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Abstract: We prove that the solution to a pair of nonlinear integral equations arising
in the thermodynamic Bethe Ansatz can be expressed in terms of the resolvent kernel
of the linear integral operator with kernel

p-(u(θ)+u(θ'}}

I. Introduction

Thermodynamic Bethe Ansatz techniques were introduced in the pioneering analysis
of Yang and Yang [11] of the thermodyamics of a nonrelativistic, one-dimensional
Bose gas with delta function interaction. Later this method was extended to a rela-
tivistic system with a factorizable S-matrix to give an exact expression for the ground
state energy of this system on a cylindrical space of circumference R [5, 12]. This
was done by relating the ground state energy to the free energy of the same system
on an infinite line at temperature T = l/R. In all cases one expresses the various
quantities of interest in terms of "excitation energies" εa(θ) which are solutions of
nonlinear integral equations of the form

dθf

8a(θ) = Ua(θ) -ΣlΦab(θ ~ θ')\Og(l +Za<Γ*(β/)) — (a = 1,2,...) ,
b 2π

where φab(θ) are expressible in terms of the 2-body S-matrix, za are activities,
and for relativistic systems ua(θ) — maR cosh θ. These nonlinear integral equations
are the so-called thermodynamic Bethe Ansatz (TBA) equations. Solving the TBA
equations is another matter. The methods used are either numerical or perturbative
and there are, as far as the authors are aware, no known explicit solutions to the
TBA equations.

It thus came as a surprise when Cecotti et al. [2] (see also [3]), in their analysis
of certain N = 2 supersymmetric theories [1], discovered that a certain quantity
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(the "supersymmetric index"), expressible in terms of the solution of the pair of
"TBA-like" integral equations

is also expressible in terms of a Painleve III function with independent variable t.
(These TBA-like equations are a "small mass" perturbation of a system of TBA
equations; see (5.7)-(6.8) in [2].) Using results of McCoy et al. [6] on Painleve
III, they expressed this supersymmetric index as an infinite series related to the
resolvent of the integral operator with kernel

Zamolodchikov [13] then conjectured that the system of nonlinear equations could
actually be solved in terms of this resolvent kernel. More precisely, if we denote
the operator by K, the kernel of the operator K(I - λ2K2)~l by R+(Θ9Θ')9 and set
R+(θ) :=R+(Θ,Θ) then the system should be satisfied if

e-W = R+(θ)

and η is defined by the second equation. In fact he conjectured that this should hold
for operators with kernels of the more general form

e-(u(θ)+u(θ'»

cosh -

if the first equation is replaced by

(1.1)

In addition he conjectured that, with the same function

where R-(θ,θ') is the kernel of K2(I - λ2K2)~l and Λ_(0) := Λ_(θ,θ). (We state
everything in terms of kernels here; in the cited work the functions R± were given
by infinite series. That they are the same follows from the Neumann series repre-
sentation for the kernel of (7 - λ2K2)~l.)

We prove these conjectures here. One of the main ingredients is the fact that
the equations are in a sense equivalent to relations among the analytic continuations
of the functions R±(θ) into a strip. (See formula (6.8) of [13].) Another is a par-
ticularly convenient representation for these functions in terms of other functions,
which we call Q(θ) and P(θ). (That these latter functions are fundamental is known
from earlier work [4,8-10].) These representations are stated in Lemma 1, and in
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Lemmas 2 and 3 we state precise versions of the equivalence alluded to before.
In Lemmas 4 and 5 we derive general properties of functions in the range of the
operator K in order to derive, as Lemma 6, some basic properties of the functions
Q(θ) and P(θ).

If we try to prove the desired relation among the analytic continuations of R±(θ}
we find that we have to prove a certain crucial identity involving Q(θ) and P(θ)
which is by no means obvious. But once conjectured it is not hard to prove, given
the previous preparatory work, and that is stated as the proposition which follows
the lemmas. We show that a certain combination of these functions, which is clearly
analytic in the strip, extends by periodicity to an entire function. Combining this
fact with the use of Liouville's theorem, we deduce the identity.

