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Abstract: For any two arbitrary positive integers "«" and "zw", using the mth KdV
hierarchy and the (n + m)th KdV hierarchy as building blocks, we are able to
construct another integrable hierarchy (referred to as the (n,m)th KdV hierarchy).
The PF-algebra associated to the second Hamiltonian structure of the (n,m)th KdV
hierarchy (called W(n,m) algebra) is isomorphic via a Miura map to the direct sum
of a Wm-algebra, a Wn+m-algebra and an additional U{\) current algebra. In turn,
from the latter, we can always construct a representation of a W^ -algebra.

1. Introduction

Our purpose in this paper is to show how to construct new integrable hierarchies
starting from a couple of KdV-type hierarchies plus a ί/(l) current. Also in order
to give the coordinates of our paper with respect to the current literature, let us
recall a few fundamental things about KdV hierarchies.

There are two different descriptions of the nth KdV hierarchy. One is based on
the so-called pseudodifferential operator analysis (see [1]), in which we start from
a differential operator L, called scalar Lax operator,

L = dn+Σuid
n-i-\ 3 = | - , (1.1)

i=i ox

where the Wj 's are functions of the "space" coordinate x. Throughout the paper the
symbol L will mean (1.1). After introducing the inverse δ~~ι of the derivative δ
(i.e. the formal integration operator),

dd~ι = S " 1 3 = 1 ,

/=0

we can calculate the fractional powers of L.
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In general for a pseudodifferential operator, A = Σi<nciid\ we define

A+ — Σ aid1, A- — A — A+, res(^) = <s_i .

Since the operator [(L*)+,L] — [Z,(L«)_] is a purely differential operator of order
(n — 2) for any positive integer r, it naturally defines a series of infinitely many
differential equations,

J - L = [ ( L £ ) + , L ] , r ^ l , ( 1 . 2 )

where t\ = x, while t2,t3,..., a r e r e a l time parameters. This set of equations is
usually referred to as the nth KdV hierarchy or, simply, the n-KάY hierarchy.

Another presentation of the π-KdV hierarchy is by means of the Drinfeld-
Sokolov construction [2]. In such an approach, we begin with a first order matrix
differential operator

& = d + q-Λ, (1.3)

where q and A are n x n matrices and

Λ = λEal+I, I = nΣEUi+u (Eij)kl = δikδβ, (1.4)

where λ is the spectral parameter, while q is a lower triangular matrix. One can
find a formal series

oo

T = 1 + Σ TiΛ'1,

such that
oo

with all fi being functions. The centralizer of i f (o) contains nothing but the constant
elements of the Heisenberg subalgebra, thus we can easily get the centralizer of the
operator if, and we can define a series of flow equations

where the superscript " + " means that we keep only non-negative powers of A.
These equations are only defined for classes of gauge equivalence, i.e. up to trans-
formations which leave (1.5) form invariant. If we suitably fix the gauge, Eq. (1.5)
reduces to the nth KdV hierarchy (1.2).

One can generalize the above construction in different directions. In fact this con-
struction is based on the Lie algebra sln, and A can be understood as an element
of the associated afrme algebra which enjoys particular properties. The generaliza-
tion in which A — Σ"~o β/, where ez are the standard Chevalley generators of an
affine Kac-Moody algebra (in this case, A is a grade one element of the principal
Heisenberg subalgebra), and q is an element belonging to the relevant non-positive
graded Borel subalgebra, has been studied in [2].

Recently there have been several attempts to generalize the KdV-type integrable
hierarchies in other directions. One possibility is to replace A in (1.3) by any
constant regular element of any Heisenberg subalgebra of the Kac-Moody algebra.
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The hierarchy constructed in such a way is called type I; if the element A is not
regular the hierarchy is called type II [3]. It has been shown that, in the gln case, the
graded regular elements exist only in some very special cases; furthermore, after
gauge fixing, this extended Drinfeld-Sokolov hierarchy reduces to the Gelfand-
Dickii matrix hierarchy, which is a simple extension of (1.2) obtained by replacing
the scalar Lax operator (1.1) by a matrix valued one [4]. On the other hand, there
has been so far no detailed discussion about type II integrable hierarchies, due to
their complexity (see however [5]).

Moving from a completely different starting point, in a recent paper we have
considered another type of extension: we have modified the Lax operator (1.1)
by adding some suitable pseudodifferential terms; in this way we have obtained a
new integrable hierarchy, which we have called the (n,m)th KdV hierarchy, [7].
Actually these hierarchies are not an artifact of ours. They naturally appear in two-
(and multi-) matrix models describing 2D gravity coupled to conformal matter.
Two-matrix models are in fact characterized by Toda lattice hierarchies [6] - each
different hierarchy being specified by a particular choice of the two relevant Jacobi
matrices. There is a duality between Toda lattice integrable hierarchies and differ-
ential integrable hierarchies, [8,9], which enables us to extract KP-type differential
hierarchies from the lattice hierarchies and vice versa. Moreover the differential hi-
erarchies obtained in this way can be reduced to new hierarchies while preserving
integrability. The full set of KP-type integrable hierarchies obtained from the Toda
lattice hierarchy together with their integrable reductions turn out to fill up exactly
the set of the (n,m)th KdV hierarchies.

In this paper we present the (n,m)th KdV hierarchy from the point of view of
extending the KdV-type hierarchies: given any two KdV type hierarchies, say an
mth KdV hierarchy and an (n + m)th KdV hierarchy, plus a 17(1) gluon current
7, we show how to construct another integrable hierarchy and that the latter is
exactly the («, w)th KdV hierarchy. Moreover we will show that there exists a Miura
map which establishes an isomorphism between the /^-algebra associated to the
second Hamiltonian structure of the (n,m)th KdV hierarchy to the direct sum of the
Wn+m-algebra and Wm-algebra, as well as an additional U(\) current algebra (when
m = 1 the isomorphism is simply with the direct sum of a Wn+\ -algebra and the
U(l) current algebra.)

