up(π) = cpF2*, and multiplying
side by side this expression with formula (3.2) we have

c2pVZVι=spU(π)VΐV2U(π) (3.8)

because sp := Up(2π).
Since Jt commutes with Vt and J\J2 = J2J\ = C/(π), we have

βp=JιβPJι =Jι(Vι*J2Vι*J2V2JιV2Jι)Jι = VΐU(π)VΐV2U(π)V2 , (3.9)

therefore, by inserting formula (3.8) in the expression for λp given by Lemma 3.5
and comparing with (3.9) we obtain

λP = VΪVΪVXV2 = cfspVΐU(π)VΐV2U(π)V2 = cfspβp , (3.10)

and the thesis easily follows. D

3.7 Corollary (Index-statistics theorem). For every covariant endomorphism p of
we have Ind(p) = d(p)2.

Proof If p is irreducible we have V\pi2{V\)=2 with d = <y/lnd(p) by
Corollary 2.12 and comparing with formula (3.5) we have the thesis since V\
and V\ are equal up to a phase. The general case follows by additivity of both
the statistical dimension and the square root of the minimal index (or by a direct
argument). The case of infinite index is treated in Subsect. 2.4. D

3.2. The spin-statistics theorem. We prove now that c2

p = 1, completing our result.
In this step the role of the conformal invariance is to fix uniquely the representation
of the rotation group Up{β), otherwise defined up to a one-dimensional representa-
tion, as the restriction of the unique representation of G. We could nevertheless fix
Up(ΰ) by using the positivity of the conformal Hamiltonian.

It is convenient to extend the definition of cp to the case of a reducible finite
index p. To this end notice that, as in the proof Lemma 3.3, both Up(π)V2U(π)
and CpV\ belong to (id,ppx)j2, thus there exists cp £ (pp\,PP\)i2 such that formula
(3.2) holds. Replacing cp by its push-down if necessary, we may further assume
that cp G (p, p) and this condition define it uniquely, see [24].

In the following p, σ are finite index endomorphisms of C * ( J / ) .

3.8 Lemma. Let p and σ be localized in I\ ΠI2, with p an irreducible subsect or
of σ and pp £ srf(l\ Πl2) is the minimal idempotent in (σ9σ)jιΠi2 corresponding
to p, then cσpp = cppp. In particular, if cσ is a scalar, then cp — cσ.

Proof. With w £ (p,σ) an isometry in $0(1\ Πl2), we have by Proposition A.4 of
the appendix

y/d(p)Vf = ^/O\G)W*JW*JV° . (3.11)
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The projection pp = w*w G srf{lx 1Ί/2) commutes with the range of σ, hence it
commutes with Uσ (see the proof of Proposition 2.2), therefore

(w*Uσ(g)w)(w*Uσ(h)w) = w*Uσ(gh)w, g,heG, (3.12)

namely g —> w*Uσ(g)w is a unitary representation. Since for every x e C * ( J / ) we
have

(w*ί/σ(^)w)p(i)(w*[/σ(^)*w) = w*Uσ(g)σ(x)Up(g)*w

= w*σ(U(g)xU(gT)w = p(U(g)xU(g)*),

we get by the uniqueness of the representation in Proposition 2.2,

w*Uσ(g)w. (3.13)

Since cσ lives in a finite-dimensional algebra, we may assume that pp is an eigen-
projection of cσ namely cσpp = lpp with / e C. Making substitutions in the formula
(3.2) according to Eqs. (3.12), (3.13), we then get

= ^/d(σ)w*U(π)J2w*J2U(π)cσVx

σ

where we have used in particular that [J2w*J2,zσ(π)] = 0 due to the localization
in disjoint intervals and again of the identity JXJ2 = U(π)9 and this concludes the
proof. D

Our choice of the intervals Ix and I2 is, of course, conventional. If we replace
them by their rotates R(ΰ)Ix, R(ΰ)h, we would get a priori another invariant cp(β)
for a p localized in their intersection. But this is soon seen to be equal to cPΰ, the
old invariant for p$ := ad U(—$)pad U(ΰ) — adzp(—ϋ)ρ (because £/(#) establishes
an isomorphism between the old and the rotated structures). Next lemma implies
that cPύ = cp if also p$ is localized in Ix Πl2.

3.9 Lemma. cp depends only on the super selection class of p and not on its rep-
resentative p nor on the choice of Ix and I2 as above.

