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Abstract: We establish general theorems on the cohomology H*(s\d) of the BRST
differential modulo the spacetime exterior derivative, acting in the algebra of
local p-foπns depending on the fields and the antifields (— sources for the BRST
variations). It is shown that H~k(s\d) is isomorphic to Hk(δ\d) in negative ghost
degree —k (k > 0), where δ is the Koszul-Tate differential associated with the
stationary surface. The cohomology group H\(δ\d) in form degree n is proved
to be isomorphic to the space of constants of the motion, thereby providing a co-
homological reformulation of Noether's theorem. More generally, the group Hk(δ\d)
in form degree n is isomorphic to the space of n - k forms that are closed when
the equations of motion hold. The groups Hk(δ\d)(k > 2) are shown to vanish for
standard irreducible gauge theories. The group H2(δ\d) is then calculated explicitly
for electromagnetism, Yang-Mills models and Einstein gravity. The invariance of
the groups Hk(s\d) under the introduction of non-minimal variables and of auxiliary
fields is also demonstrated. In a companion paper, the general formalism is applied
to the calculation of Hk(s\d) in Yang-Mills theory, which is carried out in detail
for an arbitrary compact gauge group.

1. Introduction

A major development of field theory in the eighties has been the construction of the
antifield-antibracket formalism [1]. This formalism finds its roots in earlier work on
the renormalization of Yang-Mills models [2,3,4] and quantization of supergravity
[5], and enables one to formulate the quantum rules (path integral, Feynman dia-
grams) for an arbitrary gauge theory in a manner that maintains manifest spacetime
co variance.
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The algebraic structure of the antifield formalism has been elucidated in
[6,7], where it has been shown that the BRST complex contains two crucial
ingredients:

(i) the Koszul-Tate resolution, generated by the antifields, which implements
the equations of motion in (co)homology; and

(ii) the longitudinal exterior complex, which implements gauge invariance.
The BRST differential combines the Koszul-Tate differential with the longitudinal
exterior derivative along the systematic lines of homological perturbation theory
[8]. As a result of that analysis, a simple rationale for the BRST construction has
been obtained and, in particular, the role of the antifields has been understood. A
pedagogical exposition of these ideas may be found in [9].

As we have just mentioned, a key feature of the BRST differential is that it
incorporates the equations of motion through the Koszul-Tate resolution. This is true
both classically [6], where the relevant equations are the classical Euler-Lagrange
equations, and quantum-mechanically [7], where the relevant equations are now
the Schwinger-Dyson equations. [A different (non-cohomological) relation between
the antifields and the Schwinger-Dyson equations has been analyzed recently in
[10] for theories with a closed gauge algebra.]

It is somewhat unfortunate that this important conceptual property of the BRST
differential s is often underplayed in the Yang-Mills context, where what one
usually calls the BRST differential is only a piece of it, namely the off-shell
extended longitudinal exterior derivative along the gauge orbits. Such a differen-
tial exists because the gauge algebra closes off-shell. This accident of the Yang-
Mills theory (closure off-shell) hides the fundamental fact that it is the full BRST
differential s, including the Koszul-Tate piece <5, that is of direct physical in-
terest. Indeed, it is the only differential available for a generic gauge theory.
Moreover, it is the cohomology of s that appears in renormalization theory [2,11]
(where the antifields are named sources for the BRST variations), in the study of
anomalies [12] as well as in the question of consistently deforming the classical
action [13].

Actually, what really appears in those problems is not just the cohomology of
s but rather the cohomology of s in the space of local functional. The purpose of
this paper is to investigate some general properties of the cohomology groups Hk(s)
of s acting in the space of local functionals with ghost number k, or rather, of the
related and more tractable cohomology groups Hk(s\d) of s acting in the space of
local ^-forms. Here, d is the exterior derivative in spacetime. According to homo-
logical perturbation theory, these groups are isomorphic to H-k(δ\d) for negative
£'s, where the subscript denotes the antighost number, and to Hk(y\d, HQ(O)) for
positive &'s, where the differential γ is the exterior derivative along the gauge orbits
(see below). Our main results can be summarized as follows:

(i) The group H\(δ\d) in form degree n is isomorphic to the space of non-trivial
conserved currents. This is actually a cohomological reformulation of the Noether
theorem. More generally, the groups H^(δ\d} in form degree n are isomorphic to
the space of non trivial n — k forms that are closed modulo the equations of motion
("characteristic cohomology").

(ii) The groups Hq(δ\d) vanish for q > p for field theories of Cauchy order p.
(The "Cauchy order" of a theory is defined below. Usual irreducible gauge theories
are of Cauchy order 2.)
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(iii) The complete calculation of H2(δ\d) is carried out for electromagnetism,
Yang-Mills models and Einstein gravity. In the latter two cases, U2(δ\d) vanishes.
For Einstein gravity, the vanishing of H2(δ\d) is a consequence of the absence of
Killing vectors for a generic Einstein metric.

(iv) Non-minimal sectors, as well as the "ultralocal" shift symmetries of [10],
do not contribute to H(s\d).

(v) The invariance of H(s\d) under the introduction of auxiliary fields is es-
tablished.

These general results are applied in a companion paper [14] to the computation
QΪHk(s\d) for Yang-Mills theory.

The next five sections (2 through 6) are mostly recollections of the BRST fea-
tures needed for the subsequent analysis: how to handle locality [15,16], examples,
the BRST construction and the main theorem of homological perturbation theory.
Section 7 is then devoted to the isomorphism between H\(δ\d) and the space of
constants of the motion. In Sect. 8, we introduce the concept of Cauchy order and
establish some theorems on Hp(δ\d) for theories of Cauchy order q. The general
analysis is pursued further in Sects. 9 and 10. In Sect. 11, we prove some general
results on H2(δ\d) for irreducible gauge theories. These are then used in Sects. 12
and 13 to compute H2(δ\d) for Yang-Mills models. We show that there is no
non-trivial (n — 2)-form that is closed modulo the equations of motion for semi-
simple gauge groups. This result holds also for Einstein gravity. Sections 14 and 15
respectively show that non-minimal sectors or auxiliary fields do not modify the
local BRST cohomology.

We assume throughout our analysis that the topology of spacetime is simply
that of the ^-dimensional euclidean space R". We shall also assume that the space
in which the fields take their values ("target space") is homeomorphic to Rw, where
m is the number of independent fields.

2. Cohomology Groups Hk(s) and Hk(s\d)

The way to incorporate locality in the BRST formalism is quite standard and pro-
ceeds as follows. First one observes that local functions, i.e., (smooth) functions
of the field components and a finite number of their derivatives, are functions
defined over finite dimensional spaces. These spaces, familiar from the theory
of partial differential equations, are called "jet spaces" and are denoted here by
Vk (k = 0, 1, 2,...). Local coordinates on Vk are given by xμ (the spacetime
coordinates), the field components φl', their derivatives dμφ

l and their subsequent
derivatives dμι...μφ

l up to order k (j = 0,1,2, . . . ,k). Since we assume both that

spacetime is R" and that the target space is Rm, these local coordinates on Vk are
also global coordinates. The Lagrangian involves usually only the fields and their
first derivatives and so is a function on F l . We refer the reader unfamiliar with
this approach to [17-20] for more information.

Local functionals are by definition integrals of local functions. More precisely,
consider the exterior algebra of differential forms on Rrt with coefficients that are
local functions. These will be called "local g-forms." Local functionals are integrals
of local ft-forms. The second idea for dealing with locality is to reexpress all the
equations involving local functionals in terms of their integrands. To achieve this
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goal, one needs to know how to remove the integral sign. This can be done by
means of the following elementary results:

(i) Let α be an exact local «-form, α = dβ. Assume §β = 0, where the surface
integral is evaluated over the boundary of the spacetime region under consideration.
Then Jα = 0 (Stokes theorem).

(ii) Conversely, if α is a local n-form such that /α = 0 for all allowed field
configurations, then α = dβ with §β = 0.

These results are well known and proved for instance in [9] chapter 12. The
differential d is the exterior derivative in spacetime, defined in the algebra of local
g-forms through

δRf dRf dRf dRf
d'φ'+ 'W + - +

(2.1)

and d(dxμ) = 0. As in [9], we shall take all differentials to act from the right.
This is purely conventional and we could equally well develop the formalism with
differentials having a left action.

On account of (i) and (ii), the correspondence between local rc-forms and local
functionals is not unique. If one allows only for (n - 1 )-forms such that §β — 0,
then, local functionals may be viewed as equivalence classes of local «-forms (which
are necessarily ^/-closed) modulo d-exact ones. They are thus the elements of the
cohomology space Hn(d) [21].

The BRST differential s is defined in the algebra of local functions. It may
easily be extended to the algebra of local g-forms by setting s(dxμ) = 0. One has

sd + ds = Q , (2.2)

since sdμ = dμs. Let A = f α be a BRST-closed local functional. From

SA = fsot = 0 (2.3)

one gets

sa + dβ = Q (2.4)

with §β = 0. Thus, the integrand α is a local n-foπn that is BRST-closed modulo
d. Furthermore, A is BRST-exact iff α = dλ + sμ (with <fλ = 0). Accordingly, the
cohomology groups Hk(s) of s acting in the space of local functionals is isomorphic
to the cohomology groups Hk^n(s\d) of s acting in the space of local n- forms
(k = ghost number, n = form degree).

The condition that §β should vanish is rather awkward to take into account,
if only because it depends on the precise conditions imposed on the fields at the
boundaries. For this reason, it is customary to drop it and to investigate Hk>n(s\d)
without restrictions on the (n — 1 )-forms at the boundary. This approach will be
followed here. By doing so, one allows elements of Hk^n(s\d) that do not define
s-closed local functionals because of non- vanishing surface terms. We shall comment
further on this point below (end of Sect. 7).
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3. Regularity Conditions. Examples

Since one can reformulate questions involving local functionals in terms of lo-
cal ft-forms, we shall exclusively work from now on with the algebra of local
g-forms. That is, any element #,&,c,α, /?,... upon which the differential s acts
will be a local g-form with no restrictions at the boundaries unless otherwise
specified.

Let j£?0 = ^o(Φ'9Sμφ',...,dμι_μ,tφ
1) be the original gauge invariant Lagrangian.

The equations of motion are

where (-j^ are the Euler-Lagrange derivatives of 5£§ with respect to φl,

δse0_dx, d^0

*I = W~W "W0 + ( }

Two Lagrangians j£f o and ^o are regarded as being equivalent if they yield identical
equations of motion, i.e., if they have the same Euler-Lagrange derivatives, J&f, =
&'r The corresponding «-forms α0 = &0dx° . . .dxn~l and α^ = &'0dxQ . . . At""1 are
then also called equivalent. One has α0 = α^ + dβ for some local (n — 1 )-form β.
Conversely, if αo = &'$ + dβ, then j£f7 = ^( (see Theorem 5.3).