The paper is organized as follows. In Sect. 2, we review some well-known
facts about Wn algebras. Our main results are presented in Sect. 3, where we first
construct the (τ?,m)th KdV hierarchy from the (n + m) th KdV hierarchy and mth KdV
hierarchy, then we show that the £F(ft,m)-algebra is related to Wn+m 0 Wm 0 [ / ( l )
by a Miura map. In Sect. 4, we will analyze the conformal spectrum, and construct
the Drinfeld-Sokolov representation of the (n,m)th KdV hierarchy. We show that
the (n,m)th KdV hierarchies correspond in part to a type I and in part to type II
generalized Drinfeld-Sokolov hierarchy, [3]. Several examples and some remarks
are presented in Sect. 5.

2. The nth KdV Hierarchy and Wn Algebra

In this section we will review some well-known results on the nth KdV hierarchy and
the ^-algebra. More precisely, we will show how to derive the ^-algebra from: 1)
the nth KdV hierarchy; 2) a suitable infinitesimal deformation of the corresponding
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differential operator; 3) field-dependent gauge transformations (or residual gauge
symmetry).

2.1. The nth KdV Hierarchy. There is a natural inner product on the pseudodiffer-
ential operator algebra, defined by

{A) = J dx vcs(A), (2.1)

which enables us to define two compatible Poisson structures

{fx,fγ}ι(L)=(L[Y,X]), fx(L)=(LX), X^Σd-'n, (2.2)
i=\

UXJYUL) = {(XL)+YL) - {(LX)+LY) + i J d-\[L,X](.ι})[L, y ] ( _ υ . (2.3)

These two Poisson structures give rise to two Poisson bracket algebras of the basic
independent fields κ, ,

)υ[u(x)]δ(x - y), (2.4)

We call $\ and $2 Hamiltonian operators. They are (n — I) x (n — 1) matrix op-
erators and only contain the derivative δ and the basic fields. In particular, Eq. (2.5)
is referred to as the Wn algebra.

The conserved quantities (or Hamiltonians) have very simple form

H r = n-{U), V r ^ l . (2.6)

They generate the Hamiltonian flows (1.2) through the Poisson brackets.

2.2. Infinitesimal Deformations of the Lax Operator. The nth KdV hierarchy (1.2)
can be viewed as the consistency conditions of the following spectral evolution
problem:

Lφ = λφ, (2.7a)

? L (2.7b)

The function φ(λ,t) is usually referred to as the Baker-Akhiezer function.
As observed in [10], calculating a Wn -algebra is equivalent to finding two

infinitesimal differential operators P and Q, such that

δL = QL-LP (2.8)

and (L + δL) still has the same form as (1.1). This is equivalent to saying that
Eq. (2.7a) with vanishing spectral parameter λ = 0 is invariant under the infinitesi-
mal deformations

φ—>φ + δφ, L—>L + δL

with δL specified by Eq. (2.8), and

δφ = Pφ. (2.9)
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In other words, after such infinitesimal deformation, we still have

(L + δL)(ψ + δψ) = 0 . (2.10)

Proposition 2.1. If we choose

P = (YL)+ ~l-Z, Q = (LY)+ - l-Z , (2.11)

where Y — Y™I\ dι~n8i is an arbitrary infinitesimal pseudodifferential operator,
and

then the deformation (2.8) coincides with the one derived from the second Poisson
structure (2.3), i.e.

δut =Σ (Jf2)ij[u] εj . (2.12)
7 = 1

Proof Let X and Y be two arbitrary pseudodifferential operators (with Y infinitesi-
mal), then the variation of the functional fχ(L) under the transformation generated
by fγ(L) with respect to the second Poisson structure is as follows:

δfχ(L) = {fx,fγ}2(L)

= (X((LY)+L - L(YL)+)) - 1-{Z{LX-XL)) .

Let X be independent of the basic fields ui9 we obtain

δL = ((LY)+ - -z] L-L l(YL)+ - -Z
\ n ) \ n

which is just the formula (2.8) with the identification (2.11). On the other hand,
Eq. (2.12) is a direct consequence of (2.3), so it must be the solution of Eq. (2.8)-
remember that

fγ(Q = Σ J Mfβ,-, δfx(L) = Σ Jδuai (2.13)
i = l z = l

This ends the proof.

Let us see a simple example. Choose Y = dι~nε. A straightforward calculation
shows that

Z = -n-^e', P^sd-^e', Q^ed+n-±λ£'. (2.14)
Zd Z* 2*

Plugging this into Eq. (2.8), and using Eq. (2.12), we get

δL = g ((iifeM e)^-'-1 = (ed + ̂ A L-L(εd- ^ A . (2.15)

In particular we find that u\ satisfies the Virasoro algebra

{ M I ( * ) , K I O 0 } 2 = ( c n d 3 + u γ { x ) d + du\{x))d{x - y ) , c« = \ ( n χ X λ ( 2 1 6 )
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Thus the deformation we considered is nothing but an infinitesimal conformal trans-
formation. Furthermore

δφ = fed - ̂ A Ψ, δ(Lψ) = (sd +

indicates that φ and Lφ are primary fields with conformal weights ^ p and
respectively.

We may write down the global form of this diίfeomorphism

x -+ /(*), L -+ (f'Wr^Lif'ix))-*? , (2.17)

where L — dn + u\dn~2 H . From this transformation law, one can obtain the con-
formal properties of all fields [11].

2.3. Drinfeld-Sokoloυ Representation. The basic idea to construct a matrix version
of the nth KdV hierarchy is to find a vector space representation of the differential
(or pseudodifferential) operator algebra. For such a purpose, we may linearize the
spectral equation (2.7a) by introducing (n — 1) supplementary fields as follows:

φx ΞΞ ψ, φi+ι = dφi = ffφ, 1 ̂  i S n - 1 . (2.18)

Define
n-\ n-\

U = Σ uiEn,n-U Λ = λEn\ + /, / = Σ ) £ Ϊ , , +1

Further denote by Ψ and if the column vector (φ,φ2,...,φny and the (n x n)
matrix operator (d -h U — A), respectively. Then the linear system (2.7a, 2.7b) can
be rewritten in matrix form as follows:

= 0 (2.19a)

d
-Ψ = J?ni+rΨ, i ^ 0, « - U ^ l , (2.19b)

where Jinί+r is a uniquely determined w x n matrix field, which is a differential
polynomial in the M, 'S and only contains non-negative powers of λ. In particular,
the first n — 1 elements of its last column (these are the important ones) take
the form,

( /ίi \ 1 — V^ i/-/ r+nl 1 < / < M 1 (Ί ΊCΫ\
\^c ni+r )n—j,n — \ — Z-/ Λ c > L = J = n x ^z,.z,υ^

It is perhaps worth giving a proof of Eq. (2.19b) and Eq. (2.20). To this end we
first prove the following lemma:

Lemma 2.2. Let (ij\r) be non-negative integers, and let 1 ̂  j \ r :g n— 1. Then

' *'ι)+Li+ι. (2.21)

Proof. Since the/ operator δ 7'(Z,«~H)+ is a purely differential operator, we have
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The second term on the extreme right-hand side has order less than n, while the
first term can be rewritten as

{{dJLnL% = (d''Li-ι)+Lι+ι + {{&Ln-χ)_LM)+ . (2.22)

Now suppose that I is also a positive integer and / g i. Due to the fact that L is
a purely differential operator, we obviously have

and

which immediately lead to the following recursion relation:

Z / - / - 1 ) + . (2.23)

Using this identity and Eq. (2.22), it is straightforward to show that Eq. (2.21) is
true. This ends the proof of Lemma 2.1.

In order to prove Eq. (2.20), we write

k=0

Then

In particular for k — n — 1, we have

On the other hand, from

δHr+nl = /<ίxres{{δL)L^ +ί~ι) = Jdx"fj

we get

^ = ( 3 ' - 1 l 5 + / - 1 ) ( _ 1 ) = α Λ B _ 1 . (2.24)

Therefore

Vίni+r Uini+r

= Σ A'-
1=0

= Σ ^ - / + 1 ^ Ά « + (2.25)
/=0 δUn-j

The dots contain auxiliary fields ψk with 1 ^ k ^ « — 1. This ends the proof of
Eq. (2.20).
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The consistency conditions of Eqs. (2.19a, 2.19b) give rise to the Drinfeld-
Sokolov representation of the nth KdV hierarchy,

d
CP Γ JJ . Q?~\ CO O/CΛ

To be precise, the term Drinfeld-Sokolov integrable hierarchy is utilized for the flow
equations (1.5) with reference to the operator «£? defined in (1.3). As noticed above,
(1.5) are gauge dependent; if we choose a suitable gauge we recover Eq. (2.26).

A specification is necessary at this point. The linearization of Eq. (2.7a) is not
unique. For example, we may introduce supplementary fields in the following way:

(d + hn)φn = λψ, -λ n = λi + λ2 + + AΛ-i

Then we have another linearized spectral equation

&Ψ = Q, & = d+U -Λ, U = Σ hiEu .

The difference between these two linearizations is just a Miura map. In general we
call a Miura transformation a (non-invertible) gauge transformation which maps a
minimal set of independent coordinates onto another minimal set. Therefore, mod-
ulo Miura transformations, the linearization is unique. Hereafter we only focus our
attention on the linearization (2.19a).

Example. For the second flow, we have

The LHS of Eq. (2.26) is independent of λ, therefore we can set λ = 0 on both
sides of Eq. (2.26). In the remaining part of this section, we will show that in the
case λ = 0, the spectral equation completely determines the FFΛ-algebra.

Proposition 2.3. The spectral equation

0) = d+U-I (2.27)

is invariant under the following infinitesimal transformations:

Ψ —• GΨ, JS?o —• G&0G-\ G=l+R, (2.28)

where the infinitesimal matrix field R satisfies

δU = [R,d+U-I], (2.29)

and {U ~\-δU) has the same form as U. The elements of R are polynomials of
the basic fields U(. In particular we can choose

^ 1 S j ύ Π ~ 1 , (2.30)Rn-J,n =

where fy is defined in Eq. (2.13).
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Eq. (2.29) and the choice (2.30) completely determines the structure of the
Wn-algebra.

Proof. The first statement follows directly from the invariance (2.10), i.e. we have

0. (2.31)

This equation requires that R satisfy Eq. (2.29), which in turn determines R up to
(n — 1) arbitrary elements. In particular setting

^n—j,^, — 2—i s υίni+r
i, r ouj

and comparing with (2.20), we get the (r + ni)th Hamiltonian flow.
We remark that the choice of the independent elements of R is not unique as

long as the only requirement is to recover a ίΓΛ-algebraic structure, no matter what
the coordinates are. For example, we can choose the first row to be independent,
then the variation of the Baker-Akhiezer function can be derived from Eq. (2.28),

δψ = ΣRijΨj-ι=pφ, ̂ Σ V " 1 - ( 2 3 2 )
7 = 1 7 = 1

However choosing the first n—\ elements of the last column as independent, as in
(2.30), is of particular importance, because the relation (2.30) leads to coincidence
with the second Poisson bracket (2.3).

To see this point let δψ = Pxjj be given by Eq. (2.11). We notice that

dJP = dj \(YL)+ - -z] = djYL - dj(YL)_ - -dJZ
\ n J n

= (djYL-d\YL)_-l-dJZ

= (dJΎ)+L + ((d'Y)-L)+ - (dJ(YL)-)+ - l-

which shows that

7-1 7-1 I n~l i+j-n-l \
\ι=n-j+l )

The first term disappears in the case λ = 0, the last term only contains the auxiliary
fields ψk with 1 ^ k 5s n — 1. Thus we obtain

R n ^ Zn_ =

 δfy(L)
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which shows that the choice (2.30) coincides with the choices made in Proposition
2.1, i.e. with the second Poisson structure (2.5), alias the Wn algebra. This ends
the proof.

The definition of the Wn -algebra contained in the above proposition exhibits the
intimate relation between the ^-algebra and Kac-Moody current algebra [12]. Let
$0 be a gauge field (WZNW current) valued on some Lie algebra ^ , and G be
an element of the corresponding Lie group. Then the general gauge transformation
reads

sί -* G(d + sf)G~λ . (2.33)

This gauge symmetry implies that the components of the srf field obey a Kac-Moody
current algebra. After (partially) fixing the gauge1, the gauge symmetry (2.33) will
be reduced to the form (2.29). From this point of view we may call the symmetry
considered in Proposition 2.2 the residual gauge symmetry. On the other hand,
since the symmetry (2.28) (characterized by the matrix field R) explicitly depends
on the basic fields uu we may also call it field dependent gauge transformation.
In practice, deriving the JF-algebra by solving Eq. (2.29) seems to be easier than
calculating the Poisson bracket (2.3) (for example, see [13]).

