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Abstract: The Berezin calculus is important to quantum mechanics (creation-
annihilation operators) and operator theory (Toeplitz operators). We study the basic
Berezin transform (linking the contravariant and covariant symbol) for all bounded
symmetric domains, and express it in terms of invariant differential operators.

0. Introduction

There are two equivalent ways to define the Wick calculus of operators on Rn: the
first one is based on creation and annihilation operators, a generalization of which
constitutes a basic tool in quantum field theory. It is the alternative definition, based
on reproducing kernel function theory, that leads to the generalization first defined
and studied by Berezin [Bl].

The Berezin calculus is of interest to theoretical physicists in that it constitutes
a canonical quantization procedure associated with a fairly general class of phase
spaces. Also, recent physics literature has shown much interest for coherent states,
and Perelomov's book [PI] devotes a chapter to Berezin's theory. The operators
obtained (also known as Toeplitz operators) generate some of the most interesting
geometrically-structured C*-algebras [BBCZ, Ul]. Beyond applications to operator
theory and partial differential equations [U8], Berezin operators are used in C*-
algebraic index theory and in deformation quantization of symmetric spaces [CGR,
BLU].

Let M be a measure space, and let H be a closed subspace of L2(M), with
orthogonal projection E:L2(M) —> H. Then, given any bounded function / on M,
the Berezin operator with contravariant symbol / is the linear operator σ*(/) on H
given by

σ*(f)h:=E(fh). (0.1)
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Assuming that E has a reproducing kernel E(z, w) on M x M and denoting as ew the
coherent state at w e M characterized by ew(z) = E(z,w)/E(w,w)1/2, one defines
the covariant symbol σ(A) of any bounded operator A on H by

σ(A)(w):=(ew\AeJ (0.2)

so that the maps σ and σ* are, in a suitable sense, adjoint to each other. The Berezin
transform, whose computation for a certain class of M's constitutes the main purpose
of the present paper, is the map σσ* from symbols to symbols.

The Wick calculus is the specialization that corresponds to M = C n = {x + iξ;
x £ Rn, ξ £ W1} with the measure ρn exp -πρ(\x\2 + \ξ\2)dxdξ, and to the (Segal-
Bargmann) realization of H as the image of L2(Rn,<ix) under some isometry. Then
as is well-known, one has in this case

σσ* = exp f - -J— A ) , (0.3)

where A is the standard (non-negative) Laplacian on M — M?n.
We shall be interested here in the case when M is a complex symmetric domain of

the non-compact type, and H — Hx is the so-called λ-Bergman space of holomorphic
functions on M. In view of the existence of a semi-simple transitive group G of
isometries of M, and of the associated (projective) representation of G in Hλ, a
complete characterization of the Berezin map σσ* is possible: the problem is to
express it, in the spectral-theoretic sense, as an explicit function of the "generalized
Laplacians" Δv . . . , Δr that generate the (commutative) algebra of G-invariant
differential operators on M. At least formally, some answer was given by Berezin
himself [B2], for the case of classical domains only, and in terms depending on the
classification: however, no proof was given. We give a complete statement and proof,
valid for the exceptional domains as well as for the classical ones, and independent
of the classification. Our basic tool, the theory of Jordan algebras, permits a unified
description of the domains themselves and turns out to be exactly what is needed
for a complete description of iV-invariant eigenfunctions. Then, the proof can be
completed with the help of Harish-Chandra's spherical functions and of Fourier
transformation theory [HI]: however, going beyond formal arguments in the spectral-
theoretic treatment (not attempted by Berezin) depends on a number of inequalities
of a geometric nature which are not quite trivial. The end of the paper is concerned
with topics involving the possible limits of the theory as λ goes to infinity (cf. also
[BLU]). The authors wish to thank the Mittag-Leffler Institute in Stockholm, where
this work was initiated, for its hospitality in the Fall of 1990.

1. The Berezin Quantization

The Berezin-Wick quantization [Bl] is based on reproducing kernel functions. Let
M be a smooth manifold, endowed with a smooth positive measure μ. Consider the
Lebesgue space

L2(M):=L2(M,dμ) (1.1)

with the inner product (conjugate-linear in the first variable)

(h \k):= / h(z)k(z)dμ(z). (1.2)

M
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Let H be a closed subspace of L2(M), consisting of continuous functions on M
that do not all vanish at any single point of M. Consider the orthogonal projection
E:L2(M) —» H. Now suppose that H has a reproducing kernel with respect to dμ.
This means that there exists a (necessarily unique) continuous function

(z,w)^E(z1w) (1.3)

o n M x M such that for every w G M, the function E^ defined by

EWCO : = £ ( * , w) (1.4)

belongs to H, and the identity

(Ew I Λ) = Λ(tu) (1.5)

holds for all w G M and Λ. G H. In particular, i£(2, w) = i?(w, 2) and we have

Ew(w)=\\Ew\\2 (1.6)

for the norm || || on the Hubert space L2(M). Since (1.6) is strictly positive by an
assumption on H made above, we may define the "coherent state" ew as

and consider the measure

dμQ(w) := E(w,w)dμ(w) (1-8)

on M. For huh2e L2(M), let

{h{hl)h\=hx(h2\h) (heL2(M)) (1.9)

be the associated rank 1 operator. The importance of reproducing kernel functions
lies in the consequences of the following:

1.10 Lemma. There exists a weak integral decomposition

E = jEwE*dμ(w) = Jewe*wdμ0(w). (1.11)

M M

Proof. By definition, we have to show that

(k I Eh) = ί(k I EW)(EW I h)dμ(w) = ί(k \ ej(ew \ h)dμo(w) (1.12)

M M

for all h,k e L2(M). This follows from (1.5) and (1.7) if h,k G i ί . If Λ or k is
orthogonal to H, then both sides of (1.12) vanish. Q.E.D.

1.13 Definition. For every f G L°°(M), the bounded operator σ*(/) on ϋ" defined

by

σ*(f)h:=E(fh) (heH) (1.14)
is called the Toeplitz operator with symbol f, or the Berezin operator with contravari-
ant symbol f. For any bounded operator A on H, the bounded function σ(A) on M
defined by

σ { A ) { z ) =
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is called the Berezin covariant symbol of A. The Berezin transform is the map σσ*
from L°°(M) to L°°(M), i.e.

) ω = (ez | ( σ * ( / ) e j = (ez \ fez). (1.16)

1.17 Lemma. For f G L°°(M), there is a weak integral decomposition

σ*(/) = J f(w)EwEldμ(w) = J
M

Proof. For h, k G H, one may write

e*f(w)EwEldμ(w) = J f(w)ewe*wdμ0(w). (1.18)

M M

(k I σ*(/)/ι) = (k I E(fh)) = (k I /ft) = fkWf(w)h(w)dμ(w)
M

= J(k I Ew)f(w) (Ew I h)dμ(w). Q.E.D.

M

1.19 Proposition. Lέtf S2{E) be the Hilbert space of all Hilbert-Schmidt operators
on H. Then the transformations σ and σ* map 2?2{H) into L2(M,dμ0) (resp.,
L2(M,dμ0) into J&2(H)) and are adjoint to each other. Moreover, the Berezin
transform extends as an integral operator on L2(M, dμ0) with operator norm < 1
and kernel

Proof If / G L°°(M) and z G M, one has

* (e, | σ*(/)e z) =

M

according to Lemma 1.17. Since Lemma 1.10 implies

j\(ew\ez)\2dμ0(w)=\\ez\\2 = l (1.21)

for all z, the operator σσ*, initially defined on L°°(M), extends as a bounded operator
on L 2(M,dμ 0), with norm < 1. If / G L°°(M) Π Lι(M,dμQ\ Lemma 1.17 shows
that the operator σ*(/) is trace-class with a trace-norm < ||/Hi,i(M,dμo) ^ s o ' ^ o r anY
bounded operator A, one may write

trace(A* σ*(/)) = trace (A*(f{w)eweldμ0(w)\

\ M J

= J f(w)tτace(A*ewel)dμ0(w) = J f(w)(ew \ A*ew)dμ0(w)

M M

= ί (ew\Aew)f(w)dμ0(w) = J σ(A)(w)f(w)dμo(w). (1.22)

M M
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If A = σ*(/), this identity, together with the Cauchy-Schwarz inequality and the part
already proven of the present proposition, implies that

= ί f(w)σσ*(f)(w)dμo(w) < lL2(M,dμ0) *

M

Thus the map σ* extends as a bounded map (with norm < 1) from L2{M, dμQ) into
3§2(Ή.). That σ and σ* are formally adjoint to each other follows from (1.22) again,
which proves also that σ is bounded from 2§2{ΐί) to L2(M, dμQ). Q.E.D.

The basic examples of Berezin quantization come from connected complex
manifolds M, endowed with a strictly positive smooth measure μ on M. Then

H2(M) = H2(M, dμ) := {h e L2(M, dμ): h holomoφhic} (1.23)

is a closed subspace of L2(M) which has a reproducing kernel E(z, w) if one assumes
that, for each z e M, there exists h e H2(M) with h(z) φ 0. It is well-known [U2,
P2] that under a slightly stronger non-degeneracy assumption M is naturally endowed
with a Kahler structure with associated symplectic form

dd\o%E{z,z), (1.24)
zπ

where d and d are the Dolbeault differentiation operators.
Let 7: M -* N be a biholomoφhic mapping between two complex connected

manifolds M and iV; assume that dμ (resp. dz/) is a given smooth strictly positive
measure on M (resp. iV) and that there exists a non-vanishing holomorphic function
ψ on M such that M 2 d μ = 7 * ^ . Then, if any of the two spaces H2(M,dμ) and
H2(N, dv) satisfies the non-degeneracy conditions that permit to construct a Kahler
metric, so does the other. Moreover, the map h 1—> φ (h o 7) is an isometry from
H2(N, dv) onto H2(M, dμ), and the reproducing kernels i?^ and £?M of these two
spaces, with respect to dv and dμ respectively, are linked by

EM(z,w) = φ(z)EN(Ίz,Ίw)φ(w). (1.25)

Also, for every z G M,

* EN{Ίz,Ίz) \φ(z)\2dμ(z)

It follows that the measure dμ0 on M, as well as the Kahler metric on M built from
dμ, is invariant under the group G of all biholomoφhic transformations 7 of M that

7*<iu
satisfy the property that the (Radon-Nikodym) derivative is the square of the

CLμ

modulus of some holomoφhic function. In the case when G acts on M transitively,
dμ0 is a constant times the measure on M associated with its Kahler structure. Besides
acting on M, G has a natural action on E2(M, dμ), namely the one that associates
to 7 " 1 £ G the transformation

U(-f-ι)h:=(hoΊ) φ (1.26)

with the notations above and N = M. However, this is only a projective representation
in general, i.e. a representation up to constant factors of modulus 1 since only \φ\2,
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not φ, depends solely on 7. The Berezin quantization is covariant under these two
actions of G: as a consequence, the Berezin map σσ*: L2(M, dμ0) —> L2(M,dμ0)
commutes with the action of G on M.

1.27 Example. Let M = C n and fix a constant £> > 0. Consider the probability
measure

(1.28)

where dV denotes the standard Lebesgue measure on C n . Then the Segal-Bargmann
space

H2(Cn):=H2(Cn,dμρ) (1.29)

is a closed subspace of L2(Cn,dμρ), with inner product

(h I k)ρ := / h(z)k(z)dμρ(z). (1.30)

For any fixed w G C n , we have

/

since dV(z) is translation invariant. This implies

12 f

J

By polarization it follows that the reproducing kernel of (1.29) is given by

Eρ(z,w) = Ew(z) = eκρz'w (1-31)

and

e (z) = eπρz'™e""2"w w (1.32)

is the coherent state at w. Comparing (1.28) and (1.31), we can see that the measure
dμ0 has the form

dμ0 = Eρ(z, z)dμρ(z) = ρndV(z). (1.33)

By (1.31), the symplectic form associated with the Kahler structure on C n under
consideration is

ω —

iί z = x + iξ. Note that dμ0 is exactly the measure associated with the symplectic
form ω and that the standard interpretation of ρ~ι is that of Planck's constant. The
associated Berezin quantization is just the Wick calculus: more precisely the covariant
(resp. contravariant, when it exists) symbol of an operator, evaluated at z, is just its
Wick (resp. anti-Wick) symbol, evaluated at z. By Proposition 1.19 and (1.32), the
"Wick transform" σ ρσ* has the integral kernel

pπρz w pπρw z η

KJz,w) = A r = e-7^-™!
f?v 7 7 pTXρz z pTτρw w
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with respect to (1.33). This implies (0.3). Since e~πρ^ is invariant under the group
U(n) (acting on C n in a linear way) and since, for all ti; G C n , the function

z i—• eπρ\z\ e~πρ\z~w\ is the square of the modulus of some entire function, the
measure dμ0 as well as the Kahler structure of C n is invariant under the group
generated by U(ή) and by translations; also, the Berezin quantization is covariant
under the natural actions of this group on C n and H2(Cn). As is well-known, to get
a true (not projective) representation, one has to substitute the Heisenberg group for
the group of translations.

1.33 Example. Let M be a domain in C n , endowed with the Lebesgue measure
dV. Assume that M is equivalent to a bounded domain under a biholomorphic
transformation. Then the Bergman space

H2(M) := H2(M, dV) (1.34)

is a closed subspace of L2(M, dV) with a reproducing "Bergman" kernel EM(z, w).
The associated quantization (1.18) is called the Bergman-Toeplitz quantization. It is
covariant under the natural actions of the group G of all biholomorphic transformations
of M; this time one has a true representation. If j:M —> N is a biholomorphic
mapping between domains M and N in C n , the invariance property (1.25) becomes

) = EM(z,w) (1.35)

for all z,w e M. Here dη denotes the complex derivative.

2. Invariant Differential Operators on Symmetric Domains

The bounded symmetric domains (Cartain domains) are the most studied class of
Kahler manifolds (of non-compact type). In one complex dimension, every Riemann
surface of genus > 2 is the quotient of the unit disk (the only bounded symmetric
domain in C) by a discrete group of Moebius transformations. In higher dimensions
there is no such "uniformization theorem" but the characterization of Kahler manifolds
covered by symmetric domains is one of the most active areas in modern differential
geometry [Yl].

As explained in the introduction, our main result (Theorem 3.43) is an explicit
formula expressing the Berezin transform (1.16), for any symmetric domain, in terms
of invariant differential operators (generalized Laplacians). For the proof we need
detailed information about the joint spectral behavior of those (commuting) operators.

In general let M — G/K be a non-compact symmetric space of rank r and
consider the algebra Diff(M)G of all (scalar) differential operators D on M which
are invariant under the natural action of G:

D(fog) = (Df)og

for all / e %°°(M) and g eG.lt is known [H2] that Diff(M)G is a polynomial
algebra

Dif f(M) G -R[Z\ l 5 ...,Δr]

in r algebraically independent commuting operators Δ{, . . . , Δr (called "generalized
Laplacians", since one of the generators can be chosen as the Laplace-Beltrami
operator ΔM). Let Q = /f Θ/ι denote the Cartan decomposition of the Lie algebra g
of G, with k the Lie algebra of K. Let α d/ι be a maximal abelian subspace. The
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dimension of α coincides with the rank of M. Let α# denote the real dual space of α.
For a G α#, put

ga := {B G g:[A,B] = a(A) -BWAea}.

If a φ 0 and ga φ {0}, then a is called a real root of g relative to α and ga is the
corresponding root space. We have the root decompositon

B = α θ ^ θ ^ g α (direct sum), (2.1)

where Σ c α# is the set of real roots and/^ = { B e / : [ A 5 ] = 0 Vi G α}. For each
α G Γ , the number raα := dimg^ is called the multiplicity of a (note the difference
with the complex root decomposition of g c, where every root has multiplicity one).
Let Σ+ denote the positive roots, with respect to some ordering. Then we have the
Iwasawa decomposition g = ^ 0 α θ / (cf. [H2; p. 26]) where

0 α . (2.2)
a£Σ+

The convex open subset α+ := {̂ 4 G a:a(A) > 0 Vα G I7+} is called the Weyl
chamber. We put

ρ ' = 2

Now consider the associated Iwasawa decomposition G = NAK of G [H2]. Denoting
the base point of M by o, define M := A - o C M. Then every z G M can
be written uniquely as z = n a, n G N, a G M. Since this decomposition has
certain transversality properties [H2] one can define the N-radial part (also called
orispherical radial part) of D G Diff(M)G' to be the differential operator D on M
determined by

Df:=(Df)~ (2.4)

for all N-invariant functions / G WQ°°(M). Here / denotes the restriction of / to M.
In contrast to the (similarly defined) ϋΓ-radial parts which are rather complicated

the iV-radial parts have a simple description: Fix a basis Aγ, . . . , Ar of α. Then every
α G M has the form

o, (2.5)

where the "coordinates" t u . . . , tr G R are uniquely determined. By [Kl; Theorem 1],
every JV-radial part I), for £) G Diff(M)G, has constant coefficients when expressed
in terms of tλ, ..., tr. More precisely [Kl; Theorem 2], we have

( 2 . 6 )

where q is any polynomial invariant under the Weyl group W and ρ^ := ρ(A^) for

1 < j < ^ The operator D £ Diff(M)G satisfying (2.6) is uniquely determined by q

and will be denoted by D — Dq.
Using the Iwasawa decomposition of G, we define a smooth function I: G —> a by

putting ^ = nexp(l(g))k for every g E G. Now let α G α# 0 C be a complex-valued
linear form on α. Then

Δa(g o) := eα ( Z ( 5 ) ) (2.7)
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defines an TV-invariant smooth function Δa: M —> C since l(ngk) — l(g) for all
n £ N and k G K. On I), Δa has the values

o\ =]Jet3Oi{Ai) = J ] e ^ (2.8)
J j 3

since /(exp A) = A for all A G a. Here α^ := α ^ ) . By [H3; Lemma 5.15 and (35)],
we have

DΔa = q(aι-ρlJ...,ar-ρr)Δa (2.9)

for all D G Diff(M)G.
We will now give an explicit construction for the TV-invariant eigenfunctions Δa in

case M has a classical root system (type A, C, D, B> BC). This includes all hermitian
symmetric spaces (even the two exceptional ones). It is well-known [LI] that, besides
the Lie-theoretic approach, these spaces M can also be described in Jordan algebraic
terms. Let X be a real Jordan algebra [BK] with product x o y and unit element e,
satisfying the "formally-real" condition x2 + y2 = 0 => x = y = 0. Basic examples
are the space X — β%r(K) of all self-adjoint (r x r)-matrices x over K. = E, C or
H (quaternions), with the anti-commutator product x o y \— (xy + yx)/2, and the
"spin factors" X = M 1 + n of all vectors x — (x0, x l 5 . . . , x n ) = (x0, x

;)? with product
xoy = (xoyQ -h x7 y'\ xQy' -f yo^')- T n e ° P e n subset

y l : = { x 2 : i G l invertible} (2.10)

is a convex cone. For the matrix algebras, A is the cone of positive definite matrices,
whereas for the spin factor A is the forward light cone. The linear automorphism
group

GL(A) :={P e GL(X): P(Λ) = A} (2.11)

is transitive on A. GL(A) is a reductive Lie group, whose Lie algebra

QI(A) = {M e Ql(X): exp(tM) e GL(Λ) Vί e R} (2.12)

has the commutator bracket [M, N] := MTV - A^M. By [U3, U4] the Lie algebra
0Λ : ~ QKA) has a Cartan decomposition QΛ = dA (&/zA, ^A is the Lie algebra
of O(Λ) := {P G GL(A):Pe = e} and ̂ Λ = {Mx:x G X} consists of all
multiplication operators

Mxy = χoy (2.13)

on X. For x,y e X define an element of $A by putting

xπy:=Mxoy + [Mx,My]. (2.14)

Assuming from now on that A is an irreducible symmetric cone, we have the Peirce
decomposition

χ= Σ Θ χij <2 1 5 )
\<t<j<r

induced by a maximal orthogonal system e l 5 . . . , er of idempotents in X [BK]. Here

X 2 j = X ^ = <x eX:ekoχ= τk + j f c x for 1 < A; < r 1 . (2.16)
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2.17 Proposition. The Lie algebra gΛ has a decomposition

where

Ql3 :={xπe%:xeXtj} (2.19)

and
e$Λ:Mek = 0 VI < k < r} . (2.20)

Proof. By (2.14), we have g^ C gΛ. According to the next Proposition 2.23, the
spaces g^ form a direct sum. Now let M £ $Λ be arbitrary. Applying the Peirce
composition rules [L2] to (the derivation and multiplication part of) M, it follows
that Mej = Σxτj with x^ G X{j. Then

i

i iφk

satisfies

for all j , showing that A - M e /&. Q.E.D.

The subspace

oi /ιA is maximal abelian, with basis M , . . . , M β r . Let Mf. denote the dual basis

of α#, i.e.
MlM^ = ^ (Kronecker symbol). (2.22)

2.23 Proposition. The splitting (2.18) is the real root decomposition of$Λ relative to
α. More precisely, g^ is the root space for

\(M*ej-M*eι) {iφj). (2.24)

Proof Putting {xyz} := (XDΪ/JZ, the Jordan triple identity [LI; (2.8)] gives

[x D y, ii D v] — x D [ym>} — {wf x} • y (2.25)

for all x,y,u,υ G X. For every x G X^ we have

[ei G e, x D e j = {e^ex} α e i — x • {e^e} = —~xuei

and

[ê  De,xDeJ = {e3ex}ueτ — xΏ{eieJe} = -xuei.

Since [efc α e , x α e j = 0 for fc ^ {i,i}, the assertion follows. Q.E.D.
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Choose an ordering of the roots such that

is the nilpotent part of the Iwasawa decomposition gΛ = ̂ Λ 0 a θ/ίΛ. Then the Weyl
chamber is given by

. . < tr

Put GΛ := GL(Λ)°, KΛ := O(Λ)° (identity components) and consider the Iwasawa
decompositon

GA = NΛAKΛ (2.27)

associated with (2.26), where A := exp(α). There exists a unique KΛ-invariant inner
product ( I ) on the tangent space Te(Λ) =/*Λ such that the vectors Me , . . . , Mer are
orthonormal. Let t{) . . . , tr denote the corresponding coordinates on α, and endow A
with the induced GΛ-invariant Riemannian metric. One can show that A = GΛ/KΛ

is a Riemannian symmetric space (of type Ar_x x Ax), with symmetry at e e A given
by x H x" 1 (Jordan algebra inverse). With this structure, A is called a symmetric
cone. One can show [L2] that

a:=άimXi:j (i < j) (2.28)

is independent of i < j and of the choice of e l 5 . . . , er. It is called the characteristic
multiplicity of A. By Proposition 2.23 we have

i<3 3

and the Weyl group WΛ consists of all permutations of tx, . . . , tr. Hence (2.6) implies
that the NA-radial parts o f D e Ό\fϊ(A)GΛ are given by

where q is any symmetric polynomial.
The explicit description of the NΛ-invariant eigenfunctions Δa, a £ α# 0 C,

defined in (2.7), is based on the existence of the Jordan algebra determinant

Δ:X-+R (2.30)

which is a polynomial of degree r uniquely determined by "Cramer's rule"

χ-\ = %™&x Δ

 ( a . e χ i n v e r t i b l e )
Δ(x)

and the normalization Δ(e) = 1. Using the decomposition (2.15) consider the
subalgebra

Xt:= Σ XtJ (l<l<r) (2.31)
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of X. This algebra has rank I and unit element eι + . + et. Define polynomials Δι

on X by putting
At(x) := ΔXι(PιX),

where Pι: X —>• Xι is the orthogonal projection and Δx is the determinant of Xι.

Given any complex vector a = (α l 5 . . . , α r ) G C r put

4 α ( z ) := Δx{xT^ Z\2(xΓ2--3 . . . z \ r ( χ ) - (2.32)

for all x e Λ. (Note that Z\1? . . . , Δr are positive on A.)

2.33 Proposition. For any a G C r , the function (2.32) w an NΛ-invariant joint
eigenfunction for all D G ΌΊΪΪ(A)GΛ. More precisely, we have

DΔa = q(aι + -^ (r - 1), a2 + ~ (r - 3), . . . , ar + £ (1 _ r Λ . Δa , (2.34)

where q is the symmetric polynomial associated with D via (2.29), and a is the
characteristic multiplity (2.28).

Proof. It was shown in [U5, KS2] that the polynomials Δv . . . , Δr and hence the
functions Δ0" are invariant under the group NΛ. Since e = eλ + . . . + e r, we have

and obtain

Δ

exp (Σt3Me\ e =
3

/ t\\cx\ — cuo / t\ ~\~ti \ ^ 2 — ̂ 3 ( t\~^~ ~\~tτ\cx.Ί

Hence Δa coincides with the function (2.7) corresponding to the linear form

Now the assertion follows from (2.9). Q.E.D.

We will now consider the hermίtian symmetric spaces of non-compact type. These
spaces have both a bounded (Harish-Chandra) realization [H2] and an unbounded
realization as a "Siegel domain" over a symmetric cone A [LI, KU]. It is more
convenient to work in the unbounded realization, and we first consider the special
case of "tube domains" (Siegel domains of the first kind).

The complexification Z = X Θ iX of a real Jordan algebra X has a Jordan triple
product

{zιz*z2} := (z{ o z*) o z2 — (zx o z2) o z* + (z2 o ^*) o Zj (2.36)

obtained by combining the (complexified) Jordan algebra product zx o z2 and the
involution (x + z£)* := ^ — iξ of Z. Let A be the symmetric cone of X. The half-
space

Π :=AωiX = {zeZ:z + z* eA} (2.37)
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is called a tube domain with real base A. The group Aut(i7) of all biholomorphic
automorphisms of Π is transitive since it contains GL(Λ) and the translations

z »-» z + iξ (ξeX). (2.38)

Aut(TJ) is a semi-simple Lie group, whose Lie algebra g = aut(77) consists of all

completely integrable holomorphic vector fields h(z) — on 77, with commutator

bracket

h{z) —, k(z) — - (0Λ(z) k(z) - dk(z) ft(*)) — . (2.39)
oz oz\ az

Here d denotes the complex derivative. Identifying M G $l(Z) with the vector field
d

Mz — , we see that gΛ, endowed with the commutator (2.39), becomes a subalgebra
az β

of g. The vector field z — G gΛ induces a gradation g = Q1 θ g° θ g" 1, with

η , A| =AAJ>. We have

(2.40)

where { } denotes the Jordan triple product (2.36). One can show [KU] that $~ι is
the conjugate of g1 under the automorphism z ι-> z~ι. By [KU, LI], the Lie algebra
0 has a Cartan decompositon g = 4 0/?., where

is the Lie algebra of Aute(77) := {g € Aut(i7):fi( e = e), and

The subspace α C/*Λ defined in (2.21) is still maximal abelian in/^. Consider the
Peirce decompositon (2.15).

2.41 Proposition. The Lie algebra # has a decomposition

i θ Σ Qΰl θ ^ ' (2>42)

(2.43)

/ By (2.40) and Proposition 2.17, the subspaces (2.43) belong to #. In view of
the Peirce decomposition (2.15), it is clear that g± 1 are spanned by the respective
subspaces. For $°, apply (2.40) and Proposition 2.17. Q.E.D.



576 A. Unterberger, H. Upmeier

2.44 Propositon. The splitting (2.42) is the real root decomposition of g relative to
a. More precisely, we have

(i) gΐ 1 is the root space for ±\ (Mf. + M* ) (i < j),

(ii) 2% is the r o o t space for \ (Mf. - Mf.) (i Φ j).

Proof Let i < j and ξ e X%y Then (2.39) implies

and, similarly, by the Jordan triple identity (2.25),

{zξz} £-, Mefc] = ({{zeek}ξz} + {zξ{zeek}} - {{zξz}eek})

} ^{ξ}

This proves (i). For (ii), apply Proposition 2.23. Q.E.D.

Choose an ordering of the roots such that

is the nilpotent part of the Iwasawa decomposition g = ^ θ o θ / . Then the Weyl
chamber is given by

J Σ | (2.46)α+ = J Σ ί J M e j : 0 < ί I < . . . < ί

Put G := Aut(il)0, K := Aute(i7)° (identity components) and consider the Iwasawa
decomposition

G = NAK (2.47)

associated with (2.45), where A := exp(α). There exists a unique X-invariant inner
product ( I ) on the tangent space Te(Π) &/* such that the vectors Meχ, . . . , Mer are
orthonormal. Let ί1? . . . , tr denote the corresponding coordinates on α, and endow
Π with the induced G-invariant hermitian metric. One can show that 77 = G/K is a
hermitian symmetric space (of type C or D), with symmetry at e G A C 77 given by
2 t-» z " 1 (Jordan algebra inverse). With this structure, 77 is called a symmetric tube
domain. By Proposition 2.44, we have

*= £ ( Σ 5 K -M*) + 1(M* +M*)) + 1 X X

| ) * ) (2.48)

and the Weyl group W consists of all signed permutations
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with ε% G { ± 1 } and σ G ^ (symmetric group). Hence (2.29) implies that the iV-radial
parts of D G Diff(i7)G are given by

D-a(d l 9 l a 9 l a(r I)] (249)
Q\dtί ~2'W2~2~r ••-'&; 2 2 ( Γ 1 V ' ( 2 4 9 )

where q is any even symmetric polynomial (i.e., a symmetric polynomial in
τx, . . . , τr).

2.50 Example. Let Δπ be the Laplace-Beltrami operator on the Riemannian manifold
Π. By [H2; Proposition II. 3.8], its iV-radial part is given by

where

3 ei 2 2

It follows that Δπ corresponds to the even symmetric polynomial

3 3

Thus Δn = Qx — Σ £j> where Qx G Diff(77)G corresponds to the polynomial
3

qx := ]Γ t j . For r = 1 we have ^ = i, and hence Z\^ = Qj — i .

By (2.45), TV is generated by NΛ and the translations (2.38). It follows that for
every a G C r , the functions

Δa(z) := Z\α(Rez) (2.51)

on 77 are TV-invariant and correspond to the linear form (2.35) in α# 0 C. Therefore
(2.9) implies

2.52 Proposition. For every a G C r , the function (2.51) is a joint eίgenfunction for
all D G Όiff(Π)G. More precisely, we have

DΔa=q{ax-\,a2-\-^...,ar-\-\(τ-\)^Δ\ (2.53)

where q is the even symmetric polynomial associated with D via (2.49).

2.54 Example. Consider the forward light cone

of dimension n + 1 > 3, which is a symmetric cone of rank 2. We have a = n — 1 in
this case. The tube domain Π is best realized in C n + 1 by mapping X onto R x ΪRn.
Consider the orthogonal idempotents

e, := Q, ̂ , 0, ..., θV e2 = β! = Q, - 1 , 0, ...,
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Then the unit element is e — eλ + e2 = (1,0, . . . , 0). The normalized inner product
on C n + 1 is (z\w) = 2z w = 2YJzJwJ. With these conventions, we have for the
complexified minors ό

Δγ(z) = (z I ex) = 2z - e2 = z0 - ίzv Δ2(z) = z z = ^ z] .

3

For vectors x = (x0, ixx, . . . , ixn) G X we obtain

Δγ(x) = x0 — i(ixλ) = xo-\- xλ (2.55)

and

Δ2(x) = xl + (ixxf + ... + (ixnf = xl - x\ - .. - x2

n (2.56)

Now let α e C 2 and write a = (α l 5 α 2). By (2.55) and (2.56),

Δa(x) = Δ1(x)ai-a*Δ2(x)a* = (x0 + x^-^ixl - x\ - . . . - x\T2.

By (2.53), every D G Diff(i7)G satisfies

where q is the associated even symmetric polynomial. In particular, for q(t) —
n 2 + 1

t\ 4-1\ we obtain DΔa = (aι(aι - 1) + a2(a2 - n))Δa

9 whereas q(t) =

*? - ^ ) (^ - £ ) Yields ΰzi" = α2(α2 - n) (α, + ̂ ) (α, - ^ )
We finally discuss the general case of Siegel domains of the second kind. Consider

a complex vector space Z = [/ 0 V such that £/ = X θ iX is the complexification
of a formally-real Jordan algebra X with unit element e and symmetric cone Λ, and
let Φ: V x V —> U be a sesqui-linear mapping (linear in the firsts variable, antilinear
in the second) such that Φ(vι,υ2)* = Φ(v2,vλ) and Φ(υ,v) belongs to the closure of
A for all υ, vι,υ2 G V. Assume also that Φ(v,υ) Φ 0 whenever v φ 0. Then

77 = Π(Λ, Φ) := {(w, v ) G / 7 θ V : ^ + w * - Φ(v, v) G τl} (2.57)

is called the Siegel domain associated with A and Φ. For the special case V — {0},
we have Z = U and Π becomes the tube domain with real base A. It can be shown
[LI] that any symmetric domain equivalent with a bounded domain of C n admits such
a realization Π as a Siegel domain (of tube type if V = {0}, of type B or BC if
V φ {0}). Then Z carries a Jordan triple product {z{z*z2} generalizing (2.36) which
is anti-linear in z and symmetric bilinear in (zι^z2) such that zx o z2 := {^iβ*z2}
defines a Jordan algebra on Z (which is non-unital if V Φ {0}). In terms of this
product, the geodesic symmetry around the base point e G A c ϋ has the form
[LI; Proposition 10.12] 5(w, v) = (u~\ -u~ι o v) for all (ix, v) G 77 C f7 0 V. The
symmetries at the other points of 77 can be computed from this via a transitive group
of affine transformations of 77, generated by GL(A) and the "quasi-translations"

(u,υ)^ (u + ia + Φ(b,v)+ ' \v + b) , (2.58)

where a G ίX and b G V.
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The holomoφhic automoφhism group Aut(77) of Π is a semi-simple Lie group,
whose Lie algebra g — aut(i7) endowed with the commutator bracket (2.39), has a
canonical gradation g = gι Θ g1/2 (& g° (B g'1/2 Θ g~ι induced by the vector field

r * Ϊ d d v d
I := {ee zj — = u — + - -— G g

dz du 2 dv

via gχ := {A e g:[I, A| = λ^4}. We have

Γ d Ί Γ d Ί
gι = < iξ — :ξ e X \, gι/2 = <(/? + 2{eβ*z}) — :β e V } , (2.59)

0° = / 0 J {ze*x} — :x e X \ (2.60)

and

(2.61)

Here / « ^ consists of all Jordan triple derivations M of Z vanishing at e.
In the non-tube-type setting, we have the complex Peirce decompositions

u= Σ χϊί> v= Σ ^'
where

V} := {υ G :{efce*υ} = ̂  υ VI < fc < r J .

One can show [LI] that
6 = dimV .̂ (2.63)

is independent of j . The numbers a (defined in (2.28)) and b are called the
characteristic multiplicities of 77.

2.64 Proposition. The Lie algebra 9 has a decomposition

0 = Σ β > Σ «ί/2 ® Σ β?, ® Σ βr1/2 ® Σ *ϊ φ - ' (2 65)
%<j i i,j i ι<j

where

(i) ΰlj = {iξ§~z :ξ e ^ I , flj/2 = 109

(ii)

(ϋi) o; = {({*/?*} + 2{^e/3})
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Proof. By (2.59), (2.60), (2.61) and Proposition 2.17, the subspaces (i), (ii), (iii)
belong to Q. In view of the Peirce decomposition (2.15) and (2.62), it is clear that
g±ι and g± l y / 2 are spanned by the respective subspaces. For g°, apply (2.60) and
Proposition 2.17. Q.E.D.

2.66 Proposition. The splitting (2.65) is the root decomposition of Q relative to α.
More precisely, we have

(i) ^ is the root space for ±\ (M£ + Mf.) (i < j),

(ii) $j ' is the root space for ± - M* (1 < j < r),

and

(iii) 0^ is the root space for \ (Λf* - Mf.) (i φ j).

Proof Let 1 < j < r and b e Vy Then

= ({be*ek} + 2({{zb*e}e*ek} - {{ze*ek}b*e})) A

= ({be*ek} + 2{z{be*ek}*e}) γz = 6~fφ + 2{zb*e}) ^

as follows from the Jordan triple identity (2.25) and the fact that {eb*ek} = 0.
Similarly,

J ' ^ ^ ~ J / f\ 1 L / C J Q

= &{{ze*ek}b*z} + 2{{ze*βje*6} - {{*6**}β*efc} - 2{{ze*b}e*ek}) ^

- ({*{&e*e J * * } + 2{ze*{be*ek}}) — = - ^ ( { ^ * 4 + 2{ze*&}) — .

This proves (ii). For (i) and (iii), apply Proposition 2.41 and 2.17, respectively.
Q.E.D.

Choose an ordering of the roots such that

- = Σ < ® Σ of ® Σ β« = s1 ® s1/2 φ ^ (2 67>
Z—/ V 2 ^ Z—/ V J Z_-/ ̂ v ^ v y i

is the nilpotent part of the Iwasawa decomposition Q = ^ 0 α 0 / . Then the Weyl
chamber is still given by (2.47). Consider the associated Iwasawa decomposition

G = NAK (2.68)

of G := Aut(i7)°. By Proposition 2.66 we have

( 2 6 9 )
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and the Weyl group W consists of all signed permutations of ί1? . . . , tr. Hence (2.6)
implies that the TV-radial parts of D G Diff(77)G are given by

ft+1 d 6 + 1 α d 6 + 1 a.
(

where g is an even symmetric polynomial. For 6 = 0, this formula specializes to
(2.49). By (2.67), N is generated by NΛ and the quasi-translations (2.58). It follows
that the functions

Λa(u, υ) := Δa (Re(«) - ί^ϊ] (2.71)

on 77, for a G C r , are iV-invariant and correspond to the linear form (2.35) in α#

Therefore (2.9) implies

2.72 Proposition. For every a G C r , the function (2.71) w a joint eigenfunction for
all D G Diff(77)G. M^re precisely,

- - y , α2 - - y - - - , . . . , αr - - y - - - (r -

where q is the even symmetric polynomial associated with D via (2.70).

2.73 Lemma. There exists a unique homomorphism

NΛA 3 F H p G GL(F)

satisfying Φ(Pvι,Pv2) — PΦ(yι,v2)for all vliv2 G V, and

DetP - ( D e t P ) n 2 / 2 n i = Z\(Pe) n 2 / r . (2.74)

Proof Since iV^A is a simply-connected Lie group [H2; