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Abstract: A simple connection between the universal R matrix of Uq{sl{2)) (for
spins \ and J ) and the required form of the coproduct action of the Hubert space
generators of the quantum group symmetry is put forward. This leads us to an
explicit operator realization of the coproduct action on the covariant operators. It
allows us to derive the expected quantum group covariance of the fusion and braid-
ing matrices, although it is of a new type: the generators depend upon worldsheet
variables, and obey a new central extension of the Uq(sl(2)) algebra realized by
(what we call) fixed point commutation relations. This is explained by showing on
a general ground that the link between the algebra of field transformations and that
of the coproduct generators is much weaker than previously thought. The central
charges of our extended Uq(sl(2)) algebra, which includes the Liouville zero-mode
momentum in a non-trivial way, are related to Virasoro-descendants of unity. We
also show how our approach can be used to derive the Hopf algebra structure of the
extended quantum-group symmetry Uq{sl{2)) 0 JJ^(sl{2)) related to the presence
of both of the screening charges of 2D gravity.

1. Introduction

The quantum group structure of two-dimensional gravity in the conformal gauge
has led to striking developments [1-13], by allowing us to derive general formulae
for the fusion and braiding coefficients of the operator product algebra (OPA) in
terms of quantum group symbols of Uq(sl{2)). Moreover, there exists [1,2,3,5] a
covariant basis of holomorphic operators, where there is a natural quantum group
action which is a symmetry of the OPA. However, this characterization of the
quantum group symmetry is somewhat implicit, as so far we do not have an
explicit construction of the Uq(sl(2)) generators as operators on the Hubert space of
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states, i.e. a Hamiltonian realization of the quantum group symmetry. We would
like to stress here that the quantum group symmetry we are talking about is dis-
tinct from the so-called "dressing symmetries" [6]. The latter transform solutions
of the equations of motion into different ones, while here the "physical observ-
ables" (the functionals of the Liouville field) are invariant, and the symmetry is
seen only in the enlarged phase space defined by the free field construction of the
Liouville field. In fact the situation is very similar for general conformal field the-
ories related to a Coulomb-gas construction, the most basic example being given
by the c < 1 minimal models, and thus the relevance of this question extends
much beyond the specific framework within which we will address it to have a
definite setting. Gomez and Sierra [7] showed that there exists a realization of
the Borel subalgebra generated by J+ and J3 for the c < 1 theories4 in terms of
contour-creating operators acting on suitable screened vertex operators. Although the
operator product and the braiding of the latter do reproduce the g-Clebsch-Gordan
coefficients and braiding matrix of Uq{sl(2)\ they are not, strictly speaking, con-
formal objects. The basic message from the work of refs. [1,2,3,5] is that in fact
there exists a basis of primary conformal fields which have the desired properties.
Furthermore, in analogy to the Gomez-Sierra treatment, the action of J+ within
the new basis is related to multiplication by a suitably defined screening charge
[12], though the contour integral realization of this multiplication (if it exists) is
not obvious, and probably in any case not very natural. However, as was pointed
out in [14], the general realization of quantum group generators, independent of any
Coulomb gas picture, should be given in terms of certain operators on the Hubert
space acting on covariant fields by braiding, generalizing the action of "classical"
symmetries by commutators. In the present article, we undertake steps towards a
concrete realization of this form. Let us first summarize the basic point of the gen-
eral exposition contained in [14], where the principles of (quasi) Hopf quantum
group symmetry in quantum theory have been nicely formulated5. First consider a
field theory with an ordinary (not q deformed) Lie algebra *& of symmetries. For
any element Ja G ̂ , there exists an operator Θ(Ja) such that a typical field Ψι
transforms as

"), ψ{\ = Σ,Ψm[Ja\n, . (1.1)

In this equation [Ja]mι is the matrix of the particular representation of ^ under which
Ψι transforms. By text-book calculations, one of course verifies that the group law
is satisfied since

[Θ(Jb\[Θ(Ja\ b b

together with the Jacobi identity, which implies

[[G(Ja),Θ(Jb)]9 Ψ{\ = Σ W Λ i (1.2)
n

Products of fields obey

[Θ(Ja),ΨhΨh] = Σ ΨmιΨm2([JaUhδm2ι2^δmιh[Ja]m2l2), (1.3)
m\m2

so that they transform by a tensor product of representations as expected. This last
point clearly shows that such generators cannot exist for quantum groups for which

4 This work was generalized to the WZNW theories in [8].
5 See also [15] for a general discussion with emphasis on affine quantum group and Yangian

symmetry.
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simple tensor products of representations do not form representations. In order to
introduce the remedy, let us rewrite Eq. (1.1) in the form

Θ{Ja)Ψι = Ψm([Ja]mιS + δmJΘ(Ja)), (1.4)

where we introduced the identity operator J> in the Hubert space of states. As is well
known, standard Lie groups may be regarded as particular cases of Hopf algebras
endowed with a (trivial) coproduct; namely, given an element a G ̂ , one lets6

Λ0(Ja) =Ja®\ + \®Ja. Clearly, this coproduct appears in formulae (1.3) and
(1.4), the first with the coproduct between two matrix representations, the second
with the coproduct between a matrix representation and the operator realization
within the Hubert space of states.

From there, the generalization to quantum Hopf algebras becomes natural,
following ref. [14]. Consider a quantum deformation of an enveloping algebra with
generators Ja, and coproduct6

Λ(Ja):= ΣΛa

cdJ
c®Jd (1.5)

cd

which is co-associative
ΣΛe

bcΛ
a

ed = ΣΛe

cdΛ
a

be. (1.6)
e e

Then Eq. (1.4) is to be replaced by

&{Ja)Ψ, = ΣΈVmΛa

bc[Jb}ml&{Jc). (1.7)
m b,c

The present action is now consistent. Indeed, an easy calculation using the
co-associativity shows that Eq. (1.3) is replaced by

Θ(Ja)Ψh Ψh = ψmι Ψm2A
a

bc {Λb

de[Jd]mιh[Je]m2h} Θ{JC). (1.8)

Summations over repeated indices are understood from now on. Now the products
of fields transform by action of the coproduct of the individual representations, and
thus do span a representation.

Next two general remarks are in order which will be useful below. First, in
the same way as for ordinary symmetries (see Eq. (1.2)), one may verify that the
transformation law just recalled is consistent with the assumption that the generators
Θ(Ja) and the matrices [Ja]mι satisfy the same algebra; this is expressed by the
equality

[Θ(Ja),Θ(Jb)] = Θ([Ja,Jb]), (1.9)

which uses the fact that the algebra preserves the coproduct. However, this is not
necessarily true. As we will see below for the case of Uq(sl(2))9 consistency of the
present coproduct action does not require that the algebra of the generators coincides
with the one of the matrices: the former may be a suitable deformation of the latter,
containing additional "central terms" that commute with all the Ψι fields. This will
be the subject of Sect. 2. Indeed, we will see later on that it is an algebra of this
type that will come out from our discussion, realized in a somewhat non-standard
way. Thus at this point we depart from the general scheme of ref. [14], where it

6 We denote the coproducts by the letter A instead of the more usual letter A, since the latter
is used for conformal weights.
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is assumed that the generators form a representation of the algebra; we will make
further comments on this below.

Second, clearly the two sides of Eq. (1.7) are not on the same footing: one
multiples by Θ(Ja) on the left, and reads the transformation law on the right. What
would happen if we reversed the roles of left and right? This brings in the antipode
map S*, which is such that (from now on, summation over repeated indices is
understood)

Λ%S~ι ι

b[JbJc]nm = Λa

blS~ι ι

c[JbJc]nm = δnmε(Ja), (1.10)

where [JbJc]nm is the matrix element in any representation, and ε is the co-unit.
For completeness, let us recall that the latter is a complex number such that

Λa

bcε(Jc) = δa,b . (1.11)

Using the formulae just summarized, it is easy to verify that Eq. (1.7) is equivalent to

Ψ,G{Ja) = Aa

bcG{Jb)Ψm[JlS)}ml, (1.12)

where

J{S) = S~lUd> (1.13)

and

Λ a

b c = Λ a

c b (1.14)

is the other coproduct (transpose of the previous one). In our discussion both pos-
sibilities will be useful. We will refer to Eq. (1.7) as describing the right-action
(the generator acts to its right), and to Eq. (1.12) as describing the left-action. Thus
going from the left-action to the right-action corresponds to the antipode map. For
products of fields, we obtain an equation similar to Eq. (1.8):