It should be mentioned that the main part of the argument may only be used if u
belongs to a restricted class, but the result for general u follows by an approximation
argument. This will be presented in the Appendix, as will proofs of some of the
lemmas and some facts about Fourier transforms we shall use.

II. Preliminaries

We shall assume throughout that u is continuous and bounded from below and that

0<λ<e2πήnu/2π. (2.1)

This assures that the series defining R±(θ) converge uniformly and that the operator
λK, acting on any of the usual function spaces, has norm less than 1, so that
/ — λ2 K2 is invertible. (This follows from (4.5) below.) Since the parameter λ may
be incorporated into u we may assume that in fact λ= 1 . If we set

2e-ue , (2.2)

then the kernel of K is given by

E(Θ)E(Θ')

eθ + eθ> ' ^

Our functions Q and P are defined by

Q := (I - K2Γ1E, P:=(I- K2}~1KE .

Lemma 1. We have the representations

R+(θ) = R_(θ} = (2 4)

Proof. We use the notations [A9B] := AB - BA, {A,B} := AB + BA and write X ® Y
for the operator with kernel X(Θ)Y(Θ') and M for multiplication by eθ. Then we
have immediately

{M,K}=E®E ,

from which it follows also that

[M, K2 ] = E <g> KE - KE <8> E ,
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and then that

Since

K2(I - K2Γl = (/ - K2Γl -1, (2.5)

we deduce that the kernel of this operator is given by the formula

R_(Q 0/) = Q(θ)P(ff)-P(θ)Q(ff)
eθ - eθ/

The second part of (2.4) follows.
To derive the first part we use the general identity

{A,BC} = {A,B}C-B [A, C]

with A = M, B — K and C = (I — K2)~l together with the formulas above to deduce

{M9K(I - K2Γ1} = E®Q- K(Q ®P-P®Q}.

Of course KQ = P, and applying (2.5) to E gives

and so the right side of the previous identity simplifies to Q®Q — P ®P. This
gives the representation for the kernel of K(I — K2)~l,

p m a,. Q(Θ)Q(Θ')-P(Θ)P(Θ')
R+^>ϋ ) = - eβ + eθ> - »

and the first part of (2.4) follows.
Recall that a function / defined on R is said to belong to the Wiener space W

if its Fourier transform/ belongs to LI. Such a function is necessarily continuous
and vanishes at ±00. A sufficient condition that / e W is that / and /' belong
to L2. (See the Appendix.)

We use the notation £fa to denote the strip |3?θ| <a in the complex θ-plane,
and A(^a) to denote those functions g which are bounded and analytic in the strip,
continuous on its closure, and for which g(θ + iy)-*Q as θ — > +00 through real
values when y € R is fixed and satisfies | y\ <a.

The proofs of the next three lemmas will be found in the Appendix.

Lemma 2. Assume / G W. If

ι oo

si **->"• <16)

then g G A(^π/2) and its boundary functions satisfy

g(θ + iπ/2) + g(θ-iπ/2) = f ( θ ) (2.7)

for real θ. Conversely, if g e A(^π/2) and if (2.7) holds then so does (2.6).
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Lemma 3. Assume /,/' e W. If

2π_ o o C osh(θ-0')

then g & A(£fπ/2) and its boundary functions satisfy

g(θ + iπ/2)-g(θ-iπ/2) = if'(θ)

for real θ. Conversely, if g & A(£fπβ) and the second relation holds then so does
the first.

Lemma 4. Assume f e L\ and set h(x) equal to f(\ogx)/x for x > 0 and equal to
O f o r x ^Q.Ifh&W and

then g

These are the basic ingredients we shall use. We specialize at first to the case
where u is a Laurent polynomial in eθ,

u(θ)= £ <*ke*° (2.8)
k=—m

for some m, n > 0 with a-m,an > 0. Thus u(θ) is an entire function of period 2πz,
and E(θ) and its derivative tend exponentially to 0 as θ —» ±00 through real values.
It follows from this that if / E L2 then Kf and its derivative are exponentially small
at ±00. In particular, any function in the range of K satisfies the hypothesis of the
next lemma.

Lemma 5. If f is a bounded function on R with bounded derivative then
Kf(θ)/E(θ) extends to a function in A(^π). The boundary functions of Kf satisfy

Kf (θ + in) + Kf(θ- in) = 4πv(θ)f(θ)

for real θ, where
υ(θ) :=

Proof. If we look at the expression (2.3) for the kernel of K we see that Kf(θ)/E(θ)
is of the form of the function g of Lemma 4 if f ( θ ) there is replaced by our
E(θ)f(θ). It is easy to see that if our / satisfies the stated conditions then the
function h in the statement of Lemma 4 belongs to LI and has an LI derivative, so
h E W and the conclusion of the lemma holds. Thus Kf/E E A(&*π). For the bound-
ary function identity we use the expression (1.1) for the kernel of K. If we make the
substitutions θ -> 20, θf -* 29', we see that eu^2θ\Kf}(2θ) = 2 eθ (Kf)(2θ)/E(2θ)
is exactly of the form of the function g in the statement of Lemma 2 if the function
f ( θ ) there is replaced by our present 4πe~"(2θ) f(2θ). Applying the identity stated
there and using the periodicity of u give the identity stated here.

We apply this to the functions Q(θ) and P(θ).

Lemma 6. The functions

n(Q\ τxa\
(2.9)
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belong to A(&*π) and the boundary functions of Q and P satisfy the identities

Q(θ + iπ) + β(θ - in) = 4πv(θ)P(θ) ,
(2.10)

P(θ + iπ) + P(θ - iπ) = 4πv(θ)Q(θ)

for real θ.

Proof. Because of the relations Q = E + K2(I - K2)~λE, P = KQ all statements of
the lemma except for the first part of (2.10) follow from Lemma 5 and the remark
preceding it. Since Q — E = KP, Lemma 5 gives the identity

(β - E)(θ + in) + (β - £)(0 - /π) = 4πv(θ)P(θ) .

But it follows from the definition (2.2) of E and the fact that u has period 2πi that
-h iπ) 4- E(θ — iπ) = 0. Thus we obtain the desired identity for Q.

Using Lemma 6 and the fact that v is an entire function we can conclude
that Q and P have analytic continuations to entire functions of θ; each use of
the pair of identities allows us to widen by π the strip of analyticity. Here
is the crucial identity relating these continuations from which our results will
follow.

Proposition. We have

Q(θ + iπ/2)Q(θ - ίπ/2) - P(θ + iπ/2)P(θ - iπ/2)

= E(θ + ί π / 2 ) E ( θ - i π / 2 ) .

Proof Set

S(θ) := Q(θ + iπ/2) Q(θ - iπ/2) - P(θ + iπ/2)P(θ - iπ/2) .

Then
S(θ + iπ/2) = β(θ + iπ) Q(θ) - P(θ + iπ)P(θ) ,

S(θ - iπ/2) = Q(θ - iπ) Q(θ) - P(θ - iπ)P(θ) ,

and so by (2.10),

S(θ + iπ/2) + S(θ - iπ/2) = 4πv(θ)[P(θ) Q(θ) - Q(Θ)P(Θ)] = 0 .

It follows that S(θ) extends to an entire function of period 2πi whose values at
θ±iπ/2 are negatives of each other. Therefore I - S(θ)/E(θ + iπ/2)E(θ -iπ/2)
extends to an entire function of period πi whose values at θ ± iπ/2 are
equal. (We used again the fact that E(θ — iπ) = — E(θ + iπ).) To show that this is 0
(this is equivalent to the claimed identity) it suffices, by Liouville's
theorem, to show that it is bounded and that it tends to 0 as θ — » +00 through
real values. For a π/-periodic function it suffices to show that these properties
hold in the strip ^π/2. They do hold there because for θ in this
strip θ ± iπ/2 lie in the strip <%, for which we have the conclusions of
Lemma 6.
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III. Proof of the Conjectures

