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Abstract: For a vertex operator algebra ¥ and a vertex operator subalgebra ¥’ which
is invariant under an automorphism g of V' of finite order, we introduce a g-twisted
induction functor from the category of g-twisted ¥’-modules to the category of g-
twisted ¥-modules. This functor satisfies the Frobenius reciprocity and transitivity.
The results are illustrated with 7’ being the g-invariants in simple ¥ or V'’ being
g-rational.

1. Introduction

A lot of progress on the representation theory for vertex operator algebras has been
made in the last few years. For example, the representation theory for the concrete
vertex operator algebras, which include the moonshine vertex operator algebra V*
([FLM, D3]), the vertex operator algebras based on even positive definite lattices
[D1], the vertex operator algebras associated with the integrable representations of
affine Lie algebras and Virasoro algebras ([DMZ,DL,FZ, W]), have been studied
extensively. There are also abstract approaches such as Zhu’s one to one corre-
spondence between the set of inequivalent irreducible modules for a given vertex
operator algebra and the set of inequivalent irreducible modules for an associative
algebra associated with the vertex operator algebra [Z], and the tensor products of
modules ([HL, L]); see also [FHL] for the results concerning intertwining operators
and contragredient modules. Many of these results are analogues of the correspond-
ing results in the classical Lie algebra theory.

The purpose of this paper is to give a construction of induced twisted mod-
ules for vertex operator algebras and present some initial results. The main idea
in constructing the induced module comes from the induction theory for the
representations of Lie groups, algebraic groups, quantum groups, Hopf algebras
([V,J,APW,Lin1-Lin2]). In order for the induced module to have the functorial
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property, one has to enlarge the category of g-twisted modules to ensure the ex-
istence of the induced modules. This resembles Harish—-Chandra’s theory in the
representation theory of Lie groups. We prove that in most interesting cases, the
induced modules from a simple module for a vertex operator subalgebra are in-
deed g-twisted modules. The structures of these modules in certain special cases
are discussed.

One of the main motivations for introducing the induced modules is to study the
“orbifold conformal field theory”. Roughly speaking, an orbifold theory is a con-
formal field theory which is obtained from a given conformal field theory modulo
the action of a finite symmetry group (see [DVVV]). Let V' be a vertex operator
algebra and G be a finite subgroup of the automorphisms of ¥. Denote by V¢ the
subspace of ¥ consisting of the fixed points under the action of G. Then V¢ is
a vertex operator subalgebra of V. Algebraically, the orbifold theory is to study
the representation theory of ¥C. The main new feature of the orbifold theory is
the introduction of twisted modules. A g-twisted module for g € G is automatically
an ordinary module for V¢ under the restriction. It is proved in [DM2] that if
V' is holomorphic and G is nilpotent then any irreducible g-twisted ¥-module is
completely reducible as a ¥“-module. It is conjectured that this is true for arbi-
trary G and that any irreducible ¥ ®-module appears as an irreducible component
of some irreducible twisted module (see e.g. [DVVV,DPR,DM2]). The theory of
induced twisted modules for vertex operator algebras, discussed in this paper, is
being developed with this conjecture in mind.

This paper is organized as follows: In Sect. 2, after recalling the notion of twisted
module for a vertex operator algebra from [D2] and [FFR], we define the twisted
enveloping algebra 4(g). We give a necessary and sufficient condition under which
an A(g)-module is a g-twisted module. A linear topology is defined on A(g) by a
topological basis at 0 consisting of all Annyy(m) for an element m in a twisted
module. It turns out this topology is the weakest topology on A(g) so that the
A(g)-module structure on any twisted module M gives a continuous map from A(g)
to End¢(M), which is equipped with the point-wise convergence topology. It is
important to note that we need the representations to be continuous in order for
the Jacobi identity to hold. We also introduce a certain A(g)-module category %,
which contains the g-twisted V'-module category %, as a full subcategory. In fact,
‘gg consists of the objects of %, together with their direct limits in the category of
A(g)-modules.

Section 3 which devotes the definition of induced module is the center of the
paper. Let g be a finite order automorphism of ¥ and ¥’ a subalgebra of ¥ which
is g-invariant. Denote the restriction of g to ¥’ by g¢’. Then there is an algebra

embedding from 4(g’) into A(g). For a ¢’-twisted V’-module W we define Indgg )
gl

to be the subspace of Hom,,(4(g), W) consisting of elements which are killed
by some Anny,)(m) for some m in a g-twisted V'-module. Then we prove that this
induction functor enjoys all the properties an induction functor should have, such
as Frobenius reciprocity and transitivity.

In Sect. 4 we investigate the g-induced modules for vertex operator algebra with
only finitely many irreducible g-twisted modules. In the case that V' is g-rational,
that is, any g-twisted module is completely reducible, we show that the induced
module of W, which has a composition series, from a g-invariant subalgebra to V'
is in fact in 4. In particular, the induced module from any irreducible module in
this case is an ordinary g-twisted module.
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In Sect. 5 we discuss the induction from a subalgebra which is the fixed point
of a finite automorphism. First we show that the cyclic group (g) acts on any
irreducible g-twisted module, each eigenspace of g is an irreducible ¥“-module,
different eigenspaces are inequivalent ¥“-modules, and the eigenspaces from in-
equivalent irreducible g-twisted modules are inequivalent ¥“-modules. Using this
result together with Frobenius reciprocity we show that the g-induced module of an
eigenspace of ¢ in an irreducible g-twisted module W from V¢ to ¥ has a unique
simple g-twisted submodule isomorphic to #, and the g-induced modules from any
other irreducible ¥¢ module is zero.

2. Twisted Enveloping Algebras and Their Modules

2.1. Twisted Modules. Let (V,Y,1,w) be a vertex operator algebra (we refer to
[B,FHL, FLM] for definitions and properties) and g be an automorphism of V of
finite order K. Then V is a direct sum of eigenspaces of g:

=@ v,
r€Z/KZ

where V" = {v € V|gv = &Ky}, (We will use r € {0,1,...,K — 1} to denote
both the representing residue class and the integer itself.) Following [D2] and [FFR],
a g-twisted module M for V is a C-graded vector space:

M= 1M
AeC

(for w € M), 1 =wt w is called the weight of w) such that for each 1 € C,
dimM; < oo and M,k.; =0 for n € Z sufficiently small; ¢9)
and equipped with a linear map
V — (End M){z},

v Yu(0,2)= Y v,z7" ! (v, € End M)
neQ

(where for any vector space W, we define W{z} to be the vector space of W-
valued formal series in z, with arbitrary real powers of z) satisfying the following
conditions for u,v € V,w € M, and »r € Z/KZ.:

Yu@z)= Y v,z "' forvev”, )
n€ g +Z

vyw =0 for I € Q sufficiently large , 3)

Ym(l,z)=1, (4)

2 _zl> Yy (v,22)Yar(u,21)
)

7516 (zl 2_022> Yar(u,20) Yoy (0,25) — 2571 (

—r/K
=z (z‘—_ﬁ> b (Z‘Z‘zz") V(Y (45 20)0,22) (5)

22
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ifueVvr,
1
[L(m),L(n)] = (m — n)L(m + n) + E(m3 — M) myno(rank V)

for m,n € Z, where

L(n) = w,y1 for n€Z, ie., Yy(w,z) =Y L(n)z""2,
neZ

LOyw = nw = (wtw)w for we M,(ne C), (6)
4y (0,2) = YuL(~1)0,2) . )
dz

This completes the definition. We denote this module by (44, Y),) (or briefly by M).
The following are consequences of the definition

[L(=1), Yy (v,2)] = Y (L(=1)v,2), ©))
[L(0), Ya(v,2)] = Yar(L(0)0,2) + z¥ar (L(=1),2) . )

Remark. From (5), (6), (7) and (9) we find that if v € V' is homogeneous, then v,
has weight wtv — n — 1 as an operator, that is, v, : M; — M}t y—n—1- In particular,
L(n) has weight —n.

Remark. For eachv € V,and u € V" and any p € Z and s5,¢t € IR, we can compare
the coefficients of z; ?~'z;7*!2z;*~! on both sides of the Jacobi identity (5) to get

> (=" (p) (Uprs—mVrem — (_1)pvp+t—mus+m) = Z (,i) (U ptmD)s+i—m -

m=0 m m=0
(10)

On the other hand, all these identities together will imply the Jacobi identity (5).
We will use these identities more often.

A vertex operator algebra V' is called g-quasi-rational if 7 has only finitely
many irreducible g-twisted modules. If V' further satisfies the condition that any
g-twisted module is completely reducible, we call V' a g-rational vertex operator
algebra. If g = 1, we get a rational vertex operator algebra.