Ψh ΨhΘ(Ja) = Λa

bdΘ(Jb)Ψmι Ψm2Λ
d

ec[J{S)]mιh[JfS)]m2h , (1.15)

which shows that A appears as in Eq. (1.12).
In ref. [14] the general properties of the generators Θ were characterized, but

no attempt at an explicit construction was made. On the other hand, the com-
plete study of the operator algebra of Liouville (2D gravity) has revealed [2,3,5]
that a particular basis of chiral operators noted ξ$ exists whose OPA is quantum
group symmetric, with products of operators transforming by the coproduct of the
individual representations of each. These ξ should be the operators to which the
general construction just recalled applies. It is the purpose of the present paper to
show how this is realized or, to be more precise, how a suitable redefinition of the
formulae just given is directly realized by the OPA of the ξ fields. In the present
quantum group picture, M is a magnetic quantum number, like the indices displayed
in Eq. (2.3), while J is the spin that characterizes the representation. The OPA of
the ξ fields has been studied at first for standard representations with 2J Ά positive
integer [2,3], and we discuss this case in Sects. 3 and 5. On the other hand, the
application of quantum groups to two dimensional gravity led us to go away [2-13]
from this conventional situation. First one needs to deal with semi-infinite repre-
sentations with continuous total spins. Second there are two dual quantum groups
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Uq(sl(2)) and U^(sl(2)) such that q = exp(ih), # = exp(zTz), and hh = π 2 . For con-
tinuous spins, the complete quantum group structure noted Uq{sl{2)) Θ U~(sl(2))
is a non-trivial combination of the two Hopf algebras. Its overall Hopf algebra
structure will be derived in Sect. 6 by making use of the present general scheme.
The particular case of spin —1/2 will be considered in Sect. 4, where it is pointed
out that the corresponding ξ fields are required for the description of the Cartan
generator Θ[q~Ji] (with right-action). Finally, let us note that our results will be
weaker than a full realization of the general scheme of ref. [14] concerning a basic
point. Since the algebra of our generators will differ from the standard Uq(sl(2))
one, we cannot yet address the question of the existence of an invariant vacuum
|0) such that

0(Ja)\0) = ε(Ja)\0) . (1.16)

We will comment further on this point in Sect. 7.

2. Preamble: More General Definition of the Co-product Action for Uq(sl(2))

Let us now turn to two-dimensional gravity (Liouville theory). There the enveloping
algebra is Uq(sl(2)). In this latter case, the generators are J± and q±j3, which satisfy

qJU± = q±XJ±qJ\ [J+9JJ\ = * 'g ~^/\ i"3^3 = 1 , (2.1)

and we have the coproduct

Λ(q±Ji) = q±J* <g> q±J\ A{J±) = J± <g> qJ* + q~J* ®J± . (2.2)

Thus one would write

(9(J±)ΨM = ΨN[J±]NM<!)(qJ3)+ ΨN[q-J3]NM®(J±) (2.3)

We now use upper case indices to agree with later notations. In the general scheme
of Mack and Schomerus, it is assumed that the generators acting in the Hubert
space and the matrices of the transformation law of the fields obey the same algebra.
Indeed, it is easy to verify that the coproduct action just written is compatible with
the Uq(sl(2)) algebra for the generators

G[q^]Θ[J±\ = q±ιΘlJ±]Θ[qj3l [Θ[J+], ΰ[JJ\] = Vq ^ _ ^ J . (2.4)

However, this will not be true in our construction, which suggests more general
alternatives. Thus we discuss on a general ground the possibility that the matrices
satisfy the usual algebra, while the generators obey more general braiding relations.
At the present stage of our understanding, we are not yet able to discuss the case
of a general Hopf algebra. Although we believe that the property we are discussing
is not specific to Uq(sl(2)), we restrict ourselves to this case from now on. Let us
determine the most general algebra of the operators 0[./±] and Θ[q±j3] compatible
with the coproduct action Eq. (2.3), from which we deduce immediately

- Θ[qJ*]Θ[J+])ΨM -
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Therefore it follows that

q&[J+]Θ[qJ>] - &[qJ>]&[J+] = C+ , (2.5)

where C+ is a central term which commutes with all the Ψ's. In the same way we
derive the analogous relation

Θ[qj3]Θ[J-] - q~X®[J-W[qJ^ = C- . (2.6)

Computing the action of [$[«/+],$[•/-]] on ΨM we get

+ ΨN((J-q-Ji )NMC+ + {J+qJ* )NMC- ) .

The last term can be "removed" by introducing the operator &[D] which acts as

&[D] ΨM = ΨN(q~2Ji )NM&[D] + ΨN((J^q-Ji )NMC+ + (J+qJi )NMC- ) . (2.7)

It is easy to see that it can be taken equal to:

G[D] = (C+Θ[JJ\ + C-&[J+])&[q-Jη . (2.8)

We then get

2 J l ( 9 [ J - ] \ - 0[D])

from which it follows that

C+Θ[J.] + C.Θ[J+])Θ[q-Ji] , (2.9)

where C3 is also a central term which commutes with all the ^ 's . We note that
Θ[D] is defined in fact up to a term (Θ[q~j3])2. This freedom is already taken into
account in the term C3.

At this stage we have derived the general operator algebra compatible with
the action defined by Eq. (2.3). Clearly the commutation relations Eq. (2.4) are
recovered for C± = C3 = 0, and we have found a three-parameter deformation of
Uq(sl(2)). Let us discuss its properties by considering an arbitrary representation

of this algebra by generators denoted by J±,q±j3, satisfying

— 1 7" r/^3 (~*

C+J- + C-J+)q~j3 ,
q-q-

[C±Ja] = [C3, Ja] = 0 . (2.10)

At this point the question arises if the deformed algebra Eq. (2.10) is a Hopf algebra,
in particular if we have a (co-associative) coproduct. This coproduct should be
formulated in terms of the generators Ja only, in contrast to Eq. (2.3) where both
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the standard Uq{sl{2)) matrices [JQINM and the generators Ja appear. Evidently,
this new coproduct is not of the form Eq. (2.2) as the latter does not conserve the
deformed algebra.

The easiest way to answer this question is to show that, in general, any repre-
sentation of this algebra may be re-expressed in terms of the original algebra given
by Eq. (2.1) via a linear transformation of the generators. It is immediate to check
that the following operators:

J±= p

with

satisfy the original algebra7, and the new generators still act on the ΨM fields
according to Eq. (2.3) (with Θ(Ja) replaced by the Ja above). These relations can
be inverted very easily

J± = P~λJ± T γ ^ p q - J \ q±7' = P^lq±J" . (2.12)

The existence of such a linear transformation shows that at a formal level the present
modification is a trivial extension of Uq(sl(2)). Two remarks are in order at this
point. First it agrees with what is known for h = 0 from cohomology arguments8.
Second this is really true only if we may diagonalize the central terms C± and work
within an eigenspace where they may be replaced by numbers. The situation will
be more involved in the coming field theoretic realization, where C± are operators
in the Hubert space of states. From the above mapping of the new algebra to the
standard one it is very easy to derive the new coproduct

Λ(J±) = pJ±®q7i+p-ιq-7i <g> J± ± χ ^ ± χ Pq~7* ® q7* . (2.13)

The action of $[./±] and Θ[q±j3] can be defined with the new coproduct, the matrix
elements that appear being the ones of the new generators of Eq. (2.12). Using
Eq. (2.11), it can immediately be rewritten as

±J\ Λ{J±) - J± ® qJ* + q'^ (g) J± . (2.14)

Thus both coproducts acting in their own way on the Ψ's give in fact the same
result. This is quite important since it shows that our definition of the action is
umambiguous. This action is now compatible with the new group law in the sense
defined by Eq. (2.10). The new coproduct is co-associative. Acting on the product
of two Ψ's, it is easy to see that the action defined from Eq. (2.14) is preserved and
that only matrix elements of the ordinary coproduct appear. This property is true
not only for the generators but also for all the operators of the enveloping algebra.

7 Provided that p is finite, if not the algebra can only be recast in a form with C± = 0,
C3 = \/{q — q~ι); we will not discuss this case here.

8 We are indebted to L. Alvarez-Gaume for mentioning this fact.
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The profound reason is an invariance of the original coproduct structure con-
stants Aa

bc. There exists a group of matrices Xζ such that

for all b. Then the generators defined by Ja — X£Ja satisfy new commutation rela-
tions preserved by a new coproduct with structure constants given by

The property of invariance of the A implies

so that

rbcr®r = Aa

bcJ
b

In our case of Uq(sl(2)) it is easy to show that the general solution for the matrices
X is precisely given by the three parameter relations of Eqs. (2.12), and that these
transformations generate the group E2.