We have to show that if ε := — log R+ and if η is defined by

(recall that we have taken λ — 1 ), then we have the two identities

---

We shall assume that we have a function η satisfying (3.1)-(3.3), and formally
apply the first parts of Lemmas 2 and 3 to obtain the three identities (3.4)-(3.6)
below. From these we shall see that η must have a certain representation in terms of
Q and P. Then, using the identities of the proposition, we shall show that (3.4)-(3.6)
in fact hold if η is defined this way. Finally, using the second parts of Lemmas 2
and 3, we show that (3.1)-(3.3) hold. (Of course the first step is unnecessary for
the proof, but it provides motivation for the eventual definition of η.)

Applying Lemmas 2 and 3 to (3.1)-(3.3) give

4πR+(θ) = η(θ + ίπ/2) + η(θ - iπ/2) , (3.4)

log(l + η2(θ)) = 2u(θ + iπ/2) - ε(θ + in/2) + 2u(θ - iπ/2) - ε(θ - iπ/2) , (3.5)

η'(θ) = *-(g + *W2) R_(θ - iπ/2)
1 1 + η(θ)2 R+(θ + iπ/2) R+(θ - iπ/2) ' l ' }

Exponentiating (3.5) and using the definition of ε give

1 + η

2(θ) = R+(θ + iπ/2)R+(θ - ιπ/2

By Lemma 1 and (2.2) this may be written

Lemma 1 shows that (3.6) may be written

Taking the logarithmic derivative of both sides of (3.8) and dividing by 2 gives

η'(θ) O'O - P'P O'O - P'P

-*L(Θ + iπ/2) -j(θ- i
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We have a choice now of either adding or subtracting the last two displayed
formulas. Choosing the former, we obtain

.π/2) + (Θ _ iπ/2) _(θ + /π/2) _ (θ _ ,.
/ /I \ y î Γ> ^ i •< "/ — 7 i / - » , r> V -.*/*-/ r V v ι "»/—/ _,

r j ( u ) — l {} — r ζJ-\-r L tL

or equivalently

ι - ϊ Jθ &v^ /v ' ' Jθ

—^ logoff + iπ/2)E(θ - iπ/2) .

Integrating and exponentiating gives the desired formula

_ . = _.(Q - PW + i π / 2 ) . (Q + PW- iπ/2)
iπ/2)E(θ-m/2) * ( J

The reason the constant factor on the right must be — / is that we want f/(-hoo) = 0.
(See (3.8) and Lemma 6.) If we had subtracted before instead of adding we would
have been led to the similar but apparently different formula

=
iπ/2)E(θ-iπ/2) ' ( }

We shall now show that if η is defined by (3.9) then (3.10) also holds, as do
relations (3.4)-(3.6).

First, the statement that the right side of (3.10) minus the right side of (3.9)
is equal to 2i follows from the proposition. Thus (3.9) and (3.10) are completely
equivalent.

Second, taking the product of (3.9) and (3.10) gives (3.8) and hence (3.5).
Third, reversing the argument that showed (3.8) and (3.6) imply (3.9) we see

that (3.9) and (3.8), which we now have, imply (3.6).
Finally, to obtain (3.4) we use (3.10) to express η(θ + iπ/2) and (3.9) to express

η(θ — iπ/2) and find that their sum equals

E(Θ)E(Θ + iπ)

(We used yet again the fact that E(θ - iπ) = -E(θ + ιπ).) By (2.10) this is equal to

4π/ϋ(θ) Γ^/m2 0//JΛ2-,
E(Θ)E(Θ + iπ)

[Q(Θ)2-P(Θ)2],

and by (2.4) and the definitions of E(θ) and v(θ) this equals 4πR+(θ).
So (3.4)-(3.6) are established. Now we show that they imply (3.1)-(3.3). By