Example. The functional F = j dxu\(x)s(x) generates the following field dependent
gauge transformation:

Rcon{ — sJ — s'l0 -f lower triangular part, (2.34)

where /o is a diagonal matrix with elements (/o)# = n ~ ^ + 1 . One can easily check
Rconf indeed leads to the diffeomorphism (2.14).

3. The (n,m)th KdV Hierarchy and W(n,m)-Algebra

In this section we will construct the (n,rn)th KdV hierarchy from a pair of ordinary
higher KdV hierarchies plus a ί / ( l ) current J. We also discuss the ^(«,m)-algebra,
which is the algebra associated to the second Hamiltonian structure of the (n,m)th

KdV hierarchy.

3.1. Constructing the (n,m)th KdV Hierarchy. Our construction of the (n,m)th KdV
hierarchy is based on the following theorem:

Theorem 3.1. Let A and B be two purely differential operators

γJ ϋfδ" 1-'- 1, (3.1)
ί = l

and J be a function of x. Define

(3.2a)

1 For gl(n), the standard gauge fixing conditions consist of restricting stf to be of the form
(U — I) as exhibited in Eq. (2.27). This is equivalent to imposing a set of first and second class
constraints; after reduction a la Dirac we obtain a P^-algebra.



Integrable Hierarchy Constructed from Higher KdV Hierarchies 187

) ; (3.2b)

4
-MI H v\ +

n + 2m
j (3.2c)

77ns Λ βί #/ differential equations gives rise to an integrable system.

Proof We will show that Eqs. (3.2a-3.2c) admit a Lax pair representation. First
we observe that Eqs. (3.2a) can be rewritten as

n + m

-A\(d+ΎJ)2 + Jr-
[\ 2 / « -f m

m2 m(n
(3.3)

Similarly we re-express Eqs. (3.2b) as

j 2
±ί5 Λ _ 1 _

2 I m

n + rn \ 2 2 (n + mf 2 m(n + m) ,
J ^ J J-B

Next we introduce a pseudo-differential operator as follows:

and expand L[nim\ m powers of d

• (3.4)

(3.5)

(3.6)
i=0

Due to the identity

all the coefficients wz turn out to be differential polynomials of the fields wz , ϋy and
J . For example

= 0,

v2

= MI + t>i + -/ΪW(W + m) ί - J 2

m

+ -nm{n + m) ι
4 \ 6

(3.7)

and so on. The RHS of Eq. (3.2c) is a derivative. Therefore we can extract the
equation of motion of the field φ,

(In φ) = -
n + 2m

n{n
+ —vx +

nm 2
rJ (3.8)
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In this passage we have ignored possible integration constants: this is part of the
definition of φ.

Now using Eq. (3.3) and Eq. (3.4), as well as Eq. (3.8), we can derive the
equation of motion of the operator Z,[Wj7W],

Noting that

d2 + 2Wι=(Ll ) +

we finally get the following Lax pair representation:

| -Z, [ B , m ] = [(4,m])+>£[»,»]] (3-9)

Once we know the Lax operator any higher flow is completely determined. This
ends the proof of integrability.

Two remarks are in order.

1) If we define a map (Miura map) as follows:

Lx =φ~ΊAφΊ , (3.10a)

L2 = φ-n-ψβφn-ψ =(δ- SΊ)(δ - S2) (d - Sm), (3.10b)

Si+b + .+^-^+^J, (3.10c)

then

n—\ m 1 1 1

i [ π,m ] = I , I 2 - 1 = d" + Σ "iϊ>n~ι-χ + Σ*n+ι-ι7ΓΎ- • • JΓ^ΓT-TΓ • ( 3 π )

z = l 7 = 1 C1 ~~ *J/ 0 — 02 0 — o\

This is exactly the Lax operator considered in [7]. The at fields in the first sum
coincide with wz. The full integrable hierarchy is

Following [7], we will call it the (n, m) th KdV hierarchy. The JF-algebra associated
to its second Hamiltonian structure is referred to as a W(n9 m)-algebra.

2) In our construction of the (n, m) th KdV hierarchy, the field J plays an essen-
tial role. It allows us to merge two KdV-type hierarchies into a new one. Pictorially,
we can say that the field J behaves like a gluon, which mediates the interaction
between the mth KdV hierarchy and the (« + m)th KdV hierarchy. ,

3.2. W(n, m)-Algebra. It has been shown that there exists a bi-Hamiltonian structure
connected with the pseudodifferential operator (3.6) [14]. From it we can extract
two compatible Poisson structures for the (n9 m)th KdV hierarchy, as was shown in
[7],

{fx,fr}ι(L[n,m]) = {L[nM[X, Y\m) , (3.13)
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and

] , 7 ] _ 1 ( 3 - 1 [ L [ l I , w ] ^ ] _ 1 ) , (3.14)

where

[X, Yh = \{[®X, Y] + [X,#Y]) = [X+, Y+] - \X-, Y-l ®A=A+-A_.

These two Poisson structures lead to two infinite dimensional Poisson algebras
among the fields wh which are

1) a Wι+oo -algebra

/,•(*)<*(* - y), (3.15)

and
2) a Woo -algebra

{wi(x\ Wj{γ)}2 = WMxWx - y). (3.16)

Since in the (n, m)th KdV hierarchy we only have (n + 2m — 1) fundamental inde-
pendent fields, these two oo-field Poisson algebras are realized via two finite-field
algebras on the dynamical variables (S/ fl/), [7]. We denote the corresponding
Poisson brackets by

{qi(χ),qj(y)h = (*Ou(χWχ - y), O Π)

and
{qi(x),qj(y)}2 = (^2)ij(x)δ(x - y). (3.18)

qι are the components of a (n + 2m— 1 )-dimensional vector q = (αi, . . . ,α n + m _i;
S\,...,Sm). Jfi and Jf2 are the appropriate Hamiltonian operators: they are (n +
2m — 1) x (« + 2m — 1) matrix operators. We are particularly interested in the sec-
ond Poisson structure. Let us rewrite the Hamiltonian operator &Ί in block form

where 8P\ and ̂ 2 are (n + m — I) x (n -\- m — 1) and (m x m) matrix operators. The
antisymmetry of the Poisson bracket implies

where the superscript " t " means the following conjugation operation

δ f - -S, / f = / , ( ^ ) t = BU\ (Mt)z> = Mj

for any ordinary function / , differential operators A,B, and matrix operator M.

Theorem 3.2. The Miura map

JM : q = (aι,...,an+m-\',S\9...,Sm)-+q = (uι9...,un+m-ι;vu...,vm-ι;J) (3.19)
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transforms the second Hamiltonian structure into the following block diagonal
form:

'' 0>x 0

0 J>2 0 I , (3.20)

V 0 0

t _

where 0*\98Pi and ^ are the Hamiltonian operators of a Wn+m, Wm-algebra and a
U(l) current algebra, respectively. In other words, the fields ut form a Wn+m

algebra, the vt form a Wm algebra and J a U{\) algebra, respectively. The
remaining Poίsson brackets vanish.

In order to prove this theorem, we proceed first to prove the following:

Proposition 3.3. Suppose that a W-algebra be defined by (n + 2m — 1) basic fields
(u\,...9un+m-ι;vι,...,vm-ι;J)9 which satisfy the following properties:

(i) The fields ut{\ g / g n + m - I) form a Wn+m-algebra

{ui9uj}2 = Ωij[u\δ{x-y). (3.21)

(ii) The fields (-Vj)(l g j ^ m - I) form a Wm-algebra

K̂ 2 = ̂ [-#^). (3.22)

(iii) The field J forms a U{\) current algebra

^Vn)δ'{χ-y)> ( 3 2 3 )

while the three groups of fields Uf, Vj and J mutually commute

fa, Vj}2 = 0, {ui,J}2 = 0, {vj,Jh = 0, V/,7 .

Then Eqs. (3.2a-3.2c) are Hamiltonian equations ensuing from the above Poisson
brackets and the Hamiltonian H — jw2{x)dx, where w2(x) is given by Eqs. (3.7).

Proof With respect to the JΓ-algebra specified in the above proposition, the
Hamiltonian H generates the following equations:

Q
—m = Ωi2[u] - 1 + mΩn[u] J , (3.24a)
dt2

—υ% = -σi2[-v] 1 - (n + m)σn[-v] J , (3.24b)
ot2

— J = uλ + —υλ + -^^J2 (3.24c)
ot2 \n(n + m) nm 2 )

Now we are going to show that Eqs. (3.2a-3.2c) can be re-expressed in this form.
We recall that the Lax pair form of the second flow equations of the mth KdV

hierarchy is

-£-B = [(B£)+,B], (3.25)
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with Lax operator B given in Eqs. (3.1). This flow is generated by the second
Hamiltonian Hb2 = —Jv2(x)dx through the Poisson structure (3.22), i.e.

—Vj = {vi,Hb2}2 = -σι2[-v] 1 ,
Otb2

which leads to

h " 1 " ' " 1 = Σ(σα[-«] Όdm—1. (3.26)

Comparing Eqs. (3.25) and (3.26), we get the following identity:

1C (σa[-Ό] l ) ^ - ' - 1 = [(B%)+9B] . (3.27)

On the other hand, in Eq. (2.15), if we choose ε = J(x)Ί> with ε" being an
x-independent infinitesimal parameter, then we immediately get another identity,

rf)B-β(jd- ?^J*) . (3.28)

These two identities, (3.27) and (3.28), tell us that Eq. (3.2a) is exactly the same
as Eq. (3.24a).

Similarly for the (n + m) th KdV hierarchy, we have

n+m—\ Λ _ 2

and

(3.30)

which guarantees the coincidence between Eq. (3.2b) and Eq. (3.24b). This com-
pletes the proof of Proposition 3.3.

Proposition 3.3 means that Wn+m θ Wm θ U(l) is, modulo a Miura transforma-
tion, the second Hamiltonian structure of the («5 m)th KdV hierarchy. Due to the
uniqueness of the second Poisson structure, it is just the W(n, m)-algebra (3.14),
up to a Miura transformation. This completes the proof of Theorem 3.2.

As a direct consequence of Theorem 3.2, we have

Corollary 3.4. Suppose that we have a W-algebra specified in Proposition 3.3,
introduce an infinite set of fields Wi's by Eq. (3.6), then the wfs satisfy the infinite
dimensional Poisson algebras (3.15) and (3.16).

Let us make one final remark. The relation between φ and J is the typical
vertex operator relation that allows us to express interacting fields in terms of free
fields in chirally split 2D conformal field theories. In this case φ plays the role of
the vertex operator and J is the derivative of a free field. Since it is well-known
that Wn algebras are representable by means of free fields, this implies that W(n, m)
algebras can also be represented by means of free fields.
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4. Drinfeld-Sokolov Representation

In this section we will derive the Drinfeld-Sokolov representation of the (n, m)th

KdV hierarchy, and analyze other ways to determine the W(n, m)-algebra.

4.1. Infinitesimal Deformation of the Lax Operator. As we did in Sect. 2, we first
construct the associated linear spectral system of Eqs. (3.12),

L[n,m]Ψ = λψ , (4.1)

Once again φ is a Baker-Akhiezer function. We are going to show that calculating
the W(n, m)-algebra is equivalent to finding two infinitesimal differential operators
P and Q, such that

δL[n,m] = QL[n,m\ ~ L[n,m]P > ( 4 3 )

and (L[ntm] + άL[n,w]) has the same form as L^my This property reflects the sym-
metry of the spectral equation (4.1) at λ — 0, i.e.

δφ = Pφ, {L[nM + δLM)(ψ + δψ) = O. (4.4)

Proposition 4.1. Equation (4.3) coincides with the second Poisson structure (3.14),
if we choose

P = {YL{nM)+ -l-Z, Q = (L[nMY)+ - X-Z , (4.5)

where Y — Y^L\dl~n&i is an arbitrary infinitesimal pseudodifferentίal operator,
and

Z = /([I [ π , m ] ,7] ( - . 1 ) ) . (4.6)

The proof is the same as the proof of Proposition 2.1. Although the formulas
(4.3) and (4.5) have the same form as Eq. (2.8) and Eq. (2.11), one should keep
in mind that the differential part of Y now plays an important role.

In the case Y = dι~nε, we have

δL[n>m] = I εd + n~γ-^ J hnM ~ L[n,m) Ud- n~γ-^ )

As a consequence, a\ satisfies the Virasoro algebra

{auaι} = (cnd
3 + axd + dax)δ(x - y), (4.7)

moreover φ and (L[nim]φ) transform like primary fields with conformal weights
0~γ ) and (^2^), respectively. In other words, the scalar Lax operator (3.11) trans-
forms covariantly under diffeomorphisms

f*->/(*)>
\ L[nM -+ (f(x)rn-^L[n,m](f(x)rn-^, ( 4 * 8 )

w h e r e _
! [ „ , « ] = 3 " + α i ( x ) 3 π - 2 + ••• .
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Obviously, under this transformation, the differential part and pseudo-differential
part do not intertwine. In other words, they transform separately in a covariant
way. Therefore we have following results:

(i) The aι fields can be separated into two subsets; the fields α/(l ̂  / ^
n — 1) (the first subset) have the conformal properties as the fields of the ordinary
^-algebra.

(ii) Each factor of the pseudodifferential part must be a conformal covariant
operator, which implies that an+ι(0 ^ / ̂  m — 1) are primary fields, and

which results in the following Poisson brackets:

{auSj}2 = {n + 2(~lδ2 + Sjd^J δ(x - y). (4.9)

Summing over j , and recalling the definition of the field J, we get

{auJ}2 = (d2+Jd)δ(x-y), {auφh = φδ'(x-y). (4.10)

In other words, the field φ is a primary field with conformal weight one. If we
define

w = -nm(n + m) ( - J1 + Jf j ,

then it is easy to see that

{w,a\} = (cφd3 + wd + dw)δ(x - y), cψ = --nm(n + m) . (4.11)

(iii) The conformal properties of the operator L[n>m] and the field φ imply that

r ^ , (412)

We immediately recognize that the differential operators A,B transform in the same
way as the Lax operator of the ordinary KdV hierarchy under diffeomorphisms. As
a result, we have

^ ( Λ + ̂ + M (4 1 3)

(4.14)

Combining (4.11),(4.13), and (4.14), we get (4.7), which guarantees consistency.
For a\ — u\ + v\ + w and the set of fields {ux\ (VJ) and J are mutually commutative.
Equations (4.7), (4.11) and (4.13,4.14) are four copies of Virasoro algebras; the
total central charge

c = cn+m -cm + cφ = cn (4.15)
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depends only on the order of Lax operator Z,[rtjW], no matter what m is. The field φ
just tunes the conformal weight so that L[«,W] is a conformal operator with weight n.

4.2. Drinfeld-Sokolov Representation. In order to construct the Drinfeld-Sokolov
representation of the (n,m)th KdV hierarchy, we introduce a set of auxiliary fields

ψι = ψ, ψι+ι = dφi = dιψ, 1 ^ i <; n - 1;

(d - SM)Ψ-i = Ψi-i, O g i ί w - 1 . (4.16)

In this way, we obtain the linearized version of the spectral equation (4.1)

«S?<F = O, & = d+U-Λ; (4.17)

with
m—\ n+m—1

c/ = -χ;s w - I ^- I -- / + Σ *«£»,»-/, (4.i8)
i=0 i=l

and

Λ = λEnΛ+ Σ EUM. (4.19)
i=—m+\

In order to derive the flow equation of Ψ, we need the following lemmas.

Lemma 4.2. Let P be a differential operator P — Σi=0 Pid1 with order k smaller
than m, then it is always possible to find a set of J>ι which are differential poly-
nomials of pi and Su such that

P = Po + Σ Pi(S ~ Sm-, + i ) (d - Sm_! )(d - Sm).
i = l

The proof is straightforward.

Lemma 4.3. Let (i,j,r) be non-negative integers and 1 :g j\r ^ n — 1. Then

Furthermore,

δHr+n +nl

The proof is similar to the proof of Lemma 2.2. The appearance of the second
term in the square bracket reflects the fact that Z[»jOT] is not a purely differential
operator. Since

the above two lemmas imply that the RHS can be represented linearly in ψki—

1 ^ k ^ n), and the coefficient in front of ψn is J2)=oλ
ι~ι ^J+nl.
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Now let us turn our attention to the derivation of the equations of motion for
the elements \jj-j (0 5Ξ j ^ m — 1). From the definition (4.16), we have

_J_Φ =(ψ-Λ L_f_^ι_J L_
δtr+m

Ψ~J \ t \ d-Sj d-S,\dtr+ni ') d-Sι d - S,

Define O\ = (L^nmΛ+, then Eq. (3.12) guarantees the following recursion relations:

or equivalently

1 1 Λ 1 / d A 1

v — Sj d — Si d — Si \ dtr+ni J d — Si

These equations completely determine the operators Oί+\ and the equations of
motion -̂«S/. Applying this procedure, we are able to get

d , Λ 1 1 ,

In the spirit of the above lemmas, we can rewrite the RHS of the above expression
into the form V\ Ψ, where the elements of row vector V\ are Taylor series in λ
and differential polynomials in q. All these results together lead to the following
proposition:

Proposition 4.4. (i) Equation (4.2) can be uniquely rewritten in matrix form,

where the elements of Mr+ni are Taylor series in λ, while they are differential
polynomials of the fields {a^Sj\ in particular

δaj
υ^i^i —j

(ii) The consistency conditions of Eqs. (4.17, 4.22) form the generalized
Drinfeld-Sokolov hierarchy

& = [J(r+ni, ̂ λ (4.24)

Example. The second flow corresponds to the following matrix field:

2 2 fi-m-

Km+l^jίiίn+m \j ~ m -

Since A in general is irregular, so the integrable hierarchy (4.24) is a type II gener-
alized Drinfeld-Sokolov integrable hierarchy in the terminology of reference 3.
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Proposition 4.5. The spectral equation with λ — 0,

{d+U-I)Ψ = 0 (4.25)

is invariant under the following infinitesimal transformations:

Ψ —> GΨ, ifo —> G^0G~\ G=l+R. (4.26)

The infinitesimal matrix field R satisfies

δU = [R,d+U-I], (4.27)

and {U + δU) has the same form as U. The elements of R are polynomials of
the basic fields Uj's, in particular

Rn_jn = ^ = ε . (4.28)
όaj

with F being an arbitrary infinitesimal functional.
Equation (4.27) completely determines the upper triangular part of the matrix

field R, and its main diagonal line {except the trace). Further,

m ^^ n+m—l

Σ
m ^^ n+ml ^^

δat = ΣWWSj + Σ (^2)ijSj, 1 S ί ^ n + m - 1 , (4.29)

where Jί\ and JV*2 are certain operatorial matrices of dimensions (n + m — 1) x
m, and (n + m— 1) x (n + m — 1) respectively.

Proof The first and the second statements can be proved in the exactly the
same way as Proposition 2.3. In order to prove the third statement, we denote

R — Y^ZZrnRi and £/= Σ I - Λ ~ W ί̂> where Rι(Uι) means the pseudo-diagonal
line RijiUtj) with i-j = I Then Eq. (4.27) shows

A:=l— n—m

Therefore we can recursively solve this equation for all Rι(l ^ 0), which are dif-
ferential polynomials in (εz ,^y ) When / < 0, Eq. (4.27) means

[RhI] = -δUM - Rf

M + £ [Rι-k+u Ukl V/ < 0 . (4.30)
A:=l— «—m

Solving these equations recursively, we obtain Eq. (4.29). This ends the proof.

Now let us suppose F to be an arbitrary infinitesimal functional, define

δF δF
— =ej9 (1 g y ^ / i + m - l ) , ^ = θ y » ISj^m.

With respect to the second Poisson structure (3.14), F generates the infinitesimal
transformation

n+m—\ m

δa(= Σ {&ι)ifij + Ίl{Xι)ιjθj\ (4-31)
j=l 7=1

n+m—1 m

^ ^ j θ j . (4.32)
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Since the operatorial matrices Jfi,Jf2 are conjugate to each other, there are only
three independent matrix differential operators, say, ^1,^2 and JfΊ, which com-
pletely exhibit the structure of the JF(/2,ra)-algebra. However, as shown in the pre-
vious proposition, the field-dependent gauge symmetry can only determine the ma-
trix operators ^ 1 , ^ 2 (in Eq. (4.29)). Comparing Eq. (4.29) and Eqs. (4.31, 4.32),
we obtain

&x = JTi Jf2 + ^ 2 , JΓi = ^\»i , (4.33)

while 0*2 remains undetermined. Therefore the field-dependent gauge symmetry
(4.27) is necessary but not sufficient to completely determine the structure of the
ίΓ(ft,m)-algebra (compare with Subsect. 2.2). This is quite a distinguished feature
of the (n,m)th KdV hierarchy with m#=0. We would like to point out that this is
not a negative aspect. In fact it is just this leftover arbitrariness which provides
room for the W^ -algebra.

4.3. On the Regularity Properties of A. Let us come now to the distinction men-
tioned in the introduction between type I and type II integrable hierarchies according
to whether the constant element A in the DS system is regular or not. We have to
study the regularity properties of the A's defined in Eq. (4.19).

We recall that an element Ξ, belonging to a finite dimensional Lie algebra <&
of rank r, is regular if

dim^(Ξ) = r , (4.34)

where
^(Ξ) - {X e 9 : (adΞfX = 0 for some k = 1,2,...} .

It is known that, if Ξ is regular, then &(Ξ) is a Cartan subalgebra of <§.
Our elements A belong to the loop algebra (with loop parameter λ): the regu-

larity property has to be understood with respect to their projection on the relevant
finite dimensional Lie algebra.

We have checked this regularity property for A, defined by Eq. (4.19), by direct
calculation in the simplest cases, up to n -f m = 5 (A is imbedded in sln+m except
when n — 1, in which case it is understood to be imbedded in gln+m). It turns
out that A is regular if m = 0,1, while it is not regular in the other cases. We
have further studied the diagonalizability properties of A in more general cases,
which confirms the above statement. This leads us to the conjecture that the above
statement is true for any n and m. We are therefore oriented to believe that the
(n,m) hierarchies are type I if m = 0,1, while they are type II in the other cases.

Altogether we can conclude that the distinction between type I and II integrable
hierarchies has a technical meaning in the Drinfeld-Sokolov context, but does not
seem to have any relevance in the Gelfand-Dickii context.

5. Examples

In this section we present several examples to exhibit our construction of the (n,m)th

KdV hierarchy, and to show the decomposition of the ^(n,m)-algebra into the
direct sum. For practical reasons we will proceed in reverse order with respect
to the demonstrations given so far. We will consider the hierarchies and the
fF(w,m)-algebras explicitly given in [7,20], and, subsequently, work out the cor-
responding Miura maps. We show that the modified Poisson algebras are a direct
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sum of Wm,Wn+m and £/(l), and the modified integrable equations coincide with
the ones given by Eqs. (3.2a-3.2c).

(7,7) th KDV hierarchy. The simplest case of the (n,m)th KdV hierarchy is with
n = m = 1. We choose it as our first example because it has attracted a lot of
attention both from mathematicians [15] and physicists [16] in the past few years.
The ( l , l ) t h KdV hierarchy is derived from one random matrix model [8],

— L [ U ] = [ ( Z , [ ) Z ] Z d +

The second flow equations are

L [ U ] = [(Z,[U ])+,Z, [ U ]], Z, [ u ] = d + aλ—— . (5.1)

^ , J-Si = (2aι + Sf - S[)' . (5.2)

The FF(l,l)-algebra is

{α,, αj} = (α, 5 + δαj )<5(x - y), fa, 5,} = (d2 + 5, δ)δ(x - 7 ) ,

{5,,51} = 2 ^ ' ( x - 7 ) . (5.3)

Define a map

I [ U ] = ^ - i ( 3 2 + « ) 0 - i a - V , « = αi -\si-\Su J = Slf (5.4)

then the field u satisfies Virasoro algebra

{u,u} = Q δ 3 + wδ + 5 ^ δ(x - 7), {y, J } = 2δ'(x - y). (5.5)

The flow equations become

4-u = -J1" + 2M/7 + M7, ^ - / = 2M^+ 3//; . (5.6)

oί2 2 δt2

It is perhaps worth giving the third flow equations:

•l-u = «"' + 6MM' + -U2)'" + 6«J7' + \j2u',
ot?, 4 2

It is easy to see that this set of integrable equations extend the famous KdV equa-
tion by an additional boson field. The Gelfand-Dickii Poisson brackets give rise to
two infinite dimensional Poisson algebras, which are referred to as two boson rep-
resentations of the W\+oo -algebra and the W^ -algebra, respectively. This hierarchy
has also a modified Lax pair representation [17]

^ d ^ l ^ ^ m o d ] (5.7)

with the modified Lax operator

1 = d + / + hd~\ h = u+\j2+l-J' . (5.8)
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As a consequence, the Gelfand-Dickii Poisson bracket should be modified simulta-
neously [18].