The particular case where C3 = l/(q — q~1)- In the coming discussion, Θ[q~Ji]
will be on a completely different footing, and will not be introduced at all in the
beginning. This will be possible since the generators will satisfy an algebra which
is closely related with the one just written in the particular case C3 = \/{q — q~ι),
where the coefficient of Θ[q~Ji]2 on the right-hand side of Eq. (2.9) vanishes. In
the present subsection, we show that indeed Θ[q~j3] may be completely eliminated
- assuming that C+C- does not vanish - for this particular value9 of C3 from the
algebra defined by Eqs. (2.5), (2.6), (2.9) if we use the operator Θ[D] introduced
in Eq. (2.8):

Θ[D] = C

What happens in practice is that Θ[q~j3] only appears in the particular combina-
tion Θ[D\ The derivation goes as follows. First, using Θ[D] this algebra may be
rewritten as

- Θ[qJ>]Θ[J+] = C + , (2.15)

-χG[JJ\G[qJ*] = C_ , (2.16)

C+G[JJ\ + C-Θ[J+] = Θ[D]Θ[qJ*] , (2.17)

Θ[J+]Θ[J-] - Θ[J-]Θ[J+] = Θ[D] + v lH }\ . (2.18)

Second, making use of the definition Eq. (2.8), one verifies that the braiding relations
of Θ[D] with the other generators are given by

Θ[J±]Θ[D] - q±ι0[D]Θ[J±] =

~ι= ±Cτ(q - q~ι)Θ[J±] . (2.19)

9 In fact we may always reduce the general situation to the present one by a suitable redefinition
of the generators. For this value of C3, p = 00 is equivalent to C+C- = 0.
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The key fact here is that Θ[q~J^] does not appear explicitly in the braiding relations
just derived. Finally, substituting 0[./±] as given by Eqs. (2.19) into the previous
commutation relations Eqs. (2.15)—(2.18), one derives further consistency relations

Θ[qJi]Θ[D]2 -(q + q~ι)Θ[D]Θ[qJ*]Θ[D] + Θ[D]2Θ[qJi] = C+C-Θ[qJ*] ,

β[D]Θ[qJ>]2 ~ (q + q-l)Θ[qJi]Θ[D]Θ[qJi] + Θ[qJ>]2Θ[D] = -C+C-(q - q~ι) ,

Θ[D]Θ[qJη2Θ[D] - Θ[qJi]Θ[D]2(9[qJi] = ~C+C-(q - q~ι)O[D]

- C+C-O[qJ*]2 . (2.20)

It is easily seen that this last identity is not independent. It can be obtained by a
combination of the first one multiplied by Θ[qJ*] on the right and of the second
multiplied by Θ[D] on the left. From this we can verify that the enveloping algebra
of the generators Θ[J±], ®[D],&[qj3] may be entirely derived without ever making
use of Eq. (2.8), so that Θ[q~Ji] has been completely eliminated as we wanted
to show.

Recalling the action of Θ[D] on the ΨM fields,

Θ[D]ΨM = ΨN(q-2J^)NMβ[D] + ΨN((J-q-J')NMC+ + {J+qJ*)NMC-) ,

we see that we have a co-action of Θ[D] defined by

Λ(Θ[D]) = q-2Ji <g> Θ[D] + (J+q~J3) 0 C_ + {J~q~h ) ® C+ .

In deriving Eqs. (2.19), (2.20) from Eqs. (2.15)—(2.18) we have made use of the
relation Θ[qJ^]Θ[q'j3] = 1. However, Eqs. (2.15)-(2.20) altogether define a con-
sistent operator algebra which may be considered on its own, without introducing
Θ[q~j3] at all, and it is this "weak" version of the original equations which will be
realized by our generators - in a special way to be described in Sect. 3.3.2 below.
In fact, our realization will necessitate a further generalization of the above consid-
erations in that our generators will depend on position, like the fields on which they
act. Although the derivation leading to Eqs. (2.15)-(2.20) is not strictly applicable
in this situation, we will demonstrate explicitly that the latter, suitably interpreted,
are realized by our generators.

For later reference, we note here already that a more general condition could be
assumed in place of Θ[qJ*]Θ[q-J*] = 1, namely Θ[qJ3]Θ[q-J*] = Co, where Co is
central. At the present formal level, this modification is trivial as it amounts only
to a normalization change of Θ[q~Js-], and thus the above arguments are unchanged
(except that we should replace Θ[q~J*] -> Θ[q~J*]Cόι in Eqs. (2.8), (2.9). However,
it will acquire a non-trivial meaning for the field-theoretic realization discussed
below (see Sect. 4). Note also that Θ[qj3] and Θ[q~~j3] do not play the same role
in the original algebra. In particular the expressions similar to Eqs. (2.5) and (2.6)
with Θ[qJi] -> Θ[q-J*], are not central, but proportional to Θ[q~Ji]2.

Before beginning our construction let us clarify how the above formal structure
will be realized by operators in the Hubert space of states. These generators will
in fact be operator-valued functions on the unit circle, much as for a Kac-Moody
algebra. We will define the operators (9[J±]σΘ[qj3]σΘ[D]σι^σ2 and so on, such that
(what we will call) fixed-point realisation of the above structure hold. For instance,
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the fixed-point version of Eq. (2.18) is

Θ[J+]σιO[J-]σ2 ~ O[J-]σι&[J+]σ2 = 0[D]σι,σ2 _ -i < )

The rule should be clear on this example. One chooses a certain number of separate
points (here σ\, and #2), and replaces each term of Eq. (2.18) by the corresponding
products with the ordering of points being the same for every term. As we will see,
this fixed-point commutation relation is good enough to ensure the correct algebraic
structure of the field transformation laws. Note that certain operators depend upon
more than one point. This is true for Θ[D], and for the central terms. Clearly,
these fixed point relations are very different from algebras of the Kac-Moody type
(current algebras on the unit circle): in the latter case, one does exchange the points,
and the central term is local, i.e. proportional to a Dirac distribution.

3. The Operator Realization of Uq(sl(2))

3.1. The Generators. Our basic tool will be the braiding relations of the family of
chiral primaries ξ^\ with 2/ a positive integer and — J ^ M ^ J. We work on
the cylinder 0 ^ σ ^ 2π, — oo ^ τ ^ oo. Since the ζ fields are only functions of
σ - h (or σ — τ in the Minkowski case), we may restrict ourselves to equal τ and
take it to be zero. Thus we work on the unit circle z = eισ. It was shown in ref. [2]
that, for σ > σ',

-J^N^j; -J' %Nf ^J'

where

V>JΆ = ((^M l ® (J',M'\)R(\J,N) x \J',N')) ,
/ oo (λ _ P2ih\n ihn(n-\)/2 \

R = eί-a^Wa) [ 1 + Σ U / 7, e~ihnJ^{J+)n 0 eihnJ^J.)n . (3.2)
V /ι=i LnJ! /

Since these formulae are basic for our discussion, it is worth commenting about
their derivation. The original discussion of Gervais and Neveu (refs. [23,2]) used
the existence of two equivalent free fields, which was derived perturbatively,
using a scheme that seems specific to the Liouville theory. However, more recently,
the whole derivation was carried out again [4,5], making a systematic use of the
monodromy properties of the differential equations for Green functions, combined
with the polynomial equations, and other standard axioms of the Moore Seiberg
formalism. Thus, although it is not at the level of a mathematical theorem, the
derivation of the ξ braiding relations is presently at a level of rigor which is usual
in two dimensional conformal field theories. For instance its derivation is similar
to the use of KZ equations in WZNW theories on the sphere. In addition, recently
a Coulomb gas picture has been established [9,13] which is similar in spirit to the
one known from minimal models. For the following, we note that Eq. (3.1) is valid
for σ,σ' G [0,2π], although in refs. [2,9,13] it is stated to hold for σ,σf G [0,π]
only10. We have introduced states noted \J,M) which span the spin J representa-
tion of Uq(sl(2)), in order to write down the universal R matrix. We now show

10 This is clear from the derivation in ref. [9] and also from the underlying transformation law
for hypergeometric functions used in ref. [23].
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that particular cases of the formulae just written are very similar to Eq. (2.3). There
will be important differences which we will spell out in turn. In the following, the
two Borel subalgebras ^ + with elements J+ and #/, and ^ _ with elements /_ and
q~Js, will be considered separately, as they will be realized in a different way.

3.1.1. The Borel Subalgebra $+. Let σ+ > σ. A particular case of Eq. (3) is

(33)

^ ( 3 . 4 )
q-2 2

This exactly coincides with Eq. (2.3) if we identify, up to constants, ξ([β\σ+)

with Θ(J+\ and ξ ( ^ ( σ + ) with Θ(qJi). The crucial difference with the general
transformation law is that the role of generators is played by fields that depend
upon the worldsheet variable σ+. This is possible since the braiding matrix of
ξ(ι/2\σ+) with a general field ξM (σ) only depends upon the sign of (σ+ — σ).
Thus we may realize the (^+ part of) the transformation Eq. (2.3) simply by the
<j(i/2) fields taken at an arbitrary point (within the periodicity interval [0,2π]) such
that this difference is positive. Accordingly, we will write, keeping in mind the σ+

dependence,

G[J+t} EE κ^ξf{σ+), <P[̂ ](«) Ξ κ ^ ( j , V + ) , (3.5)

where κ+

+ and κ3 are normalization constants to be specified below. For later
convenience, we add a superscript R to indicate that the realization is by right-action
- that is by acting to the right. We then obtain the action by coproduct of the form
Eq. (2.3), that is

Jϊ%&\ { \ J J ^ (3.6)

l ^ (3.7)

provided κ+

+ and κ3

 + satisfy

K+ q (3.8)

Thus we have derived &+ transformations by right-action. The left-action discussed
in the introduction will come out automatically if we braid starting from the product

ξ^\σ)ξ\(σ+). Since we still have σ+ > σ, we use the other braiding matrix.