2.2. Let M and N be two g-twisted V'-modules. A homomorphism ¢ : M — N of
g-twisted V'-modules is a linear map which commutes with the operators v, for all
veVandne %Z. In particular, a homomorphism is always a homogeneous homo-
morphism of graded vector spaces in the sense that ¢(M;) C N, since ¢ commutes
with the operator L(0).

Let 4,(V) be the category of g-twisted V'-modules. Then %,(V') is an abelian
category. For simplicity, we will use %; if the vertex operator algebra V' is under-
stood. We will abuse the notation a little by using M € %, to stand for M being
an object of the category ;.

Let ¥’ be another vertex operator algebra and ¢ : ¥/ — ¥V a homomorphism of
vertex operator algebras. If g’ is an automorphism of ¥’ such that ¢ og’ = go ¢,
then ¢ sends the g¢'-eigenspaces to g-eigenspaces. In fact, let K’ be the order

/
r r

of ¢. If v € (V'Y then ¢(v') € V". Here we have % = f7- By examining
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the Jacobi identity, one can verify that every g-twisted V/-module is automati-
cally a g’-twisted V’-module. In this way, ¢ induces a functor 4, — %, which
1s exact.

In the sequel, we will describe the category %, as a full subcategory of the
category of all modules for an associated algebra.

2.3. g-Twisted Enveloping Algebras. Consider the C-vector space V = @fi_ol Ve
#/KC[t,t=']) and the tensor algebra T(V). Note that ¥ is a graded vector space
with the gradation V = @ue,%Z(V)ﬂ' Here (V) = @,cz(Vn @ "+~ '). Thus the
tensor algebra (V) is a graded algebra with the gradation induced by the gradation
on the vector space V.

For each g-twisted V-module M, the module structure of ¥ on M induces a
linear map

V — Ende(M)

VR — v, ,

where v, is the component operator of Yy (v,z) =), . Lz v,z~"~!, which extends
uniquely to a homomorphism of associative algebras

pu i T(V) — End(M) .

Let Ende(M), = {f € Ende(M) | f(M;) C M,y for all A € C}. Then the C-
graded algebra Endg (M) = LET End¢(M), is a subalgebra of End¢(M). By the
definition of the homomorphism py, one can see that py (T(V)) C Endg (M) and
the map py : T(V) — Endg (M) is a homomorphism of graded algebras. Thus the

kernel Ker(py) is a graded ideal of T(V). )
Set [ =ﬂM€% ker pys. Then I is also a graded ideal of T(V). We define

Uy(V) = T(V)/I, which is also a % Z-graded algebra with

U(V)= @ (Uy(V))n
nGII(Z
such that
wt(v @ 1"y =wtv, = wtv —n — 1

for homogeneous v € V. We will also use v, to denote the image of v ® ¢" in
U,(V') acting on any g-twisted V'-modules. Consider the Lie algebra s/, generated
by the operators {L(1),L(0),L(—1)}. Then Uy(V) becomes an sl,-module with
L(1),L(0), and L(—1) acting on U,(V') as derivations. As an sl,-module, U, (V) is
a direct sum of L(0)-weight spaces, which gives U,(}') the graded algebra structure.
Furthermore, any g-twisted modules are automatically modules for s/, with weight
space decomposition defining the graded vector space structure.

Lemma. (1) Every g-twisted V-module M is naturally a graded left Uy(V )-module
with the graded structure given by the weight spaces decomposition as an si,-
module.

(2) Any Uy(V)-submodules and quotient Uy(V)-modules of a g-twisted V-
module M are also g-twisted V-modules.
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(3) For any two g-twisted V-modules M,N, a linear map ¢ :N — M is a
homomorphism of a g-twisted module if and only if ¢ is a homomorphism of
U,(V')-modules.

Proof. (1) It follows from the construction of Uy(V). To prove (2), let N C M
be a Uy(V)-submodule of M. We first show that N is a graded U,(V )-submodule
of M. Let x € N and x = > x; be a finite sum in M with x; € M, for distinct
A’s. We must show that x; € N. We use induction on the number of the nonzero
terms of the summation. By applying the operator L(0) (the image of w ® ¢! in
Uy(V)) we get (L(0) — Ag)x = D> (4 — Ag)x; with a shorter expression. By induc-
tion hypothesis, we have x, € N. Now the conditions on the gradation of a g-
twisted ¥-module is automatically satisfied. If Yy(v,z) =), ! 2 Uiz "1, with

v, € End(M), we have v,N C N. So we can consider v,|y € End(N) and define
Yy(v,z) = Zné%l UnlNZ_n_l. Now all other conditions for a g-twisted V-module

structure on N can be verified straightforward. Note that both sides of the g-twisted
Jacobi identities make sense as operators on N at every element of N. For the
quotient, since the kernel is a Uy(V)-submodule, it is a g-twisted V-submodule
of M. Thus the quotient is a graded module and one can verify that the Uy,(V)-
structure on the quotient g-twisted ¥-module M/N is the same as the quotient of
the Uy(V)-modules.

(3) It is straightforward to verify that any homomorphism of g-twisted V-
modules is naturally a homomorphism of Uy(V )-modules. Conversely, if a linear
map ¢ is a Uy(V)-homomorphism, then it has to commute with the operator L(0).
This shows that ¢(N;) C M. Since ¢ commutes with all v ® ", then we have

¢ o YN(U,Z) = YM(U9Z) o ¢

2.4. The Algebra A(g). Note that many of the identities such as the Jacobi identities
will involve infinite sum, which does not make any sense in the purely algebraic
setting in Uy(V).

For each C-vector space A4, let A[[X]] be the vector space of formal power
series. The natural embedding 4 — A[[X]] (sending elements of 4 to power series
with constant term only) makes 4 a subspace of A[[X]]. If 4 is further an algebra,
then A[[X]] is an algebra containing 4 as a subalgebra. Here the multiplication is
given by the multiplication of formal power series.

Let M be a vector space, and 4 = End(M). Then A[[X]] has a subspace

Cy = { FOO =S X' € AIX]] | 5 amX’ € MIX] for cach m € M} .

i=0 i=0

In fact Cy, is a subalgebra of A[[X]]. In this way, we can make M a Cj/-module
by defining the action f(X)m =) .2, a,m.

Consider the vector space Uy(¥),[[X]] and the algebra P, ! zCUg(Ma[IXTD),
which is a proper subalgebra of Uy(V)[[X]]. For each g-twisted V'-module M, the
homomorphism py, : Uy,(V) — End(M) induces a homomorphism py[X]:
Uy(V)ul[X1] — End(M)[[X]].

Let C = ﬂMG%(pM[X])_‘(CEnd(M)). Then C is a subalgebra of @ne%z

Uy(V)ul[X]). Note that P, iz Uy(V)illX]1] is a I%Z-graded algebra by defining

nE%Z
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WX =0 and wifh=wtf+wth for f,h€@,c1z UV )llX]]. Then C
=, 1z C, is a graded subalgebra with C, = Uy(V),[[X]] N C.

Since M in € is a natural graded C-module. Annc(M) is a graded (two-sided)
ideal of C. Define A(g) = C/(ﬂMe%g Annc(M)). Then A(g) is a graded algebra.

The constant subalgebra Uy(V') of @ne iz Uy(V)n[[X]] is actually contained in C.

Moreover we have a natural algebra embedding U,(V') — A(g). Note that the s/>-
module structure on Uy(V) extends naturally to Cjs, which has a weight spaces
decomposition and the map pys : C — End(M) is a homomorphism of s/,-modules.
Thus the kernels Ann¢ (M) are graded ideals. This naturally induces a graded algebra
structure on A(g).

2.5. By our construction of the algebra A(g), every g-twisted ¥-module extends to
an A(g)-module. We can now regard U,(V) as a subalgebra of 4(g). Thus, every
g-twisted V-module M is a A(g)-module and every homomorphism between any
two g-twisted V-modules are also a homomorphism of 4(g)-modules. This yields a
functor & : 6; — A(g)-Mod (the category of all A(g)-modules).

Theorem. The functor & is an isomorphism of 4, to a full subcategory of
A(g)-Mod.

Proof. First we show that & is full. Let M and N be two modules in %,. Then
a linear map f : M — N is a homomorphism of g-twisted ¥V-modules if and only
if it is Uy(V)-linear and further, if and only if it is 4(g)-linear. This shows that
Homg, (M, N') = Hom,(4)-Mod(M, N) as vector spaces. This shows that & is full. The
faithfulness and the exactness follow from the fact that & does not change the vector
space. [

From now on, we can simply identify %, with 6, and still use %, to denote it.

2.6. Topology on A(g). For each vector space M, End¢ (M) is equipped with a
natural product topology (point-wise topology), which is induced from the product
topology on M, where M is equipped with the discrete topology.

In particular, if M is a graded vector space, each Endg (M), is a closed vector
subspace of Endg (M), although Endg,M is not closed in general. A graded vector
subspace E = G}u E, of End¢ (M) is called graded closed in Endg (M) if each E,
is closed.

We define the topology on A(g) to be the weakest topology such that all induced
maps py : A(g) — Endg (M) for M € € are continuous.

For each m € M), the left ideal Ann)(m) = {a € A(g)|lam =0} of A(g) is a
graded left ideal of A(g). In fact, if a € A(g) such that a = @a; (a finite sum
with a; € A(g); and distinct A’s), then am =0 implies a;m = 0 for all A, thus
a; € AnnA(g)(m).

Let %, be the collection of left ideals of 4(g) defined by:

Ly = {Annyg(m)im € M, M € 6} .
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For each J € &%,;, we denote J; =J N(4(g));. Then J D @, J;. Note that
€D, J; is a graded left ideal of Uy(V'). (In general, J is not graded.)

Lemma. (1) For each J € %), A(g)n =Ju if B E %Z is sufficiently small.
(2) Each A(g),/J, is finite dimensional.
(3) For J.,J, € &, there exists J € ¥, such that J C Jy NJ,.
(4) For any a € A(g) and J € ¥, there exists I € &, such that la C J.
(%) ﬂ;eg;,f = {0}
(6) Every J € ¥, contains a graded left ideal I € ¥,

Proof. For convenience we write J(m) = Anny,)(m) for m € M and M € €.

(1) We assume, at first, that J = J(m) for a homogeneous element m € M, and
M € %,. Consider the A(g)-module homomorphism:

A(g) — A(g)m
a — am .

Then A(g)m is a g-twisted V'-submodule of M by Lemma 2.3. Since (A(g)m)j4n =
A(g)nm, where n € %Z and (4(g)m)p+) =0 forn € %Z sufficiently small. Thus we
must have 4(g), C J, for n € I%Z and sufficiently small.

In general, let m=3_ m, with m, € M, with distinct p’s in LZ. Since
J = Annygy(m) 2 (1, J(my). Note that J; 2 N,/ (my), for any 1. Thus we have a
surjective linear map A(g);/ ), J(m,); — A(9):/J; and (4(9))s/ N, T(m.); € D,
(4(9))a/J (my),. Now the result follows from the proof for homogeneous m above
and the fact that there are only finitely many nonzero m,’s. The proof of (2) is
also included in this proof.

(3) Let m; € M such that J; = Annyg)(m;) for i = 1,2. Consider the module
M = M"'®M? and m = m; + my. Then a € Annyg(m) if and only if a € J; NJ,.
That is, J1 NJ, = AnnA(g)(m) € gg.

(4) Let J = Anny,)(m) with m € M. For any a € A(g), set I = Annyg)(am)
€ %,. It is obvious that Ia C J.

B)Ifac ﬂJE% J, then py(a) =0 for all M in %,. Therefore a =0 in A(g)
by the definition of the algebra A(g) (see 2.4).

(6) Let J = Anny,yym for some m € M for a g-twisted V-module M. Let
m= ZLI m; with m;€M,, as homogeneous components. We have J D ﬂ,S.:l
Anny,y(m;). Here ()i_; Annyg)(m;) = Annygy((my,...,m)), with (my,...,ms) €
@D;_, A(g)m;, is a graded left ideal and in .

Theorem. The collection ¥, forms a basis at 0 of a linear (Hausdorff) topology
on A(g) such that the topology defined earlier on A(g) coincides with this topology.
In particular, the graded left ideals in ¥, also form a basis at 0 of this linear

topology.

Proof. For each M in 4, the pointwise convergence topology on End(A/), which is
a topological group with discrete topology on M, has a basis at 0 consisting of sets

W(m)={f € End(M)| f(m) = 0}
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for any m € M and the finite intersection of these sets. Since the topology on
A(g) defined earlier is the weakest topology on A(g) such that py : A(g) —
End(M) continues, then p,, Y(W(m)) with me M and M running through %,
generates a basis of this topology at 0 on A(g). However, by deﬁn1t10n
one sees that p;ll(W(m)) = Anny,)(m). Therefore &£, is a basis of this
topology.

It is a direct consequence of Lemma 2.6 (5) that the topology is Hausdorff. By
Lemma 2.6 (6), the collection of graded left ideals in %, also form a basis of this
topology at 0. OJ

Corollary. With the topology defined above the left and right multiplications by
an element of A(g) are continuous linear maps.

Proof. Fix a € A(g). Clearly we have aJ CJ for any J € &,;. This shows that
the left multiplication by a on A(g) is continuous. By Lemma 2.6 (4) there exists
I € &, so that Ja C J, i.e., the right multiplication by a is continuous. [

2.7. Extending the Category %; by the Topology on A(g). For each A(g)-module
M, we define
FM)={meM|Jm=0 for some J € &} .

First of all, by Lemma 2.6(3), # (M) is a vector subspace of M. Further by
Lemma 2.6 (4), we see that for any m € % (M), then am € # (M ). Therefore & (M)
is an A(g)-submodule of M. Following the definition, we can see F(F(M)) =
& (M). In particular by the definition of £, we also have # (M) = M for all M
in €.

Iflote that A(g) is an associative algebra and is equipped with the topology
defined above. We say an 4(g)-module M is continuous if the map 7 : 4(g) x M —
M is continuous. All modules are equipped with discrete topology. However, an
A(g)-module M is continuous if and only if # (M) = M. Indeed, all modules M
such that #(M) = M is continuous since for each m € M, (1 +J) x {m} is an
open set in 4A(g) x M and (1 +J)m =m. Here J € &£, and Jm = 0. Conversely,
if M is continuous, 7~!(0) is an open set in 4(g) x M. For any m € M, since
(0,m) € n~1(0), there must be a J € ¥, such that J x {m} C n~'(0). This shows
that Jm = 0. _

We now define %, to be the full subcategory of A4(g)-modules M such that
F (M) =M. Therefore %, is a full subcategory of %Z We use S : %5 — A(g)-
Mod to denote the natural embedding functor. It is stralghtforward from the defini-
tion to verify that A(g)-submodules and quotlent of modules in %, are still in (6
Thus for each 4(g)-module M, % (M) is the unique maximal A(g)- submodule of M
contained in %,. Furthermore, if f: M — N is a homomorphism of 4(g)-modules
for any two A4(g)-modules N and M, then # (M) C % (N). Therefore we see that
Z : A(g)-Mod — %, is a functor.

Lemma. (1) (S, %) is an adjoint pair of functors.
(2) €, is an Abelian category and closed under the direct limits of A(g)-
modules.

Proof. (1) Let M € %?g and N any A(g)-module. Any f € Homy,)(F#M,N) if and
only if f(M) C #(N). The verification of functorial property is routine.
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(2) All other conditions of an Abelian category are straightforward. We only
verify that direct limits of 4(g)-modules in € are still in ;. Let (M,, fup)per be
a direct system. Let M be the direct limit in A(g)-Mod with maps f, : M, — M.
Note that as an A(g)-module, M is generated by the submodules f,(M,) for all
o € 1. Since M, is in %, so is fy(M,). Thus f,(M,) C F (M) for all « € /. But
F (M) is a submodule of M. Hence #(M) =M and M is in ‘ég. O

Theorem. Let M be any A(g)-module and m € #(M). Then A(g)m is in 6, In

particular, every module in 6, is a union of submodules in 6, and direct sum of
L(0)-eigenspaces.

Proof. Since m € (M) there exists J € %, such that Jm = 0. Let W € %, and
w € W with J = Anny(w). Clearly, A(g)w is a g-twisted V-submodule of .
Note that the map from A(g)w to A(g)m by sending aw to am is well defined
and an A(g)-module homomorphism. Thus A(g)m is a g-twisted V-module, that is,
A(g)m € €;. The other assertions in the theorem are clear now. O

Corollary. (1) A module M in 6, is in %, if and only if for each ) € C, M; is
finite dimensional and M,_, = 0 for n € %Z with n > 0.

(2) Exty (M,N) = Extl%(M,N) for all M,N in %,

(3) Every simple module in ‘ég is in .

Proof. (1) Let M be any module in %,. We can define

—n—1
YM(U>Z)= Z Upz "
ne%l

in End(M){z} for each v € V. Here v, is the image of v ® " in End(M). Note that
all conditions for a g-twisted V-module except Eq. (1) and Eq. (5) are satisfied.
Now we show that for the so defined Y)/(v,z), the Jacobi identity is also satisfied.
We only need to verify Eq. (10). For each u € V" and v € ¥V, we denote by

fX)= Z —n- <£> (up+s—ml7t+m - (_l)pvp+t—mus+m)Xm s

m=0

g(X) = Z (:1) (up+mv)s+t-—me
m=0

to be two elements of C. We will use f(X) and g(X) to denote their images in
A(g) as well. Since, for any g-twisted V'-module W, we have f(X)w = g(X)w for
all w € W by the Jacobi identity (10), we have f(X) = g(X) in A(g). So we have
f(X)m = g(X)m for all m € M since M is an A(g)-module. This only shows that
f(X) = g(X) as elements of A(g), but there is no reason to believe that the actions
of f(X) on M is the same as the “limit” as required by the Jacobi identity. Thus
we have to show that for any m € M,

SX)m = é} (—l)i (I:) (Uprs—iVeri — (_l)pvp+t—-ius+i)m
and

om =3 (j ) (#p4i0)st1-im
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for sufficiently large n. Set
Ja(X) = Z% (-1 )i (f)) (Uprs—iVsi — (=1 )pvp+t-ius+i)Xi

and

n
gn(X) = Z (f) (up+iv)s+t—iXi .
i=
Here we have to use the fact that all modules in %, are continuous. Since M is
in €, there exists J € %, such that Jm = 0. Then J = Anny,)(w) for some W in
%, and w € W. Since W is g-twisted, there exists ny such that f(X)w = f,(X)w
for all n = ny, ie., f(X)— fu(X) €J. Thus we have f(X)w = f,(X)w. Equality
g(X)m = g,(X)m for sufficiently large » is proved in the same way.

Finally, in order for M in %Zg to be in %, one only needs the condition Eq. (1).
But this is assumed in the corollary.

(2) Let0 - N — E — M — 0 be an extension in (ég. Since E is in (ég, by (1),
we have E € €. This shows that every extension in %Zg is actually an extension in
%,. Since %, is a full subcategory of ‘ég, two extensions in %, are equivalent %, if
and only if they are equivalent in (ég. (3) follows from the theorem since 4(g)m is
a submodule of M and in ;. O

2.8. Construction of Modules in 6, Let M be a C-vector space. Then space
Homg(A(g), M) has an A(g)-module structure defined in the following way:

(af)(x) = f(xa)
for f € Homg(4(g),M) and a € A(g). One can easily see that

(abf )x) = f(xab) = (bf)(xa) = (a(bf))(x) .

We define # (M) = F(Homg(A(g),M)) then # (M) € ‘ég.

There is a natural C-linear map ev : # (M) — M defined by ev(f) = f(1)
for all f € #(M). If N is another vector space ¢ : N — M is a linear map, the
natural induced map </; : Homg(4(g), N) — Homg(A(g),M) is an A(g)-module
homomorphism, which further induces an A(g)-module homomorphism #(¢):
H(N) — A (M). Thus one can verify that # defines a functor C-Vect — 4,
where C-Vect is the category of complex vector spaces. If 4 : @g — C-Vect is the
forgetful functor, then
Lemma. S is a left exact functor from the category of vector spaces to @g.
Furthermore, (4,) is an adjoint pair.

Proof. As the right adjoint to the exact functor .#, % is obvious left exact. It is
well known that the functor Homg(4(g), - ) is left exact. So # is a composition
of two left exact functors and is left exact.
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The adjoint pair follows from the following isomorphism of vector spaces for
any N in %, and vector space M:

Home(N, M) = Home(4(9) @ N, M)
A(g)

& Hom (5)(N, Home(4(g), M )) = Homy)(N, #(M)) . (11)

Here the second isomorphism comes from the adjointness of the “tensor functor”
and “Hom functor” while the last equality follows from the fact that N is in .
Naturality of the isomorphism is also routine to check. [J

Remark. Since both # and # have exact left adjoint functors, they send injective
modules to injective modules. In particular, (M) is an injective module in 4, for
M € C-Vect. _

Let M € %,. Define a linear map ¢ : M — Homg(A(g), M) by ¢p(m) = f,, 1 a—
am for m € M and a € A(g). Then for a,b € A(g) we have

$(am)(b) = fam(b) = b(am) = fu(ba) = (afn)(b) = (ad(m))(b) .

This shows that ¢ is an A(g)-module homomorphism. Thus ¢(M) C F (Home(4(g),
M)) = H# (M), since ¢p(M) is in €,. Next we show that ¢ is injective. If ¢(m) =0,
then ¢(m)(a) = am = 0 for all a € A(g). In particular, ¢(m)(1) = m = 0. Note that
the functor S preserves the arbitrary direct sums. Then #' (M) = @, #(Ch)
with B C M being a C-basis. Thus we have proved.

Theorem. €, has enough injective objects and every injective module is a direct
summand of the direct sum of copies of #(C).

2.9. Proposition. If %, is semisimple, then all modules in %, are also semisimple.

Proof. Let M be a module in (gg. For any m € M, there exists a submodule N C M
such that N is in %; and m € N. Since N is a direct sum of simple modules in %,
we have shown that M is the sum of all simple submodules in %;. Thus M is a
direct sum of simple modules in 6;. O

3. Induction for a Subalgebra

3.1. Let V' be a vertex operator subalgebra of ¥ such that g(V') = V’. Let g’ = g|y
and o(g’) = K’. Then K'|K and each g-twisted ¥-module M when restricted to ¥’
is a g'-twisted V'-module. Let ‘gg', be the category all g’-twisted V’-module. Then

we have a restriction functor
. !
Resj 16— €, .

Consider the enveloping algebras 4(g) and A(g’). The natural embedding V' =
@fi; "'y @ #/K'C[t,+~1] — ¥ induces an algebra homomorphism v : T(7') —
T(V), where (V'Y ={v e V'|gv= e’z"i/K/v}. For each M € %, the composition of
the algebra homomorphism pus : (V) — Ende (M) with s produces an algebra
homomorphism pj, : T(V') — End¢ (M). Since M|y, is a module for Uy (V')
the kernel I’ of T(V') — Uy (V') — 0 is contained in Kerp), and y(Kerp},) C
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Kerpy. Thus y(I') C I =) weq, Kerpy and ¢ induces an algebra homomorphism
Uy (V') — Uy(V), which is still denoted by .

Theorem. With the above assumption, the algebra homomorphism  : Uy (V') —
Uy(V') induces a homomorphism s : A(g") — A(g) of associative algebras such that

Sfor each M € €, Resz;", (M) as A(g")-module factors through A(g), that is, A(g') —

A(g) — Ende (M). 7

Proof. The homomorphism v : Uy(V') — Uy(V) induces an algebra homomor-
phism Y[X]: Uy(V)HI[X1] — Ug(V)I[X]]. It follows from the definition of Cy/(g)
in 2.4, that Y[X](Cyy,,) C Cyy. Since M|y is in (gg’,(V’) for each M in €,(V),y[X]

induces an algebra homomorphism Y A9’ ) — A(g). The conditions on the module
structures in the theorem are clear from the construction of the algebra homomor-

phism ¢. O

3.2. Let ,ipg’, be the corresponding collection of left ideals defining the topology on
A(g') as in 2.6.

Lemma. For any J € ¥, there exists J' € &}, such that (') cJ.

Proof. Let m € M with M € 6, and J = Anny,(m). Set J' = Ann,)(m). Then
J' e ,?g’,. Now the result follows. O

For any A(g’)-module M’, let #'(M") be the submodule of M’ for A(g'). We
will use ‘6;, to denote the category of A4(g’)-modules M’ such that #'(M') = M'.
For each A(g)-module M, M|, is the 4(g)-module via $. The lemma implies that
F (M) C F'(M|yy)- In particular, M|, is in ‘gg’, if M is in €,. We thus define
a functor ‘ég — ‘ég’,. We will still use Res(;;‘], to denote this functor if ¥ and V' are

g/

understood from the context

Proposition. The restriction functor Resg", 16— ‘6;’, is exact.

g/
3.3. We consider 4(g) as a left A(g')-module and a right A(g)-module, i.e., A(g) is
a A(g’)-A(g)-bimodule. For each M € %;,,HomA(g/)(A(g),M) is a left A(g)-module
with the action (af )(x) = f(xa) for a,x € A(g) and f € Homy\(A(g),M). We
define

Ind % (M) = # (Hom,((A(g),M)) .
g/

Then Ind?, (M) is a module in ‘59.
i _
If M and N are in (gg', and ¢ : M — N is a homomorphism of g'-twisted V’-
modules, then

¢ : Homyy(A(g),M) — Homyy(4(9),N)
S > pof
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is a homomorphism of 4(g)-modules. Indeed, for f° € Hom,,/(4(g),M), and a,x €
A(g), we have

(Paf)) = (¢ o(af))x) = ¢(f(xa)) = (¢ o f)(xa) = (ad(f))x),

that is, ¢(af) = ad(f). Also, for @’ € A(g'),

(D)W )x) = d(f (J(a' 1x)) = $(a'f(x)) = d'p(f(x)) = d(F(f)x)) ,
ie. (]NS( f) € Homy,\(A(g),N). Then the map f — ¢ o f induces a homomorphism

Ind (¢>) Ind (M) Indg(N)

in 4,. We thus define a functor Indg“’, :‘gg’, — %,, which we call the induction
functor. 4
3.4. For each M € ‘gg’,, there is an evaluation map
ev:Ind % (M )M
defined by ev(f) = f(1).

Lemma. ev is a homomorphism of A(g')-modules when Ind I (M) is restricted to
A(g") via V. ki

Proof. For a’ € A(¢g') and f € Ind (M ), we have

ev(df) = (df)(1) = f(llﬁ(a’)) = f((a)) = df(1) = dev(f),
as desired. O

Lemma. For any M € ‘ég we have ev: Homy,y)(Uy(V),M) ~ M. Moreover, if
M € €, then Indz;g(M) ~M
g9

Proof. We need to prove that ev is one to one and onto in this case. If f(1) =0

then f(a) =af(1)=0 for any a € Uy(V), thus f =0 and ev is one to one. Let

m € M and define f,, € Homy,(Uy(V),M) by fu(a) =am. Then f(1)=m and

ev is onto. [

Theorem (Frobenius Reciprocity). For any E € (gg and M € ‘é;/ the natural map
P HomA(g)(E Ind (M)) — HomA(g )(RCSV/(E) M)

defined by ¢ — evo ¢ is an isomorphism of vector spaces.

Proof. First evo ¢ = P(¢) is a composition of A(g’ )-homomorphlsms and thus is
a homomorphism in (5’ We only need to construct the inverse @~!. For each
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¢’ € Homy(, )(Res (E),M) define
¢ : E — Homg(A(g), M)
($(e))(x) = ¢'(xe)

for e € E and x € A(g). In fact ¢ is the composition:

such that

Ag) — E - M
x = xe — ¢(xe).

Then ¢(e) is a homomorphism of A(g’')-modules. Since for x' € A(g’),

P()((d)x) = ¢'(Y(a' xe) = d' ' (xe) = d' p(e)(x) .
Thus we have a map ¢ : E — Homy\(4(g),M). Moreover ¢ is an A(g)-homo-

morphism:
Pae)(x) = ¢'(xae) = ¢'(e)(xa) = (ad(e))(x) .

Since E € (ég, so is its image ¢(F) in Hom,4)(A(g),M). Now by the definition

of the functor # we have ¢(E) C Ind (M ). We define @~1(¢’) = ¢. Clearly ¢!
is a linear map.
To finish the proof, we need to show that @~! is an inverse of ®. Let f €

Homyg)(E, Ind (M )) and ¢’ = evo f. Then

p(e)(x) = ¢'(xe) = (evo f)(xe) = f(xe)(1) = (xf(e))1) = f(e)(x)

for e € E and x € A(g). Thus ¢(e) = f(e),¢ fand @' o ® =id.
Conversely, if ¢’ € Hom,, )(Res (E),M) and ¢ = &~ 1(¢"), then

(P)(e) = (evo p)(e) = ev(d(e)) = Pp(e)(1) = P(e)(1) = ¢'(le) = ¢'(e),
i, ®o® ! =id. This completes the proof. [

Corollary. (1) (Res Ind % ) is an adjoint pair of functors.

g/,

2) Ind(g,l is left exact and sends injective modules to injective modules. [
g

Remark. For a module M in (ég, define SOC(gg(M ), called the socle of M, to be
the largest semisimple submodule of M and Hdg, (M), called the head of M, to be
the largest semisimple quotient of M. If M is a semisimple module (need not be
finite length) and S is a simple module, we denote by [M, S] the cardinality of the
copies of § appearlng_ in the direct sum decomp051t10n into simple modules. If M is
a simple module in € and N simple module in %, then the Frobenius reciprocity
implies that

[Hdy, (Res ! () : M) = [Socg, (Ind /(M) : N].



172 C. Dong, Z. Lin

However, it is not clear that in the category %, every nonzero module has a nonzero
socle or quotient.

3.5. Transitivity. Let V"' C V' C V be subalgebras of ¥ which are g-stable. Set
g" = g'|y». We shall use the obvious notation " for the corresponding category

of g”-twisted V”-modules. Let M € €”; and define

Eur Ind(g,, M) — Ind‘fg 1nd"

o, (M)

by En(f) = f: A(g) — Ind(g,, M. The definition of £ is as follows: for x € A(g),

f(x) is a map: _
fx):4lg) — M

y o= fOO)x).
Recall that nZ is the algebra homomorphism from A(g’) to 4(g).

Theorem. &, is an zsomorphzsm of A(9)- modules and further induces an isomor-

% _, Ind(gg md"?

phism of functors & : Indqg,, G

Proof. First we show that &,(f) € Ind% Ind(gf, (M). Let ¥ and ¥ be the induced
g g

algebra homomorphisms ' : A(g") — A(g') and ¥ : A(g") — A(g), respectively.

Then ¥ =y oy/'. For z € A(¢") and f € Ind (M), we have

(g/l

F@W @) = FAW @p)0) = fW"@QI0)x) = 2f (I(y)x) =2/ () ,
ie., f(x)is an A(g")- module homomorphism.

To see f(x) € Ind%,,, (M), we need to show that there exists J' € 3;’, such

that J'f(x) = 0. Let J € %, such that Jf =0 or equivalently f(J)=0. From
Lemma 2.6 (4) there exists / € %, so that /x CJ. By Lemma 3.2 there exists

J' € &, such that Y(J') C I. Thus
' N = F@OI) = f(p(3JI)x) C fIx) C f(J)={0},

that is, f(x) € Ind(g,, ™).
9
For a’ € A(¢"), we have

FW@)X)») = fFAW(@)x) = f(I(ya)x) = Fx)(yd) = (@ fFONY),
where y € A(g') is arbitrary. This shows that f € Hom,,/,(4(9), Ind%,, (M)).

In order to prove f € Ind(g" Ind(g"}, (M) it is enough to show that Jf =0,
where J € %, such that Jf = 0. Note that J)x) = f(xJ) =0 for all x € A(g) iff

F(J)=0.But fF(J)»)= fJ(»)J)C f(J)=0 for all y € A(g"). Thus f(J) = 0.
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Next we show that &, is a homomorphism of 4(g)-modules. Let a € A(g) and
f,x,y be as before. Then

En(a fHX)(Y) = (aNHW(y)x) = f(xa)(y) = (@lu(SNENY)
or Ey(af) = alu(f).

It remains to show that &, is an isomorphism of A(g) -modules. We achieve

this by constructing an inverse # of &£ For ¢ € Ind% Ind(g“i, (M), define n(¢) =

f:A(g) = M by f(x)=evo ¢(x) = p(x)(1) (note that d(x) € Ind(g,, M)). It is
easy to verify that f° € Hom,,1\(4(g),M). In fact if a” € 4(g") then

S (@")x) = d"(@)x)(1) = (¥'(a")p(x))(1)
= ¢()(Y'(@") = d"(p(x)(1)) = a"f(x).
Since there exists J € %, such that J¢ = 0, then

(X)) = f(xJ]) = p(xJ)(1) =

M. Thus ny(¢) = f yields a linear map from Ind % Ind “ M)

Then f € Ind @,

(g//

to Ind% (M). Moreover, # is a homomorphism of 4(g)-modules:

(g/ /

nu(ap)(x) = (ad)(x)(1) = p(xa)(1) = f(xa) = (a f)(x).
In order to ﬁmsh the proof we need to check that &y ompy = id and nuy 0 &y

=id. Let f € Ind(g,, (M) and ¢ € Ind% Ind(g‘i, (M). Then

(e © Ea) )X) = (nu S)x) = F)(1) = f(x),

((&m 0 m)PIX)(Y) = (e PIx)(¥) = (M @)W(¥)x) = dW(»)x)(1) = (yp(x))(1)
= ¢(x)(y) for all x € 4(g) and y € A(g’). The proof is complete. [J

3.6. Since Ind%,’/ is left exact and the category ‘é;z has enough injective objects

we can consider the right derived functors RiInd((gi’/ . For each ¢'-twisted V’-module
g

M in (gé/, RiIndz;fl (M) is a g-twisted V-module in ‘gé/. Furthermore, since Indz;j’l

g
sends injective modules to injective modules, we have the Grothendieck spectral
sequences with F,-terms

R’Ind &, oRfInd Y

%// M) = RH—JInd '// (M)

for each g”-twisted ¥”-module M in %",

3.7. We have already defined the functor ## from the category of vector spaces to
%, and proved it to be exact earlier. Now we can see that # can be defined with
the induction functor. Note that our induction even makes sense if we take 4 being
any subalgebra of A(g) such that the corresponding category %, is defined in the
following way: an A-module M is in %, if and only if {m € M|(J N A4)m =0 for
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some J € Z,}. In particular we may take 4 = C. Then %4 = C-Vect because for
any J € %, the intersection J N € = {0}. Thus

Indji (M) = #(M).

4. The ¢Rational Vertex Operator Algebras

4.1. In this section, we consider the induced modules for g-rational vertex operator
algebras. We call V' g-rational, if 4, is semisimple with finitely irreducible modules.

However, we still fix an arbitrary vertex operator algebra ¥ and an automor-
phism g of finite order K of V. On each g-twisted V-module, the operator L(0)
acts semisimply and the graded 4(g)-module structure is given by the eigenspaces
of the operator L(0). Similar to a finite dimensional semisimple Lie algebra, we say
A < for two weights Lu € Cif 0 < pu— 1€ ¢Z.

Recall that the algebra A(g) is graded with gradation given by the adjoint action
of L(0). The weight space A(g)o is an associate subalgebra of 4(g), with the operator
L(0) being in the center of 4(g)o. On every finite dimensional simple A4(g)o-module,
L(0) acts as a scalar.

The subspace 4=0 = @OSnG%ZA(g)‘” is a graded subalgebra of A(g), and

A™ = ®0<n61%ZA(g)—” is a graded ideal of 4=°. Let M be a module in %, a

weight A of M is called a minimal weight if there is no weight of M that is smaller
than A in the sense defined above. Note that each weight space M, of M is an
A(g)o-module. However, if A is a minimal weight of M, then M; is an 4="-module
with 4~ acting as zero._

Lemma. Let M be an irreducible module in %, then there is a unique minimal
weight A such that M) is a finite dimensional simple A(g)o-module.

Proof. By the definition, there exists A € € such that A is minimal and M;
is not zero. If u is a different minimal weight with M, 40, then A(g)M, =
EBne ! nA(9)nM,#0 is a submodule of M, which does not contain the subspace
M;. This contradicts the irreducibility of M. Thus A is the only minimal weight.
If 0N C M, is an A(g)o-submodule of M, then A(g)N = @ne%NA(g)nN is
a submodule of M by the Jacobi identity (10), with p = 0. However we have
(A(g)N), = N. N £0 implies that A(g)N £0. The irreducibility of M implies that
N = M,. The finite dimensionality of M, follows from the definition of modules
in 4, O

A module M in % is called a lowest weight module if there is a vector m € M
for a minimal weight 1 such that M = A(g)m. Thus all irreducible modules are
lowest weight modules by the lemma. For a lowest weight module M of lowest
weight 1, all weights of M are of the form A+ v with v € %]N.

4.2. Proposition. Let M' and M?* be two lowest weight modules €, with lowest
weights Ay and 1, respectively. If there exists a non-split extension

0-M —ESM?> -0
in (gg, then 4, — 1, € %Z
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Proof. Let my € M} be such that A(g)m; = M>. Since E is in %, there exists
0=%m € E;, such that n(m) = my. Then we consider the submodule A(g)m of E.
All weights of A(g)m are in A, + I%Z. If A(g9)m N M"' =0 then 7 : A(g)m — M? is
an isomorphism since m(4(g)m) = M?. This contradicts the nonsplitness of the exact
sequence. Thus we must have A(g)m N M' 0 which is a g-twisted ¥-submodule
of M'. We pick 0%x € A(g)m N M'. We can assume that x is a weight vector
of weight v. Thus v € 4; + I%Z. But we also have v € A, + I%Z. This shows that

/11—/126%2. d

4.3. Let N be a finite dimensional 4(g)o-module such that L(0) acts on it by a
scalar 2. Then we can extend N to an 4=°-module by letting A~ act as zero. We
consider the A(g)-module M(N) = A(g) ®4<o N. However, M(N) need not be in
(ég. The following are some standard properties of the module M(N):

(1) M(N) is a graded 4(g)-module with the gradation given by the eigenspaces
of the operator L(0) and the projection pr; : M(N), — N is an isomorphism of the
vector spaces (actually as 4=%-modules).

(2) All weights of M(N) are in A+ LN.

(3) Suppose that N is a simple A(g)o-module. Then there is a nonzero quotient
of M(N) in the category %, if and only if there is a simple module in the category
%, with lowest weight space isomorphic to N as A(g)o-modules. Furthermore, if
M(N) has any nonzero quotient in %, then it has a unique maximal submodule
and thus a unique simple quotient in 4,. Here any A4(g)-submodule containing a
weight vector of the lowest weight A contains the whole module M(N) since N is
simple while the sum of all submodules not containing the weight A is still such a
submodule. _

(4) Sharpiro’s lemma holds: for any module M in %, and any finite dimensional
A(g)o-module N, we have the canonical isomorphism

Hom ;) (M(N), M) = Homy g, (N, M ).

Here M{' is the subspace of M; consisting of all vectors killed by all elements
of A~

Remark. 1t is not known in general that the A(g)-module M(N) has a unique
maximal quotient in %,;, which we would like to denote by D(N). However we
expect that this is the case. If the module D(N) exists and is not zero, then in the
above listed properties we can simply replace M(N) by D(N) so that all the above
listed properties hold when M(N) is replaced by D(N) except the isomorphism of
the projection in (1).

4.4. Proposition. Let M' and M? be two irreducible modules in €, with lowest
weights Ay and 1, respectively. Then M' and M* are isomorphic in %, if and only
if M, and M;, are isomorphic as A(g)o-modules.

Proof. One direction of the proposition is clear. We only show that M' and M? are
isomorphic if M), and M, are isomorphic as 4(g)o-modules. We first observe that
A1 = Ay (we denote them by 1) since they are the scalars by which the operator
L(0) acts on the two modules respectively. Let N' = M} and N> = M?. Then N'!
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and N? are irreducible 4(g)o. We consider the 4(g)-module M(N'!). By (4) of the
previous subsection, we have

Hom ()(M(N'), M*) = Homy(g),(N',N*) 0.

Thus M(N') has a unique simple quotient, which has to be isomorphic to M 2 since
M? is simple. We can replace M2 by M! in the above argument to show that M is
also a simple quotient of M(N'). Thus M! =2 M? by the uniqueness of the 81mp1e
quotient of M(N!). O

Remark. This proposition is related to some results obtained in [DLM] (also see
[Z]). In [DLM] an associative algebra A4,4(V') associated with the vertex operator
algebra ¥ and the automorphism g is constructed. It is proved there that there
is a bijection between the set of inequivalent weak irreducible g-twisted modules
(the eigenspace of L(0) in a weak module can be infinite-dimensional) and the set
of inequivalent irreducible 44(¥)-modules. One can easily verify that 4,(V) is a
quotient of A4(g)o.

4.5. Recall that a block # in ; is a full subcategory of %, generated by an equiv-
alent class of irreducible modules with respect to the equivalent relation generated
by the following: M' and M? are equivalent if there is a non-split extension in
%, between them. By Lemma 4.2, each block uniquely determines an element in
C/ (¢Z) by taking the images of the lowest weights of the irreducible modules in

the block. We say that a block is bounded above if 1 + %Z is the class in €/ (Z)
corresponding to the block % and the set of lowest weights of all irreducible mod-
ules in & is a subset of A+ %Z with an upper bound.

Proposition. Suppose that all blocks in €, are bounded above, then every A(g)-
Sfinitely generated module in €, has a composition series.

Proof. Let M be a finitely generated module in %;. Without loss of generality, we
can assume that M is generated by finitely many weight vectors, say, my,...,my,
with weights Ai,...,4,. Consider the finite filtration of submodules generated by
these vectors:

0=M0§M1=<m1>C<m1,m2) CMn—<m1’,,,,mt>=M.

We see that each subquotient M‘/M~! is generated by a single weight vector.
Thus we can assume that M is generated by a single vector. Thus all weights
of M are of the form A+ %Z. Furthermore since all the weight
spaces are ﬁnite dimensional, there are only finitely many weight spaces of
we1ghts A — £ with j € N. By a similar argument, we can assume that the generator
is a lowest welght vector. Thus M is a lowest weight module.

Now we need to use the condition that every block is bounded above. Let n be
the posmve integer such that there is no irreducible module of lowest weights of the
form 1+ £ with j > n. We can choose n = n; as the smallest for each such fixed
A and use mductlon on ny. If n; =0, we note that M; is finite dimensional. Take
N C M, as an irreducible A(g)o-submodule. Consider the 4(g)-module M(N). We
have a non-zero homomorphism ¢ : M(N) — M resulted from the embedding N —
M;. Then M(N') has a nonzero quotient in %; and the unique maximal submodule
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M(N)y, has all weights of the form A +% with j > 0. If the image of ¢ is not

irreducible, it has to have a submodule with all weights of the form A + % with j >
0. It has to have a lowest weight vector which generates a submodule with a simple
quotient in %, with lowest weight larger than A. This contradicts the assumption that
n,; = 0. Now we can use an induction on the dimension of M, and reduce the proof
to the case such that M, is irreducible as an A(g)o-module. A similar argument
shows that M has to be simple in this case. For n, > 0, we can use a similar
argument to find submodules ' C E of M such that E/F is irreducible with lowest
weight 1 and both F' and M/E have either larger lowest weight or same lowest
weight but strictly smaller dimension of the lowest weight space. By induction
we see that both F and M/E have composition series. Thus M has a composition
series. [J

Corollary. With the conditions in as in the theorem, all modules in 6, with weights
in a finite union | J;_, (/1,- + %) have composition series.

Actually the proof of the theorem works for such an assumption.

4.6. Proposition. If all blocks in %, are bounded above, then any non-zero module
in 6, has non-zero simple submodules and non-zero simple quotient.

Proof. Consider for each A € C the subspace M(1) = >, M, ‘L which, in fact, is
a submodule of M. By Lemma 4.2, we must have M = ieay M(4). By Corol-

lary 4.5, each M(A) has a composition series if it is not zero. Thus each non-zero
M(4) has a non-zero simple submodule and quotient. [

4.7. Lemma. Let V' be a g-invariant vertex subalgebra of V and g’ = g|y:. If (6;,
is bounded above, so is b,.

Proof. Let M be a simple module in %;. Then M is a module in %,. The lowest
weight space M, generates a submodule in ‘to”;,, which has a simple subquotient
of lowest weight 1. That the %;, is bounded above implies that 4, is necessarily
bounded above. [

4.8. A natural question about the induction functor is when Ind?/ N is not zero
g

for an irreducible module N in ‘6;,, since we are interested in modules in %, only.

So another natural question is whether the module Ind:;*,’,N is in %; whenever N is

in €. We discuss these questions in the following special case. We start with the
following lemma.

Lemma. Let L and M be modules in %, such that L is finitely generated. Then
Homg, (L, M) is finite dimensional.

Proof. Since L is finitely generated, we can further assume that the finite set of gen-
erators are all weight vectors. Let N be the subspace generated by the generators,
which is a finite direct sum of finite dimensional weight spaces. Let ¢ : L — M
be any homomorphism in %,. Then ¢ is uniquely determined by the restriction
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map ¢¢: N — M. Here M, is the sum of the weight subspaces of M corre-
sponding to all the weights that appear in N. Now both N and M; are finite
dimensional. [

Remark. A similar argument shows that if M has a composition series, then
Homg, (L, M) is finite dimensional for all L in €. This can be reduced to the
case that M is irreducible. Then one can use the fact that any module in %, can-
not have a quotient which is a direct sum of an irreducible module infinitely
many times due to the finite dimensionality of the weight spaces of modules
in .

Theorem. Let V be a g-rational vertex operator algebra. Then Ind gL is in %,

for every irreducible module L in %’ More generally, Ind N is in fg for any

module N in ‘6;, which has a composition series.

Proof. First of all, since %, has only finitely many irreducible modules, then any
module in %; has a composition series. Thus a module in %, is non-zero if and
only if it has a non-zero simple submodule. Take any simple module S in €.
By Frobenius reciprocity, we have Homg, (S, Ind L) = Hom%/ (S,L). Since L is

simple in €’ o Hom(g/ (S, L) is finite dimensional followmg the above remark. Thus §

appears in Ind L only finitely many times as a direct summand since the category

%, is sem1s1mp1e (thus ‘6 is also semisimple). Since %; has only finitely many
irreducible modules, Ind L is a direct sum of finitely many irreducible modules
and thus in ¥. O

5. Inductions for Simple Vertex Operator Algebras

5.1. In this section we discuss the case when ¥ is a simple vertex operator algebra.
Fix an automorphism g of finite order K of V. Then V = @,_0 V" is a direct sum
decomposition of g-elgenspaces It is proved in [DM1] that ¥’ = V° is a simple
vertex operator algebra and V" is an irreducible ¥°-module. Note that for any r,u €
V" homogeneous, and any g-twisted module M in %, the degree of the operator
u, (as a linear operator on the graded vector space M) equals wt(u) —n — 1 with
n € ¢ + Z. In particular, for each u € V°, u, has degree in Z. Thus for any g-twisted
V-module M and A € C the vector space M°(1) = @,z My+n is a V°-submodule
of M. Note that MO().) =M ) if and only if A —pu € Z. On the other hand,
M) = @ne 17 My, is a g-twisted V-submodule of M and M(4) = M(u) if and

only if A—pue 11<Z. Therefore, we have M(1) = @r=0 MO+ % )» which gives a
decomposition as ¥°-modules.
For each fixed A, we can define a (g)-action on M(A) such that g acts on

2mi

MO°(4 — %) by the scalar &". Here we fix £ =e% .
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Lemma. With the above action, we have

go Yya(uz)o g™ = Yyu)(gu,z)
forallueV.

Proof. Let uc V" and m € M°(J + %) be homogeneous elements. For each n €
¥ +Z,u,(m) has weight wto+ wtm—n—1€wtm— g +Z. Thus u,(m) €
M°(A— £ —Z)and

g(un(g™'m)) = g(& un(m)) = E7E up(m) = Eup(m) = (&'t))ym = (gu)am .
|

Remark. Through the decomposition M = e/ %)M (A), g acts on M. However,

this action is not functorial and depends on the choice of the A in A + IZ(.

5.2 Let h be an automorphism of ¥, commuting with g. Then / preserves the g-
eigenspace decomposition of V. Let M be any g-twisted module with the vertex
operators denoted by Yj/(v,z). Let "M = M as vector spaces. For each v € V, we
define Y, (v,z) = Yar(hv,z). It is straightforward to verify that Y, (v,z) makes
"M into a g-twisted V-module. If ¢ : M — N is a homomorphism of g-twisted V-
modules, then #¢ = ¢ : "M — "N is also a homomorphism of g-twisted ¥-modules.
Thus the assignment M — "M defines a functor 4, — %, and "'\ =M (h2pr),

Lemma. Let M be a g-twisted V-module, then for any choice of the action g :
M — M defined in the remark above gives an isomorphism M — "M of g-twisted
modules.

Proof. For each A, the action of g on M(A) defines an isomorphism of g-twisted
V-modules by Lemma 5.1. Then the isomorphism extends to M through the direct
sum decomposition. [

5.3. Recall that for each homogeneous u € V", the weight of u, is in Z — % as an

operator on any g-twisted ¥-modules. We set 4" = @, .5 A(g),,_lr(. Then we have

K—1
A(g)= D 4,
r=0
which gives another graded algebra structure on A4(g).

Since for each automorphism 4 of ¥ commuting with g, the module *M is
also a g-twisted module, one verifies directly from the definition that A(u,) = (hu),
defines an automorphism of the associated algebra A(g). In particular g defines an
automorphism of A4(g) such that the gradation A(g) = @fz_ol A" is given by the
g-eigenspaces with g acting on 4" by &.

Now let M be any module in %;. The decomposition M (1) = @f;ol MO(A— %)
is a graded A(g)-module with respect to the above gradation of 4(g). This graded
A(g)-module structure is independent of the choice of A up to the index shifting.
Moreover, for any fixed g action on M compatible with the g-action ¥ in the sense
of Lemma 5.1, the g-eigenspace decomposition of M gives the graded A(g)-module
structure on M.
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We will concentrate on the case when M is simple. If we assume the lowest
weight spaces are contained in the g-invariant spaces of M, then there is a unique
way to index the homogeneous spaces such that the lowest weight space is in
M° and we will denote them by M = M°® M' @ --- ® MX~!. This notation is
compatible with the case when V is a simple V-module (here g = 1).

Our next goal is to show that if M is simple, then M° M' MX~! are non-
isomorphic simple (untwisted) ¥°-modules. In the following ¥ is still an arbitrary
vertex operator algebra. The result is a strong contrast with Lie algebra and indicates
the associative algebra feature of vertex operator algebras.

5.4. Proposition. Let M be a module in 6, and m € M be homogeneous. Then
the subspace Anny(m) = {v € V|Yy(v,2)m = 0} is a V-submodule of V (thus an
ideal of V).

Proof. Since m generates a submodule of M in %, we can assume that M is in ;.
Thus all weight spaces are finite dimensional. For any v € ¥, we can write v = v° +
---+vK~1 such that v" € V". By considering the weights, we have Y3(v,z)m =0
if and only if Yy (v",z)m = 0 for all ». Thus Anny(m) = @f:—ol(V’ N Anny(m)).

Let M’ = @, M, be the graded dual of M. We need to discuss the associativity
of the vertex operator product expansion (cf. [DM2,DL]). Let C[z;,z;]s be the
localization of the polynomial ring C[zy,z;] with respect to the set of all nonzero
homogeneous polynomials of degree 1 and 1;, : C[z1,22]s — Cl[z1,2; 1,22,22‘ ]]] the
injective map such that an element (az; + bz;)~! is expanded in nonnegative integral
powers of z;,, where (i1,i;) is an ordering of the set {1,2}. Let v € ¥ N Anny(m)
and u € V7. For each m’ € M’ by the rationality for g-twisted modules, there exists
f(z1,22) € C[zy,2,]s such that

i
m' (Y (u,20) Yy (0,22)m)zf 25 = 112 f(z1,22)

and by the associativity, we have

m' (Y (Y (,20)0,22)m) (20 + 22) K 2F = 150 f (20 + 22,22)

for the same f. Since v € Anny(m), we have 11,/ (z1,22) =0, which implies
f(z1,22) = 0. Thus f(z0 + 22,22) = 0 and 129 f (20 + 22,22) = 0. Therefore

m' (Y (Y (u,20)0,22)m) =0 .

Since m’ € M’ is arbitrary, we have Yy (Y (u,20)v,2z2)m = 0. Thus u,(v) € Anny(m)
and Anny(m) is a V-submodule of V. [

Corollary. Suppose V is a simple vertex operator algebra. Let M be a module in
%, with any fixed g-action on M such that the resulting eigenspace decomposition

M = @f;ol M" gives a graded A(g)-module as in 5.3. Then M +0 implies M" 0.

Proof. We may assume that M is irreducible and the gradation is the canonical
one. Fix a nonzero vector m in the lowest weight space. Then we have M =
A(g)m = @f;ol A'm and A"m C M". Thus we have the equality A”m = M". Note
that u, € A" for all n € %Z whenever u € V. Suppose M" = 0 for some ». Then we
have V" C Anny(m). Thus the submodule Anny(m)=40 by Theorem 2 of [DMI1].
However, 1 is not in Anny(m). This contradicts the simplicity of V. O
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5.5. Recall from 2.3 that ¥ = @' )/(¥' ® #/XC[1,t~]) and there is a natural ho-
momorphism ¥ to 4(g). Thus ¥ “acts” on every module in %;. Note that V is only
a subspace in 4(g). However the following explains that U,(¥') is not much larger
than V. The proof of the lemma uses a similar argument as in [DM1] for the ordi-
nary module cases by using the rationality and associativity properties for g-twisted
modules. For simplicity we denote V7 = V" @ tfC[t,t~']. Then ¥ = @)X ' 7.

Lemma. Let V be any vertex operator algebra and g is an automorphism of finite
order K of V. If M is a g-twisted V-module generated by a set S over V, ie.,
M = Uy(V)S, then M is the linear span of the following subset {u,slu € V,n €
%,s €S}, or simply M =VS. 0O

Theorem. Let V be a simple vertex operator algebra and M a simple g-twisted
module. Then, in the decomposition M = M® +M" + - + M5 MO, ..., MK-!
are nonzero and non-isomorphic simple V°-modules.

Proof. By the corollary above, we know that M'"’s are nonzero. Next we show
that they are irreducible. Let O%m € M'. Since M is simple, thus S = {m} is a
generating set of M on V. By the lemma above, we have M =V = @r—o rS.
However, V7S QM’_ ”. This implies that we have the equality M'~" = VrS. In
particular, we have ¥°S = M’ and m generates the entire module M* over V0. This
shows the simplicity of M".

To show that M°,...,M* =1 are non-isomorphic ¥°-modules, one can follow a
similar argument as in the proof of Theorem 4.1 of [DM1]. O

5.6. Theorem. Let V be a simple vertex operator algebra and g is an automor-
phism of order K. Suppose M and N are two irreducible modules in €, such that a
VO-component M” of M is isomorphic to a V°-component N* of N. Then M = N
in 6,

Proof. Let M =M%+ --- +M%X~1 and N = N°+--. + N&~1 be V-decomposi-
tions of M and N respectively. Suppose ¢ : M" — N° is an isomorphism of V-
modules. Then ¥ : M" — M” @ N* defined by y(m) = (m, ¢(m)) is a V°-module
homomorphism with image isomorphic to M" and a proper submodule of M" @ N°.
We now fix 0%m € M". Consider the g-twisted V-submodule W generated by
(m, ¢(m)) in M ® N. Then we have W = V(m, p(m)) = ZK—I Vi(m, ¢(m)). How-
ever, Vi(m,p(m)) CM" @ N CM @SN for all i. In particular for i =0, we
have VO(m, p(m)) = y(M") is a proper submodule of M" @ N*. Therefore, W is
a proper submodule of M @ N and W must be a simple submodule. Since both
projections pr;: W — M and pry: W — N are nonzero, they must be isomorphisms,
which gives an isomorphism between M and N in 4;. [

5.7. Now we consider the induction from ¥° to ¥ for a simple vertex operator
algebra ¥ with an automorphism g of finite order. Let %) be the category of
untwisted ¥°-modules.

Proposition. Let M be any simple module in %, Then Ind(g"M’#O. More pre-

czsely,Ind "M " has a unique simple submodule isomorphic to M.



182 C. Dong, Z. Lin

Proof. Note that the projection M — M” is a nonzero homomorphism of V-
modules. By Frobenius reciprocity we have a non-zero homomorphism M —

Ind (ggM ". Since M is irreducible in %, M is isomorphic to a submodule of Ind ”M r

By Theorem 5.5, we have Hom(go(N M") = C. This shows that M appears 1n the

socle of Ind _ng exactly once as a direct summand. On the other hand for any
simple module N in %, Hom%o(N M")=#0 if and only if N = M by Theorem 5.6.
a

5.8. Theorem. Let V be a simple vertex operator algebra. Suppose that %, is
semisimple.
(1) Then for each simple V°-module N,

nd% N =~ {M if N & M" for a simple module M in %, and some r,
L0 otherwise.

(2) If we further assume that %, has only finitely many simple modules, then
for any module N in €9, InngN is in 6,
1

Proof. By applying Forbenius reciprocity and using Theorem 5.5, we see that the
identity of (1) holds if the left-hand side is replaced by its socle. Since %; is

semisimple, then IndZ"N is also necessarily semisimple by Proposition 2.9. Thus
1

(1) is proved.

(7T .. . .
For the same reason as above, Ind(ég N is semisimple, since for each simple mod-
1

ule in %, it has only finitely many irreducible direct summands as a ¥°-module. On
the other hand, for each simple module L in %, Hom(g(l)(L,N ) is finite dimensional

by Lemma 4.8. Therefore Hom(g(l)(M,N ) is finite dimensional as well for any simple

g-twisted V-module M by Theorem 5.5. Thus by Frobenius reciprocity, each sim-

ple g-tw15ted V-module appears only finitely many times as a direct summand of

IndgﬁN since %, has only finitely many simple modules. Then Ind 4 N is a direct
1

sum of finitely simple modules and thus in 4;. O

Remark. 1f V is simple and rational (i.e., g-rational with g = 1), the above theo-
rem implies that V' = Ind -(1) V0 if we consider the ordinary modules. The induction

functor is actually defined from % to %,.
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