Lemmas 2 and 3 this will be true if the functions

R+, log(l + r\2\ arctan η, η'/(l + η2) (3.11)

belong to W and the functions

η, 2u-ε, R-/R+ (3.12)
belong to
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Our assumption has been that λ = 1 satisfies inequality (2.1). This identity is
still satisfied if u is increased or, equivalently, if E is decreased. It follows that we
could, in our representation (2.3) of the kernel of K, have replaced E by δE for any
δ e [0,1]. It is clear that all quantities in (3.1)-(3.3) would then be real-analytic
functions of δ for δ G [0, 1]. So if the relations hold for sufficiently small δ they hold
for all, including δ = 1 . If we retrace the steps leading to bounds for the functions
(2.9) we find that they tend to 0 as δ -> 0. (In fact, they are O(δ2).) Hence we
may assume that the bounds for these functions are as small as we like. In fact we
assume that

E(θ)
- I < - and

4
P(θ)

E(θ)
(3.13)

We take in succession the items we have to verify. Recall that a function belongs
to W if it and its derivative belong to L^ This is what we shall show for the
functions (3.11). First, from (2.2) and (2.4) we have

+ .

This first factor is bounded and analytic in ̂  and so is bounded and has bounded
derivative on R. The second factor is in Z/2 and so is its derivative. Hence R+ E W.

The next three are not obvious. If we use the representation (2.3) for the kernel
of K we see that for any / we have

(θ + «π/2) - (β ~ /π/2) = -2i dθ> = O(sech 0)

if, say, / G L^. This holds for |ξ>0| strictly less than π/4. Applying this to / = Q
and / = P we deduce that

ζ(θ + /π/2) - ξ(0 - ιπ/2) = O(sech0) ,
rL EJ

|(0 + /π/2) - |(0 - /π/2) = O(sechθ)

as long as |9fθ | < π/8, for example. Now adding (3.9) and (3.10) gives the
representation

- iπ/2)P(θ + /π/2) - Q(θ + iπ/2)P(θ - /π/2)
E(θ-iπ/2)E(θ + i

By the above and (3.13), this is

l '

(0 + /π/2) + 0(sech 0) (0 + /π/2) - (0 + /π/2)
rL J £ JU

x -(0 + /π/2) + <9(sech θ) = O(sech 0) .

(Observe that if 0 G «9^/g then 0 ± /π/2 G ̂ .) Since this bound on η holds in a
full strip, the same bound (with different constants) holds on R for each of the



676 C. Tracy, H. Widom

derivatives of η. Since η is real-valued on R (this follows from (3.14) and the fact
that <2, P, and E are real-valued on R) we deduce that the last three functions in
(3.11), and all their derivatives, belong to Z/2(R). Hence they all belong to W.

Now we show that the functions (3.11) all belong to A(^π/2). First, by (2.4),

&-___ Q'P-P'Q _^Q'P-P'Q 1
Q2-P2 Q2 l - (P/Q)2 '

By (3.13) P/Q is bounded in the larger strip 5̂  by 1/3 and so it follows that the
last factor above is bounded. It also follows that P/Q G A(£fπ) from which it follows
that (P/Q)' e A(Seπ/2). Hence R_/R+ G A(&π/2).

Next, we use (2.4) again to write

g2_p2 02-P2

2u - ε = 2w + log g - log — —

By (3.13) we have |1 -(Q±P)/E\ < 1/2 in ^/2 and we deduce as above that
2u - ε G ΛC9J/2).

Finally since 1 — g/E and P/E belong to A(ίfπ)9 the functions

_ Q(θ ± iπ/2) P(θ ± iπ/2)
" E(θ±iπ/2)9 E(θ ± iπ/2)

belong to A(&*π/2). It follows from this and the representation (3.14) that η e A(&*π/2).
Thus we have proved the conjectures in the case where u(θ) has the special

form (2.8). For a general u, more precisely for any u which is continuous and
bounded below, we can find a sequence of un of the special type such that e~Un

converge boundedly and locally uniformly to e~u. (This will be demonstrated in the
Appendix.) This is enough to deduce the result for u from the results for the un.