Recall that for σ > σ' one has [2]

Σ G/^i#V)#V), (3.9)
; -J' SNf SJ'
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where
\NN'

and * means complex conjugate of the matrix elements. From this it is easy to verify

that the left-action is given by Eq. (1.12) with/ + = —qJ+, qJz — q~j3, which are
obtained from ^ + by the antipode map. This is expected from the general argument
given in the introduction. It will be convenient to denote the corresponding operators
by Θ[J+]¥+> a n d Θiq^fσ}. For a better readability of the formulae below, we
always normalize the operators so that the symbols written in the square brackets
are exactly equal to the matrix that appears in the coproduct action. Thus we absorb
the proportionality coefficient between J+ and J+ by changing the definition of the
K coefficients. Altogether, we finally have

= _ i V^ + 7?

(3.11)

(3.12)

3.1.2. The Borel Subalgebra 39-. @- will be realized by letting the £ ( 1 / 2 ) fields
act again, provided we reverse the role of left and right and make use of the fields

ξ}λ{σ-) with σ_ < σ. Since the discussion is very similar to the previous one,

we will be brief. We let

^ Ξ f c ^ - ^ V - ) , Θ[q

-]£_ = K- ζ\(σ-\ &[q 3lσ_ = K3 ζ\ ( σ - ) '

The action by coproduct is

(R_) Y

-q~
(3.

_ i

-q~

(3.

-2 '

13)

14)

(3.15)

, (3.16)

(3.17)

(3.18)

We see that ^ _ is generated by left-action, while its antipode is generated by
right-action. This different treatment of the two Borel subalgebras comes from the
fact that for ^ + (resp. ^ _ ) , q~j3 (resp. qJ^) does not belong to the algebra, so
that only right- (resp. left-) action - where Θ[q~j3] (resp. @[qj3]) does not appear -
may be written.
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3.2. Symmetries of the Operator-Product Algebra. We have begun to see, and

it will be more and more evident in the following, that the operators &[J+ff+9

Θ[qJ^}9 @[J-]¥1, ®[q~j3]¥l, and so on, play the same role as the generators
introduced in ref. [14] and recalled in the introduction. From now on we will call
them the generators. The basic point is that the product of ξ fields will satisfy
relations of the type of Eq. (1.8), which must be compatible with the fusion and
braiding relations. Consider a product of two general fields ξM (0Ί)£jj/ (02). If w e

choose σ+ > σi, <72 > σ_, the action of the generators on each field will be given
by the previous analysis, and so the σ+ dependence will be irrelevant. Accordingly,
we see that Eq. (1.8) will apply for 3$+9 and we get for Ja E ̂ + ,

ξ2\°2)Λa{Λb[Jd
)ξN2

2\°2)Λa

bc{Λb

de[Jd]NίMi [Je]NlM2}&(Jc)σ+ • (3-19)

Similarly, for Ja G ̂ _ Eq. (1.15) will apply and we get

^ ^ (3.20)

Let us next explicitly verify that these transformation laws are consistent with the
OP A of the ξ fields. First, in ref. [4] the complete fusion of the ξ fields was shown
to be given (in the coordinates of the sphere) by

W

Jn=\Jχ-Ji\

, (3.21)

where (J\,M\;J29M2\J\2) are the g-Clebsch-Gordan coefficients, and gj2j are the
so-called coupling constants, which depend on the spins only. The primary fields
VJn (z) whose matrix elements appear on the right-hand side are the so-called Bloch
wave operators, with diagonal monodromy, which are linearly related to the ξ fields.
We will come back to them in Sect. 5. Let us next apply this relation to the two
sides of Eqs. (3.19) and (3.20). This yields the same consistency condition for both
B+ and £ _ :

Σ (J\>N\\J2,N2\J\2)Λde\J ]N1M1[J6]N2M2

Nl+N2=Nl2

= (Jι9Mι;J29M2\Jn)[Jb]N12M12 , (3.22)

which is just the standard form of the recurrence relation for the 3/ symbols.
Equation 3.22 expresses the fact that the 3j symbols realize the decomposition into
irreducible representations of q tensorial products. Similarly, we apply Eq. (3.1) to
both sides of Eqs. (3.19) and (3.20), assuming for definiteness that σ\ > σ2. One
obtains the consistency condition

(JuJl)P

N\P

N\Λb

de[Jd]NιMAJe]N2M2 = Λde[Jd]p2N2[Je]PιNι(JUJ2)MfM2 0-23)
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According to Eq. (3.2), this is equivalent to the condition that the universal R
matrix interchanges the two coproducts. As is well known, this is true by definition.
A similar conclusion is reached if we choose σ\ < σ2 instead. It is clear from their
derivation that Eqs. (3.22) and (3.23) are consequences of the commutativity of
fusion and braiding, and of the Yang-Baxter equation, respectively, and thus of the
polynomial equations. Equations (3.22) and (3.23) tell us that given the existence of
a relation of the form of Eq. (1.7) in the theory - realized here by Eqs. (3.3), (3.4) -
the operator algebra of the ξ fields has to be covariant under the action of the
quantum group given by

(3-24)

For a product of fields, the statement of covariance becomes

£ \ { \ ϊ\^\l%ιMι[Je-\NlM2 (3.25)

according to Eq. (3.19). The quantum group action so defined coincides with the
one introduced in ref. [2] without derivation.

In the present case the generators are themselves given by the simplest ξ fields
of spin \, and we thus find ourselves in a bootstrap situation where we could try to

derive the braiding and fusion of ξ fields with arbitrary spins from those of ζ±l/2

and ξM . In fact, this works for the case where all spins are half-integer positive,
thus multiples of the spins of the generator, as was shown in refs. [2,4,5] using
also the associativity of the operator algebra. We remark that on the other hand,
the exchange algebra in the more general case of arbitrary continuous spins was
derived by an entirely different, direct constructive method in refs. [9,12] (within
the Bloch wave picture). Notice also that the considerations above apply beyond the
level of primaries, as Eq. (3.21) involves the contributions of all the descendants
as well. Their behaviour is governed by the general Moore-Seiberg formalism [16].
The last term of Eq. (3.21) is a number, and thus not acted upon when we derive
the braiding with the operators Θ(Ja)σ+. This is consistent with the quantum group
structure since it does not depend on the magnetic quantum numbers Mz . Thus the
quantum group structure of all the descendants of the ξ fields is the same. As
a matter of fact, we may use the orthogonality of the 3/ symbols to transform
Eq. (3.21) into

£ (JuMι;J2,M2\Ju)ξV\\σO&\σ2)
Mλ+M2=MX2

— an

τ V £(/12'^VrroVϋ7j- ίv\\V^Jι\ (eίσχ — eiσ2λ\τπτ ) Π 26Ϊ

w

Let us denote the left-hand side by ξ[^2](Jn\σuσ2). It follows from Eqs. (3.19),

(3.20) and (3.21) that under the action of the generators O[J+f?}9 &[qj3]{*+9

&[J-]σ-9 &[q~j3]σ2, with σ+ > σ\9 σ2 > σ_, their transformation laws are sim-
ilar to Eqs. (3.7), and (3.18) with spin J\2. Following the same line as above, this
finally shows that the braiding matrix of this field with any covariant field of spin,
say J' must obey a relation of the form Eq. (3.23), and thus be the corresponding
universal R matrix. In particular, we see that, since this R matrix is equal to 1 if



Operator Coproduct-Realization of Quantum Group Transformations 161

J\i = 0, ξ[QJm(σuσ2) commutes with any ^ } ( σ ) field. We will come back to this
important fact below.

3.3. The Algebra of the Generators. There are two levels which we discuss in turn.

3.3.1. The Algebra within <%+. Consider first ^ + . The novel feature of the present
generators is that they depend upon σ. When we discuss their algebra, we could use
the fusion relations to consider their products at the same point. This is not neces-
sary since the above quantum group action depends only on the ordering between
the σ of the generator and the σ of the covariant field, and it will pay not to do
so. Thus, when we discuss quadratic relations within ^ + , we introduce two points
σ+ and σ'+, both larger than σ, and for Ja,Jb £ £$+, we have a priori four products
Θ(Ja)σ+Θ{J»)σ,+ , &{Ja)σ,+ &(Jb)σ+, (9(Jb)σ+Θ{Ja)σ,+ , G{Jb)σ,+ Θ{Ja)σ+. When we let

them act, for instance, to the right, it is clear that the rightmost will act first irre-
spective of which is at σ and which is at &'. On the other hand, for each choice of
ordering between σ and σ', it follows from the braiding relations Eq. (3.1) or (3.9)
that we have equations of the type

&{Ja)σ+ &{J\,+ = pa

c

b

dΘ{JcX>+ &(Jd)σ+ , (3-27)

where p is a numerical matrix. Thus we need only discuss relations between the
products Θ(Ja)σ+Θ(Jb)σf and Θ(Jb)σ+Θ(Ja)σ, , with aφb. We will refer to this

particular type of braiding relations as fixed-point (FP) commutation relations. For

the specific case we are discussing, this means that we have to compare the action

of Θ[qJ^Θ[J+]{^ and &[J+](J^ Θ[qJ^\ Of course this amounts to looking for

the operator equivalent of the matrix commutation relation

[qJi]Mp[J+]pN = q[J+]up[qj3]pN (3.28)

that holds in any spin J representation. Making use of the explicit form of the q
Clebsch-Gordan coefficients, one sees that

V[qHRMJ+ί*l - iWΛ£θtf>lξ = -?^?+>^+>{*iKV+,<), (3.29)

where ξψ2Λ/2m(σ+,σ'+) is the left-hand side of Eq. (3.26) with JX=J2 = \,
J\2 = Mγi = 0. Thus the right-hand side does not vanish. However, it follows from
the above discussion that

Thus our generators satisfy the ^ + FP commutation relations up to a central term,
and we have found the equivalent of Eq. (2.5) of Sect. 2, where C+ is replaced by

/ /
o +

Concerning ^ _ the discussion of the left-action is essentially the same as for
the right-action realization of 3S+. One finds

^^kfhm

+,σ'+). (3.31)
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Note that, since we now act to the left, it is the leftmost operator that acts first.
Thus on the left-hand side of this equation the ordering is the reverse of the one of
the matrix relation. On the other hand, Sect. 2 only dealt with right-action. Making
use of Eqs. (3.13), it is easy to write the following relation equivalent to Eq. (3.31).

0 [ / 3 ] ^ - ] ^ (332)

This is the operator (FP) realization of Eq. (2.6) of Sect. 2.

3.3.2. The Complete Algebra. In order to really compare two successive actions
we have to act from the same side for both, so that we will combine one Borel
algebra with the antipode of the other. Let us act to the right following Sect. 2. A
priori, we have a problem to extend the notion of FP commutation relations: so far
the Borel subalgebras ^ + and M- - as well as their antipodes - are defined by
using points larger and smaller than σ, respectively.

Let us open a parenthesis to answer a question which may have come to the mind

of the reader. The fact that we only have two generators @[qj3fj^ and Θ[J+fJ^ is of

course due to our use of the ξ^1^ field which have only two components. A priori,

^\we could start from ζ^\σ+), with —J-^M^J. This does not help, however,
since their braiding only defines the coproduct action of the enveloping algebra
of ^ + , in agreement with the fact that the ξ^ fields may be obtained by fusion
of the £ ( 1 / 2 ) fields. At the level of J = 1, for instance, one has the correspondence

ζ-\ ~ ®[q2J3l ίoΌ ~ ®V+qJιl ξ[l) ~ ®V+qJzl Thus the other Borel subalgebra
never appears.

Making use of the monodromy. At this point, we will make use of the monodromy
properties of the ξ^1^ fields. As already recalled, these fields are linearly related
to Bloch wave operators with diagonal monodromy - the explicit formulae will be
recalled in Sect. 5. From this, it is straightforward to deduce that

ξ(}\σ + In) = -qξ(}l(σ) + 2q\ cos(hw)ξ^\σ), (3.33)

where w is the (rescaled) zero-mode momentum of the Backhand free field. Of
course, we also have the inverse relation

ξ{^(σ - 2π) = 2q~l2 cos(hw)ξ{^(σ) - q'ιξ^\σ),

&\σ-2π) = &(σ). (3.34)
2 ~2

For the following, it is important to stress that w is an operator, with non-trivial

commutation relations with the ξ(1//2) fields. It seems natural to conjecture that if the

fields ξi (σ) satisfy braiding relations with ξ^ given by the R matrix (\,J) (resp.

( | , J ) ) , then the translated fields £«1/2)(σ - 2π) (resp. ξ(

a

l/2\σ + 2π)) satisfy braiding
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relations given by the R matrix (\,J) (resp. ( ^ , J ) ) Π . To prove this we need to

know how to commute cos(/zm) with ξ)J. The commutation of the fieldss^α \σ)

is easily derived from the condition that the translated fields Q (σ ± 2π) have

the same braiding as the fields ξ^2\σ) and the consistency of the commutation of

cos(hm) with the translated fields. One obtains12

i 4±l ()

The consistency of the commutation of cos(hm) with the fusion of two fields ξ
leads to

2 cos(hm)$P = 2q-2Mξ^ cos(hw) + ^ L

where the matrices ENlf must satisfy

Σ (JuM
Nχ+N2=N 12

This defines a recurrence relation which determines all the matrix elements E^M

from E Ί

x ! . Comparing with Eq. (3.22), we see that actually the matrices

{J±q~J?>)MN satisfy the same recursion relation. Therefore

The coefficients a and b are determined from the commutation with ζ^l a n ( ^ w e

get finally

2cos(to)^} = 2ξ%\q-2Ji )NMcos(hw)

+ (q-q-ι)Σ$\V--J+)q-j3)NM (3.35)

Equation (3.35) defines a coproduct action of 2cos(/*m) on ξ$ with

yl(2cos(Atσ)) = q~1Jι (g)2cos(/zm)

+ (q ~ q~l)(J-q-J3 - J+q~J*) 0 Id . (3.36)

For the action on two ξ it is sufficient to replace the operators q~2J^ and (J-q~j3 —
J+q~j3) by their ordinary coproduct. Now it is straightforward to prove our conjec-
ture and this allows us to construct the missing generators &[J_fJ^ and Θ[J+fJ*}.

11 Actually this is an immediate consequence of the translation invariance of the braiding matrix,
whose position dependence is governed by the step function ε(σ — σ'). Using the full region of
validity σ, σ' G [0,2π] of Eq. (3.1) according to the remark made there, the assertion then trivially
follows. However we provide below an independent, explicit proof using only the validity of
Eq.(3.1) for σ,σ' G [0,π].

12 This formula could also be derived directly from the definition of the ξϊ fields in terms of
the ψ2 fields. It is however not necessary to make reference to the ψϊ fields; at this stage we
could even forget that w is the (resealed) zero-mode momentum of the Backlund free field.
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They are given by

W (*+)(}l(σ+ - 2π), (3.37)

l = κ(++)ξf(°- + 2π), (3.38)

with

4 4 Λ -> ι-g-2>

ΛR+) (R-) \

The explicit expressions for the monodromy of ζ±iβ(σ) lead to the following

relation between Θ[J±], ®[qj3] and cos(hτπ):

]W = (q - q-λXO[J-f?l ~ ®V+ti) (3.40)

It is easy to check that the action of cos{hw) as defined by Eq. (3.40) is com-
pletely equivalent to the one given in Eq. (3.35), as it should be.

Finally, we verify that a FP algebra comes out, which is a realization of the
algebra in Eqs. (2.15)-(2.19) of Sect. 2. First, comparing Eq. (2.5) with Eq. (3.29)
at σ+, and Eq. (2.6) with Eq. (3.32) at σ+ — 2π, we see that we may identify

(3.41)

For C_, one uses the monodromy properties Eqs. (3.34) to verify that

We therefore have (cf. Eq. (3.39))

Now we can establish the FP equivalent of Eq. (2.18), which takes the form

)

- . (3.43)

One finds that Θ[D] is given by the remarkable expression

&tDU a' = ^ T 2 cos(hw)C+(σ+, σ'+), (3.44)
+ q ~ q

which shows how the generator introduced in Sect. 2 is realized. Next multiply both
sides of Eq. (3.40) by C+(σ^,σ^). This gives the FP version of Eq. (2.17):

( [V , (3.45)
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from which one finally gets
C+ = - C _ . (3.46)

This leads to the condition (κ(

3

R+))2 = (K^)2. We choose13

-) . (3.47)

The right-action of Θ[D](R) , is found to read

C+(σ+,σf

+), (3.48)

as may be derived either from Eq. (3.43) or from the definition Eq. (3.44). It takes
the form of a coproduct action, if we define the coproduct of D by

Λ(D) = q~2Ji <g> D + (J_ - J+)q-j3 ® C+ . (3.49)

In conclusion we have derived a FP realization of the algebra Eqs. (2.15)—
(2.19) of Sect. 2, where Θ[qJi] and Θ[J+] depend upon one point, while C±
and (9[D] depends upon two points. Clearly this number of points may be iden-
tified with a sort of additive grading of the algebra introduced in Sect. 2, such
that Eqs. (2.15), (2.16), (2.18) have grading 2, Eqs. (2.17), (2.19) grading 3, and
Eqs. (2.20) gradings 5 and 4 respectively. In the present realization, the equations
of grading larger than 2 are not directly FP realized, but the following simplified
versions are: In fact we are in the special case where C- = —C+ are equal and
where Θ[D]^ σ, is equal to either of them up to an (w dependent) operator that

does not depend upon the points. Thus we may divide both sides of Eq. (2.20)
by C±, which reduces the grading (number of points) to 1. Similarly, equations of
higher grading are to be divided by appropriate powers of C±, so that in the end the
grading is always ^ 2. These simplified relations hold for the present construction.

