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Abstract: We give complex holomorphic descriptions of Yang—Mills instantons on
tubular four manifolds with nontrivial circle bundles over Riemann surfaces as
section.

0. Introduction

This is the first of two installments in which we study Yang-Mills instantons, i.e.
anti-self-dual connections with finite Yang—Mills energy on tubular manifolds ¥ x R,
where Y is a non-trivial circle bundle over a Riemann surface.

For a circle bundle Y on a Riemann surface X, the space ¥ x R admits a complex
structure and can be compactified to a ruled surface S by, roughly speaking, adding
a copy of X to each end of the tube ¥ X R. On the other hand, the finite energy
condition and Uhlenbeck’s compactness theorem implies that on a manifold with
ends any instanton is asymptotic over each end to a flat connection on the section
over the end. For a circle bundle Y on a Riemann surface X, flat connections on Y
can be divided roughly into two classes, those with non-trivial holonomy along the
fibre circle as one and those with trivial one as the other one. Accordingly instantons
on Y x R can be divided into three classes, those with flat limits without holonomy
along the fibre circle as the first one, those with flat limits with holonomy along the
fibre circle as the second one and those with mixed limits as the last one. Roughly
speaking, in this first installment, we prove that there is a natural injection of the
set of instantons in the first class into the space of holomorphic bundles over S
which are flat along the two added divisors. In the next installment, we shall prove
that there is a similar injective map from the set of instantons in the second class
to the space of certain equivariant holomorphic bundles on a canonical covering of
S, branched over the two added divisors, with some preferred filtration and unitary
structures in the restrictions over the two divisors. Complex holomorphic description
for instantons in the third class can be obtained as a corollary to these two results.
For precise statements, see the main text.

To establish our main results, we need to show that given an appropriate in-
stanton, there is naturally an associated holomorphic bundle with required properties
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and vice versa. We first go from holomorphic bundles to anti-self-dual connections.
We use the evolution equation

OH'(s) _

os
(where H' denotes the transpose for H and similarly for others in the article) to
demonstrate the existence of an anti-self-dual connection with appropriate properties
on Y x R from the holomorphic data provided. We then solve a “0” equation to
show that the holomorphic bundle on ¥ x R determined by an instanton on Y x R
extends to give a holomorphic bundle on the associated ruled surface S with the
corresponding structures.

The evolution equation method was first developed by Donaldson [6] in the
context of holomorphic bundles over compact projective surfaces and was later
generalized by Bando [2] and Simpson [19] for bundles over noncompact Kaehler
manifolds. The method depends nontrivially on the geometry of the base manifold,
and since the geometry of our base manifold ¥ x R is a combination of those con-
sidered by Bando [2] and Simpson [19], our argument is a combination of those
used by Bando [2] and Simpson [19]. Since the tube metric used to deform the
evolution equation is only a Hermitian metric with respect to the complex structure
on Y X R, we no longer have the convenience of the Kaehler geometry: we have
to generalize some of the basic facts about the solutions of the evolution equa-
tion in the case of Kachler base manifolds to the more general case of Hermitian
base manifolds. This is, however, compensated by the fact that the spectral geom-
etry of Y x R with the tube metric is relatively simple. In fact, the tube metric
is conformal to a Kaehler metric, as we shall see in Sect. 3, and we could have
used the Kaehler metric to deform the evolution equation as well, but we are un-
able to establish a couple of key properties of the heat kernel of ¥ x R with this
metric.

The complex holomorphic approach to the study of instantons is of course
not a new one. On the contrary, until recently, most of the applications of Don-
aldson’s new invariants are achieved through algebraic holomorphic geometry. In
complex dimension two, conformal geometry, which is the relevant geometry for
the Yang-Mills instanton equation, interwines closely with Kaehler geometry, and
this leads to the complex holomorphic description of the instanton moduli spaces
on complex surfaces. Algebraic geometry is then applied to study these moduli
spaces.

There are some new aspects to the problem in our situation, due to the fact
that tubular manifolds are non-compact. First, in the compact case, holomorphic
data used to describe the instanton moduli spaces is obtained more or less as a
consequence of the Newlander—Nirenberg integrability theorem. In our case here,
the integrability theorem only gives holomorphic data on a non-compact space, thus
to obtain the relevant holomorphic data, we have to go a step further. Second, the
analysis involved has to be on non-compact spaces. Technically it is mainly with
these two new aspects of the problem that this paper is concerned.

As with the case of compact manifolds, the results in the paper can be viewed
from a totally complex holomorphic point of view. In complex holomorphic geom-
etry, one is interested in the existence of various Hermitian Yang-Mills connections
on holomorphic bundles. As is now well known, on compact Kaehler manifolds
the condition for the existence of such connections is that the relevant holomorphic

H™'(s) —iAF(s)
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bundle be stable, in the sense of Mumford. In another word, there is a one to one
correspondence between the space of stable holomorphic bundles and the space of
(irreducible) Hermitian Yang—Mills connections [18, 6, 22]. This is the Kobayashi—
Hitchin correspondence. For bundles on non-compact base manifolds, similar results
are obtained by Bando [2], and Simpson [19], for rather different non-compact base
manifolds. In complex dimension two, the notion of Hermitian Yang—Mills connec-
tion and instanton coincide. The results here thus can be viewed as another kind of
Kobayashi-Hitchin correspondence. The basic difference is that the stability condi-
tion is replaced, in the case of bundles on manifolds with an infinite volume, by a
condition which essentially is a boundary condition at infinity.

The rest of the paper is organised as follows: In Sect. 1, we describe the space of
flat connections on a nontrivial circle bundle and collect some fundamental analytic
results about asymptotic behaviour of instantons on tubular manifolds. These pre-
liminary results are needed for the precise statments of our main results as well as
their proof. In Sect. 2, after introducing some notation, we give a formal statement
of our main results. In Sect. 3, we study the Kaehler and Hermitian structures on
our cylinder Y x R. This enables us to obtain in Sect. 4 some interesting properties
of the heat kernel of the relevant linear operator. The results in Sects. 3 and 4 may
be of independent interest. With the preparation in Sects. 3 and 4, we prove one
of the main theorems in Sect. 5. We then complete the proof of the other main
theorem in Sect. 6.

1. Some Preliminary Results

In this section we briefly discuss the space of flat connections on a non-trivial circle
bundle Y and collect some basic facts about the asymptotic behaviour of instantons
on manifolds with tubular ends. These will be needed for the precise statements of
our main results as well as their proof.

Let M be a 4-manifold with a finite number of ends and Y be a three manifold
as in the last section. Let 4 be an anti-self-dual connection on P = M x SU(2) with
finite energy, i.e. [, |F4|* <oc. By restricting 4 to the slices Y x {¢} over the end
Y x R*, we obtain a family of connections 4(¢) on Y. Generally A(¢) depends on
the choice of the gauge of P on M over the end. Denote by [4(¢)] the image of
A(t) in the space B of equivalence classes of connections on Y, then [A4(¢)] is well-
defined. The following fundamental theorems concerning the asymptotic behavior of
[A(2)] are standard (see [8, 20]).

Theorem A. The connection [A(t)] converges in C* to a flat connection [Aoo] on
Y as t — oo.

Theorem B. If the limiting flat connection [A] on Y is a nondegenerate critical
point of the Chern—Simons function on B in the sense of Bott, then there is a
number 6 > 0 such that

|F4| £ Ce™ .

Morever, we can choose a gauge on the end Y x Rt such that

|VE_(4—Ax)| < Ce™, k=0,1,....
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Here Ay, denote the pull-back connection on the end Y x R™ of some representative
of [Aso] by the obvious projection from Y x Rt x SU(2) to Y x SU(2) given by
the chosen gauge.

A critical point of a function on a space is said to be nondegenerate in the sense
of Bott if the Hessian of the function is nondegenerate on the subspace normal to the
critical set at the point. Such critical points are sometimes called Morse—Bott points.

By Theorem A, the moduli space M of finite energy instantons on M is di-
vided into a number of subsets parametrized by the set of combinations of the same
number as that of the ends of components of the space of SU(2) flat connections
on Y. In particular, when M is a tube ¥ x R, M is the disjoint union of its sub-
sets M(F_oo, Foo), Where F_, and Fo, run over all components of the space of
flat SU(2) connections on Y and M(F_o, Fo) is the subset of M consisting of
instantons with limits in F_o, and in F over the two ends respectively.

We now limit ourself to the case M = Y x R, where Y is the unit circle bundle
of a line bundle L with nonzero Chern class over some Riemann surface 2 of genus
g. The fundamental group m;(Y) of Y is a group generated by 2g + 1 generators
{ai,bi,c,i =1,...,g}, where a;,b; are the usual generators of 7;(X) and c is the
generator in the fibre, subject to the following relations:

(i) c is central;
Denote |c1(L)| by k. k is a positive integer. One sees easily that the set of

equivalence classes of flat connections on Y consists of the components described
as follows:

(a) F;+ = {p € Hom(n;1(Y),SU(2))|p(c) = 1}/conjugation;
(b) F— = {p € Hom(m;(Y),SU(2))|p(c) = —1}/conjugation;
j2mi
(¢c) Fj={p € Hom(m;(Y),SU(2))|p(c) = ( ; 0 >}/conjugation, for
e K
1=j<3.

See also [20].

It is easy to see that each of the components above are path connected and F, is
identical to the space of flat SU(2) connections on X. Clearly all the irreducible flat
connections are contained in F, U F_. If ¢;(L) is odd, then all the flat connections
contained in F_ are irreducible. In particular, the flat connections contained in F;
are all reducible.

By the above discussion, the space M of instantons on Y x R is thus the disjoint
union of its subsets as follows:

M= M(Fy, Fy) UMF_, F_)UU; ;M(Fi, Fy)
UM(Fy, F) U M(F_, F) U U;M(Fy, Fj)
U U M(F5 F) U M(F-, F) U UM(FL F-)

Let F; now be the smooth part of F, and let p € F}. The tangent space of
B* at p is T,B*={ac Ql(adP)|d~;a =0} and that of F* is T,F*
={ac Ql(adP)|(a7,,+J;)a =0}. Thus the subspace of T,B* normal to F* is
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N,F* = {a € Q" (adP)|a € Im(J;)}. On the other hand, the Hessian H, of the
Chern—Simons function at p is given by

Hy(a,b) — —-}[Tr(c:/,,a Ab) = (xd,a,b) .

We see that the Hessian H), is nondegenerate in N,F*, i.e. p € F* is a Morse-Bott
point.

Corollary a). Let A be a finite energy instanton on Y X R. If [A+oo] € F*, then
there exist numbers 6 > 0,C > 0 such that

|Fy| < C.e 0,
Moreover, we can choose a gauge on Y X R such that
VA, (A —Adi0) £ C-eM, k=0,1,....

Here Ayoo denote the pull-back connection on the end Y x (£T,+o00), for T > 0
large enough, of some representative of [A+oc] on Y by the obvious projection of
Y x R x SU(2) to Y x SU(2) given by the chosen gauge.

Similarly since F; are smooth path components of the space of flat connections
on Y, every point in these components is a Morse—Bott point. Therefore

Corollary b). The result in Corollary a) still holds if [A+] € F;.

In fact, according to Taubes [20], a stronger result holds. Taubes result says
that if Y is a circle bundle with negative Chern class, then the curvature of any
instanton on M decays exponentially over the end ¥ x R™. It follows trivially from
this that if Y is a circle bundle with positive Chern class, then the curvature of any
instanton on Y X R decays exponentially over the end ¥ x (—o0,0].

Given any flat connection 4., with [4.] € F;, we can associate with it a holo-
morphic flat line bundle L,_ on X in a canonical way. Indeed the representation of
n1(Y) corresponding to 4, splits into two abelian representations in the eigenspaces
of the central element ¢, with corresponding eigenvalues £ and —<. Each factor rep-
resentation gives rise in an obvious way to an abelian representation of I1;(X), hence
determines a flat line bundle on X. Define the flat line bundle L, on X associated
with Ao, to be the one correponding to the eigenvalue Z. The flat structure also
determines a holomorphic structure on L.

2. Statements of the Main Theorems

Let (E,Hp) be a fixed complex Hermitian bundle over the tube Y x R, for a three
manifold Y, associated with the principal SU(2) bundle ¥ x R x SU(2) on Y X R.
We identify connections on Y x R x SU(2) with metric connections on E. Define
M to be the space of equivalence classes of anti-self-dual connections with finite
energy, i.e., instantons on (£, Hp), the equivalence relation being the usual unitary
gauge equivalence between connections on (E,Hy). By the discussion in Sect. 1,
we know that for a circle bundle Y on a Riemann surface X~ with non-zero first
Chern class, the space M is the disjoint union of its subsets parametrized by the
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set of pairs of the path components of the space F of the space of flat connections
on Y.

On the other hand, for a circle bundle Y there are natural complex holomorphic
data associated with ¥ X R. ¥ x R can be identified as the complement to the zero
section of a holomorphic line bundle L on X with first Chern class ¢;(L) = ¢(Y),
and has a natural complex compactification S which is the holomorphic CP! bundle
associated with L. Clearly S\ Y X R is the union of the zero section and the section
of points at ”infinity” each of which is a copy of X. Denote the zero section by
2o and the section of points at “infinity” by X.,. We now consider holomorphic
bundles on S with certain structures.

Let £.(+,+) be the set of rank two holomorphic bundles on § with trivial
first Chern class such that their restrictions over Xy and X, are unitary flat with
some given preferred unitary structures. There are a few slightly different kinds of
symmetries in £.(+,+). First we forget the unitary structures over X, and X, and
consider the ordinary equivalence relation of holomorphic bundle isomorphism in
E(+,+). We define M (+,+) to be the resulting space of equivalence classes of
elements of £.(+,+) under this equivalence relation. Secondly, we also need to
consider holomorphic bundle isomorphisms which are unitary with respect to the
given unitary structures over the end Xy or 2., depending on the sign of the Chern
class of Y. If the sign of the Chern class of Y is positive, we define two bundles in
E:(+,+) to be equivalent if they are holomorphically isomorphic by an isomorphism
which respects the given preferred unitary structures of the two bundles over the
end Xy, and define M,.(+,+) to be the resulting space of equivalence classes of
elements of £.(+,+). Similarly, if the sign of the Chern class of Y is negative, we
define the space M., (+,+). We could of course also consider holomorphic bundle
isomorphisms which are unitary with respect to the given unitary structures over
both ends and define the resulting moduli space M,(+,+). It turns out, however,
the relevant spaces in our descriptions of instanton moduli space M*(F,,F,) are
the preceding ones rather than this M,(+,+). This is perhaps not surprising as the
topology of Y should enter in our picture somewhere.

In general, the spaces M (+,+) and M, (+,+) or My.(+,+) are different.
There is an obvious projection map from M,.(+,+) or M, (+,+) to Mc(+,+) by
forgetting the unitary structures. Let M (+,+) be the part of M (+,+) consisting
of equivalence classes of bundles in £.(+,+) whose flat structures over X, and
2 are irreducible and similarly M (4, +) or M7, (4, +), then it is easy to see
that the projection is an 1-1 map from M}, (+,+) or M (+,+) onto M}(+,+).
The map is obviously onto. Now on an irreducible holomorphic bundle, flat unitary
structures are unique up to a constant, thus if & and &, are two holomorphic
bundles representing the same element of M7 (+,+), i.e. they are isomorphic by a
holomorphic bundle isomorphism, % say, then the flat unitary structures of &£; and
&, over the end Xy or X, depending on the sign of Chern class of Y, differ by
a constant under 4. Multiplying /4 with this constant gives a holomorphic bundle
isomorphism between &£; and & which is unitary with respect to the given unitary
structures of the two bundles over the specific end. Thus &; and &, represent the
same element of M; (+,+) or M7 (+,+).

Before we state the main results of this article, we simplify some of the notation
introduced in the last chapter. We shall replace M(F,,F,) by M(+,+) and shall
simplify the notation for other subsets of M in a similar way. Thus, for example,
M*(+,+) will be the subset of M(+,+) consisting of instantons with irreducible
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flat limits in F,. Also let Qy be the form associated with the Hermitian tube metric
on Y x R introduced in Sect. 3 (see the discussion before Lemma 3.2).
The main theorems of this article can now be stated as follows.

Theorem 2.1. Let £ € E.(+,+) be a holomorphic bundle over S representing an
element of M (+,+). There exists a unique Hermitian metric H on E|yxr for
which the following statements hold:

(1) The curvature Fy of the Chern connection Ay of (£,H)|yxr satisfies

idFy =0,

where A is the adjoint to the wedge product on forms by Qy on Y X R.

(2) H is bounded in the sense that for any smooth Hermitian metric K, say, on
E, there is a positive number C such that d(H,K) < C, where d is the distance in
the space of Hermitian metrics (see [6, 16]). Moreover, if c;(Y) > 0, H extends
continuously over X, and coincides with the given unitary structure of £ over
2o, and if ¢1(Y) < 0, H extends over X, and coincides with the given unitary
structure of € over X.

(3) If ei(Y) > 0, then the connection Ay on Y X R has a flat limit [A_]
over the end Y x {—00,0] which is given by the lift to Y of the given flat unitary
structure of € over Xy. If ¢1(Y) < 0, then the connection Ay has a flat limit [As]
over the end Y X [0,00} which is given by the lift to Y of the given flat unitary
structure of € over 2.

Theorem 2.2. There is an injective map from M*(+,+) to M} (+,+).

Remark. Our original goal is to prove that the above map is a one to one cor-
respondence between M*(+,+) and M} (+,+). Theorem 2.1 gives a map from
the set M(+,+) to the set of gauge equivalence classes of ASD connections on
Y X R, and in a suitable sense the map is a left inverse to the map of Theorem 2.2.
But this still falls short of what we would like to prove: the map is actually the
inverse to the map in Theorem 2.2. We are unable to prove that for a general class
of such bundles, the corresponding gauge equivalence class of ASD connections
on Y X R have finite Yang—Mills energy. For the very same reason, we have to
state our results in a less strong way than we would like to when we give complex
descriptions of the sets M(F;, F;) in part I

The map in Theorem 2.2 would also be onto if the following conjectural state-
ments hold for the metric # in Theorem 2.1, in addition to (1), (2), and (3).

(2") The Hermitian metric H extends not only over one end as in (2), but over
both the ends Xy and X.,. Moreover, the restrictions of H to the two ends are
constant under the flat gauges of £ .

(3') The connection Ay is an instanton with

IFull7: = 87%ca(€),

where c;(E) denotes the second Chern number of the bundle £. The flat limits
[A_oo] and [Aoo] of the instanton Ay coincide with the lifts to Y of the given
unitary flat structures £ over Xy and X, respectively.

As a consequence of the discussion in the appendix, we shall see that (2)
implies (3’). Thus if (2’) is true, then the conjectural statement below would also
be true.

There is a 1-1 correspondence between M*(+,+) and M} (+,+).
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3. Hermitian and Kaehler Structures on ¥ X R

Let Y - X be a circle bundle over a Riemann surface ~. We identify ¥ with the

unit circle bundle of some Hermitian line bundle L -~ X. We also embed the tube
Y X R into L as the complement to the zero section by the map

$:Y xR— L

1) = D(y,t) = (y,r(t) = et) P

where r(¢) is the radial distance in the fiber over n(y). Using » as a coordinate in
an obvious way, the image of ¥ X R in L can be written as ¥ x R™, and in the rest
of this paper, we will think of ¥ x R and ¥ X Rt as two coordinate presentations
of the same underlying manifold.

Now let g be a metric on Y, then the standard tube metric on ¥ X R is (g +
dt ® dt). This metric is pushed forward by @ to give a metric on its image in L
which is given by

r2(rPg +dr @dr).

On the other hand, we can give L a complex structure. This is done simply by
choosing a connection on L (naturally we would like the connection to be compatible
with the Hermitian metric on L). Since every connection on a Riemann surface is
integrable, this is equivalent to fixing a holomorphic structure on L which makes
the given connection its Chern connection. The complex structure on L induces a
complex structure on ¥ X R*. The question then is whether or not the metric

r_z(rzg +dr ®dr)

or any conformally related metric is a Kaehler metric on the complex manifold
Y x R*. With g randomly chosen, one cannot expect a reasonable answer. So we
restrict ourself to a class of g constructed naturally from the given connection on
L. Let © be a Kaehler metric on X, and let § be the connection form of the given
connection on Y. Then

g=7"(0)+ (—if) ® (—if)

is clearly a metric on Y. The factor —i is there because 6 takes value in the Lie
algebra of U(1) which is iR.

Let (V,w) be a general local complex coordinate on the Riemann surface ~. Let
{en} and {e,} respectively be some local holomorphic gauge and unitary gauge of
L over V and (w,z;) and (w,z,) be the corresponding local coordinates for L. Let
h(w) be the Hermitian metric form and A4, be the connetcion form on L under the
gauge e,. By some elementary calculation (see [12]), it is easy to see that

r’g+drQdr= %lz;,|2h(w)[6 log A(w) ® dlog h(w) + 0log h(w) ® 0log h(w)]
—f—%zhh(w)[a log h(w) @ dz), + dz; ® 0log h(w)]
+%Ehh(w)[dz;, ® dlog h(w) + dlog h(w) ® dz;]

1
—l—zh(w)[dzh ® dzj, + dzy ® dz;] + r*n*(0) .
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Apparently this is a Hermitian metric, and its associated fundamental 2-form is
Q =r’n*(O) + %|zh|2h(w)Ah A Ay + %Zhh(w)Ah A dzy,
+§Ehh(w)dzh ANAj + %h(w)dzh Adzy, .
Here, and also in the following we denote the Kaehler form of @ by O itself. Thus

Q= %Zhh(w)dz;, A [=2in*(0) — F)

+%zhh(w)d2h A[=2V=17"(O) + Fy] .
So the Kaehler condition d§2 = 0 reduces to
%Zhh(w)dzh A[=2in*(0) —F4] =0,
%zhh(w)dfh A[=2in*(0) + F3] =0,
i.e.
Fy = 2in*(0).
And if this is satisfied, then the Kaehler form of the metric is
Q= %[—]zhlzh(w)Fh + |zaPR(w)An A dp + zah(W)Ay A dZ,

+Z,h(wW)dzy A Ay + h(w)dzy A dz,]
- %[|2h|265h(w) + 24 0h(W) A dZ), + Zpdzy A Th(W) + h(w)dzy A dzy)
= 5 30lz4[*hOw)) = 5037,

The condition Fj = 2in*(@) means that L is a negative line bundle. Essential
examples are that X is some smooth projective curve and L is the pullback of the
universal bundle.

More generally consider the metric f(r)(r’g + dr ® dr), where f(r) > 0 is
some function of . We decide the condition of f(#) for the metric to be a Kaehler
metric on (¥ X R). The fundamental 2-form associated with the metric is Q' =
f(r)RQ, and its differential is given by

dQ = df(r)AQ+ f(r)dQ

LY 4 ryim (@) + 4/ )i}

S
2

= Zph(w)dzy A {[

+zuh(w)dzy A + £ (O) + 5 f(r)Fy} .
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Thus the condition for the metric to be Kaehler is

[f “r 4 fe )]n (©)+ 5 /() =0.

To solve this equation, choose the holomorphic structure on L so that 7*(@) +
LFy = An*(©), where A is determined by the Chern class of L, then the above
equation reduces to

firr

S+ Af(r) =0

So the solution is f(r) = r~2* up to a constant. Thus the condition for f(r)(r2g +
dr ® dr) to be Kaehler is f(#) = r~2* up to a positive constant. Note that A > 1,
A=1 and 1 <1 correspond respectively to the cases L is positive, trivial and
negative, and also that by normalizing the metric ® on X, we can make A to be
any number bigger than 1 in the case L is positive, and smaller than 1 in the case
L is negative.

Now assume that F;, does satisfy

(0) + %Fh — In*(O)

for some 4 > 1 or A < 1 depending on the Chern class of L. So »~?*(r?g + dr x
dr) is a Kaehler metric on the complex manifold @(Y x R). In terms of the complex
coordinates {w,z,}, its Kaehler form is

o h B
= [ PhOT {5 f”' Sl o) (W)| awg;)]dw A dw
-i—é ha}é( )d ANdz, + 2._ aa(V:_V)th Adw + %h(w)dzh Ndzp}.

We sum up the above discussion in the following lemma.

Lemma 3.1. Let X be a compact Riemann surface with a Kaehler metric ©. Let
Y be a circle bundle over X. Then there is a metric g on Y and a holomorphic
structure on Y X R such that

e (g 4+ dt @ dt)

is a Kaehler metric on Y x R. The complex manifold Y x R can be compactified
to a complex ruled surface.

Proof. As in the above discussion, embed Y as the unit circle bundle into a Her-
mitian line bundle L and Y X R as the complement to the zero section. Choose a
holomorphic structure on L such that the Chern connection is a Hermitian Yang—
Mills connection, i.e.

i
5Fi = (A= D6.

The above discussion then applies to
r(Pg +dr @dr) = e® Mg+ dt @ dt) .

A holomorphic line bundle L has a natural complex compactification, i.e. the
associated projective line bundle S which is obtained by adding a point {oo} to
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teach fiber of L. S is a ruled surface and S\ (¥ X R) is a disjoint union of two
copies of X, the zero section in L and the section of points at infinity added to it.
We shall denote the two sections by 2y and 2, respectively.

The metric we use most is the tube metric g + dt @ dt = g + r~2dr ® dr on
Y x R. It is clearly a Hermitian metric. We shall denote its associated 2-form by
Qo.

For later convenience, we give the explicit formula of the metric on the cotangent
bundle 7*(Y x R) induced by Q' = r=2*(r’g + dr @ dr).

Lemma 3.2. The induced metric on T*(Y X R) by the Kaehler metric
Q =r (g +dr@dr)=e?* M (g + dt ® dt)
on T.(Y X R) is given by
(@) = [z * Pho(w)(¥ + ¥),

where
)
W= () oo @ o~ i) 6‘1
—Zhhz(W) ; +'Zh|2h1(w)—_®aa
and
A oh(w) 2 *h h(w)]~* oh
) = SEAS G| T = ), ) = PO,

sow) = STHONT, () = D (owls(w) = [0 PT

Proof. By a linear algebraic calculation.

4. Spectral Geometry of ¥ X R

The successful application of the evolution equation

—1OH;
¥ 0Os
to the proof of the main theorem depends crucially on certain properties of the heat
kernel of the linear operator associated with the equation. For general Hermitian
manifolds, the operator is 400, where A denote the adjoint to the wedge product
by the fundamental form of the Hermitian metric on forms. For a Kaehler base
manifold this is of course just half the ordinary Laplacian. In this section we study
the heat kernel of this operator on the complex manifold ¥ x R with the Hermitian
tube metric g + dt ® dt as in the last section. The results obtained here may be of
interest for their own sake.
We start the discussion with some simple facts on the geometry of ¥ x R with
the Hermitian tube metric.
Recall that € is the fundamental 2-form associated with the tube metric. By
simple calculations, we have

= —iAF,
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Lemma 4.1. The two form Qq satisfies

Q0 = %r‘zz_hh(w)dzh AFy = (A— 1)dzﬁ NG,

30 = %r‘2zhh(w)d2h AFy = (J— 1)? AO,
u
002y =0.
Let P = iA0d = —iAdd. The following two lemmas are essential to our discus-

sion in the next section. The first one gives the relation between the operator P
and the Laplacian on Y X R and the second gives the formula of the heat kernel
of P in terms of the heat kernel of the Laplacian Ay of Y and an explicit function
involving only .

Lemma 4.2. Let A be the Laplacian of Y X R with g+ dt ® dt. We have

(1) P=14+ (A —1)Z, where t is the parameter of R in Y x R.
(2) Let ¢ = e**~V* then P¢p = 0.

Proof. (1) On any Hermitian manifold, we have
Af =2Pf +i%(0Q NOf)—i*(0Q ANOf).
See Buchdahl [4]. It follows from Lemma 4.1 that

Af=2Pf+i(1—/1)(_la—f+ia—f> % (dzy NdZ, A ©).

Z, 0z, z,0Z,
Let {r,0} be the polar coordinate in the fiber as in Sect 3. It is easy to see that

dz, Ndz, = 2irdO \Ndr ,

and
1of 10f 1of
z,0z, 2,0, ror’
Thus
Af=2Pf+2(1—l)aa—j:*(dr/\de/\@)=2Pf+2(l—l)%—{,
ie.

1 0

(2) Simple calculation.

Lemma 4.3. Let Ky(x1,x2,5) be the heat kernel of the Laplacian Ay of Y, then
the heat kernel of P is given by

Ky 1 -5 ) G—1y?
K[(x1,11),(x2,82),5] = Ky (x1,x2, —> e~z tI-Aa—n) =TS
2/ (2ns)2
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Proof. First note that P = 4y — 1-& 4 (2 — 1)Z. The formula is then derived by
the usual Fourier transform method. We check that it does satisfy the requirements
of a heat kernel, i.e.

(1) (& + Pios.))K[01, 1), (32, 12),5] = O,
(2) For any bounded continuous function f(x,#) on ¥ X R,

liﬁ(l) J Klx1,t1), (%2, 2), 51 f (x1, 01))dxydty = f(x2,12)
S=Vy xR

(3) For any bounded continuous function f(x,#) on Y X R,

u(x,t,s) = YfRK[(y, &), (x,1), 51/ (», O)dyde

is a solution to the heat equation

0
<5+P>u—0.

(1) can be shown by direct calculation.
To show (2), note that as s — 0, the following two limits hold:

lin(1) JKy(x1,%2,8) f(x1,)dx) = f(x2,82),
§— Y

4 —n7 G=1y
L= 5 +U=DO—0)=555s f(x) 1))dt) = f(x1,12) .
S—->0R (2ns)2

The second limit is uniform for x; as Y is compact. (2) then follows easily.
Finally, we note that the differentiations can be carried out under integration,
since the integration of the results of the differentiations involved converge absolutely
and uniformly. (3) then follows from (1).
The key property of the heat kernel of P needed to construct a solution to the
Hermitian Yang-Mills equation by the evolution equation method is the following
lemma.

Lemma 4.4. Let [ be a function on Y x R such that

If| =071, t— +oo.

Let
T 2 —ay— 0
Git)= | - e m U=y
0 s
and

u(tz) = Tds f K[(x1,11),(xz,tz),s]|f(x1,tl)ldxldtl .
0 YXR

The following two conclusions hold for 6, = min{1,2|1 — |}:
(1) If A < 1, then

o

(1-2)y

G(t)=
2= <0,

a-2
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and
O(e™%%), ) —s 400
u(ty) =
o(1), ) — —0.

(2) If 2 > 1, then
1 A=A
Gry=4 *7D
(A-1)

t

1\%
o

t

lIA
o

and
o(1), t) — +0o0
u(tz) = It
O(e’*?), t — —00.

Proof. We show (1). (2) follows similarly.
First we note that

G(r) = " Pg(1)

2_ (=

2
where g(1) = [ \/;?e“ﬂ_ 7-5ds = g(—t). Thus to prove the first result, it suf-
fices to prove the case ¢ = 0, in which we write

T ® 1 ==
+ —e~ > ds.
( of “+fn) V2ns

2
Let s’ = [—’ilz:lﬂ— By simple calculation, we have

G(t)

Il

1
=T n
o[+ (1 = D=/ AT=Dis +1/5'+(1—A)t + /P + 21—t iy
</ Ny e ds
1 %v2 o, 1
_—_——\/Z_n(l—l)ofﬁe ds Tk 4.1)

We have used in the above proof the following simple fact:

VS + (L= Dt = /7T 20— DI +\[s' + (1= Dt + /2 + 201 = Dis’
=2/ +2(1 = A).

To prove the second result, we note that by the hypothesis,

JKy(x1,%2,9)| f (i, t1)|dxy < Cre Il
¥
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It follows that

oo
u(ty) = [ds [ K[(x1,t1),(x2,12), 81| f (x1, 1) |dx1dty
0 YXR
(
<cC jo L2 -y —6)— 452 e—lldy,
0 \/27'CS
— f |t||dt1f ! e_(’]__zgz)_zﬂl—l)(t:—tz)—g_zids
R 0 271s

C- [G(t — ty)e~Inld
R

=C. 21=D=n)o=ltlgy 1 C. e Itlgy,
It e+ !

_,1)

Thus if £, = 0, then

C C
< —2(1-2)t (B-22)n (1-22)n % 4
u(t) = a—n° [_{Oe dty +fe dtl} a—n; e "dt
2¢ S P __1—6—2(1—;1)¢2]
=20 A=) —22) ’

and t, < 0, then

C
H) < =2(1=M)t, 2(1— A)t1+tldt 1 ¢ t‘dt
u(z)_(l—l)[e fe +fed1+fe 1

_C 2-24) "
_(1—,1)[2 G_22)° I

The result then follows easily.

The next two lemmas assert that the maximum principle holds for the operator
P, both in the elliptic case and in the parabolic case. These will be needed in the
next section to establish the existence and the uniqueness of the solution to the

evolution equation.

Lemma 4.5. (The maximum principle, elliptic case). Let D be a compact domain
in Y X R and let u be a function on D such that

Pu<0.
Then u achieves its maximum on the boundary of D.

Lemma 4.6. (The maximum principle, parabolic case). Let v(-,s) be a function
defined on D X [a,b) such that

0
i <
(65+P)v=0'

Then v achieves its maximum on the boundary of D X [a,b).
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Proof of Lemmas 4.5 and 4.6. We note that P differs from %A by a first order
term (k — 1)%, which vanishes at an inner point of maximum value, should such a
point exist. Thus the proof of the maximum principle for ordinary Laplacian works
for our case. See [11, 16].

Remark. It follows plainly from the proof of the maximum principle that if u (resp.
v) are non-negative functions, then the conclusion of Lemma 4.5 (resp. Lemma 4.6)

still holds if s
< |\ =+P <
Pu_0<resp(as+ >v_0)

whenever u > 0 (resp. v > 0). Thus we can, as we do in the following, apply
the lemmas to the function |iAF(s)| which may not be smooth at points where it
vanishes.

5. The Existence Theorem

In this section we prove Theorem 2.1 and then describe how Theorem 2.1 gives a
map from M} (+,+) to the set of gauge equivalence classes of ASD connections
on Y X R.

Given a holomorphic bundle on S representing an element of M (+,+), we
deform a suitable initial Hermitian metric on the bundle to a desired one, through
special paths defined by the solution to the evolution equation

_,OH! )
! 6’SS = —idAF,,

using the tube metric on ¥ X R.

We restrict ourselves in Theorem 2.1 to holomorphic bundles of rank two and
trivial first Chern class. However it will be clear from the proof of the theorem that
the results of the theorem hold without these restrictions on rank and first Chern
class.

For a holomorphic Hermitian bundle on a Hermitian manifold, let P, = iA100,4
and P4 = —iA0,40, in addition to P = iA00 = —iAd0.

We now begin the proof of Theorem 2.1. We suppose c;(Y) < 0. The proof
for the other case is almost identical. First we prove the uniqueness part of
Theorem 2.1.

Proposition 5.1. Let £ be a bundle as in Theorem 2.1 and H; and H, be two
Hermitian metrics on . If Hy and H, both satisfy (1) and (2) of Theorem 2.1,
then H; = H,.

Proof. Let h be the endomorphism of £ determined by

(¢ ’1>H2 = (h&, M, -

Then 4 is positive self-adjoint with respect to both H, and H,. Let o(H,Hz) =
tr(h) + tr(h~ ') — 2r, where r is the rank of &£. If

A
h= ;
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then
o(H,Hp) =3 (h+ i) —2r 20,

1

and the equality holds iff 4; =1,i=1,...,r. Thus it suffices to show that
O'(Hl,Hz) =0.

Locally under a frame H, = h'Hj, so we have

Ay = H[’&HZ’ = h—lAlh + h~1oh
=4, + h_l[ah 4+ A1h — hA\] = A4, + h“@A,h R
thus
Fy=F; 4+ 0(h~'04,h).

By the hypothesis,
iAF; =iAF, =0.

It follows that
iAR™ 00,4, h — iAh™'(Oh)h ™ Ao h = 0.

Multiplying it by / on the left, then taking the trace, we get
iABO(tr h) = iAte[(Oh)h™" N 04 1] .

The right-hand side of the above equation is negative. To see this, for any point
x €Y xR, let (e,...,e,) be a local frame of the bundle around x, unitary with
respect to Hi, such that the matrix representation of /4 under this frame is diagonal

A
at x, say ) ,4; > 0, and the connection form of 4; vanishes at x,
/?'r
then at this point
_ _ (A
iAte[(Oh)h™ A 04 h] = iAtr | (Oh) . A ok

/1—1

L

=24 lom* < 0.
Jj i

We have used the facts that &;; = ;, and that for a (1,0)-form ¢, idp A ¢ = —|$|>.
It follows that

Pu(h) 0.

Similarly, 1
Pu(h™)=0.

Therefore
PO‘(H],Hz) é 0.
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On the other hand, note that ¢ and the metric d are equivalent in a neighbourhood
of zero, i.e. there are constants ¢j,c; > 0 such that for d sufficiently small,

ad? <0 < cd?.

By the hypothesis, H; and H; both satisfy (2) of Theorem 2.1. It follows that

o(H,H;) < C
and
G(Hy, Hy) (3, 1) — 0, — 0.
Let
b = 2-1x
and let c.4
Y =o(H,H) - par7m s

The above and (2) of Lemma 4.2 imply that
Py <0.

Consider the function  on the domain D;; = Y X [—i,j] in ¥ x R. On the boundary
0D,~j =Y x {—l} uY x {]},

¥ < max{0,0(Hy, Hy)(y,j) — Ce*~ DD}

It follows from the maximum principle in Lemma 4.6 that

C- "
o(H\,H,) = e—Tiipl)i + max{0, o(H, Hy )(y,)) — C2A~Di+NY

independent of i,j. As i and j tend to oo, the right-hand side tends to 0, thus
o(H\,H)=0.

This completes the proof of Proposition 5.1, i.e. the uniqueness part of Theorem
2.1.

We now move on to prove the existence part of Theorem 2.1. We need a suitable
Hermitian metric on £ to start with.

Lemma 5.2. Let £ be a holomorphic bundle as in Theorem 2.1. Let Hy be a
smooth Hermitian metric on € which extends the given unitary structures of € over
2o and X . Then with respect to the Hermitian tube metric Qy = (g + dt ® dt),
the curvature Fy; of the Chern connection of Hj satisfies

|Fizla, = O(e™), ¢ — +oo,
and

o0
Jds [ K[(x1,11), (x2,12), 1|iAF gy (x1, 1) |dx1 dty
0 YXR

_ [ O(e7%7), t, — +oo
=1 o), fh— —00.

Here 0, is the positive number defined in Lemma 4.4.
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Proof. As in Sect. 3, let (z,w) be holomorphic coordinates in some neighbour-
hood U of some point at the end Xy, say. Thus U N X5 = {z = 0}. Choose a local
holomorphic trivialization of £ over the neighbourhood. Then the curvature Fy is
a matrix valued (1,1)-form and can be written as

FH(; =Fidz NdzZ + Fipdz N AW + Fo1dw AN dZ + Fyydw A dw .
Since the bundle £ is flat over the end,
Fpn(0,w)=0.

By Taylor expansion,
|[Foa(z,w)| = O(lz]), |z2| — 0.

On the other hand, we have, by the formula in Lemma 3.2,
|dz|q,, |dz|,=0(lz]), |z| =0,
|[dw|qy, [dW|,=0(1), |z| = 0.
It follows that in any compact subset of the neighbourhood,
Fagla, = O(lz]) = O, 1] = oo

But this holds for the whole neighbourhood of the end, since we can always choose
a finite number of such neighbourhoods to cover the end.

The second assertion follows from the first assertion and (1) of Lemma 4.4,
recalling that we assume c;(Y) < 0 here.

Remark. By the proof of this lemma, it follows that if e is a local holomorphic
frame in a neighbourhood of some point at the end 2 or 2, such that the restriction
of e over the end is flat in the obvious sense, then the connection 1-form under
this frame A4y, its covariant differential V(dy;) and the covariant differential of the
curvature form V(F) H ), viewed as matrix-valued forms, satisfy

[pla, = O(e™1), 1 — +oo,
[V(dp)la, = O(e™ ), 1 — +oo,

[V(Fy)la, = Oe™), 1 — +oo.

Actually all the higher derivatives decay in a similar way over the ends.
Starting with Hyj, we shall now construct a Hermitian metric H on &|y«x which

satisfies
idFy =0

d(HH}) < C
d(H,Hg)(»,1) = O(e™%"), t — o0
using the evolution equation

OH'(s)

H™!(s)=7= = ~iAF(s)

of Hermitian metrics.
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Consider the Dirichlet boundary problem
( )

Hj — _iAF(s)
(=) 9 H,(0) =
fIij(S)|3Di/ = H6|6D,~,

for Hermitian metrics on &|p,, where D;; is the compact domain ¥ X (—i,j) in
Y x R for i,j € N. This is a nonliear parabolic equation. Its linearization is

0
<g +PA(5)> u=20.

We refer to Sect. 6 of [19] for the fact that on each D;; there is a unique solution
Hij(s), 0 = s < 0o to (+*) .

We now show that for each pair i,j, H;j(s) converges to some H;; on £ IBU_ as
s — 0o. We need the following lemma.

Lemma 5.3. For a solution H(s) to the evolution equation

a7 — igrs)

on any Hermitian manifold, we have (< % + P)|iAF,| < 0 whenever iAF(s)=0.

Proof. The norm |-| depends on the parameter s. Nevertheless, since iAF(s) is
always self-adjoint with respect to H(s), we see that

[iAF(s)* = Tr(iAF (s) A iAF(s)) .

The right-hand 51de is an expression independent of the norm. This simplifies the
calculation of the - component of derivatives. A simple calculation then shows that

;%liAF(s)P = —(Pus)(iAF(5)),iAF (s)) — (iAF(s), Ps)(iAF(5))) .

On the other hand, we have in general

P|O(|2 <PAO( O() <O(,1_3A(X> — IVA(Z|2
Plof* = 2a|Pla| — |d]a|[* ,

whenever a#0. Let a = iAF(s) and V = V), then we see that
. 0 . . )
20idF ) (55 +P) WAFG) = dliAFOP ~ [VaoiAF G

whenever iAF(s)=#0. The result then follows from Kato’s inequality,

|d|iAF($)||* £ |V iAF(s)]* .
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By this lemma and the remark at the end of the last section, we have,

OH/(s)
—t ij
H;; ' (s) s

= [iAFy(s)| < [Kbp,(s,%, Y)idFy;(»)ldy ,
Dy

where Kp, (s,x,y) is the heat kernel ([5]) of P on D;; with Dirichlet boundary
condition. Now the maximum principle implies [5] that

KD:‘/(S’x’ y) é K(er’ J’) B

where K(s,x,y) is the heat kernel of P on Y x R as in the last section. Thus
furthermore we have

0 OH; oo
Of HJ'(S)%,dS Of JKD,,(S x, YidFo(y)ldy
29 s [ Ksx lidFo(yldy -
By Lemma 4.4,
Tle_'( )¢ ds = 0(1),
0

so for any given & > 0, if 51,5, > 0 are sufficiently large, then

J |

81

s < ¢.

ij

Hence we have

52

d(Hij(s1),Hij(s2)) < [

$1

z]( )

ds < ¢,

Ut()

where d(H;j(s1), H;j(s2)) denotes the distance between H;j(si) and Hj;(s;) in the
space of Hermitian metrics with the complete metric as above. Thus H,J(s) con-
verges in C° to some Hj; on IT*(E) Il_)u' (As the referee pointed out, the preceding
arguments are basically the same as those used by Donaldson in [7], Sect. 2.4.)

Now by Lemma 6.4 in [19] and the remark following it, we know that Hj;(s) are
bounded in L2 Joc» 1.€. bounded in LY over any compact subset of D;;(s). Therefore
there is a sequence {s1}, I — oo such that Hlj(sl) converges, as | — oo, in C! and
also weakly in L} to some Hjj(co) which is necessarily H;; on H*(E)ID Since
liAFy,(s)| — 0 as [ — oo, iAFy, = 0 weakly. By elliptic regularity, H;; is smooth
and satisfies iAFy, =0 in the normal sense. Clearly.

Hijlap, = Holep, -

Next we show that, for each fixed i, the sequence {H;;,j = 1,...,} converges in
C% on any compact domain of D; = ¥ x (—i,00) to a Hermitian metric H; on & |p,
which satisfies

{ iAF; =0
Hilap, = Hylap,-



758 G.-Y. Guo

Consider again the pointwise distance d(H;;, Hy) between H;; and Hy for any
positive integers j,k, j < k say. We have

d( ijs ‘k) = d( ljaH(;)-l_d(H(;?I{jk)
lim [d(Hy(s), Hy) + d(Hy, Hi())]

Il

o

I\

asz (S)

IIA

t
z/(

OH/ (s
5) ()‘

Jas

lIA

2fdsyfRK(s X NidFg(y)ldy .

Again by Lemma 4.4,
max d(Hy, Hy )(x) £ C- e/
aD,-j

On the other hand, for the function
o(Hyj, Hy) = te(H; ' Hy) + tr(Hy ' Hy) — 2r
defined on D;j, we have shown in the proof of Proposition 5.1 that
Po(Hy,Hy) < 0.
By the maximum principle,
o(H;j, Hy )(x) = maxgp,, o H;j,Hy), x€Dy.

Now ¢ and d are equivalent in a neighbourhood of zero, i.e. there are constants
c1,¢3 > 0 such that for d sufficiently small,

cid* £ 0 £ cd>
Thus for j sufficiently large, we have

o(Hy, H)(x) < max o(Hy, Hy) < C'e™,
i

for some constant C’ > 0. Again since ¢ is equivalent to d, we see that {Hj}
converges in C° to some Hermitian metric, H; say, on IT*(E)|p,.

By the discussions above, we see again that {Hj;}, or a subsequence of it,
converges weakly in LY to H; on any compact subset of D; and H; is smooth with

1I—00

Moreover, since

(e}

d(Hg, Hy) = lim d(Hg, Hy) < [ |Hj"
J—00 0

)aH,-;<s>‘ )
Os

< Jds [ K[(y1,11), (y2, ), s1|iAF gy (y1, t1)|d yrdty
0 YXR
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It follows from Lemma 5.2 and Lemma 4.4 that
d(Hy, H;) = O(e™"), t — o0,

and the bound O(e~%") can be chosen to be independent of i.
Finally, we now show that as i — oo, the sequence {H;} converges in C'toa
Hermitian metric H on |y« and H satisfies

iAFg =0
d(HH}) < C
d(H,H})(y,t) = O(e™%"), t —>o00.
As before, for any integers i,k, i < k say, we have
do(H;,Hy) = 0.
On the other hand,
d(H;, Hy) < d(H;, Hy) + d(Hy, Hy)
= jlifgo[d(Hij,Hé) + d(Hy;, Hyp))

{ !

< Jds | K{(y1,11), (y2, ), s1|iAF gy (y1, t1)|d y1dty < C
0 YXR

OH!.(s)
ij
Os } +

OH[ (s)
i ) )

I\
o

H;'(s)

by Lemma 5.2. Here as before C is a general constant independent of i, k.
Now consider the function
C/
¥ = o(H;, Hy) — e——2(/1-'—1)i¢
on D;, where ¢ = 24~ By (2) of Lemma 4.2, Py < 0. Choose C’ large, C’' = e
say, then Y < 0 on 0D; and that lim,,o, ¥ = 0. Thus by the maximum principle,

we have
Y =0.

ie.
!

o(H;, Hy) = m(f’ .

It follows that H; converges in C° to some Hermitian metric H on & lyxr as i tends
to co. Then as before, elliptic theory ensures that H is smooth and

iAFH = hm l'AFH, = O,

1—00

i.e., the Chern connection of A is an Hermitian Yang-Mills connection on £|yxr
with respect to the tube metric (g + df ® dt). This proves (1) of Theorem 2.1.
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By the construction of H, it also follows that

d(H,H}) = lim d(H,,H}) < C
1— 00

and
d(H,H})(x,t) = O(e™%"), t — oo.

The fact
d(H,H{)(x,t) = O(e™"), t — o0

shows that H extends continuously over X, on which it is the same as H, i.e. the
given unitary structure of £ over X,. Thus (2) of Theorem 2.1 is also proved.
We now go on to show (3) of Theorem 2.1. We need the following lemma.

Lemma 5.4. For the solution H obtained above, we have the following estimates
on its derivatives:

,AH_AHO'IZO(l)’ t— 00,

IdAH(;(AH(; —AH)I = 0(1), t—0o0.

The lemma is a direct consequence of the proposition in the appendix. The proof
of the proposition involves an application of the Schauder estimates and a scaling
argument.

(3) now follows easily from Lemma 5.4, for by Lemma 5.4, 45 and Ap; must
have the same asymptotic limits as + — oo and clearly Ap; limits to the lift to ¥
of the flat stucture of £ over X, . This completes the proof of Theorem 2.1.

With Theorem 2.1 in hand we can now describe the map from M} (+,+) to
the set of gauge equivalence classes of ASD connections on Y X R.

Let £ € £&.(+,+) be a holomorphic bundle on S representing an element of
M, (+,+) and let H be the unique Hermitian metric on £ as in Theorem 2.1. Note
that the smooth bundle underlying £|y«r is necessarily isomorphic to the bundle £
as smooth bundles, thus we can identify the former with £ and consider £|yxz as
a holomorphic structure on E. The connection Ay then is an ASD connection on £
over Y x R. In general it is not compatible with the metric Hy. However, we can
associate with it an ASD connection 4y, on (E,Hp) in a canonical way as follows.

Pull 4y back to a connection 4y, on (E,Hy) by the positive self-adjoint gauge
transformation g of (E,H) (as well as (E,Hy)) determined by

1, &y = (g1, 9E)mr -

The connection Ag, plainly has the same energy (finite or infinite) and asymptotic
limits (exist or not) as those of Ay. Furthermore the uniqueness of Theorem 2.1
implies that the gauge equivalence class of ASD connections on (£, Hy) represented
by A4m, depends only on the equivalence class of M, (+,+) represented by &, not
on & itself. So there is a map from M., (+,+) to the set of gauge equivalence
classes of ASD connections on Y X R . By the discussion following the definitions
of M (+,+) and M,,(+,+), we see that this also gives a map from M*(+,+)
to the set of gauge equivalence classes of ASD connections on Y X R.
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6. From Instantons on Y X R to Holomorphic Bundles on §

In this section, we prove Theorem 2.2.

Let (E,Hp) be a fixed complex Hermitian bundle associated with the principal
SU(2) bundle P =Y X R x SU(2). We identify connections on P with connections
on E compatible with Hy. In this section, connections on E will always be taken to
be compatible with the hermitian metric on Hy unless otherwise stated.

Given an anti-self-dual connection 4 on E with finite energy, it is well-known
that 4 determines a holomorphic structure on E, viewed as a complex vector bundle
on the complex manifold ¥ x R C S. On the other hand, we have seen in Sect. 1 that
the one parameter family of connections [4;] on Y obtained in an obvious way from
A converges in C* to a flat connection [Ax] (resp. [A—]) as t — oo (resp. — 00)
and if [4+o0] € F}, then we can choose a gauge for E such that the connection
form and its covariant derivatives decay exponentially at the ends. Rewriting this in
terms of complex coordinates on S, we shall see that these are sufficient conditions
to extend the bundle £ on Y X R over the whole S.

Theorem 6.1. Let A be an anti-self-dual connection on E with finite energy. If
[A1oo] € F5, then the following three statements hold.

(1) The bundle E on Y x R with the holomorphic structure determined by A
extends to a holomorphic bundle £ on S such that

1
€)= ngFA”iz .

(2) The restrictions of the bundle £ over Xy and X, are unitary flat. The flat
structure on Xy, when lifted to Y, is given by [A_o] and the flat structure on X,
when lifted to Y, is given by [Axo] .

(3) The Hermitian metric Hy on E extends continuously over Xy and X, to
a Hermitian metric on E. The extended metric agrees with the unitary structures
of the restrictions of € on Xy and X, given in (2).

We prove Theorem 6.1 in a series of lemmas. Roughly speaking, we first extend
E and 4 locally by solving a local ”¢” equation. We then show that the local exten-
sions patch together to give a global extension. Finally we show that the extended
bundle satisfies (2) and (3). We shall only prove the theorem for the end X .. The
proof for Xy is almost identical.

Recall that Y x R is the complement to the zero section of the line bundle L.
As in Sect. 3, let (w,z;,) be a local complex coordinate on L coming from some
holomorphic trivialization of L. Let z = ZL, then z = 0 represent points of Xin S
and (w,z) is a local complex coordinate in S around these points. We can take such
a complex coordinate around any point of S in X,. So without loss of anything
we suppose U is a neighbourhood in S of some point in X, with (w,z) defined
on it. Clearly U contains a subset of ¥ x R of the form Y|y x [T, 00), where W is
some open subset of 2 on which w is defined and T is some positive number. So E
and A are defined on U\{z = 0}. We first extend E over {z = 0} locally on each
such U.

For convenience of presentation, we denote e; =dz, e; = dz, e3 = dw and
es = dw, and we define o(iy,...,i;), for any j-tuple (i1,...,i;) of integers with
1 =i} £ 4, to be the total number of 1 and 2 appearing in iy,...,i;, for example
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a(1,2,4,1) = 3. Note that by the formula of £, on the cotangent bundle 7*(U \{z =
0}) in Sect. 3, we have |ei|q,,|ez]o, = O(|z]), e3]ay l€ala, = O(1).

Lemma 6.2. For U small enough, we can choose a gauge gy on E|y\(,—oy such
that the connection form A satisfies the following condition:
Identify End(E|y\(.=o}) With the trivial bundle and A as a section of it by gy,
if
VfA = Z Aio...ijeio®eil ®---®e,~j, j=0,1,2,... .

1<ipij <4

where V is the covariant derivative of the trivial connection on End(E|y\1z=0}) ®

T*(U\{z = 0}), then
1
lAio..«ijl = 0 (lzlo.(io...,’j)_é)

for some positive number 9 .

Proof. We prove the following two claims. The result then follows.

Claim A) If B=By,...,e;, ® ---® ey, is a k covariant tensor on U\{z = 0} such
that

1
|B|Q°:0<|Z|_—5)’ |Z|——>0,

1
lBll..,[k| = 0 (W—lk)——é) .

Claim B) There is a gauge gy on E|y\{.—0} such that the connection form 4 of
the instanton satisfies

then

. 1 .
|Vid|g, = O(H_—é), j=0,1,2,....

Claim A) follows easily from the formula of €, on the cotangent bundle in
Lemma 3.2.

To prove Claim B), we note that by the discussion in Sect. 1, we can choose a
gauge on E such that

IV, (4= Aoo)loy £ Ce™™, t—00, j=0,1,2,....

Here the covariant derivative V4 on End(£) @ T*(U\{z = 0}) is induced by the
connection Ay, on E|y (.~} and the Levi-Civita connection of the metric €y on
T*(U\{z = 0}), hence it is different from the covariant derivative V required in
Claim B).

Since Ao, € F, it is trivial on U if U is small enough. Thus, if neccessary
shrink U to a smaller open subset, we can choose a local gauge gy in which
Ao = 0 locally. So we have

IV _Alg, < Ce™, j=0,1,...,

ie.
) 1 ‘
(%) |VLWA|QO=0(|Zl_5), j=012...
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To finish the proof, we induct on j. It is trivial for j = 0. Suppose |V*4|o, =
0(,;,‘:,) and let

VkA = Ai()"‘ikeio & € 5
then by Claim A),

1
(* * *)IAiO'“ik{ = 0 (W) .

Since Ao, = 0, we see that
VAL = VA + 45,0 Va6, ® - ® e,

where Vg, is the covariant derivative of the Levi-Civita connection of the metric
Qo on tensor bundles of U\{z = 0}. By (%), it suffices to show that

1
|5, Voo (€ ® - ® ey ), = O (I—Z—I_—5> .

Working out the connection form of Vg, under the basis {ej, ez, e3,e4} (ie. the
Cristoffel coefficients. This is of course a clumsy way, but the author knows no
simpler way of reasoning), we see that

[Vaserlays | Vasezla, = O(lz]),

and
Ivﬂoe3lﬂo’ IVQ()€4IQO =0(1).

It follows that
[V, (e, ® - ®ey)la, = O(Izlo'(iomik)) ,

which together with (% % ) imply that
1
[iy--i, Vi, (€1, ® -+ - ® €)|0y = O ('Iz]__g) :

This finishes the proof of Lemma 6.2.
The following Lemma is due to Buchdahl [4]. It is the key lemma in our local
extension of E.

Lemma 6.3. Let U be a neighbourhood of the origin in C*. Let A€ L(U),
j = 1, p = 4 be a matrix valued (0,1)-form on U such that

OA+ANA=0,

then there is a matrix function g € LJ’.’ +1(U), possibly defined on a smaller neigh-
bourhood, such that

0g = —Ag .
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Proof. See Lemma 8 in Buchdahl’s paper [4].
To extend E locally on U\{z = 0} over {z = 0}, we consider, following Bando
[2], a branched covering U™ of U:

¢o:U" — U,
W,2') = (w,2) = (W,2™),

where m is some positive integer. Pull back E and 4 on U\{z = 0} to U™\{z' = 0}
by ¢. Denote the pull-back bundle and connection still by £ and A. The identity of
E is pulled back to a cyclic transformation group G, of order m of the pull-back
bundle on U™ and the gauge gy to an G, invariant gauge, which will be denoted
still by gy, for the pull-back bundle. Clearly G,, acts holomorphically. By simple
calculation, one sees that Lemma 6.2 implies that on (w',z’) plane,

: 1
V4] =0 (W) :
Thus for any given j, we can choose m large enough so that
g g
A€ L}’ o™,

and in particular we can suppose that 4 vanishes on z’ = 0. On the other hand, the
anti-self-duality of 4 means that on both U and U™ planes 4 satisfies

4% + 4% AA™ = 0.

So by Lemma 6.3, shrink U™ if neccessary, there is a matrix function g € L}’ %S

such that B
og = —A%y .

Note that there are many functions satisfying the above equation, for if g is such
a one, so is gf for any holomorphic matrix function f on U™. Since A4 vanishes on
z/ =0, we see that g(0,w) is holomorphic; thus we suppose g is the identity over
2/ =0, for if neccessary, we can always take g-g~'(0,w) instead.

Now let g7, = gug, under gj, the connection form is given by

g '4g+g7'dg=g"'4"g+g "9,

i.e. it is of type (1,0). Thus g, is a holomorphic basis of the pull-back bundle on
U™\{z' = 0}. We extend the pull-back bundle holomorphically over {z' =0} by
defining g7, as a holomorphic basis on U™.

Consider now the action of G, on g;,. Denote by # the generator of G, which
covers the multiplication by e’ on the z/ coordinate on U™ downstair. Since gu is
invariant under G,,, we have

(g N2/, w) = (togu)(e 2/, w)g(Z',w) = gu(e™ 2, w)g(z', w)
= gy(e= 2, w)g~ (e 2, w)g(z,w) .
As both the action and the basis g, are holomorphic, the matrix representation of

the action under the basis, that is g~!(e™ 2/, w)g(z’, w), is also holomorphic. On the
other hand, g is differentiable on U™, being in Lj’ +1(U™) for a given j large enough,
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one sees that g“l(e%z’ ,w)g(z',w) is bounded, hence it extends holomorphically
over z/ = 0, on which it is easily seen to be the identity matrix /. Consequently G,,
extends to a holomorphic transformation group on the extended bundle which acts
as identity over {z’ = 0}. It follows that
gy = 3 t9y)
tEGn
is a Gp-invariant holomorphic basis of the extended bundle on U™ or perhaps a
smaller open subset. So the quotient of the extended bundle by G,, is a holomorphic
bundle on U which clearly is a holomorphic extension of the bundle E|y {,—0} and
g{; projects to a holomorphic basis, which we still denote by g7}, of this extension
of £ on U.
We now look at g”” more closely. By construction

—(m—1)2m

9" w) =gy, Wl + g~ (@ w)gle 2, w) + -+ g~ 1, w)gle ™" 2, w)]

—(m—1)2m

— gu(@, WG W) + gle ™ 2 w) + -+ gle™ T2 w)] .

—(m—1)2m

Let Ty(z/,w) = g(z',w) + gle 2, w) + - + gle "= 2/, w). Since both g,
and gy are Gy, invariant, Ty(z’,w) is a G, invariant matrix function, as can be
seen directly. Thus it descends to a matrix function on U\{z = 0} which we still
denote by Ty. Clearly on the (z,w) plane,

gH(Z’W) = g(Z’W)TU(ZsW) .

Since g(z’,w) — I, as z/ — 0, we see that Ty(z,w) — ml as z — 0, thus it has a
continuous extension over {z = 0}, on which it is the constant matrix mI. Conse-
quently, gy can also be extended over {z = 0} at least continuously to give a basis
of the extended bundle on U and in turn the Hermitian metric Hy on E|y\ (;—o) can
be extended over z = 0 to give a Hermitian metric on the extended bundle which
is continuous and smooth away from z = 0 and in the w direction at z = 0.

Up to now, we have showed that locally E|g\ s extends over X,. We now show
that these local extensions, patch together to give a global holomorphic extension
of E over Z,. It suffices to show that for any U; and U, as above, the transition
function of the two gauges g7, and gy, which is defined and holomorphic on
Uy N U, \Z o, extends to a holomorphic function on Uy N U,, for then the cocycle
condition follows from the continuity of the transition functions and the cocycle
condition for E|s\5.__ .

Let gy, = gu,T. So T is a function on U; N U,\Z with value in SU(2). In
fact T is constant because the connection forms of the flat connection 4., under
gu, and gy, vanish. So in particular it is bounded. The transition of g7, and g7, is

9%, = 9u.Tv, = 9, TTv, = 93, Ty, TTy, -

Since Ty, and Ty, are bounded, being continuous, the matrix function 7, U T Uys
which is holomorphic on U; N U\, is also bounded on U; N U,\Z,, hence it
extends holomorphically over U; N U; N 2. This proves the first half of (1) of
Theorem 6.1.

Next we show that the extended bundle is unitary flat over X, with the flat
structure which, when lifted to over Y, is given by [As]. This is quite obvious
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from the above discussion, for at z =0, g{;(0,w)’s give a trivialization of the re-
strlctlon of the extended bundle. The transition between gy, (0,w) and g7,,(0,w) is

T, U, TTUl(O w), i.e. T(0,w). As mentioned above, T is constant, thus g,(0,w)’s
give a flat structure of the restriction of the extended bundle over z = 0. Since T
takes value in SU(2), being the transition function between two gauges of an SU(2)
bundle, the flat structure is also a special unitary flat structure. Since g7;(0,w)’s are
holomorphic gauges, the flat structures is compatible with the holomorphic structure.

Now take Y to be the boundary of a tubular neighbourhood of X, small enough
to be covered by the U’s in the above extension. (Of course the orientation of Y is
reversed, but it does not matter here.), Then the local gauges gy|y’s determine the
flat structure [4o,]. Since gy|y’s have the same transition functions as g7,(0,w)’s,
we see that [As] is the lift of the new unitary flat structure over X.,. This proves
(2) of Theorem 6.1.

Since each of the original unitary gauges gy also extends over X, to a local
frame of the extended bundle, the Hermitian metric Hy on E extends at least con-
tinuously over X, to give a Hermitian metric on £ which, restricted to X, is
clearly the same unitary structure of £ on X, defined by the transition T above.
This shows (3).

Finally, to complete the proof of Theorem 6.1, we show that the second Chern
number of the bundle £ on S thus obtained equals gz ||F4|[2,. Since £ is an element
of £.(+,+), Lemma 5.2 implies that there is a smooth metric Hj on £ which extends
the unitary structures over Xy and X, i.e. agrees with Hy on the ends. On the other
hand, by uniqueness the solution H in Theorem 2.1 for £ must be the Hermitian
metric Hy we start with. So in this case, (1) of the proposition of the appendix is
satisfied for both ends Xy and X,. Consequently we have the following estimates:

|AH5 —Ap,| = 0o(1), t— oo,

and
|dAH6 (A —Adg)| =0(), t— too.

On the other hand, by the Chern—Weil formula, we have

fTI'(FH/ /\FH/) - fTI'(FHO A Fy,)
D,] Du

= [ Tr{(dm; —Am) A [2FH’+dAH/ (Amy AH0)+ (AH' —Apy) N Ay —Am)]} -
oD,

It follows that
1 . 1
Cz(g) = @SITT(FHO/ /\FH(;) = i’}l_l;réo @D{TI’(FH[; /\FH(;)

1
= lim —2 { fTI'(FHO A FHO) + f TI‘[(AH/ AHo)
1,J——>oo 87 oD,

/\(2FH(; +duy, (Apy — An) + _(AHO’ — Ap)) N Ay — AHo))]}

[ Tr(Fyy A Fiy) +0 = 1A

|
3 2Y><R 812

This completes the proof of Theorem 6.1.
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Theorem 6.1 essentially gives the map of Theorem 2.2. We now describe this
in precise terms. We need two small lemmas to put things straight.

Lemma 6.4. Let U be a local coordinate neighbourhood of some point of X, as
above. Let Ay and Ay be two 1-forms on U\X, with values in the Lie algebra

su(2) of SU(2) and gy be a function on U\Xs with values in SU(2). Suppose
the three are related by

Ao = gy A1g9u + g5 dgu -
If there is a real number 6 > 0 such that for k = 0,

[V¥dolg, = O(e™), t— oo,

|VkA1IQO = 0(6_5t), t— 00,
where N denote the covariant differentiation of the trivial connection on U\Xs X
su(2) tensored with the Levi-Civita connection of the tube metric on forms, then
gu(y,t) converges to some constant SU(2) valued function on Y |yns,,, hence also
on UN 2.
Proof. This is simple. We write

dgu = Aogu — gud: .
Since gy is SU(2) valued, it is bounded. By the hypothesis
|dgula, < C(l4olg, + ile)) < Ce™?.

Here and in the following C denote some general constant large enough. In particular

99u

SC —ot
9 < e,

and
ldygy| < Ce™.

The result then follows easily.

In Theorem 6.1, we restrict ourselves to instantons on E compatible with Hj.
Of course the construction applies to instantons compatible with other Hermitian
metrics on E as well.

Lemma 6.5. Let Ay be an instanton on (E,Hy) and A, be another one on (E,H;)
for some other Hermitian metric Hy on E. If Ay and A, are gauge equivalent by
a gauge g € AW(E), then the holomorphic bundles & and & on S, constructed
from Ay and A, in Theorem 6.1, are isomorphic as bundles in E.(+,+) by an
isomorphism which extends g and is unitary with respect to the unitary structures
of & and &, over the ends Xy and X, constructed in Theorem 6.1.
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Proof. Note that the gauge transformation g is a holomorphic bundle isomorphism
between &lyxr and &;|yxgz. We shall show that g extends locally over {z = 0} on
each local coordinate U as above to give a holomorphic isomorphism between & |y
and & |y. The extension is also unitary on {z = 0}. Then by the continuity of the
extensions, these local extensions of g necessarily agree on overlaps, hence gives
a global holomorphic extension of g. The extension is by construction unitary on
2. Thus & and &, are isomorphic as bundles in E.(+,+).

To show that g extends locally on U, recall that in the construction of &
and &), there is an SU(2) gauge go on (E,Hy)|y\z., and an SU(2) gauge g, on
(E,H1)|y\z., such that the connection form of 4o under go satisfies

|VF4y|g, = O(e™%!), t— 0o
for some real number dy > 0, and the connection form of A4; under g, satisfies
|VkA1|Ql = O(e_‘slt), t — 00

for some real number 6; > 0. Recall also that there is a holomorphic gauge gy of
50‘(_/ such that

g0 = goTo(z,w)
for some GL(2,C) valued function Ty(z,w) such that To(z,w) — ml as z — 0, and
there is a holomorphic gauge g{ of & |y such that

g = g1Ti(z,w)

for some GL(2,C) valued function T;(z,w) such that Tj(z,w) — ml as z — 0. Now
let gy be the matrix of the gauge transformation g under the basis gy and g, i.e.,

9(90) = g19u -

g being a gauge transformation between (E,Hp) and (E,H;), we see that gy is
SU(2) valued. Since g pulls 4; back to 4y, we have

95" Aigu + gy'dgy’ = 4o,

ie.,
g9y'dgu = 4o — gy Aigu -
It follows from Lemma 6.4 that
gu — Joo
as t — oo, or equivalently z — 0 on U, for some SU(2) valued function gooon 2o,
which is actually constant. Now consider the transformation g under the holomorphic
gauges g and g{,
9(96) = 9{T; 'guTo .
T{ ~lgu Ty is defined and holomorphic on U \% infiy , for g is an isormorphism be-
tween holomorphic bundles &|y\z,, and & |y\s.. . By the above discussion, it tends
t0 goo as z goes to 0, so is bounded, hence extends holomorphically over U N 2.
Consequently, the bundle isomorphism g extends over U N X, to give a bundle
isomorphism of &y and & |y. The extended isomorphism is clearly unitary on
UN2Xs. We are done.
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Lemma 6.5 implies in particular that the extension of £ in Theorem 6.1 is in-
dependent of the choices of the various gauges and representatives of the flat limits
on Y, for by Lemma 6.5, the identity map of E extends to an isomorphism between
bundles constructed from different choices made in the construction. Thus these bun-
dles are actually the same one under different holomorphic trivializations.

By Lemma 6.5, the class of M}, (+,+) represented by the bundle £ constructed
in Theorem 6.1 depends only on the gauge equivalence class of the instanton A4,
thus there is a map from M*(+,+) to M7, (+,+), hence also M(+,+), which
we define to be the map in Theorem 2.2.

To prove that the map is injective, it suffices to prove that the composite of it
and the map defined in the last section is the identity map of M*(+,+). But this
follows trivially from Theorem 6.1 and Theorem 2.1. Thus the proof of Theorem
2.2 is completed.

In the rest of this section, we explain why if (2’) (see Sect. 2) is true, then the
two maps constructed in the last section and this section would be inverses of each
other.

So assume that (2/) is true, then the Hermitian metric H of Theorem 2.1 sat-
isfies (1) of the proposition in the appendix over both ends Xy and X.,. By the
proposition, (3’) also holds. Thus the map constructed in the last section is a map
from M}(+,+) to M*(+,+) and is a left inverse of the map in Theorem 2.2, and
we only need to show that it is also a right inverse.

To this end, we start with a bundle £ representing a given element of M7, (+,+),
apply Theorem 2.1, we get a Hermitian metric H on E whose Chern connection
Ay is an ASD connection on (E,H) over Y x R. The assumption that (2’) holds
implies that 4y is an instanton on (£,H). We then pull back 4y to an instanton
Ay, on (E,Hy) by the gauge g € End(£), positive self-adjoint with respect to both
Hy and H, determined by

n,Euy = (91, 9E)m

for any sections of E. The connection A4y, then represents a class of £ in M*(+,+),
which is the image of the map.

Now apply the other map to the element of AM*(+,+) represented by Ag,, by
definition we get the element of MY, (+,+) represented by the bundle & constructed
from Ay, in Theorem 6.1. On the other hand, it is clear that the bundle constructed
from Ay in Theorem 6.1 is the original bundle £. Since Ay, and Ay are gauge
equivalent by g € End(E), by Lemma 6.5 & and £ are isomorphic as bundles in
&.(+,+) by an isomorphism which extends g and is unitary over the ends. Thus
we come back to the original element of M}, (+,+) represented by £. So it indeed
is also a right inverse.

A. Appendix

In this appendix, we prove Lemma 5.4 of Sect. 5. We state the result in a slightly
stronger way.

Proposition. Let £ € E.(+,+) be a holomorphic bundle over S representing an
element of M.(+,+) and let H] be a Hermitian metric on £ as in Lemma 5.2.
Suppose H is a Hermitian metric on E|yxr which is a bounded solution to the
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Hermitian Yang—Mills equation on Y x R with respect to Qy. Then the following
two conditions are equivalent:

(1) H extends continuously over X, (Zo) on which it differs from Hj by an
endomorphism constant under flat unitary gauges.
(2) The following estimates hold.

|[4p; — Au| = o(1), t— oo (resp. —o00),

|dAH6(AH6 —Ag)=0(1), t— oo (resp.—0).

Proof. (1)=>(2). Since the proof does not depend on which end is considered,
we take the end to be ¥ x (0,00).

To start, let B3(0,7) be the ball of radius » > 0 in R® centered at origin and
g = gimdx’ ® dx™, where x is the standard coordinate of R, and let be a Riemannian
metric on B*(0,7) such that

Gim = Otm + O(lez) .

Consider the “box” B3(0,7) x (—1,1) in R* x R' = R* with the Riemannian metric
g+ dt ® dt and the operator
1 0 1 0

Py= 344+ =Dz =544 +34,+ (G~ D

Since 4, = —ﬁaj(gﬂ‘ V/detgdy), it is easy to see that the error term 64, is small

in the sense that the coefficients of its second order entries are bounded by O(|x|)
and its first order by O(1).

Let D; D D, D Dj be relatively compact domains of B3(0,7) x (—1,1). We need
the following two standard elliptic estimates. One can find their proof in [11] from
which we also adopt some notation here.

Lemma 1. Let r be small enough. Let 0 < o < 1. For any C? function u on
B(0,r) x (—1,1),

|u,1,oc;52 é C(|u|0;51 + IPgulo;Bl)
where C is a constant depending only on the bound of the error term 64, and the
domains Dy and D,.

Lemma 2. Let r, o be as in Lemma 1. For any C>* function u on B3(0,r) x

(—15 1)9

|u 2,0;53 é C(lulo,Bz + |Pgu|0,on;52) 2

where as above C denotes a general constant depending only on the bound of the
error term 64, and the domains D, and Ds.

As in the main text, let 4 be the automorphism of E defined by H = h'Hj. Then

Ay — Ay = h~ ' Aprh — Ay + b~ 0k
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and
duy (A — Apy) = d(An — Apy) + Ay N (Ay — Apg) + (An — Apg) N Amg
=—h"'dh ANh Aprh 4+ b7 d Ay h — h™ Ay A dh — dAyy —h~'dhh™" A Oh
+h='00h + Ap; N (A — Apg) + (Au — Agy) AN Apy

Let e be a local holomorphic frame of £ on a neighbourhood U of some point
at Yo as in the remark following Lemma 5.2. We can cover the end by a finite
number of such neighbourhoods. We then have, for the connection form 4 #; under
the frame e,
|AHO’| = O(e_t )s t — 00,
V() = O™, 1 — o0,

in addition to
|FH(;, = O(Q_t), [ — 00

IV(Fy)l = 0(e™), 1 — oco.
It suffices to show that
|dh| = o(1), t — o0,

and
|V(dh)| = o(1), t— oo,

where 4, by an absue of notation, is the matrix of the automorphism /4 under the
frame e and V is the covariant derivative on forms by the Levi—Civita connection
of ¥ x R. We do this by refining a scaling argument initially used by Donaldson
[6] on compact manifolds. Note that (1) implies that /# is a constant matrix, /.

say, on X, and
|h—hoo| = 0(1), t — .

To show
|[dh| = o(1), t — o0,

we argue that the existence of a sequence of points {z; = (y;,#;),t; = co} € ¥ xR
such that

ldh|(z;))=m; Z ¢, j— o0
for any given ¢ > 0 would lead to a contradiction. Choose a normal coordinate ;

of y; so that Q; is modeled on B*(0,r;) with y; at the center and the Riemannian
metric of Y in this coordinate is given by

g = (8im + Cj|x[*)dx’! @ dx™,

where x is the standard coordinate in B(0, r;). Since Y is compact, we can choose
r; so that r; = r if » was chosen small and C; so that C; < C for some C. Denote
by B;! the 4-dimensional ball of radius ;—‘; and with center (0,7;) in B*(0,7;) X
(t; — 1,¢, + 1). By taking another sequence if necessary, we may always assume
that :

[dh|(z7) = 5 sup{|ahl(z)}

- 4
ZEBI
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Now rescale each four ball B} to the standard four ball B*(0,7) in B3(0,r) x
(—1,1). The Riemannian metric of ¥ X R in B}! is pushed to

c2

9;=—
m;

2
(5lm + __c2 Cj'xF) dx' @ dx™ + dt @ dt}
m-
j

on B*(0,r). Thus the operator P on Y x R restricted to B;? is equivalent to

1 0
Py = 54y + (=D

on B*(0,7). We shall mainly need their conformals

2

go= | om+ SCix? | dx' @ dx™ + de @ dt

i A
J

and 1 o 1 o
Pgl{ = EAgJ/ -l—(/l— l)a = 54‘4 +5Agj’ +(/1— 1)@ .

Since the term ;—icj [x|? in g; is uniformly bounded by C |x|?, we see that the operator
J

04y is unifomly small in an obvious sense.

Consider now the sequence of matrix functions {/;} on B3(0,r) x (—1,1), where
h; is the pullback of A|q, x(;,—14+1)- Clearly |dh;(0)| = ¢ and |dh;(z)| < 2|dh;(0)| =
2¢ with the metric g, hence also with the standard metric (replacing ¢ by some
other constant if necessary). Note that the complex structure on B;? induces a com-
plex structure d;, say, on B*(0,r). For different j, 5,- are in general different and

in particular they are in general different from the standard complex structure on
B*, although in the case that the metric on Y x R is Kaehler we can choose the

coordinates in B} so that 0; coincide with the standard one on B*(0,r) for all ;.
The metric g} is then a Hermitian metric with respect to the complex structure 5j,

thus there is an associated fundamental 2-form. Let A;- be the adjoint to the wedge

product by this fundamental 2-form on forms. The Hermitian Yang-Mills equation
for H on Y x R implies that, on B*(0,r),

Pyhj = iAj0;h; N by 0;h; + i[9y N by Apghy + i Ay N Gjhy — iAjFugh; .

The terms |0;4;| and |0;k;| are bounded by |dh;| < 2c which does not depend on
the complex structure.
By Lemma 1,

| — h°°|1,a;§“(0,§r) = C(lh; - h°°|0;§“(o,§r) + |P9}hflo;E"(o,%r)) :

We know that |h; — hoo o, p(0,r) = |(h]B? — heo)| = o(1), and since |dh;(z)| < 2c on
B*(0,r), it is simple to see that the right-hand side of the preceding equation is
bounded uniformly in j. Thus |Py/h;lope0,r) = [2i4'0;0;h;l0;+0,r) is also bounded.

It follows from the above estimate that #; is bounded in ' over B' (0, %r). By
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Arzela’s theorem we therefore conclude that, by going to a subsequence if necessary,
h; converges in C' to some AL, on B4(0, %r). In particular

|dH(0)] = lim [dh,(0)| = c .
j—o0
On the other hand, the points of the ball Bj tend to infinity, thus /4; tends uni-
formly to A, SO AL, = hoo which is constant under e. This contradicts |dA._(0)| =

c. This shows
|dh| = o(1), r — oo.

To show
[V(dh)| =0(1), t— oo.

Let z be any point (y,¢) € Y X R “near” the end X,. So it is in some U as above.
Choose a normal coordinate neighbourhood of z modeled on B(0,7) as above, but
without scaling. Then as before the equation

iA00h = iAOh N h™'0h + iAOh A k™' Aysh + iAAp, A Oh — iAFyh
holds on B(0,7) with the induced tube metric. By Lemma 2,
IV(@M)o.5o.1r) = CUA = hoolo.Bo2) + [Py 45020 -

We know that |7 — hoo|0;§(0,§r) =o0(1) and |Ph|0,§(o,§r) =0(1). So we only need to
show that ]Ph|a;§(0,%r) = o(1).
By Lemma 1 again, we have

|h|1,a;§(o,§r) = C(jh— hOOIo;E(o,§r) + 1Pyh|o,E(0,%r)) :

In particular
|a’h|a;§(0)§r) =o0(1).

We also have
il 0,2y = Cldhlo;p0.r) = o(1),

a1l 50,2) = CIVArlo:0.) = o(1)

and

[IA

\Fi | 50,21y = CIVFrplo:50.r) = o(1).

These and the general fact that
|fg’cx;§(0,§) E= 'ff0;§(0,§)!g|a;§(o,§) + |fla;§(o,§)|g|0;5(o,§)

together imply that the |- |a;§(0,§ ») norm of the right-hand side of the last equation
above, hence also |Ph|a;§(o,%r) is bounded by o(1). This completes the proof of the

first step.

(2)=(1). Let h, e and U be as above. It suffices to show that for every such local
neighbourhood U of X, the matrix form, denoted by # itself, of the automorphism
h under the local frame e extends over X, and is constant over there, for then
we can define H over X, by the formula H = h’Hé and by the boundedness of
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H the extension must also be a Hermitian metric and also determine the given flat
structure of &|z .

To this end, let {z,w} be local complex coordinates in U as in Lemma 6.2. We

can write

Oh Oh _  Oh Oh
dh = Edz + %dz + %dw + %dw .

The condition

|dp; — An| =o(1), t— o0

implies that

By

|dh| = o(1), t— oo.

and

claim B) of Lemma 6.2,
oh| |oh .
O |2 [ =oet . =0
oh| | oOh

It follows from (I) that A(z,w) converges to some A(0,w) as z — 0 and from (II)
h(0,w) is constant.

Acknowledgements. This paper is a slight variant of some part of my thesis. I am immensely
grateful to Simon Donaldson for initially suggesting the topic, for continuous advice and encour-
agements throughout my Ph.D. years. I also wish to thank Peter Kronheimer and Dietmar Salamon

for

encouragements and for pointing out many mistakes. Most of the mistakes were corrected

during my stay at the Max-Planck Institut and I thank the Institut for its hospitality and financial
support. Finally, I am grateful to the referee whose numerous suggestions certainly improve the
readability of this paper.

References

1.

10.

Atiyah, M.F., Patodi, V.K., Singer, LM.: Spectral asymmetry and Riemannian Geometry. I.
Math. Proc. Cambridge Philos. Soc. 77, 43—69 (1975); 1I, Math. Proc. Cambridge Philos. Soc.
78, 405-432 (1975); III, Math. Proc. Cambridge Philos. Soc. 79, 71-99 (1976)

. Bando, S.: Einstein—-Hermitian metrics on non-compact Kaehler manifols. Max-Planck-Institut,

Preprint
Biquard, O.: Fibre Paraboliques Stables et Connexions Singulieres Plates. Bull. Soc. Math.
France 119, 231-257 (1991)

. Buchdahl, N.P.: Hermitian—Einstein Connections and Stable Vector Bundles Over Compact

Complex Surfaces. Math. Ann. 280, 625-648 (1998)

. Chavel, 1.: Eigenvalues in Riemannian geometry. New York: Academic Press, 1984
. Donaldson, S.K.: Anti self-dual Yang-Mills connections over complex algebraic surfaces and

stable vector bundles. Proc. London Math. Soc. 50, 1-26 (1985)

. Donaldson, S.K.: Boundary value problems for Yang-Mills fields. J. Geom. and Phys. 8, 89—

122 (1992)

. Donaldson, S.K., Furuta, M., Kotshick, D.: Floer homology groups in Yang-Mills theory. In

preparation

. Fukaya, K.: Floer homology for oriented homology 3-spheres. Advanced Studies in Pure Math-

ematics 20, Tokyo, Kinokuniya Company Ltd., 1992, pp. 1-92
Furuta, M., Steer, B.: Seifert Fibered Homology 3-spheres and the Yang-Mills Equations.
Advances in Mathematics 96, No. 1, 38-102 (1992)



Yang-Mills Fields on Cylindrical Manifolds and Holomorphic Bundles I 775

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Second
edition, Berlin and New York: Springer-Verlag, 1983

Guo, G.-Y.: Thesis, Oxford

Hamilton, R.S.: Harmonic maps of manifolds with boundary. LNM 471, Berlin: Springer, 1982
Hamilton, R.S.: Three manifolds with positive Ricci curvature. J. Diff. Geom. 17, 253-306
(1982)

Jost, J.: Nonlinear methods in Riemannian and Kaehlerian Geometry. DMV Seminar Band 10,
Basel-Boston: Birkhauser Verlag, 1988

Kobayashi, S.: Differential geometry of complex vector bundles. Publ. Math. Soc. Japan,
Iwanami Shoten and Princeton Univ., 1987

Kroheimer, P., Mrowka, T.: Gauge theory for embedded surfaces, I. Topology 32, No. 4,
773-826 (1993); II, Topology 34, 37-97 (1995)

Narasimhan, M.S., Seshadri, C.S.: Stable and unitary bundles on a compact Riemann surface.
Ann. Math. 82, 540-564 (1965)

Simpson, C.T.: Constructing variations of Hodge structure using Yang-Mills theory and ap-
plications to uniformization. J. Am. Math. Soc. 1, 867-918 (1988)

Taubes, C.H.: L-moduli spaces on 4-manifolds with cylindrical ends. International Press, Hong
Kong, 1994

Uhlenbeck, K.: Connections with L? bounds on curvature. Commun. Math. Phys. 83, 31-42
(1982)

Uhlenbeck, K., Yau, S.T.: On the existence of Hermitian—Yang—Mills connections in stable
vector bundles. Commun. Pure and Appl. Math. 39-S, 257-293 (1986)

Communicated by S.-T. Yau