IV. Appendix

We give details here of certain matters postponed from the previous sections. First
we recall some facts about the Fourier transform, which we denote, as usual, by a
circumflex:

oo

f(ξ)= f e-^f(θ)dθ.
— 00

If / £ L\9 in other words, if / G W, we have the Fourier inversion formula

1 00

/(0) = ;Γ / eiξθf(ξ)dζ,
^Tt —oo

and /(±oo) = 0. If || H^ denotes the norm in the space Lp, then by the inversion
formula we have the inequality

. (4.1)

Parseval's identity reads

and we have the general formula f f ( ξ ) = i ξ f ( ξ ) .
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Proof that /,/' £ L2 implies f £ W. It suffices to show that if we write f ( ξ )
as [ f ( ζ ) ( ξ + i ) ] ( ξ + i)~l then both factors on the right belong to L2. The
second factor surely does, and the square of the absolute value of the first factor
equals

The right side belongs to L\ by ParsevaΓs identity and the assumption /,/' G L2.

Proof of Lemma 2. It is clear that g, when defined by (2.6), is analytic in the strip.
If we write gy(θ) := g(θ + iy) for real θ then

The first factor belongs to LI, by assumption, and the second factor is bounded by 1
for \y\ < π/2. In particular gy £ W for each y so #(±00 + iy) — 0. From

oo oo

/ \gy(ζ)\dξϊ / \f(ξ)\dξ
— oo —co

and (4.1) we see that gy is uniformly bounded for \y\ < π/2. Finally, as y — » ±π/2
the second factor in (4.2) converges pointwise and boundedly. This implies (by
the Lebesgue dominated convergence theorem) that cjy(ξ) converges in L\ and so
(by (4.1) again) gy(θ) converges uniformly in θ. This implies that g(θ) extends
continuously to the closure of ^π/2. Thus g £ A(<$fπ/2). The sum of the two limiting
values of the second factor in (4.2) is equal to 1, and this gives (2.7).

To prove the converse, let h denote the difference between the two sides of (2.6).
Then, using our assumption and what we have already shown, h £ A(^π/2) and its
boundary functions satisfy

h(θ + /π/2) + h(θ - ίπ/2) = 0

for real θ. It follows that h extends to a 2π/-periodic entire function. This function is
bounded, and so must be a constant, and the constant must be 0 because /z(-f-oo) = 0.

Proof of Lemma 3. In this case the Fourier transform of gy equals

e~yξ - ~yξ

2 sinh πξ/2 J v s'vs 2(ξ + i) sinh πξ/2 '

Now f(ξ)(ξ + i) = -if'(ξ) + if(ξ) G Zri, the last factor on the right is uniformly
bounded for \y\ < π/2 and it converges pointwise as y —> ±π/2. We deduce as
before that g G A(<$fπ/2). The difference of the limiting values of the last factor on
the left side at y = ±π/2 is — 1 and so the difference of the limiting values of g has

Fourier transform —f(ξ)ξ = if. This establishes the first part of the lemma and the
second follows just as before.

Proof of Lemma 4. For fixed θ' the factor (eθ 4- eθ )-1 in the integral defining g(θ)
is analytic in θ. For θ in any subset of Sfu of the form

^π-δ (δ > 0)
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this factor is bounded uniformly in θ' and tends to 0 pointwise as 5RΘ — » +00. Since
/ G A this is enough to conclude that g is analytic in £fπ and tends to 0 in this
strip as 5R θ — > +00 and 3= θ is fixed.

It remains to prove boundedness of g and continuity near the boundary of £fπ,
and for this we use the function h. In the lower part of the strip, — π < y < 0, we
set z = —eθ+iy with θ real, so that ^sz > 0, and we can write

— z

Using the Fourier inversion formula and interchanging the order of integration, we
find the representation

Since h G LI the integral is bounded uniformly for ζsz > 0 and we deduce as in
Lemmas 2 and 3 that it extends continuously to Sz = 0. Thus g(θ + iy) is bounded
for 0 ^ j < π and extends continuously to y — π. A similar argument holds for
the upper half of «%, and so g G

Extension to general u. We begin with an approximation fact, reminiscent of the
Weierstrass approximation theorem. Recall the notation Co(R) for the space of con-
tinuous functions / on R satisfying /(±oo) = 0, which is a Banach space under
the norm

| |/H:=sup{|/(jc)|:*€R}.