We shall make the same regularity assumptions on &Q and on the gauge trans-
formations as in [16]. These state that one can (locally in the jet bundle spaces)
separate the field equations J^ \ = 0 and their derivatives dμι_μk^, = 0 (k = 1,2,...)
into two groups. The first group contains the "independent" equations La = 0. The
second group contains the dependent equations LA = 0, which hold as consequences
of the others. Furthermore, one may introduce new local coordinates in Vk (for
each k) in such a way that the independent La are some of the new coordinates
in the vicinity of the surface defined by the equations of motion. So, one can also
split the field components and their derivatives into two groups. The first group
contains the independent field variables, denoted by XA, which are not constrained
by the equations of motion in Vk . The second group contains the dependent field
variables, denoted by zα, which can be expressed in terms of the XA and the Lb,
in such a way that za =za(xA,Lb) is smooth and invertible for the L^'s. In the
case of reducible gauge theories, similar conditions are imposed on the reducibility
functions.

These conditions are easily seen to hold for the usual gauge theories. This is
explicitly verified in [22] for the Klein-Gordon field φ and the Yang-Mills Aa

p. We
list here the corresponding La,L^,xA and za.

Klein-Gordon:

{La} = {&=Πφ9dμ&,dμιμ2&,...} , (3.3)

{LΔ} is empty , (3.4)

{XA} = {φ,dpφ9δSιdpφ9...,dS},,.Smdpφ,...} , (3.5)

{za} = {dwφ9dPldoQφ,. .9dPl_pmoQφ,.. } - (3.6)
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Yang-Mills:

ίr I — / o?μ — n pμv fl Ψm r) Ψ™ d Vm

\Lja] — \^ε a — LJVΓ a , ί^peZ: a ,<JP]P2^ a , . . . , fp1 H θ AcZ: α , . . . ,

..,V*2^> } > (3.7)

Ξ {do^Λdo^Λ,P25o^, .Λ, Vo^2. } , (3.8)

= {Aa

μ, dpA
a

μ, SS] BpA"m, ..., SS]...s/sdpA
a

m, ..., dλd0A
a

ΰ, ...,

dλl...^d0A
a

0, ..., djdmAa

0, ..., \jkSmAa

0, . . .}, (7,7, Φ 1 ) , (3.9)

{za} = {dooAa

m, dPl dooAa

m, ..., dp{...psd00A
a

m, ...,d\ {A
a

0, ...,

(3.10)

In the Klein-Gordon case, for which {L^} is empty, the set /o of independent
variables XA enjoys a useful property: it is stable under spatial differentiation, i.e.,
dk*A € Λ) f°r all ^'s and ̂ 's (d/t/o C /o). The equations of motion constrain only the
temporal derivatives of the Jt/s. This is not true for the Yang-Mills model, since
d\\AQ does not belong to /o even though d\A% does. However, it is true that 70

is preserved under differentiation with respect to xl, <3y/0 C /o (7 = 2,3,...,« - 1).
Furthermore, the set of independent equations La is stable under spatial differenti-
ation. We shall study the implications of these properties when we introduce the
concept of Cauchy order below (Sect. 8).

The regularity conditions also hold for p-foπn gauge theories, which are re-
ducible. Namely, the reducibility identities on the equations of motion ("Noether
identities")

RΛ = fi&i + Rydμ&i + - - - + 4'1-/ί* V,^ = ° > (3 n)
together with their derivatives dμR^dμ^^R^... fall into two groups: the indepen-
dent identities Ru\ and the dependent identities RU, which hold as consequences of
Ru = 0. [More precisely, when one says that Rυ — 0 holds as a consequence of
Ru = 0, one views the J^ in (3.11) as independent variables not related to the φl;
the statement would otherwise be meaningless]. Similar properties are verified for
the higher order reducibility functions.

For a 2-form abelian gauge theory with gauge field Bμv = —Bvμ and equations of
motion ^μv = dpH^v = 0 (Hpμv = dpBμv + dμBvp + dvBpμ\ one has #v = dμ^

μv.
The reducibility relations Rv = 0 are not independent in the sense that they are
subject to algebraic identities dvR

v = 0 holding no matter what ^μv = -^vμ is.
This is in contrast with the Yang-Mills case where the relations Dv^

v

a = 0 are
independent. Thus, while the set {Ru} is empty in the Yang-Mills case, one has
for the 2-form gauge field,

{Ru} = {Rv = dμ&»\ dλR", d^ff1, . . . , di^R", . . . ,

a/^δ/./X,...,^.../^0,...}, (3.12)

dPlP2d^Q

9...9dPl...psd^9...} . (3.13)
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For the equations and the field variables, the split reads

IT \ = I φ^ f) φmn ft φmn fl φmn f), 9?°™ fi, , 9?°™
\Ljaf — \°& ->up°^ "> P\Pi ' ' ' ' ' P\ —Ps > '^>(Jk°^ >Vk\K2°z' •>'•'•>

^,..ΛJ^...,a^^ (3.14)

{LΔ} = {d^m,dpd^n\dp}P2d^m^.^dp}...psd^m,...,

a1^
0\^δ1^

0\a,1,2δ1^°\...,δ,1..Λa1^
01,...}, (3.15)

= {BμV9 SpBμV9 dkdpBmn, . . . , dk{_ksdpBmn, . . . , d

dp\ ...AS ^0^0/7! , . . . , d-^dnBotn, δ^^ dnBQm, >

d = = d l n B Q l 9 . . . 9 d = =δ«5oι,...}, (7,7,- = 3,4,. . .,«-!), (3.16)
/ 1 / 2 / i - . / v

-S}-S2 (3.17)

This time, it is not true that dy/o C /o for 7 ^ 2 . But &/o C /o if 7 ^ 3, while

djLa G {//α} and dιRu G {^w}. We leave it to the reader to investigate the local
structure of the equations of motion for higher order p-form gauge fields or gravity
along similar lines.

Note that in all cases treated here, the XA and the independent equations La

provide global coordinates in the jet spaces and not just local coordinates in the
vicinity of the stationary surface. This property is clear for linear theories, but it also
holds for Yang-Mills models or gravity because the terms with highest derivatives in
La are the linear ones. Thus, modulo terms belonging to the previous space Vk

 9 the
relationship between the field derivatives of order k + 1 and the variables XA and La

is the same as in the linear case. Furthermore, in the Yang-Mills case, the change of
parametrization between the field variables and their derivatives on the one hand, and
the (xA9La) on the other hand, is polynomial. Its inverse also fulfills this property.
Polynomiality in the original field variables and their derivatives is accordingly
completely equivalent to polynomiality in the XA,LU. In the case of gravity, the same
property is true for the transformation restricted to variables carrying derivatives,
since the quantities ^/g or gλμ, which are non-polynomial in the undifferentiated
fields, occur in the field equations.

There is clearly a lot of freedom in the explicit choice of what is meant by
the "independent variables" XA, since any other choice XA —* x'A =x'A(xB,La) with
dx'A/dxβ invertible is also acceptable. The subsequent results do not depend on
the precise choice that is being made. All that matters is that the split of the field
variables and equations of motion with the above properties can indeed be performed
if desired.

A different split adapted to the Lorentz symmetry - or to the SO(n) symmetry
in the Euclidean case - could actually have been achieved. This is because the
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Lorentz group is semi-simple. Hence, for each k, the representation to which the
derivatives of order k belong, is completely reducible. The equations of motion
belong to particular invariant subspaces of that representation. A covariant split
is achieved by working with a basis adopted to the irreducible subspaces of the
representation of order k (for each k). Such a covariant split is useful in maintaining
manifest covariance. However, the non-covariant splits given here, such that dj!0 C
/o or dr/o c /o, are useful in establishing the vanishing theorems on H(δ\d) derived

below. Covariance can be controlled differently, as we shall mention in Sect. 5.

4. Local /7-Forms and Antίfields

To fix the ideas, we shall assume from now on that the theory is at most a
reducible gauge theory of order one and that the fields φl are bosonic. The gauge
transformations

*')εV)<fr/, (4.1)

#,(x,x') = R'aδ(x,x') + R^dμδ(x,x') + ••• + <'-"%,..,,, <5(jt,jt') , (4.2)

^ δeφ' = Λίβ + ΛJfV + + /C ~"* dμι ...μk ε
α , (4.3 )

are not independent
fZ*A(x,x')Rl«(x',x/f)dxf « 0 , (4.4)

but there are no non-trivial relations among the Z^j. The ghost and antifield spectrum
relevant to that case is given by

φA=(φl,C\CΔ), (4.5)

ΦA=(Φΐ,C;,C^), (4.6)

with
antigh φl = antigh Cα = antigh CΔ = 0 , (4.7)

antigh φ* = 1, antigh Cα* = 2, antigh C*A = 3 , (4.8)

puregh φi = 0, puregh Cα = 1, puregh CΔ = 2 , (4.9)

puregh φ* = puregh Cα* = puregh C*Δ = 0 , (4.10)

g h ψ ' = 0 , ghCα = l, g h C J = 2 , (4.11)

ghCα* = -2, ghQ = -3. (4.12)

Irreducible gauge theories have no Z^j, and thus no ghosts of ghosts CΔ and
their antifields Cjj. Theories without gauge freedom have only φ1 and φ* (R^ =
0, Zj = 0). The assumption that the gauge theory is at most reducible of order one
or that the fields are bosonic is by no means important. It is only made to keep
the formulas and the field spectrum simple. The general theorems of Sects. 6, 7 or
8 below hold for reducible gauge theories of higher order as well.

The local p-forms introduced previously depended only on the original fields
and their derivatives. From now on, local p-forms will also involve the ghosts, the
antifields and their derivatives. Because the objects under consideration may have
terms of arbitrarily high antighost number, we shall actually define two different
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types of local p-forms and local functional. The p-forms of the first type are
given by unrestricted formal sums

a= Σ ( *, (4.13)
λ-^o

(k)
where k is the antighost number and where a are p-forms of antighost number k
involving the fields, the ghosts, the antifields and a finite number of their derivatives.

(k)
Because a is assumed to have given total ghost number, and because antigh a = k,

(k)
the a are actually polynomials in the ghosts and their derivatives. The sum (4.13)
may not terminate, i.e., a may be an infinite formal series in the antifields. So, while
(k)
a are local p-forms in the usual sense, the formal sum (4.13) may in principle
involve derivatives of arbitrarily high order since the order of the derivatives present

in a may increase with k. In the same way, local functionals of the first type are
given by unrestricted sums of integrated terms

(k)
where a are usual n-forms of antighost number k.

For a generic gauge theory with open algebra, there is a priori no control as to
whether the formal sums (4.13) or (4.14) stop after a finite number of steps. The
local p-forms and functionals (4.13) and (4.14) are accordingly the natural objects
to be considered. It is to those objects that the general theorems of homological
perturbation theory apply.

For the usual theories like Yang-Mills models or gravity, however, it is possible
to control the expansion (4.13) and (4.14). For such theories, we shall consider a
second type of local p-forms and local functionals, namely, those for which the
expansions (4.13) or (4.14) stop after a finite number of steps,

(k)
a= Σ a , (4.15)

A = / E (a (4-16)

There is no difference between the individual terms appearing in the expansion
(4.13) or (4.15). When projected to a definite value of the antighost number, the
local forms (4.13) or (4.15) are identical. The difference lies only in the fact that
(4.13) (or (4.14)) may involve terms of arbitrarily high antighost number.

In the case of Yang-Mills and gravity, we shall restrict even more the functional
spaces to which the local functions and functionals belong, by demanding that they
be polynomials in the derivatives of the fields (and also in the undifferentiated fields
in the Yang-Mills case). That is, we exclude local functions like exp(do^ι)- This
is quite natural from the point of view of perturbative quantum field theory.

Thus, we require that the local g-forms be polynomials in all the variables
φl,Cy,φ*,C* and their derivatives for Yang-Mills models; and for Einstein grav-
ity, that they be polynomials in Cα,0*,C* and their derivatives, as well as in
the derivatives of the fields φl, with coefficients that may be infinite series in the
undifferentiated fields (to allow the inverse metric gμv = ημv - hμv -\ ---- ).
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5. BRST Differential

The Koszul-Tate differential δ is defined in the algebra of local p-foπns by:

δC*Δ(x) = / - C:(

δdxμ = Q , (5.1)

where </>^ denotes collectively </>',Ca and C^1. [Like 5 and y below, the differential <5
is extended to the derivatives of the fields by requiring δdμ = dμδ, and to arbitrary
functions of the generators by means of the Leibnitz rule]. It has anti ghost number
-1 and is such that

= C00(Σ)^C[CΛ

9dμC
Λ

9...9C
A

9dμC
A

9...9dxμ]9

= Q9 k > 0, (5.2)

where C°°(Σ) denotes the quotient algebra of the smooth functions of the fields
φl and their derivatives modulo the ideal of functions that vanish when the
field equations hold. One says that δ provides a "resolution" of the algebra
C°°(Γ) 0 C[Cα, dμC«, ...,CA, dμC

A, . . . , dxμ]9 the antighost number being the res-
olution degree. The same result holds if instead of arbitrary smooth functions of the
fields and their derivatives, one considers polynomial functions, provided that the
change of variables (φl,dφl

9d
2φ1,...) <-» (xA,La) and its inverse are both polyno-

mial. Any polynomial cycle a of antighost number k > 0 can be written as a = δb,
where b is also polynomial ([23] footnote 1).

The acyclicity of δ in strictly positive antighost number is most easily proved by
introducing a homotopy for the operator that counts the antifields and the equations
of motion [9], for instance in the basis of Sect. 3. Since that basis is not manifestly
covariant, one may wonder whether acyclicity also holds in the space of Lorentz
invariant local forms. More generally, if the theory is invariant under a global
symmetry group G, one may wonder whether acyclicity also holds in the space
of local forms belonging to a definite representation of G. That this is so if the
group is semi-simple can be seen either by redefining the basis of Sect. 3 in a
manner compatible with the symmetry, or by using the fact that δ commutes with
the action of G and hence maps any irreducible representation occurring in the
decomposition of the completely reducible representation of G given by the local
forms on an equivalent representation or on zero [23]. [The argument uses the fact
that the representations of G are completely reducible; this is guaranteed to hold
if G is semi-simple, but holds also if G is compact provided (in both cases) that
the representations under consideration are effectively finite-dimensional. This is for
instance so if the local forms are polynomials in the fields and their derivatives].
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The differential y has antighost number equal to zero. It is defined on the fields
through

γCA(x) = $CAΓ(x',x'x"}C\x')CΓ(

+ \ί C4(jc; *Yy")C V )C V)Cy (*"') dx1 dx" dx'" , (5.3)

so that H*(γ) in C°°(Σ) ® C[Cα, dμC\ ...,CA, dμC
Δ, . . .] is isomorphic to the coho-

mology of the exterior derivative along the gauge orbits. Furthermore, it is extended
to the antifields in such a way that it is a differential modulo δ, i.e.,

yδ + δy = 0 ,

(5.4)

for some derivation s\ of antighost number +1 [9].
The following theorems are standard results of the BRST formalism.

Theorem 5.1. There exists a derivation s of total ghost number equal to 1 such
that

(i) s = δ + y + s\ + "higher orders" antigh ("higher orders")^ 2;
(ii) s1 = 0 (s is a differential).

Furthermore, one may choose s so that it is canonically generated in the
antibracket, sa = (a9S)9 where S is a solution of the classical master equation
(S,S) = 0 and starts like S = f&dx + f.... The differential s is the BRST dif-
ferential.

Theorem 5.2 (on the Cohomology of s). The cohomology of the BRST differential
s in the algebra of local q-forms is given by

(i) Hk(s) = H^k(δ) = 0fork<0,

where Hk(y,Ho(δ)) is the cohomology o f y in the cohomology of δ.

Furthermore, the correspondence between Hk(s) and Hk(y,Ho(δ)) is given by

[a] e H*(s) ̂  [a0] € Hk(j,H0(δ)) , (5.5)

where a^ is the component of a of antighost number zero. That is, for non-negative
ghost number, any cohomology class of the BRST cohomology is completely deter-
mined by its antίfield independent component, which is a solution of ya$ + δa\ =0
or, what is the same ya$ ~ 0. Here, ~ means "equal modulo the equations of
motion."

Proof. The proofs of Theorem 5.1 and Theorem 5.2 may be found in [9]. D

We stress again that here, s and a are a priori infinite formal power series with
terms of arbitrarily high antighost numbers.
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To analyze the cohomology of s modulo d, we shall also need the following
two results

Theorem 5.3 (on the Cohomology of d). The cohomology of d in the algebra of
local p-forms is given by

H\d) ~ R ,

Hk(d) = 0 for £ΦO, £=M,

Hn(d) c± space of equivalence classes of local n-forms , (5.6)

where two local n-forms α = fdxQ - - dxn~] and ocf = f'dx° - - - dxn~x are equiva-
lent if and only if f and f have identical Euler-Lagrange derivatives with respect
to all the fields and antifields,

δ ( f - f ϊ = Q = ̂  ~/ ^ ^̂  α and α' are equivalent . (5.7)
oφA

Proof. The proof of this theorem may be found in various different places [24,18,25,
26,17,27,28]. D

Theorem 5.4 (on the Cohomology of δ modulo ί/). In the algebra of local forms,

Hk(δ\d) = 0 (5.8)

when the antighost number and the pure ghost number are both strictly positive.

Proof. See [16] or [9], chapter 12. D

Theorem 5.3 is sometimes referred to as the "algebraic Poincare lemma" because
it reminds one of the usual Poincare lemma. However, it is not the standard Poincare
lemma, which states that dΨ = 0 => Ψ = dχ locally in spacetime but without guar-
antee that χ involves the fields and a finite number of their derivatives if Ψ is a
local />-form. Note that the proof of Theorem 5.3 uses the fact that the target space
is star-shaped. If that condition does not hold, there may be additional cohomology.
This occurs, for instance, in the case of gravity since the gravitational variables are
restricted by non-degeneracy conditions (see [29,30]) for additional information).
Note also that Hk(d) vanishes for & Φ O and kή=n only if one allows for an explicit
coordinate dependence of the local forms. Otherwise, Hk(d) is isomorphic to the
set of constant forms for £ Φ O and kή=n.

6. Homological Perturbation Theory and H*(s\d)

Theorem 5.2 relates the cohomology of s to the cohomology of δ and γ. This is
done through the methods of homological perturbation theory. A straightforward
application of the same techniques enables one to characterize the cohomology of
s modulo d.

Theorem 6.1 (on the Cohomology of s modulo d).

(i) Hh(s\d)~H,k(δ\d) / o r & < 0 , (6.1)

(ii) Hk(s\d) ~ Hk(γ\d,H0(δ)) for k ^ 0 . (6.2)
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Proof. The proof proceeds as the proof of 5.2 (see [9], chapter 8, Sect. 8.4.3). We
shall thus only sketch it here. Let a be a representative of a cohomology class of
s modulo d, sa-\-db — 0. Assume gha — k. Expand a according to the antighost
number,

a = ai + al+\ H , (6.3)

antighfl, =j ^ 0 , (6.4)

pureghaj = k + j , (6.5)

ghaj = k. (6.6)

The first term at in (6.3) has antighost number equal to max (0,-£) (i.e., / = 0
if k ^ 0 and i =-k if k < 0). If k j£ 0, a0 fulfills ya0 + δa\ + db0 = 0 and
thus, defines an element of Hk(y\d,Ho(δ)) (both aQ and bo fulfill δaG = δbG =
0; furthermore, puregha$ = k). It is easy to verify that the map Hk(s\d) —»
Hk(y\d,Ho(δ)) : [a] \—> [α0] is well defined, i.e., does not depend on the choice
of representatives. One proves that it is injective and surjective as in [9] using the
crucial property that Hj(δ\d) vanishes for both j > 0 and strictly positive
pure ghost number (the pure ghost number of the higher order terms in the
expansion (6.3) is > 0). Turn now to the case k = —k' < 0. Then the expansion
of a reads

a = akf +akι+ι H . (6.7)

The term ak> fulfills δakr+dbkr_\ = 0, i.e., defines an element of Hk/(δ\d). As
for k ^ 0, the map Hk(s\d) —» H_k(δ\d) : [a] \—> [a_k] is well defined and
is both injective and surjective thanks to the triviality of Hj(δ\d) in positive
antighost and pure ghost numbers. This proves the theorem. Note again that the
series (6.3) or (6.7) under consideration may be infinite formal series in the
antifields, just as in Theorem 5.2; there is at this stage no guarantee that they
stop. D

Comments, (i) For k ^ 0, the cohomology classes of Hk(s\d) are completely
determined by their antifield independent components. In particular, to determine
whether there exist non-trivial elements of Hk(s\d), it is enough to deter-
mine whether there exist non-trivial solutions of yao + dbo + δa\ =0, or,
what is the same, ya0 + db0 « 0. This is true for any value of the (positive)
ghost number, in particular for k = I (anomalies). It is just the transcription,
in terms of local functionals, of standard and well-established properties of
Hk(s\ Theorem 6.1 is discussed along the same lines in exercise 12.9 of [9].

(ii) For k < 0, the cohomology classes of Hk(s\d} are also determined by their
components of lowest antighost number. In this case, these components do involve
the antifields but do not involve the ghosts.

(iii) The surjectivity of the map [a] ι—> [α_^] for k < 0 shows that any solution
akt of δakt + dbkι_\ = 0 is automatically annihilated by γ up to δ- and J-exact terms
(jak' — —°ak'+\ — dbkt). That is, any solution of δak> +dbkι_\ = 0 is "weakly
gauge invariant" up to J-exact terms.
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7. Constants of Motion and H[(δ\d)

Although Hj(δ) vanishes for antighost number j > 0, this is not true for Hj(δ\d).
A counterexample was provided in [16]. In this section, we characterize more com-
pletely H"(δ) (where n is the form degree). We show that there is a bijective
correspondence between H"(δ\d)(= H~l>n(s\d)) and the space of inequivalent con-
served currents (defined more precisely below). That the BRST cohomology in-
volves the constants of the motion is not surprising, in view of the fact that the
BRST differential incorporates explicitly the equations of motion.

Elements of H"(δ\d) are determined by ^-forms of antighost number one solving

δa + dj = Q , (7.1)

where j is a (n — l)-form of antighost number zero. Both a and j may be
assumed not to depend on the ghosts (ghost dependent contributions are trivial, see
Theorem 5.4). If one substitutes

a = a'φ* + α'%0* + - + a'^"dμι ..,„</>,* (7.2)

in (7.1), one gets using (5.1),

or, in dual notations (a = Xdx° - - dxn~l),

' ' ' ' ' <7 4)

Thus, jμ is a current that is conserved by virtue of the equations of motion.
The current j is not Completely determined by (7.1). One may add to it an

arbitrary solution j of dj = 0 without changing a. Since Hn~l(d) = 0 (Theorem
5.3), j is of the form dk. Thus given aj is determined up to j —> j + dk. But a is
not even given completely; what is fixed is the cohomology class of a in H"(δ\d),
i.e., a up to δm + dn. The modification a — > a + δm + dn yields j —> j -f- δn + dk.
Since j is d closed modulo <5, there is accordingly a well defined map from H"(δ\d)

to HS-l(d\δ)9

Hn(δ\d) _^ Hn,~\d\δ\ [a] -̂  [/] . (7.5)

The map is injective because H\(δ) = 0 (if [/'] = 0 in H(d\δ)9 i.e., j = δn + dk,
then δ(a - dn) = 0, i.e., a = dn + δb, i.e., [a] = 0 in H(δ\d)). It is also clearly
surjective. Thus there is the isomorphism

HΪ(δ\d)~H»-l(d\δ). (7.6)

This result is a particular case of a proposition (Eq. (16)) of [26].
To fully appreciate the physical content of Eq. (7.6), one needs to introduce the

concept of inequivalent conserved currents and inequivalent global symmetries.
(i) A current is said to be identically conserved if it is conserved independently

of the dynamics, i.e., if dj = 0 or j — dk. A conserved current is said to be equiv-
alent to zero if it coincides on-shell with an identically conserved current, j K, dk.
The space H§~^(d\δ) is just the space of equivalence classes of conserved currents.
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(ii) By making integrations by parts if necessary, one may assume that a =

Xdx° dxn~l does not involve the derivatives of the antifields. With X = X'</>*,
Eq. (7.4) reduces to

xw=δfjμ (7 7)

and shows that a defines the symmetry δχφl = X1 of the action (any linear function
of the φ* is naturally viewed as a tangent vector to field space [31]). Gauge symme-
tries (including on-shell trivial symmetries [9]) are physically irrelevant since two
configurations differing by a gauge symmetry must be identified. They correspond
to X1 of the form

with μlj(x,x') = —μji(xf,x), which is equivalent to

Xlφ* = δμ H- dμb
μ . (7.9)

[E.g., if the gauge transformations are δeφ
l = 7ζεα -\-Rl£dμε*, then δC* = R^φ* -

dμ(RiJL

lφ*). If X1 = R(λ* + R^dμλ" + μfj b-j^ for some λ*(φ, dφ,...) and μlj

(φ,dφ,...) = -μ>Ί(φ,dφ9...)9 then, X'φ? = δ(λ*C*Λ - ±μίJφ*φ*) + dμb
μ with b» =

λ^R^φ*.] A symmetry of the action is said to be a trivial global symmetry if it
coincides with a gauge symmetry, in which the gauge parameters are assigned spe-
cific values that may depend on the fields, modulo on-shell trivial symmetries, i.e.,
if it is of the form δμ + dμb

μ. Thus, one can identify H"(δ\d) with the space of
equivalence classes of global symmetries.

We have therefore established

Theorem 7.1. The space of equivalence classes of conserved currents is isomorphic
with the space of equivalence classes of global symmetries,

This theorem provides a cohomological reformulation of the physical version of
the Noether theorem. It shows that each non-trivial symmetry defines a non-trivial
conserved charge and vice-versa.

Comments, (i) Given a conserved current, one may define a conserved charge
through fjQdn~]x. Now, the antibracket induces a map Hf(δ\d) x Hf(δ\d)—>
H"(δ\d), which corresponds to the Lie bracket of the global symmetries (the
antibracket coincides with the Schouten bracket [31,9], which reduces to the Lie
bracket for vector fields). It is easy to verify that the isomorphism (7.10) asso-
ciates with the Lie bracket of two global symmetries the Poisson bracket of the
corresponding conserved charges. This will be made more precise in [30].

(ii) The fact that gauge symmetries lead to "trivial" conserved currents is well
known and was pointed out already by Noether [32], see also e.g. [33] in that
context. Our analysis reformulates the question as a cohomological problem.

(iii) One may wonder how the non-triviality of H"(δ\d) in the space of local
functions is compatible with the triviality of H\(δ, j/) in the space j/ of all (local
and non-local) functionals. It turns out that this follows from a combination of two
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features: (α) non-trivial elements of H"(δ\d) do not necessarily define elements of
H\(δ) upon integration because of non-vanishing surface terms; (/?) those that do,
actually turn out to define trivial elements that can be written as the ^-variation
of non-local functionals. [If this is not the case, then there are missing global
antifields for antifields, since the triviality of H\(δ) is a central property of the
BRST formalism that fixes the antifield spectrum.]

To see this, let us assume that the spacetime volume under consideration is
limited by two spacelike hypersurfaces "at t\ and fe " Let us also assume that
the field configurations are not restricted at t\ and t2, so that the allowed histo-
ries include all the solutions of the equations of motion and not just one. Then
a solution a of the equation δa + dj = 0 defines a solution A — f a of δA — 0 iff

f j = Qfa) ~ Q(*\) = 0 with Q(t) = fΣ(t)fdn~lx. This is a strong condition on

j. Indeed, the requirement Qfo) — Q(t\) = 0 for all allowed field configurations
at /2 and t\ generically implies Q(t) = constant and thus y° — 3*5°*. Thus, jμ =

jμ - dpS
μp with Smn = 0 and Sko = -Sok, is a current such that (i) / = 0; and (ii)

δa + dj — 0. The corresponding charge Q(t) = f j dn~lx vanishes identically. Thus
the transformations of the fields associated with it is a gauge symmetry (Exercise
3.3 (b) of [9]). If all gauge symmetries have been properly taken into account,
locally and non-locally, then, f a = δX. As an example, one may consider electro-
magnetism with a = A*Qdx° . . .dx"~ l . One has δA*° + dμj

μ = 0 with / = F/<0, i.e.,
/ = 0, / = F*°. Thus A = fA*°dx°...dx"~l solves δA = 0. Even though a is a
non-trivial element of H(δ\d) in the space of local functions, one has A*Q(t,x) =

f\-δC*(u,x) -f dkA*k(u,x)]du and thus A = δfdt...dxn~l /' - C*(u,x)du: A is
a trivial element of H\(δ) if one includes non-local functionals.

(iv) There exist interesting theories for which there is no non-trivial, local con-
served current. For example, pure Einstein gravity is such a theory [34]. In that
case, the cohomology groups H"(δ\d) and thus also H~λ*n(s\d) are zero.

8. Results on Hp

k(δ\d) (p, k Arbitrary)

The above theorem characterizes H"(δ\d) in terms of conserved currents. What is
the cohomology of δ modulo d for the other values of the antifield number and
form degree? As a first step in characterizing H£(δ\d) for arbitrary £'s and /?'s we
establish

Theorem 8.1 (Descent Equations for δ and d). If p ^. 1 and k > 1, then

(8.1)

Proof. From bap

k + da^~\ = 0, one gets dbap

k^\ = 0 and thus using the triviality
of d in degree p — 1 ,

δaζll + daζl} = 0 . (8 2)

(If p - 1 = 0, H°(d) is trivial because a°k_l has non-vanishing antifield number

and cannot be constant.) This shows that ak~{ defines an element of Hk~{ (δ\d).
It is easy to check that this element does not depend on the choices of representa-

tives and thus, there is a well defined map from Hf(δ\d) to Hk~{\δ\d\ This map
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is injective because Hk(δ) = 0 and surjective because Hk_\(δ) = 0. This proves the
theorem. D

Of course one has also, by the same techniques as in the previous section

Theorem 8.2. // p ^ 1 and k ^ 1 with (/?,£)Φ(1, 1), then

(8.3)

Furthermore,

HΪ(δ\d)~H°(d\δ)/R. (8.4)

[If one does not allow for an explicit x dependence in the local forms, then,

(8.3) must be replaced by Hf(δ\d) ~ Hξ ~\d\δ)/ {constant forms] for k = 1.]

In particular, H£(δ\d) c± H^~k(d\δ)\ the equivalence classes of fl-forms that are
^-closed modulo d at anti ghost number k are in bijective correspondence with the
equivalence classes of antifield independent (n — &)-forms that are J-closed modulo
the equations of motion.

The calculation of the general solution of da ~ 0, antighβ = 0, is a question
that is of interest independently of the BRST symmetry. It can be analyzed without
ever introducing the antifields or the Koszul-Tate resolution and carries the name
of "characteristic cohomology" [35]. However, as we shall see in the explicit case
of the Yang-Mills theory, the direct calculation of H%(δ\d) may be simpler than

that of HQ~k(d\δ) for k = 2. Thus, it appears to be useful to bring in the tools
of the antifield formalism even in the analysis of questions that are a priori unrelated
to the BRST symmetry, like that of calculating Hξ(d\δ).

A direct consequence of Theorem 8.1 is that ff£(δ\d) vanishes whenever k > p.

Indeed, by using repeatedly (8.1), one gets Hf(δ\d) ~ H°_p(δ\d} ~ H%_p(δ) ~ 0
(k> p\

To determine the cohomology groups H^(δ\d), it is enough to compute H£(δ\d)
for k — 1,2, . . .,« or Hf(δ\d) for p = 1,2, ...,«. In general, this is a difficult task.
For theories of Cauchy order g, however, one can locate more precisely the values
of the degrees where the non-trivial cohomology may lie.

To define the Cauchy order of a theory, we come back to the split of the
field components, the field equations and their derivatives performed in Sect. 3. We
recall that the set of independent field variables XA was denoted by /Q. We shall
say that the split has Cauchy order q if dj$ C /o for α = q,q 4- !,...,« — 1. This
terminology is motivated by the fact that the split of the derivatives is somewhat
adapted to the Cauchy problem. Thus, the above split for the Klein-Gordon theory
has Cauchy order 1; the one for electromagnetism and Yang-Mills theories, has
Cauchy order 2; and the one for p-form gauge fields, has Cauchy order p + 1.

As such the Cauchy order depends on the choice of /o but also on the coordinate
system. For instance, the two-dimensional Klein-Gordon equation dμdμφ — 0 reads
in light-like coordinates d+d-φ = 0. One may take as independent field variables

φ, d_φ and d+ φ (k = 1,2,3,...). These are, however, preserved neither by d+
nor by 5_, so that the value of q associated with this choice is 2. We shall define
the Cauchy order of a theory as the minimum value of q for which <9α/0 C /o (α =
q,q-\- !,...)• The minimum is taken over all sets of spacetime coordinates and all
choices of IQ.

So, the Cauchy orders of the Klein-Gordon theory and electromagnetism are
respectively ^ 1 and ^ 2. The fact that H\(δ\d) (respectively H2(δ\d)) does not
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vanish for those models implies, however, that q = 1 (respectively q = 2). Indeed,
one has

Theorem 8.3. For theories of Cauchy order q,

H[(δ\d) = 0 ifi^n-q. (8.5)

Thus, for the Klein-Gordon model, only H"(δ\d) is non-vanishing. For electro-

magnetism and Yang-Mills, only Hf(δ\d) and H"~l(δ\d) ~ H%(δ\d) may be non-

vanishing. And for p-form gauge fields, only H"(δ\d), H"~\δ\d) ~ H£(δ\d),... up

to H"~p(δ\d) ~ H$~p+\δ\d) ~ - ~ Hn

p+l(δ\d) may differ from zero.

Proof. We set d = d + d, where d = d0dxQ + d\dxl + - + dq-ιdxq~l and d =
dqdxq + dg+\dx?+l H h d Λ _ ι Λ c n ~ 1 . Let α be a solution of δa + db = Q with
antighfl = 1 and degα = i ^ n — q. One has antighft = 0 and degft = / — 1. Let
a — a\ + a2 and b = b\ + #2, where «ι (respectively ft}) involves at least one
ί/jc^ with β ^ q — 19 while #2 (respectively 62) involve only the d;ta with a ^ q.
One may assume without loss of generality that ft2 involves only the independent
variables XA G /o This can always be achieved by adding to b a <5-exact term
if necessary. This modifies a by a d-exact term. The equations δa + db = 0
splits as

δαi + db\ + JZ?2 = 0 ,

(S<32 + JZ)2 = 0 . (8.6)

Now, J&2 contains only the variables not constrained by the equations of motion
since <9α/° G /° for a = q,q + l,...,n - I, while δa2 vanishes by the equations of

motion. Hence db2 and δa2 must be zero separately. This implies a2 = δm2 and

b2 — dc2 because Hl~l(d) = Q (b2 is a (/—l)-form in the (n - g)-dimensional
space of the xg,xq+l,...,xn~l; and i ^ n - q by assumption). Thus, by making the
redefinitions a —> a — δm and b —> b — dc, we may assume a = a\ and b = b\.

To pursue the analysis, we split further a\ and b\ into components a\\ (b\\)
involving at least two dx^ with β ^ q — 1 and #12 (ft 12) involving only one dx&
(β <ί q - 1). We further redefine ftj2 in such a way that it involves only XA, b\2 —>
ft 12 + δt. Because t involves one dx^, the corresponding redefinition of a (a —*
a — dt) leaves a2 equal to zero. The equation δa + db = 0 yields

δan+hl2 = 0 , (8.7)

from which one infers as above that δa\2 = 0 and db\2 = 0. It is easy to see that

this implies not only a\2 = δm\2 but also fti2 = dc\2 (write fti2 as Y^β^0b\2βdx^

where b\2β are (/ - 2)-forms which must separately fulfill db\2β = 0). Thus one
can remove a\2 from a\ and ft 12 from b\. By going on in the same fashion, one

arrives in maximal form degree for d at δa\q + db\q = 0. Again both terms have to
vanish separately and can be absorbed by redefinitions, which proves the theorem.
Note that (8.5) holds also in the space of polynomial g-forms if the change of
parametrization (φl, dφ1,...) <-> (x^La) and its inverse are polynomial. D



Local BRST Cohomology in Antifield Formalism: I 75

An analogous vanishing theorem for the characteristic cohomology of an exterior
differential system, which probably encompasses Theorem 8.3, has been derived
in [35].

Comment. As a side comment, we note that the result (8.5) extends to the other
rows of the variational bicomplex1: by Theorem 8.2, Theorem 8.3 is equivalent to
the statement that Hl

Q(d\d) = 0 for / ^ n — q — 1 for theories of Cauchy order q.
This corresponds, in the terminology of the variational bicomplex for differential
equations [17], to the exactness of the bottom row of this complex up to horizontal
degree n - q — 1.

Now, it is straightforward to check that the same result remains true for any other
row with vertical degree s different from zero. Indeed, in the proof of Theorem 8.3,
one has to replace b by a linear combination of b's multiplied by s of the generators
dyφ\dvφ\μ,dvφ\^μ2,..., whereas a becomes a linear combination of a's linear in
the antifields and their derivatives multiplied by s of the above generators plus
a linear combination of antifield independent α's multiplied by s — 1 of the above
generators and one of the generators dyφ*,dι/φ*μ,dyφ*μ,μ2> Using the split
of the fields and their derivatives into La and XA, one can choose b to depend
only on XA and dyxA. Indeed, both La and its vertical derivative dvLa can be
removed from b since they are <5-exact (dyδ + δdy = 0). Since dy and d = d^

(respectively J) anticommute, db will also only depend on XA and dvxA. Because

Hl(d) = 0 in vertical degree s, the proof of Theorem 8.3 goes through exactly in
the same way.

This means that the variational bicomplex for differential equations of Cauchy
order q is exact up to order n — q — 1 (all the columns for this bicomplex are exact
as in the case of the free complex [17]). This question will be developed further
in [30].

9. Linear Gauge Theories

The vanishing theorem 8.3 for the (5-cohomology modulo d can be derived, in
the case of linear gauge theories and perturbations of them (in a sense to be
made precise), under different conditions. The techniques necessary for deriving
this alternative vanishing theorem are quite useful and based on the well known
fact that the Euler-Lagrange derivatives of a divergence dμj

μ identically vanish.

Theorem 9.1. For a linear gauge theory of reducibility order r, one has,

Hjn(δ\d) = 0, j>r + 2 (9.1)

whenever j is strictly greater than r-\-2 (we set r = — 1 for a theory without
gauge freedom).

Proof Assume for defmiteness r — 0 (irreducible gauge theory). The case of arbi-
trary r is treated along identical lines. Since the equations are linear, one has

D'jV , (9.2)

We thank Niky Kamran for asking us this question.
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where Dυ is a linear differential operator with field independent coefficients,

A / = Σ<'•"'%,..../• (93)

Similarly, the Noether identity reads

Ul—— =0 (9.4)
α δφl v '

with

Uy.— L^u* Vμ\ μk (9-5)

Let a be a «-form solution of (5α + <9μ6μ = 0 (in dual notation), with antighost
a ^ 3. By taking the Euler-Lagrange derivatives of this cycle condition with respect
to C*, φf and φl

9 one gets (δ(dμb
μ)/δ(anything) — 0),

where

JJl+ — Σ (—)kUl£l'"μkdμ μ , (9.7)

D+ = Y (-)ldμ{" μιdLh Ul . (9.8)ιj ' ^ ^ ' ij μ\ "-A*/ v^ ^/

Since the variational derivatives of a have non-vanishing antighost number (antigh
a ^ 3), the relation /4(<5) = 0 (& > 0) implies, using the operator identity
Ulpij = 0 that follows from (9.4),

§ = 5/" ' (9<9)

= U*f* + df:, (9.10)

for some /α,/7 and /7. Equations (9.9)-(9.11) are valid for any field configuration.
Thus, we may replace in them the fields, the antifields and their derivatives by t
times themselves, where Ms a real parameter. For instance, (^ )(0 = (<5/α)(0

with F(t) = F(tφl,tφΐ,tC;).
Now, one can reconstruct a from its Euler-Lagrange derivatives through the

formula
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If one inserts (9.9)-(9.11) in (9.12) one gets, using the fact that δ does not depend
on t because the equations of motion are linear ((δx)(t) — δ(x(t))), that the cycle
a is given by

+ j/xo^ + d»k/μ (9 13)

o / \o / \o

That is, a is <5-trivial modulo d as claimed above. Π

10. Normal Theories

Theorem 9.1 can be extended to non-linear theories under the condition that the
linear part of the theory contains the maximum number of derivatives. We shall
call such theories "normal theories." We shall first illustrate the concept in the case
of the Yang-Mills field coupled to coloured multiplets, and we shall then define it
in general.

The Lagrangian for the Yang-Mills field coupled to matter reads

<e = ^ trF^'Fμv + J^;(/,D;;/) (io.i)

with

Dy

μy
l = 3,,/ - gAa

tlTaιy> , (10.2)

Fa

μv = dμA°, - ΰrA
a

μ - gCa

bcA
b

μA<, . (10.3)

Here, the Ta's are the generators of the representation to which the matter fields yl

belong. We shall consider for definiteness the case of Dirac fermions, / = (i//',^),

J5f v = ̂ ./D^'+/«}^, (10.4)

where m'j is the mass matrix, which commutes with Γα, [m, Ta] — 0, and we have
absorbed a factor / in the definition of yμ.

The Koszul-Tate differential is given by

δAa

μ = 0, δCa = 0, δyl = 0 ,

δA*/ = -DVF^ + gjl δC: = -DμA*a

μ + gT'aiy* yί ,

δψ*' = -fD^ - nίjψ, δtf = -DμW + ιAX' - (10.5)

One can split both the Lagrangian and the Koszul-Tate differential into free and
interacting pieces,

& = J^free + J^int , (10.6)

δ = <5free + ^int . (10.7)

A crucial feature of the free Lagrangian is that it contains the maximum number of
derivatives, namely, two derivatives of Aa

μ and one derivative of ψl . The interaction

vertices have at most one derivative of Aa and no derivative of \j/' .
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To formalize this property, we introduce a degree K defined as

K = Na+A, (10.8)

where NQ is the derivation counting the number of derivatives of the fields and of
the antifields,

„ dR

and where A is defined by

fiR
Λ — V ————— 9 dk )//*^ ί ί 4-

''

"V<" < I O '0)

The differential δ splits into components of definite ^-degree,

[K,δ>']=jδi. (10.11)

Since we have assigned ,4 -weight 2 to the antifields associated with second order
equations of motion and A -weight one to the antifields associated with first order
equations of motion, the differential δ contains only components of non-positive
^-degree. Explicitly, one has

δ = δ° + δ~l + <r2 . (10.12)
Similarly, one gets

5free = (5free,0 + (5free,-l (10.13)

The derivation (5free'° is simply the mass-independent piece of <5free, ((5free)m=0 =
^free,o jn addition, the zeroth component of δ coincides with the zeroth component
of (5free since the free part of the equations of motion contains the maximum number
of derivatives.

The differential <5free'° = <5°, like c)free and δ, is acyclic at positive antighost num-
ber. Thus, of the local g-form a (i) has positive antighost number; (ii) is enclosed
(respectively (5free-closed); and (iii) has no component of ΛT-degree higher than k,
then a = δb (respectively, a = (5free6), where b has also no component of Λ^-degree
higher than k.

One easily verifies that
[K,dμ] = dμ. (10.14)

Furthermore, if a has AΓ-degree k, then, δa/δAa

μ and δa/δyl have AΓ-degree k, δa/δy*

has ^Γ-degree k — \,δa/δAaμ has ^Γ-degree k — 2, while δa/δC* has A^-degree
k — 3. Finally, any g-form with bounded AΓ-degree is necessarily a polynomial in
the derivatives of the fields, the antifields and their derivatives, since these vari-
ables have all strictly positive A^-degree. It may, however, be an infinite series in
the undifferentiated fields, which carry zero AΓ-degree.

The existence of a AΓ-degree with the above properties is the characteristic fea-
ture of the so-called "normal theories." This concept applies to reducible or irre-
ducible gauge theories and is captured as follows. Let ^(φ, dφ, d2φ, . . . , dsφ) be the
Lagrangian of a theory,

J5f = j^free + j2?int . (10.15)
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The free term is quadratic in the fields and their derivatives. We shall say that
(10.15) describes a normal theory iff

(i) the free theory and the full theory have the same number of gauge
invariances, with the same reducibility properties, so that <5free is acyclic at pos-
itive antighost number (with the antifield spectrum of the full theory);

(ii) it is possible to define an even derivation K along the lines of the Yang-
Mills case, which is the sum of the operator counting the derivatives and an operator
A commuting with dμ, K = N$+A. The even derivation A should assign strictly
positive degree to the antifields, and non-negative degree to the fields φl. The even
derivation K should be such that the differential δfree has only components of non-
positive AΓ-degree,

e^ [ K , δ ] = t δ \ t ^ 0 , (10.16)
/

and
[K,δμ] = dμ. (10.17)

Furthermore, the zeroth order differential (5free'° should be acyclic at positive
antighost number; as in the Yang-Mills case, the ^-weight of the antifields φ* is
determined by the differential order of the corresponding free equations of motion;
the ^-weight of the antifields C* (and C^j if any) is determined by the differential
order of the corresponding reducibility identities and the ^-weight of the previous
antifields φ* (or C*);

(iii) finally, the interacting part of 3 must contain only terms of non-positive
AΓ-degree,

<Jint - Σ<5mU> [K,δ1^] = tδmt>'9 t ^ 0 . (10.18)
/

This condition expresses that there are at most as many derivatives in δmi as there
are in £>free. Note that we do not require όιnt'° to vanish, but that the sum δQ =
5free,o + ^int.o is aιways acyclic because of (ii).

It may happen that condition (ii) is fulfilled only after one has redefined the
fields. Einstein gravity (with or without cosmological constant) is a normal theory,
characterized by a non-vanishing (5mt'°. Even though one can split the derivatives
as in Sect. 3, a theory that is not a normal theory is

JS? := ψtfψ + (dμφdμφ)lQ , (10.19)

since the interaction vertices contain 20 derivatives while the free part contains only
4 derivatives.

Let a be a solution of δa -h db = 0, with antighost number ^ 3 and bounded
^-degree. Then, a is a polynomial in the antifields, their derivatives and the deriva-
tives of the fields, with coefficients that may be infinite series in the undifferentiated
fields. Let us expand a according to its polynomial degree, a = a2 + #3 + a4 H ---- .
The lower index denotes the polynomial degree of a (not the AΓ-degree) and the
series terminates if a is polynomial in the undifferentiated fields. The first term is
at least quadratic because we assume the antighost number of a to be g: 3. The
term of degree 2 in the cocyle condition reads

(5freeα2 + </Z?2 = 0. (10.20)

By Theorem 9.1, this implies

a2 = δfreec2+de2 . (10.21)
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Thus, a — OC2 — de-i has no quadratic piece and reads a — OC2 — dei — a'3 + a'4 +
• . That is, one can remove a2 through the addition of δ-exact modulo d terms.
One can repeat the argument to remove successively #3, α4,.... This shows that a
is (5-trivial modulo d, a = δc + de. The conclusion is correct, however, only if one
can prove that the procedure does not introduce arbitrarily high derivatives of the
variables. The question is not entirely straightforward because when one removes α/,
one generically modifies the next terms ai+\ and at+2 Thus, even if α/+ι = fl/ +2 = 0
originally, one may have al+\ ΦO and <2 / +2φO after at has been set equal to zero
by the addition of a <5-exact modulo d term.

It is here that the fact that ^VQQ contains the maximum number of derivatives, or
more precisely, that the theory is a normal theory, plays a crucial role. Indeed, the
components of a are bounded in AT-degree, let us say by k. Then the reconstruction
formula (9.13) and (9.9)-(9.11) show that the ^-degree of c2, given by the first
terms in the right-hand side of (9.13), cannot exceed k. It then follows that the
AΓ-degree of β2 cannot exceed k - 1 since [K, dμ] = dμ. Therefore, the term δmtC2,
which modifies 03, 04, etc. has AΓ-degree smaller than (or equal to if (5mt'° does
not vanish) k. The same reasoning applies next to £3, 63, €4, £4,.... We can thus
conclude that the AΓ-degree of c, respectively e, does not exceed k, respectively
k — I. Thus, c and e are polynomial in the derivatives of the fields, the antifields,
and their derivatives. Moreover, if δmi'° is absent and if the initial a is a polynomial
of order L in all the variables and their derivatives, a — #2 + #3 + + a^ then the
process of successively eliminating #2? ^3,-. . stops after at most L + k steps. This
is because the AΓ-degree strictly decreases at each step (it cannot remain equal to
k). Accordingly, c and e are polynomial not just in the derivatives, but also in the
undifferentiated variables.

We have thus established:

Theorem 10.1. Let <£ be the Lagrangian of a normal, reducible gauge theory of
order r. Then

Hk(δ\d) = Q (10.22)

for k > r + 2 in the space of forms with coefficients that are polynomials in the
differentiated variables and the antifields, and formal series in the undifferentiated
fields.

Theorem 10.2. If, in addition, (5int'° - 0, then

0 (10.23)

for k > r + 2 in the space of forms with coefficients that are polynomials in all
the variables and their derivatives.

Theorem 10.1 applies to gravity, where the infinite series gμv — ημv — hμv + — •
are allowed; while Theorem 10.2 applies to Yang-Mills theory.

Since reducible gauge theories of order r are usually not only normal theories,
but also theories of Cauchy order r + 2, Theorems 10.1 (or 10.2) and 8.3 are
equivalent in practice. However, the conditions under which they apply may in
principle be different (see (10.19) and Sect. 14 below on shift symmetry) and so,
Theorems 10.1 (or 10.2) and 8.3 are in those cases inequivalent.

Finally, we point out that it would be of interest to extend the conditions under
which the perturbative argument behind Theorems 10.1 and 10.2 applies.
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11. Results on H%(δ\d)

It follows from the above analysis that Hj(δ\d) vanishes whenever j > 2 for the
usual irreducible gauge theories. We shall now establish some general theorems on
Hζ(δ\d).

Let a be a representative of a class in H^(δ\d\ By adding a <5-exact term and
a total derivative if necessary, one has

<3 = /αC* + μ, (11.1)

where fy may be assumed to depend on KA only, and where μ is quadratic in the
antifields φ* and their derivatives.

Theorem 11.1. A necessary condition for a to be a δ-cycle modulo d is that /α be
the parameter of a gauge transformation that leaves the fields invariant on-shell,

fy.ni i 3 fttniu , p /*α p'/M —M/t ^ f\ (\ 1 o\
/ Aα + OμJ K£ + h Oμ{...μkJ ^α ~ U (1 1.2)

("global reducίbίlity identity").

Proof The proof is direct. One has

δa = (/X + dμf*Riμ + + dμι...μkf*Rlίλ'"μkWi + ̂  + <V , (H.3)

where <5μ vanishes on-shell. The Euler-Lagrange derivative of <5α + ί/Z? = 0 with
respect to φ* yields then (11.2), as desired. D

Thus, if there is no solution /α to (11.2), one may assume that a is quadratic in
the antifields φf and their derivatives. This occurs in electromagnetism with charged
matter fields since then (11.2) reads

dμ/«0, iefψttQ, (11-4)

from which it follows that / ~ 0 (eφO) and thus / = 0 (/ depends only on x^).
This also occurs in (i) Yang-Mills theory with a semi-simple gauge group, for
which (11.2) becomes

Dμf
a = dμf

a - gCa

bσA
b

μf
a « 0 , (11.5)

which has no solution fa(Aa

μ,dpA
a

μ,...) besides fa = 0; and (ii) Einstein gravity,
for which (11.2) reads

ξ«β + ξβ.,*0, (11.6)

which again has no solution ζΛ(gpσ,d^gpσ,...) besides ξΛ = 0 (a generic metric
has no Killing vectors; thus ξoι(gpσ,dλgpσ,dλμgpσ9...) = 0 for generic gpσ's and by
continuity, ξy = 0).

Consider now a solution μ of δμ + dμb
μ = 0 which is purely quadratic in the

antifields and their derivatives.

Theorem 11.2. For linear gauge theories, there is no nontrivial element o
that is purely quadratic in the antifields φ* and their derivatives. That is, if μ is
quadratic in the antifields φ* and their derivatives and if δμ H- dμb

μ = 0, then
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Proof. The proof proceeds as the proof of Theorem 9.1. One computes first the
variational derivatives of μ with respect to φ* and φl from the cycle condition
δμ + dμb

μ = 0. One then reconstructs μ by a formula analogous to (9.13) recalling
that δμ/δC* = 0 since μ is purely quadratic in the antifields φ* and their derivatives.
This yields immediately the desired result. D

Again, Theorem 11.2 can be extended to non-linear, normal theories, as the
perturbative argument of the previous section indicates.

12. Calculation of H%(δ\d) for Electromagnetism

As we have seen, electromagnetism and Yang-Mills models have Cauchy order 2.
Hence, only Hζ(δ\d) ~ H^~\δ\d) can be different from zero besides H^(δ\d). The
explicit calculation of H"(δ\d) is a difficult question that depends explicitly on the
model under consideration and its rigid symmetries. It turns out that, by contrast,
the calculation of H"^\d) can be carried out completely. We first compute H"(δ\d)
for free electromagnetism. The Koszul-Tate differential acting on the undifferentiated
generators reads explicitly

δAμ = δC = 0, δA*μ = —dpF
pμ, δC* = —dμA*μ . (12.1)

Theorem 12.1. For a free abelian gauge field Aμ in n > 2 dimensions, the groups

and H"~λ(δ\d) are one-dimensional One can take as representatives:

for Hζ(δ\d) : C*dxQ Λ - - Λ dxn'λ , (12.2)

for Hn,~\δ\d) : ——A^ε^^^dx^ Λ - - ΛΛcα«-' (12.3)

(or, in dual notation, C* and A*μ, respectively).

Proof. We consider explicitly Hζ (δ\d) and work in dual notation. By adding a di-
vergence if necessary, any representative a of an element of H^\d) can be chosen
to be of the form a — C*f(xj) -f μ, where μ depends on the fields and is quadratic
in the antifields A*μ. One has δa + dμb

μ = 0 for some bμ. By Theorem 11.1, the
function / must fulfill dμf ~ 0, i.e., df + δk — 0 for some k of antighost number

1 and form degree 1. But //o(ί/|<5)/R — H^(δ\d) vanishes (we assume the spacetime
dimension to be strictly greater than 2). Accordingly, / is trivial, i.e., / « const.
Since / does not involve the equations of motion, this forces / = const, (strongly).

The cycle /C* with / = const, is a solution of δ(fC*) + dμ(fA*μ) = 0 by
itself. By subtracting it from a, one may assume a = μ, where μ is quadratic in
the antifields A*μ. Using Theorem 11.2, one then finds that μ is (5-trivial modulo
d and does not contribute to the cohomology. This completes the demonstration of
the theorem. D

Remarks, (i) The solutions (12.2) and (12.3) are non-trivial because they do not
contain derivatives of the fields (while a trivial term δm + dn contains necessarily
derivatives).

(ii) The condition n > 2 is essential. For n = 2 there are other non-trivial
cocycles. For instance, a = }^εμvF

μvC* -f ^εμvA*μA*v fulfills δa + db — 0 and is non-
trivial because it contains Fμv, C* and A*μ undifferentiated. To analyze completely
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the 2-dimensional case, we use the chain of isomorphisms H^δld) ~ H\(δ\d) c±
//o(d|<5)/R. Thus it is enough to find all non-trivial 0-forms / that are closed (con-
stant) modulo the equations of motion. These 0-forms may be assumed to depend
on the XA only. It is convenient at this stage to adopt a different parametrisation
of the field variables: one may express any function of the Aμ and their deriva-
tives in terms of Aμ, its symmetrized derivatives Aμι_μk = d(μι ...dμk_lAμk) (which

are independent), FQ\ = \^F^ Ξ* F and its derivatives (which are also indepen-
dent, the Bianchi identities are empty in two dimensions). The equations of motion
set the derivatives of *F equal to zero and leave Aμ and its symmetrized deriva-
tives free. We may assume / = f(Aμ, Aμv, . . .9Aμι_μic, F0ι), since dpF^\ ^ 0. Im-
pose now dpf « 0. One has dpf = (df/dAμ)dpAμ -\ ----- h (df/dAμ]^μk)dpAμ]^μk +

(df/dFQ\)dpFQ\. The last term is weakly zero. Since 9pAμι_μk w j^Apμι_μk9 and
since Apμ}_μic is unconstrained by the equations of motion, the requirement dpf ~ 0
imposes df/dAμι_μk ~ 0, i.e., df/dAμι_μk = 0 (/ does not involve the derivatives
of FOI). Thus, / cannot depend on the symmetrized derivatives of order k. Simi-
larly, it cannot depend on the symmetrized derivatives of order k — 1, etc. ..., i.e.,
/ = /(Foi). Any function of FOI is a solution of the problem and is non-trivial.
Accordingly, H$(d\δ) ~ C°°(F0ι). Note that H$(d\δ) ~ H°(d, H0(δ)) and is an
algebra.

13. Calculation of H%(δ\d) for Yang-Mills Models and Gravity

The previous section shows that H^Old) is non-empty for free electromagnetism,
because in that case there is a global reducibility identity on the gauge trans-
formations2. Now, there is no global reducibility identity when self-couplings or
couplings to matter are included. Indeed, gauge transformations leaving the Yang-
Mills field Aa

μ and the matter fields / invariant should fulfill

Dμfa**0, fa(Ta)
l

jy> ~ 0 , (13.1)

whose only solution fa(Aa

μ, dpA
a

μ, . . . , /, dμy\ . . .) is fa « 0, and thus fa = 0 if one
assumes -as one can -that fa involves only the XA- Accordingly, by Theorem 11.1,
an element of H^δ \d) should be quadratic in the antifields of antighost number 1.
Since the Yang-Mills theory is a normal theory, Theorem 1 1 .2 implies then that
H}2(δ\d) is empty. Non-vanishing cohomology arises only when there are uncoupled
abelian factors since Eq. (13.1) has then non-trivial solutions.

We have thus proved

Theorem 13.1. In spacetime dimensions ^ 3, the group H^δld) vanishes unless
there are free abelian gauge fields A*μ. In that case, the most general δ-cycle
modulo d is given, up to trivial solutions, by

f«C*, fa = const. , (13.2)

where the C* are the antifields of antighost number 2 associated with the uncou-
pled abelian factors.

There is no contradiction between the fact that electromagnetism is an irreducible gauge theory
because gauge transformations should vanish at infinity. This kills constant gauge parameters.
However, in analyzing H(δ\d), no boundary condition is imposed.
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The same reasoning applies also to Einstein gravity: linearized gravity has ten
global reducibility identities corresponding to the ten Killing vectors of Minkowski
space. These define cohomology classes of H^δld). The full theory, however,
has no global reducibility identity (a generic solution of Einstein equations has
no Killing vector). Thus H£(δ\d) is zero in Einstein gravity.

Comments, (i) It follows from H^δld) = 0 and the isomorphism

H^~2(δ\d) that there is no local (n — 2)-form that is closed modulo the equations
of motion for generic Yang-Mills models, or Einstein gravity (except for forms that
are exact modulo the equations of motion).

(ii) In two dimensions, one may compute //2

2((5|d) ~ H^(d\δ)/R directly. The
analysis proceeds as in the Abelian case. The equations of motion are equivalent to
DμFξι = 0 (in the absence of coupling to matter) and thus, eliminate the derivatives
of Fξ}. Any function f(Aa

μ9 Aa

μv9...9A
a

μι_μk9 Fξ}) solution of df + δm = 0 must be

gauge invariant since ydf + yδm = 0 implies ym = δu -f dv, and hence γf - δv — 0,
i.e., yf = 0 (/ does not contain the derivatives of Fβ} ). This means that / must
be an invariant function of F^ . Any such function fulfills df~Q and is thus a

solution. That is, //o(c/|<5) is isomorphic to the set of invariant functions of F^ in
the absence of matter. When couplings to matter are included, however, //^(ί/|5)/R
is generically zero dimensional.

(iii) By the same reasoning, one can show that if a weakly vanishes, has
antighost number 1 and is a <5-cycle modulo d9 then, it is necessarily (5-exact mod-
ulo d, i.e., a = δμ + dμj

μ. Furthermore, if the only gauge transformations /α that
leave the fields invariant on-shell (Eq. (11.2)) reduce on-shell to constants, i.e.,
/α ~ constants, as it is the case for Yang-Mills models and gravity, then, μ may
be assumed to be quadratic in the antifields φ* and their derivatives. This implies
that trivial global symmetries as defined in Sect. 7 are the same as symmetries of
the action reducing on-shell to gauge transformations.

14. Non-Minimal Sector-Shift Symmetry

In order to fix the gauge, it is often useful to add further variables known as
the "variables of the non-minimal sector." This procedure is physically acceptable
because these variables do not modify the BRST cohomology H*(s) [9]. We show
that they do not modify the local BRST cohomology H*(s\d) either.

The standard non-minimal sector contains the "antighosts" Ca9 the auxiliary

fields ba and the corresponding antifields C*α and b*a. The action of the BRST
differential on those variables is

This is the characteristic form of a contractible differential algebra. As usual, one

extends s to the derivatives of Ca9 ba9 C a and b*a so that sBμ — dμs.
The triviality of s in the non-minimal sector is proved by introducing the con-

tracting homotopy p,

p = V di i Ca 8 L L b*a (14-2)
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such that ps + sp = TV, where TV counts the number of variables of the non-minimal
sector and their derivatives. The crucial feature of the contracting homotopy p is
that it commutes with dμ, i.e., pΰμ — dμp. Thus, it anticommutes with d,

pd + dp = 0. (14.3)

The existence of a contracting homotopy that commutes with dμ follows from the
fact that the action of s on the fields of the non-minimal sector does not increase
the order of the derivatives. Such a homotopy does not exist for δ in the minimal
sector whenever Hk(δ\d) is non-trivial [16].

Because of (14.3), one may easily establish that the non-minimal sector does not
contribute to H(s\d). Let a be a solution of sa + db = 0. Decompose a according

to its TV-degree, a — Σ/t>oβ£ The term flo ^oes not contain the variables of the
non-minimal sector. From sa + db = 0, one infers

aka-a0= JJ — — = ]Γ) (ps + sp)—

(14.4)

Hence, a — a$ is s-exact modulo d and can be removed from H(s\d).
We have thus proved

Theorem 14.1. The variables of the non-minimal sector do not contribute to
H ( s \ d ) : one can remove the variables of the non-minimal sector from any
s-cocycle modulo d by adding to it an s-coboundary modulo d.

In particular, in Yang-Mills theory, one may analyze the local BRST cohomol-
ogy in terms of the original variables of the "minimal sector" Aa

μ, C
a, A*a

μ, C*, /, y*
introduced above.

A similar analysis applies to gauge symmetries not involving the derivatives of
the fields, such as the "shift symmetry" of [10]. Consider a gauge theory such that (i)
the fields φl split into two groups φl = (ea, ωα); and (ii) the gauge transformations
are mere translations in the ωα,

0,ea = Q , (14.5)

^;ω
α = ε α . (14.6)

The Lagrangian depends only on the ea and their derivatives. We shall call (14.5),
(14.6) "shift symmetry" because (14.6) is just a shift of the ω's. An example (but
not the only one) of such a gauge theory is obtained by replacing the fields φl

by φl — ψl in a theory without gauge invariance. The Lagrangian is then invariant
under the shifts δ.φ' = ε', δ^ = εl. The redefinition el = \(φl - ψl\ ωl = (φl +
ι/0 brings the theory to the desired form (14.5), (14.6). Since this redefinition is
invertible and local, it does not modify H*(s\d). For instance, if one starts with
the Klein-Gordon theory, one gets the Lagrangian j£?(e,ω,de,<9ω) = —^dμedμe.
The theory has Cauchy order one (the XA are e, dpe and their spatial derivatives
together with ω and its derivatives). It is also a linear irreducible gauge theory. Thus,
by Theorem 9.1, Hj(δ\d) — 0 for j > 2. This is strengthened by Theorem 8.3 to
Hj(δ\d) = 0 for j > 1 (Cauchy order 1).
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The BRST cohomology of the shift symmetry can be completely computed.
Indeed, the BRST transformation for (14.5), (14.6) reads

^ = 0, se*a=~±, (14.7)

sωα = Cα, <?Ca = 0, sω*Λ=0, sC*=ωl. (14.8)

The transformation (14.8) takes the same form as (14.1). Thus, the same argu-
ment shows that ωα, Cα, ω* and C* do not contribute to the cohomology H*(s\d).
Only the gauge invariant degrees of freedom ea and e* contribute to H*(s\d). In
particular, one has

Theorem 14.2. The shift symmetry cannot be anomalous, Hl'n(s\d) — 0.

These results can be straightforwardly extended to the case of a gauge group that
is the direct product of a shift symmetry group by another group. One may always
reshuffle terms in Hl'n(s\d) so that the shift symmetry remains anomaly-free [36].

15. Auxiliary Fields

The cohomology groups H(s\d) and H(δ\d) are manifestly invariant under invert-
ible, local change of variables. We shall now show that they are also invariant under
the introduction of so-called "auxiliary fields."

If the fields φl split as (φl) = (_yα,zα), where the zα are such that the equations
of motion δSo/δz* — 0 can be solved for z,

(15-1)

where Zα are local functions, one says that the zα are "auxiliary fields." Given a
theory with auxiliary fields, one defines the reduced action So[y] by eliminating the
auxiliary fields from iSΌ[jμ,z] using their own equations of motion,

So[y]=S0[y,z = Z ( y ) ] . (15.2)

The theories based on So[.V,z] and So[y] are classically equivalent. They are also
quantum-mechanically equivalent, at least formally [37].

Auxiliary fields can be useful for closing gauge algebras off-shell and occur at
various places in physics. The conjugate momenta of the Hamiltonian formalism
can be viewed as auxiliary fields. Other examples of auxiliary fields are the field
strengths in the first order formulation of Yang-Mills theory,

So[A"μ,H
a

μv] = /Λ#;v//f + Ha

μί,(dflAa - dvA>> + fabcA
ώAvc) . (15.3)

In gravity, the Christoffel coefficients ΓjL in the Palatini formulation of the Hubert

action are auxiliary fields, as are the connexion components coabμ in the first order
tetrad formalism.
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For the subsequent discussion, it is useful to define T[y,z] through

So[y,z]=S0[y] + T[y,z]. (15.4)

The equations δS^/δz = 0 coincide with δT/δz = 0 and one has [37]

= w < - * ' > Λ ' < 1 5 5>
where μf(x,xf) is a combination of δ ( x , x f ) and its derivatives.

The relationship between the BRST cohomologies of two formulations of the
same theory differing in auxiliary field content is easily derived by following the
approach of [37]. As shown in [37], one may redefine the gauge transformations in
such a way that the gauge transformations δκy

l of the theory with auxiliary fields
coincide with the gauge transformations of the reduced theory and

δι:z
A(x) = -fμf(x9x')δεy!(x')dx' . (15.6)

With that choice, a solution S of the master equation of the full theory is given by

(0) (1) (*)

S= S + S + Σ S , (15.7)

.
where S is a solution S of the master equation of the reduced theory and where
( i )
S is given by

(0)

( (15.8)

(*)
The index k denotes the number of antifields z^ in S (not the antighost number)

(*)
and the terms S (k ^ 2) are successively determined by the method of homological
perturbation theory by equations of the form

(k) (0) (k)
1 S =D(S,...,S), k= 1,2,3,... , (15.9)

(k)
where (i) D involves the antibracket of the S's of lower order; and (ii) δ' (acting
from the left like in [37]) is the Koszul-Tate resolution of the surface where the
auxiliary fields solve (15.1),

δ/zA = T7 ' ^(everything else) = 0 . (15.10)

Because the equations of motion (15.10) for ZA are equivalent to algebraic equa-
tions ZA — ZA(y, dy, . . .), the theory based on Eqs. (15.10), viewed as equations for
ZA with fixed jμ's, is a normal theory of order 0. Indeed, there are no independent
derivatives of ZA since they are all determined by Eqs. (15.10) and their deriva-
tives. Thus the set IQ (for the z's) is empty and dα/o is clearly contained in /Q. By
Theorem 8.3, one concludes that Hk(δ'\d} = 0 for k > 0 (besides Hk(δ') = 0).
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It follows from the standard method of homological perturbation that the terms
(k+\)

S subject to (15.9) exist and can be taken to be local functionals. Similarly, let
A[y, y*] be a local functional solution of (A,S) = 0. Then there exists a functional A,

_ ( i ) (*)
A=A + A + £ A , (15.11)

(1) S J
A = -fzWrftfrfj—dxdx' , (15.12)

which solves (A,S) = 0. This functional is determined recursively by equations of
the same form as (15.9),

(k+\) (k) (0) (*)
δ' A = F(A,...9A), (15.13)

(k) (ι) (j)
where F involves the antibrackets of the lower order A's with the S . Again,
each term in the expansion (15.12) can be taken to be a local functional because
Hk(δ'\d) = 0. We have thus proved

Theorem 15.1. The BRST cohomology groups H(s\d) and H(s\d) respectively
associated with two different formulations of the same theory differing only in the
auxiliary field content are isomorphίc.

This theorem is the analog for local functionals of the isomorphism theorem
H(s) ~ H(s) that holds for local p-forms or arbitrary functionals. It can easily be
extended to the generalized auxiliary fields introduced in [38] (see also [39]) as we
now show.

Assume that the solution of the master equation S[y, y*,z,z*] is such that the
equations δS/δzA — 0 can be solved at zj = 0 for the ZA as functions of the /
and χ%

^ί\z*=Q = 0^zA=ZA(y9dy9...9y*9dy*9...). (15.14)
OZA

If this is the case, one says that the ZA are generalized auxiliary fields. Ordinary
auxiliary fields are a particular case of (15.14); they do not depend on j* because
the equations δS/δzA

 z*=0 = δT/δzA = 0 do not involve the antifields y* or their
derivatives. Generalized auxiliary fields occur in the transition from the total action
to the extended action of the Hamiltonian formalism [38,9]. They have properties
quite similar to ordinary auxiliary fields. In particular, the relations that replace
(15.4) and (15.5) are respectively

S[y,y*,z,z* = 0] = S[y,y*] + T'[y,y*,z] , (15.15)

~ = W<«')^*',

τHΰ= i^Ή )" - <I5J6)

where S[y,y*] is the solution of the master equation for the reduced theory obtained
by setting z^ = 0 and eliminating ZA through (15.14).
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Because Eqs. (15.14) are algebraic in ZA, one finds again that Hk(δ'\d) — 0 for
k > 0, where δ' is now defined through

c C

δ'z*A = — |z*=0, ^(everything else) - 0 . (15.17)
OZΆ

The standard methods of homological perturbation then enable one to establish

Theorem 15.2. The generalized auxiliary fields do not modify Hk(s\d). Namely,
Hk(s\d) ~Hk(s\d\ where (i) s is the BRST differential for the formulation with
z and z* present', and (ii) s is the BRST differential for the formulation in which
the fields z and z* are eliminated through δS/δzA |z*=o = 0, z^ = 0.

Theorems 15.1 and 15.2 imply in particular that H(s\d} is invariant under tran-
sition to the Hamiltonian formalism, provided that the inverse transformation that
expresses the momenta and the Lagrange multipliers in terms of the velocities is
local [9] (in space-it is of course always local in time).

Both theorems are valid in the space of infinite formal series in the antighost
number. For the auxiliary fields that usually occur in practise, one may improve the
results as follows. Standard auxiliary fields appear quadratically in the action, with
coefficients that depend only on the fields but not on their derivatives. Furthermore,
these coefficients may be assumed to be constant under redefinition,

T=l-(zA-ZA)(zB-ZB)gAB. (15.18)

The redefinition ZA —> z'A = ZA -ZA(y, dy,...)-which may be completed to a canon-
ical transformation-enables one to write T as

Γ=^z'VW (15.19)

It is then straightforward to verify that the solutions of the master equations of the
reduced and the unreduced theories are related as

S = S + T (15.20)

and that the BRST invariant functional)s may be taken to coincide;

A=A. (15.21)

Hence if S (respectively A) is polynomial in the antighost number, then so is S
(respectively A) and vice versa.

16. Conclusion

In this paper, we have derived some general theorems on the local BRST coho-
mology groups Hk(s\d). We have established their link with the groups Hk(δ\d\
which are in turn connected to the groups HQ(d\δ) of A>forms that are closed
when the equations of motion hold. These groups are of interest in the study of
the dynamics of the theory and have already been discussed from that point of
view in the mathematical literature ("characteristic cohomology" [35]). Our work
makes thus a bridge between the local BRST cohomology and the characteristic
cohomology.
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We have also developed tools for calculating explicitly the groups Hk(δ\d) for
k > 1. These tools include a vanishing theorem for Hk(δ\d) whenever k is strictly
greater than the Cauchy order of the theory. By a perturbative argument, we have
then proved that H£(δ\d) vanishes for Yang-Mills theory and Einstein gravity. This
theorem is equivalent to the absence of a non-trivial 2-form that is closed modulo
the equations of motion.

In a companion paper, we shall illustrate the usefulness of the theorems demon-
strated here by computing explicitly all the cohomology groups Hk(s\d) in Yang-
Mills theory, with sources included.
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