Proof If p is localized in Ix ΠI2 and σ = ad W p for some unitary W £
J / ( / I n/2) then Vf = W*JW*JV° and by a computation similar to the one in the
Lemma 3.8 we see that cσ — cp. By the comment preceding this lemma it thus
follows that cp remains unchanged if we rotate the /z's provided p stays localized
in the intersection of the intervals. Thus, in finitely many steps, replacing p by an
equivalent endomorphism and making small rotations of the intervals, we see that
cp does not vary in its superselection class. D

3.10 Lemma. cp = cp.
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Proof. By Lemma 3.9 we may choose p = ρλ — j\pj\. Thus p is localized in /{ Π /2
and Cβ is definable with respect to the intervals I2 = R{—j)hJ[ = R(—j)h- The
standard implementations of p relative to these intervals are respectively given by
JiVfJi and JχVpJx = Vp, moreover Uβ(β) = JλUp(-ϋ)Jλ, see [15]. Inserting these
identities in the defining expression (3.2) for cp we thus have J\ Up(—π)J\ VpU(π) =
CβJ\ VPJ\ and after cancellations this gives the stated equality. D

3.11 Lemma. Let p, σ be irreducible and localized in I\ 1Ί/2. Then cpσ — cpcσ.

Proof. By the cocycle equation z*σ(g) = z*(g)p(z*(g)) and the multiplicativity of

the standard implementations Vpσ — V?V?, Eq. (3.2) for pσ gives

cpcσU(π)Vι

pVι

σU(π)=z;(π)V^z;(π)V2

σ=z;(π)p(z;(π))V2

pV2

σ

= z*pσ(π)Vζσ = cpσU{π)Vp

χ

σU{π), (3.14)

where we used that zσ(π) G srf{I2 U/() and that Vζ implements p on srf(I2 U/[).
Since Vλ

pσ = Vλ

pVλ

σ we have the thesis. D

3.12 Corollary, c] = 1.

Proof. If p is irreducible, then by Lemmas 3.8 and 3.9 we have c2

p = cpcp = cpp —
1. The general case follows by Lemma 3.8. D

Now the spin and statistics relation immediately follows immediately by
Proposition 3.6.

3.13 Theorem (Spin and Statistics). Let p be a super selection sector with finite
statistics. Then κp = sp.

Appendix A. Standard Implementation of Left Inverses

We will deal here with the notion of standard implementation (see e.g. [3]) in the
endomorphism case.

Let M be a von Neumann algebra on a Hubert space Jf and p a unital injec-
tive endomorphism of M. The left inverses Φ of p correspond bijectively to the
conditional expectations E of M onto p(M):

Φ^E = p-Φ,

E->Φ = p~ι E. (A.I)

We shall say that an isometry V G ̂ ( J f ) implements the left inverse Φ if

V*xV = Φ(x), xeM. (A2)

A.I Lemma. Let the isometry V implement Φ. Then

(a) Vx = p(x)V, xeM,

(b) exe = E(x)e, x G M,

where e = VV* and E = pΦ. Conversely z/(a) and (b) hold then V implements Φ.

Proof If we set x = p(y) in (A.2) we have V*p(y)V = y for all y G M, hence

F> (A3)
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In particular, if y is unitary, \\ep(y)Vξ\\ = \\Vyξ\\ = ||ξ|| = \\p(y)Vξl ξ G Jf,
showing that ep(y)Vξ = p(y)Vξ, hence ep(y)e = p(y)e, so we have

eρ(y) = (/>(/»* = (ep(y*)e)* = ep{y)e = p(y)e ,

which implies e G p(M)! because M is generated by its unitaries. Formula (A.3)
then entails (a). To check (b) notice that

exe = W*xVV* = FΦ(x)F* = p(Φ(x))W* = E(x)e .

Conversely, assuming (a) and (b), we have

V*xV = V*exeV = V*E(x)V = V*p(Φ(x))V = Φ(x), x e M . D

We shall say that an isometry V implements the endomorphίsm p and that the
projection e implements the conditional expectation E if the equations (a) and (b)
of Lemma A. 1 are respectively satisfied.

We now fix a unit cyclic and separating vector Ω G Jf for M and its corre-
sponding natural cone ^ ( M , ί 2 ) .

If Φ is a normal left inverse of p let us consider the state

φ = co Φ ,

where ω = (-Ω,Ω) and the corresponding vector ξ e ^ ( M , ί 2 ) such that

<*> = ( • & £ ) •
Let e := [ρ(M)ξ] e p(M)f and let VΦ be the isometry of J f with final projection

e such that Vφ\ 2tf —* effl is the Araki-Connes-Haagerup standard implementation
of p as an isomorphism of M with p(M) with respect to the positive cones ^ ( M , Ώ)
and &\ρ{M\ξ). Then F φ is given by

VφxΩ = p(x)ξ, x e M .

We check that Vφ implements Φ. To this end note first that E = pΦ is φ-invariant
since

ψ Έ — cύ'Φ'p Φ = ω'Φ = φ .

Then

(xp(b)ξ,p(a)ξ) = φ(p(a*)xp(b)) = φ E(p(a*)xp(b))

= φ(p(a*)E(x)p(b)) = (E(x)p(b)ξ,p(a)ξ) a9b9x G M ,

i.e. eE(x)e — exe, x G M, but β G p(M)f, hence e implements is; in particular, if Φ
is faithful, e is the Takesaki projection for E.

Moreover Vφ implements Φ because

p(x)VΦyΩ = p(x)p(y)ξ = ρ(xy)ξ = VΦxyΩ χ,y G M .

The isometry Vφ will be called the standard implementation of Φ with respect to
Ω. In case M is a factor and p has finite index, namely ρ(M) is a finite index
subfactor of M, and Φ = Φmin, the minimal left inverse of p, we shall denote Vφmm

by ^ and call it the standard implementation of p with respect to Ω.
We collect here some properties of the standard implementations.
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A.2 Proposition.

(a) Vφ is the unique isometry that implements Φ and sends ^(M,Ω) into
itself. In particular Vφ depends on ^(M,Ω) but not on the particular vector Ω.

(b) Vφ is the unique isometry that implements Φ and verifies VφΩ G ̂ {M, Ω).
(c) Vφλφ2 = Vφ2Vφλ, with Φ\,Φi normal left inverses of p\,pι. In particular,

if Pup2 have finite index, VPιP2 = VPxVPr

(d) JVφJ = Vφ, where J is the modular conjugation of (M, Ω).

Proof By construction Vφ implements Φ and maps 0^(M, Ω) into itself, in par-
ticular VφΩ G ̂ (M,Ω). Now suppose that an isometry V implements Φ and
VΩe&>\M,Ω). Then

(- VΩ, VΩ) = (V* VΩ, Ω) = ω - Φ = φ ,

thus VΩ is the unique vector ξ G ̂ (M,Ω) associated with φ and VxΩ = p(x)VΩ
= p(x)ζ, namely V = Vφ. This proves (a) and (b).

(c) is a consequence of (a) and of the multiplicativity of the minimal index
[22].

(d) J restricted to the range of e = Vφ F | coincides with the modular conjugation
of Me because φ preserves the conditional expectation E, thus VφJVφ — J because
Vφ is the standard implementation of p as an isomorphism of M with p(M). D

A.3 Lemma. Let M be a factor and p a finite index endomorphism. If W is an
isometry that implements p and commutes with J, then W implements a left inverse
Φ of p and W = mVp for some m G (p, p), which is invertίble iff Φ is faithful. In
particular, if p is irreducible, then W = ±VP.

Proof. The partial isometry Z = WV* commutes with J and belongs to ρ{M)',
thus Z e Nf ΠMi, where we set N = p(M) and M\ = JN'J denotes the Jones basic
extension ofNc M. Clearly we have W = ZVP. Let m be the Pimsner-Popa push-
down of Z, namely the unique element m £ M such that mVp— ZVP. We have
m = lnd(p)E(Ze) with E = pΦmm, thus m G p{M)' DM and W — mVp showing in
particular that W implements a left inverse Φ of p. Clearly Φ is faithful if m is
invertible. Conversely, if Φ is faithful, p G (p,p) is a projection and pm = 0 then
Φ(p) = V*m*pmVp = 0, thus p = 0 so m is invertible.

If moreover p is irreducible, then m G C, thus m = ± 1 because both W and Vp

are isometries commuting with J. D

Recall now that the dimension d(p) of p is defined as the square root of the
minimal index of p.

A.4 Proposition. Let σ be a finite index endomorphism of the factor M and p an
irreducible subsector of σ. If w is an isometry in (p, σ), then

σ = φ / = 1 ftiPi is an irreducible decomposition of σ and for each ί {w£ ,k =
...,«;} is an orthonormal basis of isometries in (pi,σ), then

wt}JwfjVPι . (A.4)
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Proof. We prove the second assertion that implies the first one. Set W equal to the

right-hand side in (A.4). The ranges of the wks are pairwise orthogonal and the

coefficients verifies Z ^ J ^ ^ T = 1, thus W is an isometry and a direct verifica-
tion shows that it implements σ. Moreover W commutes with J, thus Lemma A.3
shows that W implements a left inverse Φ of σ. But W also preserves the natural
cone 0>*(M,Ω)9 because this is true for each of its terms, thus W is the standard
implementation of Φ by Proposition A.2. It remains to show that Φ is the minimal
left inverse. Now a left inverse is determined by the state obtained by restricting
it to (σ, σ). The value of Φ on the minimal projection w^w^* is ^ y , hence it is
the minimal left inverse. D

Appendix B. Invariant Vectors for Representations of SL(2,R)

We start by recalling the "vanishing of the matrix coefficient theorem" for a con-
nected simple Lie group G with finite center, see [32].

B.I Theorem. Let U be a unitary representation of G on a Hίlbert space 3tf. If
U does not contain the identity, then (U(g)ξ,η) —> 0 as g —> oo for all ξ,η G 3^.

As a consequence, if U is a unitary representation of G and ξ G Jf then the
subgroup {g G G, U(g)ξ = ξ} is either compact or equal to G.

In the following G always denotes the universal covering group of £L(2,R)
and we state an explicit corollary in this case. Let us consider the one-parameter
subgroups of G of the translations, dilations and rotations defined as the lifting to
G of the one-parameter subgroups of £L(2,R),

(\ t\ ίei 0 \ / cosf sinf

\ υ i / \ υ e / \ -sin f cos ?
(B.I)

and we still denote them by the same symbols T,Λ,R (cf. the definitions in Sect. 1).

B.2 Corollary. Let U be a unitary representation of G and Ω a vector of the
Hίlbert space ffl. The following are equivalent'.

(i) CΩ are the only U invariant vectors.
(ii) CΩ are the only U(T( )) invariant vectors.

(iii) CΩ are the only U(Λ( )) invariant vectors.
If moreover the generator of U(R( )) is positive then the former statements are
also equivalent to

(iv) CΩ are the only U(R( )) invariant vectors.

Proof Although the cardinality of the center Z of G is infinite, we check that
Theorem B.I still applies. By decomposing U into a direct integral of irreducible
representations, it is sufficient to consider the case in which U is irreducible. Since
U is infinite-dimensional, the tensor product with its conjugate representation U 0 U
does not contain the identity. Now U (8) U is trivial on the center Z, hence defines
a representation of PSL(2,R). If ξ G Jf then by Theorem B.I,

\(U(g)ξ, ξ)\2 = (U(g) 0 U(g)ξ 0 ξ, ξ 0 ξ) - 0 as g -> oo .
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Then the first set of equivalences is then clear. Furthermore (i) is equivalent to (iv)
if the conformal Hamiltonian is positive because the identity is the only irreducible
unitary representation of G with lowest weight 0. D

In this paper we need a result in the spirit of Theorem B.I concerning repre-
sentations of the subgroup P of the upper triangular matrices in SL(2, R), namely
the group generated by the translations and the dilations.

B.3 Proposition. Let U be a unitary representation of P on a Hίlbert space 3tf.
IfF<zffl is a finite-dimensional subspace which is globally U(Λ( ))-invariant,
then F is left poίntwise fixed by U(T( )).

Proof Setting u(t) := U(T(t)) and v(s) := V(Λ(s)) we have two one-parameter
unitary groups on 2tf satisfying the commutation relations

v(s)u(t)v(-s) = u(estl t,seR. (B.2)

Since F is finite dimensional, we need to show that u(t)ξ = ξ if ξ is a i -eigenvector,

i.e. there exists a character χ e R such that

v(s)ξ = χ(s)ξ, seR. (B.3)

Indeed in this case by the formula (B.2) we have

u(est)ξ = v(s)u(t)v(-s)ξ = W)v(s

hence
(u(est)ξ,ξ) = (u(t)ξ,ξ), t,seR.

As s —> — oo we thus have

that implies u(t)ξ = ξ by the limit case of the Schwartz inequality. D

Before concluding this appendix, we recall a known fact needed in the text.

B.4 Lemma. Let U be a unitary representation ofG. The following are equivalent:

(i) The generator of U(R( )) is positive.
(ii) The generator of U(T( )) is positive.

In this case, if U is non-trivial, the spectrum of the generator of U(T( )) is
[0,oo).

Proof For the equivalence (i) 45 (ii) see e.g. [26]. The last statement follows
because the spectrum of U(T( )) has to be dilation invariant because of the com-
mutation relations (B.2). D
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