The fact is that for each δ > 0 the finite linear combinations of the functions

smhkθe~δsinh2θ (* = 0,1, )

are dense in Co(R); in other words, for any / G Q(R) and any δ' > 0 there exists
a finite linear combination

N

p(θ) =Σak sinh* θ
k=Q

such that ,
δsinh θ-f(θ)\<δ' (4.3)

for all θ. This is true because the change of variable t = sinh θ converts it to the
statement that the finite linear combinations of the functions tk e~δt are dense
in Co(R). And this in turn is true because if it weren't then the Hahn-Banach
theorem and Riesz representation theorem ([7], Theorems 5.19 and 6.19) would im-
ply that there is a function of bounded variation (= signed measure) μ on R, not
identically zero, such that /^ tk e~δt2dμ(t) = 0 for all k ^ 0. But then the entire

function F(z) := /^ eίzt e~δt2dμ(t) would satisfy F<*>(0) - 0 for k ^ 0 and so

F = 0. This in turn implies e~δt dμ(t) = 0 and so μ(t) = 0, a contradiction.
Here is how to construct the sequence un described at the end of Sect. III. We

may clearly assume that u is uniformly positive, i.e. that for some α > 0 we have
u(θ) ^ α for all θ. Let n be given and define

w := min(w,«) .
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Then find p(θ), a linear combination of the powers of sinh θ, such that (4.3)
holds with

-n-lsmh2θ

and δ = δ' = n l. The inequality may be rewritten

„-! Λ-lswh20\p(θ)- v(θ)\ <n~len

It is an easy exercise to deduce from this that for sufficiently large n,

\p(θγ - u(θ)\ < 6n~l/2 if u(θ) < n and sinh2 θ < n .

(We use here the facts that u is uniformly positive and that e < 3.) The function
p(θ}2 is our un(θ).

We now deduce the identities (3.1)-(3.3) for general u. Denote by Rn± the R±
functions associated with the functions un. If we can show that Rn±(θ) — > R±(θ)
boundedly and pointwise then (3.1)-(3.3) for u will follow from the corresponding
identities for the un, since by the dominated convergence theorem we could take the
limits as n — » oo under the integral signs. The function R+(θ) is given by the series

CO 00 00

£ λ2m JΓ - / K(θ, 0, ) K(θ2m, θ) dθ. dθ2m , (4.4)
m=Q —oo —oo

where K ( θ , θ f ) is given by (1.1). It follows from the fact

that the series converges uniformly in θ when λ satisfies (2.1). By a real-analyticity
argument already used we may assume that u is uniformly positive, so that by the
previous construction un ^ 0 for all n, and that λ < l/2π. Denote by Kn(θ9θ') the
kernel corresponding to un so that Rn+(θ) is given by the series

oo

Σ λ2m / / Kn(θ, θl ) Kn(θ2m, θ) dθl dθ2m . (4.6)
m=0 —oo —oo

It follows from (4.5) and the inequality e~Un ^ 1 that the integral in the mth

term of (4.6) is at most (2π)2m for all n and so, since λ < l/2π, the series con-
verges uniformly in n. Thus we may take the limit as n — > oo under the sum-
mation sign. Next, each integrand Kn(θ, θ\)- -Kn(θ2m,θ) is uniformly bounded
by K(θ,θ\) -K(θ2m,θ)9 which has finite integral over R2/w, and so we may take
each limit as n — > oc under the integral sign (again by the dominated convergence
theorem). The result is the series (4.4), and this gives

lim Rn+(θ) = Λ+(θ) .
n— >oo

Since Rn+(θ) is at most the sum of the series (4.4) corresponding to u — 0 we
have established that Rn+(θ) — > R+(θ) boundedly and pointwise. A similar argument
applies to Rn-(θ), and the proof is complete.
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