(2, l)th KdV hierarchy. This is the next simpler case. The hierarchy is [19,20]

— L [ 2 Λ ] = [ ( 4 , i ] ) £ L £ S2 + +

The second flow equations are

— L [ 2 Λ ] = [(4,i])+,£[2,i]L £[2,i] = S2 +ax +aij^τ (5.9)

^ ^ J-S, = (βi+5?-5() ' . (5.10)
012 Ol2 Vl2

The Poisson algebra is

{αi.α,} = Uaxd + a1, + hA δ(x - y), {aua2} = (3a2δ + 2a'2)δ(x - y) ,

ix-y), {Sls5,} = 3-δ'{x - y) ,

{a2,a2} = [(2a'2 + 4α25,)d + a'2' + 2{a2S, )']δ(x - y),

{a2,Sι} = (aιδ + (δ + 5,)2d)δ(x - y). (5.11)

The relevant map is

2_ 1

2 2 , 2 , 2

κjι, u\ — a\ — - ύ j — j

with

W2 — ^2 ίϊ ^ *j j ιj 1 (31 ιj i ύi .

(5.12)

Then the fields (u\,u2) satisfy the W3-algebra

{uuuλ} = (2d3 + uid + Sm)δ(* - J^),

{wi,w2} = (w2^-h25i/2 — δ2wi - d4)δ(x - y) ,

{w2 )w2} = [d2u2 — u2d
2 (u\ + d2)(du\ + 53)]^(x — jμ). (5.13)

Equation (5.10) becomes

t2

/ - M I = 2M^ - u'{ + If'" + 2uxJ' + u\J ,

M2 = M _ (U]U + „ ) + J + Uχf, 2
O12 3

^ | ί ' (5.14)
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Once again this coincides with Eqs. (3.2a-3.2c). This equation is an extended ver-
sion of the Boussinesq equation (in parametric form) by the addition of one further
boson field. The various free field representations of the Poisson algebra have been
given in [19].

(7,2) th KdV hierarchy. This hierarchy has been studied in [20]:

AL [ U ] = [(IfU2])+,L[li2]], L[U] = 3 + α i ^ - + α 2 ^ - ^ - L - . (5.15)

The second flow equations are

^Γaχ=a( + 2a2

Ot2

— a 2 = a" + 2a'zS2 + 2a2(Sx + S2)',
όt2

/-•Si =2a[+2S[S[-S[' ,
όt2

^-S2 = 2a[+2S2S'2-S'2'-2S'{. (5.16)
ot2

The ff(l,2)-algebra is

{αi,αi}2 = {2axd + a\)δ(x - y), {aua2}2 = (3a2d + 2a'2)δ(x - y) ,

{α,,5i}2 = (d2 + Sιd)δ(x - y), {auS2}2 = (2d2 + S2d)δ(x - y),

{a2,a2}2 = t(2α2 + 4α252 - 2a2Sx)d + a'2' + (2a2S2 - a2Sι)']δ(x - y),

{a2,S2}2 = (axd + (d + S2)(d + S2- SOd)δ(x - y),

{SuSι}2=2δ'(x-y), {α 2 ,5 ! } 2 =0,

{SUS2}2 = δ'(x - y), {S2,S2}2 = 2δ'(x - y). (5.17)

The Miura map we need is

L[l2] = φ~\d3 + uid + u2)φ~Hs2 - υι)-χφτ

with

J = \(S\ + S2), vι = J(52 -S{)
2+ \(S2 -SO',

ux = α, - l-(S\ + Si - 51(S2) - Si ,

u2 = a2 + ^aχ(Sχ - 2S2) + ^ ( 5 , + S2)(5SχS2 - 2S2 - 2Sf)

- 1(5, - 2S2)(Sχ - S2)' + i ( S , - 25 2)" . (5.18)

We remark that this is the first non-trivial Miura map we encountered till now,
since the maps (5.4) and (5.12) are invertible, so as to be just redefinitions of
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the fields. The fields (u\,u2) satisfy the W^-algebra (5.13), while V\ satisfies the
Virasoro algebra

{t>i,i>i} = ί-^d3 + Vld + δvλ δ(x - y) (5.19)

with negative central charge. The Poisson bracket of the field J is

{J9J} = ^δ'(x - y) . (5.20)

The modified second flow equations are

4-ui = 2u'2 - u'l + 4/'" + 4uχJ' + 2u[J ,
ot2

Uχu\ + u'l') + U'" + 2u\J" + 6u2J' + 2u'2J ,
-3

3 r ,»

1-j =^u\+ 2v[ + 5JJ'. (5.21)
ot2 3

This set of equations describe the coupling of the Boussinesq equation and KdV
equation. It is worthwhile studying further.

In this paper, we have shown how to construct a new integrable hierarchy
from two KdV hierarchies, in particular we shown that the corresponding W(n,m)-
algebra can be decomposed into a direct sum of the ordinary ^-algebras. The
Lie algebra structure of the £F(«,m)-algebra has been discussed in [22]. There are
still many problems which should be understood better. First, it has been noticed
that the W(\, l)-algebra can be constructed from si(2) Kac-Moody algebra through
coset construction [21]. It is interesting to check if this is true for all the other
JF(«,m)-algebras. Second, Dickey has observed that the (n, l ) t h KdV can be viewed
as a reduction of the KP hierarchy by fixing the additional symmetry [23]. It is
perhaps also true for the m > 1 case. Finally the (n,m)th KdV hierarchy might
play roles in the study of the low dimensional quantum gravity.

Acknowledgements. One of us (L.B.) would like to thank L. Dabrowski and C. Reina for helpful
discussions.
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