Let us summarize our present results. We have obtained two types of represen-
tations for the operators J±,qj3 in terms of the fields ξ^2\σ+) and ξ^2\

K

- 2π) - qξ^\{σ+ - In) ,
-1

(σ+ - 2π). (3.50)

The representation for σ_ is obtained by the exchange of σ+ and σ_ + 2π(σ + — 2π
and σ_). We have seen also that (qw + q~w) becomes part of the enveloping algebra
through the relation

J] = (q - q~ιXΘ[J-] - &[J+]) . (3.51)

1 3 This is of course consistent with the fact that q j 3 is the antipode of qj3.
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We remark that one could derive FP commutation relations not only for operators
at points (σ+σ'+) or (σ_,σ'_) but also at points (σ+,σ'_) or (σ_,σ+). This would

introduce new central terms, which commute with all the ξM (σ) fields, namely

+,σ'_ + 2π) = ξl

0^
m(σ+,-2π,σ'_). (3.52)

Another viewpoint. Could we work in a way that would be more symmetric
between J*+ and J*_, without having to use the monodromy to "transport" σ_
to σ+ or vice versa? This is indeed possible by starting from an expression of the
form Θ(Ja)σ+ξ(M)(σ)Θ(Jb)σ_, with Ja e £+, and Jb e £ _ . Then, the relationship
between the two orderings of the action of Ja and Jb is a consequence of the
Yang-Baxter equation associated with the braiding operation ξ^2\σ+)ξ(jjP(σ)ξ(n^

(σ_) -+ 4 1 / 2 ) ( σ _ ) ^ } ( σ ) 4 1 / 2 ) ( σ + ) . In particular, choosing α = y = ±, j8 = <5 = - ±
gives back the equation (J,M\[J+,J-]\J9M) = |_2MJ satisfied by the matrix repre-
sentations.

4. The Extended Framework and the Construction of Θ[q~j3]

In the previous sections, we have exclusively considered ξff fields with half-
integer positive spins. Although we obtained the combination Θ[D] — (C+Θ\JJ\ +
C-Θ[J+])Θ[q~j3] (with C+ = — C_), it was not possible within this framework to
construct the operator Θ[q~Ji] itself for right-action (or Θ[qJi] for left-action). The
reason for this is in fact easy to understand already by a classical scale argument:
Consider Eqs.(2.8) and (2.18). Since G[JJ\ and 0[J+] are realized by ξ ( 1 / 2 ) fields
that have classical scale dimension —1/2, it follows from Eq. (2.18) that Θ[D] has
scale dimension —1, and this of course true for our realization Eq. (3.44). On the
other hand, Eq. (2.8) then tells us immediately that the scale dimension of Θ[q~j3]
must be +1/2, as C+ is realized by operators with total dimension — I 1 4 . But this
is just the classical dimension of the ξ fields with spin —1/2. Thus we are lead to
consider the extended framework described in refs. [9,13], where in particular neg-
ative half-interger spins can be considered. However, for our purposes here it will

(jf)be sufficient to know that their braiding with any ξκ

M/ is still given by Eq. (3.1)

now specified to representations of spin — \ and J\ and that the leading-order

fusion of ζ±ι/2 with ξM is also described correctly by the formula for positive

half-integer spins [2], so that (z :— e'σ)

1 4 Since the coefficient of Θ[q / 3 ] 2 is zero in our realization, this causes no conflict with
Eq.(2.9).
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The basic observation is now that £i^>1/2), which is the formal inverse of ζ^lyl

according to Eq. (4.1), has braiding relations with the ξ$ which are exactly those

appropriate for Θ[q~J^R\ i.e.

/ \_\ ( τ\ ί τ\ ( — Λ
p\ 2'( \ p{ '( \ —M p(y ) / \ρ 2 ' ί \ / / 1 O Λ

2 + M M \

Similarly, from the R matrix for the other case σ_ < σ one obtains

~2 ~2

Thus we should identify

in analogy with Eq. (3.5), and

σ~ ~3 ~\

Analogous formulae of course describe the realization of Θ[qj3] for left-action. From
Eq. (4.1) and the first of Eqs. (3.33) it follows that

Γ ( + ) ί ( Γ ' W - 2 π ) . (4.6)
2 2

Thus we are lead to identify

κ (*3

+) = κί? f } , (4.7)

similarly to Eq. (3.47) of Sect. 3.3.2, and analogously for the left-action case.

Notice however that the coefficients κ_^ = κ_3 (resp. K^ = κ3~ ) are not

fixed in terms of κ^+\κ^~\ as was the case for their counterparts κ(f+^ = κ^~^

(cf. Eq. (3.8), (3.14)). This is of course a consequence of the fact that Θ[q~J^R)

does not appear in the coproduct action of the other generators. Since the coprod-

uct Eq. (2.3) is asymmetric in Θ[qj3] and Θ[q~j3], the analogue of Eq. (2.5) is not

valid. Rather, multiplying it by Θ[q~j3] from both sides, one would conclude that

q&[q-Ji]Θ[J+] - Θ[J+W[q-Jil[ = C+{Θ[q-J^f . (4.8)

However, in our FP realization this cannot be true since the grading of the right-
hand side is 4, while that of the left-hand side is 2. The proper FP analogue of
Eq. (4.8) is obtained if - as announced already at the end of Sect. 2 - we now
introduce a new central charge Co, defined by

C 0 (σ + ,σ;) = Θ[qJ^Θ[q-J^ . (4.9)

It is obvious that Q commutes with all the ξM , and one can make an expansion of
this new central around σ+ = σ+, as we will do for C+, to verify that it is given by
a sum of local quantities with respect to the ξ fields. If we now multiply Eq. (3.29)
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~Jl>Yπ and @[q~j3](fl
obtain

by Θ[q~Jl>Yσπ and @[q~j3](f/l from the left and from the right respectively, we

^ + ^ . (4.10)

Notice that the points σ'[ > σ+ > σf

+ > σr" appears in the same sequence in both
terms on the left-hand side of the above equation, in accord with the fixed-point
prescription for the case of grading 4. Similarly, we have in place of Eq. (3.32),

[ l ^ σ V f , (4.11)

with o"_ < σ_ < σ'_ < σ'ϋ. With Θ[q~j3] at our disposal, we can now give a
concrete sense also to Eq. (2.8) within our realization. Indeed, multiplying the FP
equivalent of Eq. (2.17), that is Eq. (3.45), by Θ[q~J^f from the right, one obtains

0^%"'3]^ (4.12)

Thus we now have a FP realization of the full algebra, with both Θ[qj3] and Θ[q~j3]
available for right- as well as for left-action, and this completes our considerations
on the operator realization of the quantum group action.

5. Study of the Central Term

The existence of a non-trivial operator that commutes with all the ζ$(σ) (with a
suitable range of σ) may seem surprising. Let us therefore investigate the structure
of the central term in Eqs. (3.29), (3.32) in some more detail. For this purpose, it is
convenient to re-express it in terms of Bloch wave operators. The simplest formulae
arise by using the ψ fields introduced in ref. [2]. These are related to the ξ fields
as follows:

\ (

) {
ht{m+m) ( J-M \ ( J+M

\{J-M+m-t)β) {(J+M+m+t)/2

where the variable t takes all values such that the entries of the binomial coefficients
are non-negative integers. (We consider only the case of half-integer positive spin
here.) The symbol w denotes the rescaled Liouville zero-mode momentum. Using
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this relation for J = \, one finds

\\σ+)φ^\σ/

+)} (5-3)
2 2

In general the index m of the ^ fields characterizes the shift of m:

Άiy)(σ)/(C7) = /(w + 2i»)^y )(ff) (5.4)

This shows that the central term commutes with w. It then follows from the (inverse

of) Eq. (5.1) that it also commutes with any φ^\σ) field, if σ+,σ'+ > σ.
How is this possible? First consider the classical (h = 0 case). In this limit hm

is kept fixed so that

ξ0

2 2 (σ+,σ;) oc ιAi2 (σ+)Ψ_\ (σ+) - ψ_

Classically, ψ^lβ a r e solutions of the Schrόdinger equation (—<32 + T)φ2\β(σ) =

β φ2\β
Making use of this fact, it is easy to Taylor-expand. The first terms read

ψ^\x + ε)ψ(\\x) - φ(\\x + ε)ψ[*\x)
2 ~2 ~2 2

2 ~ 2 2

T(x) + ̂  2Γ'(x) + ̂  (Γ/;(x) + 3Γ2(x))

β 1
+ - (4Γ/;/(x) + 6T(x)T\x)) + > . (5.5)

The first factor is the Wronskian, which is a constant, say 1. We see that the classical
central term has an expansion in σ+ — σ+, where the coefficients are polynomials

in T(σ'+) and its derivatives. Since ψm\σ) is a primary with weight Aj, its Poisson
bracket with T{σ'+) reads

( V - < ) ^ + Δjδ\σ - σ

It thus follows that the Poisson bracket of each term of the expansion Eq. (5.5) is
a sum of derivatives of delta functions, which indeed vanishes for σ+,σ^ > σ, as
we wanted to verify.

Let us return to the quantum level. We expect that a similar mechanism will be
at work. Indeed, the operators ψ^1^ satisfy a quantum version of the Schrόdinger
equation. The expansion Eq. (3.21) of ^ 1 / 2 ' 1 / 2 ] ( 0 ) involves the descendants of unity
which begin with T. One may expect that a general term will be given by an
ordered polynomial in the (derivatives of) T. The simplest way to give it a mean-
ing is to order with respect to the Fourier modes of this operator, in which case
the expectation value between highest-weight states of each term in the expansion
will be given by the expectation value of a polynomial of Lo. Let us verify this
explicitly. Using the differential equation satisfied by ι/̂ 1//2) fields one may express
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the expectation value of the central term as a hypergeometric function. The overall
normalization of the φ field is derived in ref. [2]. Using formulae given in refs. [2,4],
one sees that

(I) (I) -Δ i -Δ(m) —Aι+Δ(m)

\z \ z V π π π z

where F(a,b;c;z) is the standard hypergeometric function, and

'-(» + 1)* V d- = Γ (-Jλ r((rπ-iy-\ . (5.7)

The notation Δ(m) is such that

L0\m) = Δ(m)\m) = -^(tn2

Q - xu2)\w) (5.8)

with mo = 1 + τt/h. The letter Γ represents the usual (not g-deformed) Gamma
function. The basic relation underlying the fusion for the present case is the well-
known relation between hypergeometric functions:

F(a,b;c;x)=Γ(c)Γ{C b ?F(a,b;a + b - c+ 1; 1 -x)
1 (c — a)l (c — b)

Γ(c)Γ(a
b

)Γ(a)Γ(b) ( 1 X)

x F(c - a,c - b c - a - b + l l - x). (5.9)

The particular combination of ι/̂ 1/2) fields appearing in the central term is such that
the second term vanishes, and we are left with

;l--Ί) , (5.10)

where we have let u = hm/π, u0 = hmo/π, and w0 = 1 + π/h. Making use of one
of the standard quadratic transformations of Goursat's table, and writing explicitly
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the power series expansion of the resulting hypergeometric function, we find (see
the Appendix):

( ?> ί- + 'J + L—J

) - L 0 | \ , - 1 1 Λ

. k ) > (5 n )
v! /

where αj2/ = WQ + 2/ is the momentum of the highest-weight state whose weight is
equal to the conformal weight of the fields φm\ and (a)v — YYrZl(a + r). The right-
hand side is entirely expressed in terms of matrix elements of powers of LQ, as we
had anticipated. Two mathematical properties of the above hypergeometric function
are remarkable, although their meaning is not clear at this time. First, the form of the
arguments is that of a so-called Gauss series F(a, b;a + b + \\t). Hence15 its square
is a hypergeometric function of the type 3F2, and thus the square of the expectation
value Eq. (5.10) again satisfies a linear differential equation, now of third order.
Second, Eq. (5.11) becomes particularly simple at the point 1, corresponding to
σ+ — σ'+ = π, where it reduces to a product of Γ functions. See again the Appendix
for details.

6. The General Quantum Group Structure

In this section we turn at once to the most general structure. On the one hand, we

include the dual Hopf algebra U^(sl(2)), with # = exp(//z) and hh = π 2, on the

other hand we deal with the semi-infinite representations with continuous spins intro-

duced in refs. [9,10,13]. In this case the Hopf algebra structure noted Uq(sl(2)) Θ

U^(sl(2)) is novel, since it cannot be reduced to a simple graded tensor

product of Uq{sl{2)) and U^(sl(2)). Indeed, although ξ depends upon four quantum

numbers for the half-integer case - that is two total spins J, J , and two magnetic
numbers M,M - there are only three independent quantum numbers for continu-
ous spins: the so-called effective total spin Je and two screening numbers N,N,
which are positive integers. Within the Bloch wave basis of operators with diagonal
monodromy, the corresponding quantum group symbols and their relations to the
operator algebra have been worked out in refs. [10,13]. We will not attempt here to
present the corresponding derivations within the covariant operator basis (this will
be done in ref. [19]), but rather concentrate on the Hopf algebra structure of the
extended quantum group, and simply quote formulae from ref. [19] where necessary.

The most convenient parametrization of the general ξ fields is obtained by

writing them as f ^ L , with M° = N - Je and M° = N - J\ with Je = Jeh/π.
& M°M° '

In effect one has two semi-infinite lowest-weight representations since Je+M°,
and Je + M° are arbitrary positive integers. The general braiding matrix takes the
form [19]

((je je'ΛΛM°M° M°M° _ JeJef ^jeTe' ( re ret xM2M\ (fe fe' \M2^ΐ (fsΛ\

This was discovered by Clausen in 1828 (!).
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where the two factors are suitable extensions of the universal R matrix of Uq(sl(2))
and U^(sl(2)) respectively. This general formula gives, in particular, the braiding

of the spin ^ fields with a general ξ field, and thus determines the coproduct action
in our scheme. First consider one of the two Borel subalgebras. Keeping the same
definition of the operators Θ(Ja) for Ja e 0#+9 one gets

&\ufi - M°\ [Je + M° + 1J x (-lfΘ[qJ>]<$ . (6.2)

This takes the general form Eq. (1.7), if we introduce the matrix representation

M ° ( - l f , (6.3)

and keep the same coproduct as before. We use underlined letters for the full
generators. This may be rewritten as

N]^o , (6.4)

where there appear the standard matrices [Ja]poM° of the representation of Uq(sl(2))

with spin Je, and the diagonal matrix (—1)^.
Now in addition we have similar definitions where the roles of hatted and

unhatted quantum numbers are exchanged. Letting

= f C 3ς_ 1 (σ+), (6.5)

(6.6)±
κ 3 l - q 2

we get another coproduct action

^ , (6.7)

where we have introduced the g-deformed numbers with parameter h,

[x) = sin(/uc)/sinΛ .
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This takes the general form of Eq. (1.7), if we introduce the matrix representation

[AWo ; Λ /o£o = δPo;Mo{-lfy/[je-Mo j [je+M° + 1 j ,

[? 3]popo;MoJJo = δpo\M°δΈo.jZo(—lψeιhM ( 6 8)

In terms of the hatted generators, the coproduct takes the same expression as for
the unhatted generators. This may be rewritten as

[^+]/>opo;MojJo = K~l) ]?°;M°[A]pojjJo 5

ΦWo;J,ofio = [ ( " I f ]p°;Mo[?Γ 3]? o ίJo , (6.9)

where there appear the standard matrices [«/fl]^o^o of the representation of

with spin 7 e . What is the extended B+ algebra? Clearly each pair J+, qJi, and

J+, qj3 of matrices satisfies the same algebra as before. For the mixed relations one
trivially obtains

φ φ = -q-Ίj+ . (6.10)

The case of ^ _ is treated in exactly the same way, and we will be very brief. One
finds formulae similar to the above with J+ —»J_ and qJ* —> q~j3. It is easy to see
that we still have the matrix commutation relations

(6J-r< μ-J-1 ~ ?-?-'
Again the above transformations generate Hopf quantum symmetries of the

operator algebra. In ref. [19], the generalized 3y symbols are shown to be given
by

(6.12)

On the right-hand side the factors are the standard 3j symbols of Uq(sl(2)) and
U~(sl(2)) respectively, suitably generalized. We use underlined letters to denote

pairs of quantum numbers: MJ stands for the pair M°M°, and so on. For total spins,
we use the same convention, i.e. J_ stands for Je and Je. This latter convention is
convenient even though Je and Je are not independent (Je =Je^), since each of
them plays the role of a total spin, as is clear from the right-hand side. The above
Clebsch-Gordan coefficient is non-zero iff

\ (6.13)
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with p and /? arbitrary positive integers. Using the same argument as in Sect. 2.2,
we deduce that the above generalized 3y's should satisfy the recurrence relation

P O - L P ° = P O

where M°2 — M° +M.2- Using the recurrence relation for the ordinary 3y symbols
together with the fact that p and /? are integer, one may verify this relation. Sim-
ilarly, one may verify that the general braiding matrix is the universal R matrix
since it satisfies the appropriate generalization of Eq. (3.23). Thus we have derived
the full Hopf algebra structure of Uq{sl{2)) Θ U~(sl{2)) in the most general case.
This could not be achieved before, despite several attempts to guess the answer
[2,20,5]. We remark that the above structure can be derived independently on the
basis of the extended quantum group symbols alone [19]. This generalized quantum
group structure is particularly important in the strong coupling regime of Liouville
theory [10,11]. In particular, there is an interesting special case where h + h = 0
(C = 13 for Liouville theory). Then g = l/q, and there is a relationship between
the ^ _ , and the hatted Borel M'+. For instance, the corresponding elements associ-
ated with qJ* G ̂ + are q~j3> and qj3, respectively, and there are further remarkable
properties. In general, however, q~λ and # are unrelated (we have qq~λ = 1, and
ln(^r)ln(^) = — π 2 ), so that these two subalgebras have no simple connection.

7. Outlook

Our original observation was that the braiding properties of the ξM fields allow us

to use the ξW fields as generators of the quantum group symmetry. This idea led
us to consider coproduct realizations with novel features. In particular our genera-
tors are position-dependent, and the algebra of the field transformation laws (here
Uq{sl{2))) was seen to follow from FP commutation relations where only the quan-
tum numbers of the generators are exchanged, and not the operators themselves. This
FP algebra differs from Uq(sl(2)), but we showed in general that the algebra of the
field transformation laws and that of the field generators need not be identical: the
latter may be a suitable extension of the former by central operators that commute
with all the fields. Our FP algebra was found to be precisely a realization of such
a central extension of Uq(sl(2)). In establishing this, we had to overcome the fact
that, in the present approach, Uq(sl(2)) is split into its two natural Borel subalge-
bras, which are most directly realized by right- and left-actions, respectively. This
was possible using the monodromy properties of the ξ fields, and thus the Liouville
zero mode momentum w took part in the algebra, which now includes a new gener-
ator which we called D. This last point is rather interesting, since so far w did not
play any role in the quantum group structure although its spectrum of eigenvalues
determines the spectrum of Verma modules. Of course the ultimate aim of the oper-
ator realization is to understand how the Hubert space is organized by the quantum
group symmetry, and thus how the generators act on the Verma modules. The fact
that w appears in some of our generators may contain a clue to this problem. There
still remain many related questions, especially the existence of a vacuum state |0)
whose general properties were summarized in Eq. (1.16). To know the invariant
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vacuum is obviously important, e.g. for the possibility of writing the ^-analog of
the Wigner-Eckart theorem, which would provide a very useful tool for the calcu-
lation of matrix elements of covariant operators. On the other hand, it might turn
out that Uq(sl{2)) is spontaneously broken, so that no invariant vacuum exists. Let
us make a further general remark in this connection, namely, matrix realizations
of our centrally extended algebra (Eq. (2.10)) do not have a general highest- (or

lowest-) weight states in the usual sense. Indeed, since C± and qj3 commute, we
may diagonalize them simultaneously. A lowest-weight state \j,c±) would have to
satisfy (we use the notation of Eq. (2.10))

C±\j,c±) = c±\j,c±), J-\j,c±) = 0, qJi\j,c±) = qj\j,c±) .

It then follows from Eqs. (2.10) that

±) = 0 = C-\j,c±) ,

so that C- should vanish. Thus, if c± φ 0, the representations of the algebra have
neither lowest- nor highest-weight states. Of course, there is always the possibility
to take the short distance limit of our FP discussion. Then C± tend to zero, and
we can have highest- or lowest-weight representations (although a vacuum in the
sense of Eq. (1.16) still does not exist). However we prefer to consider the general
situation, as we feel that important information about the symmetry properties may
be lost in the limit. The dependence of our generators upon the points reflects the
fact that they do not commute with the Virasoro generators. Thus there exists an
interplay between the two symmetries, which should play a basic role.

Another striking aspect deserves closer study: we have seen that the central
terms may be expressed as series of polynomials in the stress-energy tensor (and
its derivatives). Similar series already appeared in the derivation of the infinite
set of commuting operators associated with the Virasoro algebra [21]. Thus there
may be a deep connection between the present centrally extended Uq(sl(2)) algebra
of our generators and the complete integrability of the Liouville theory. The fact
that the generators have become dependent upon another variable (the position) is
reminiscent of the transition from a Lie algebra to a Kac-Moody algebra. Thus the
full symmetry of the theory may be ultimately much larger than known at present.
One may hope that the understanding of this point will allow us to solve the
dynamics of the full integrable structure obtained by including all of the conserved
charges. Clearly, we are still somewhat far from this ideal situation, but we may
be optimistic.

At a more immediate level, the present scheme may be used to understand
the quantum group action on the Bloch wave operators ψ, whose monodromy is
diagonal. This is interesting since so far, in sharp contrast with the ξ fields, their
quantum group properties have remained a mystery. In particular, for them the role
of 3/ symbols is actually played by 6/ symbols. By braiding our generators with
the Bloch wave operators, we may define their quantum group transformations. In
connection with our previous remarks about highest/lowest-weight states, we may
mention that the change of basis from the ξ fields to the Bloch wave fields has
its counterpart on the generators themselves. This leads to new generators where
the central extension is only multiplicative and does not prevent the existence of
highest- or lowest-weight states. This is described in another article [22], Another
direction is to consider higher-rank algebras. Our construction of the generators
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from the defining representation (and not from the adjoint, as one would expect a
priori) used the fact that, for Uq(sl(2)), the dimension of the defining representation
coincides with the dimension of each Borel algebra. For higher ranks the counting
is completely different, the former being smaller than the latter. Of course now there
is more than one representation of lowest dimension. Finally, it would be interesting
to illuminate the connection of the present analysis with the general framework of
Poisson-Lie symmetries [24, 25], and in particular with the dressing symmetries
mentioned in the introduction. It is challenging to find a unified treatment which
includes both types of symmetries, explaining how one and the same Uq(sl(2))
quantum group can manifest itself in apparently rather different guises.

Acknowledgement. We are grateful to A. Alekseev, O. Babelon and J. Teschner for stimulating
discussions. One of us (J.-L. G.) is indebted to the Theory Division of CERN for financial support
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A. More About the Central Terms

Here we supplement some details of Sect. 5. First, we give the derivation of
Eq. (5.11). We start from Eq. (5.10) and use the following quadratic transforma-
tion of Goursat's table (see for instance ref. [17], p. 112, Eq. (26)):

{l-yγl*F{aM2b;y)=F(a-,b-a-,b+\-,\ ^
2'4(y-l)

(A.I)

which leads to

F [u0 - u , w o; 2u0; 1 ) = J
2' 4zz'

Expanding the right-hand side, one sees that the expectation value of the central
term between highest-weight states is given by

= ( z _ 2

Δ { W 2 l ) . Δ { w )

< A - 2 )

[ v Z (Here (a)v = Y[v

rZ0(a -f- r\ and wii =
the final result under the form

2/. Using Definition 5.8 we may rewrite

n^)

v=0 \ 4ZZ'

which is seen to agree with Eq. (5.11).

Δ(w2ι)-Lo

(wo + 5)vV!
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Being a Guass series, the hypergeometric function in Eq. (5.10) is known to

square to another one of type 3/̂ 2- The precise relation is

(up-u UQ + U ι.λ\2

 F \uo-u,uo + u,uo 1 {

\-2Γ9~τ-'u« + rt)) =3F2[ 2,0,.0 + i 9τ ( }

Furthermore, applying the so-called Watson theorem (see [18], p. 54) one deduces

that ^ i i 2

\ 1 I ^ ( ) ^ ( ) I

Thus we conclude that

I \ = ΓφΓCi + uo)
2 ' ^ Γ ( i ( H + ) ) Γ ( i ( l + ) )2 2 2 ' ^ Γ (i(H-Mo + « ) ) Γ ( i ( l + « o - « ) )

Thus the above expectation value is especially simple at the point 1. In terms of

the original variables this corresponds to σ+ — σr

+ = π.
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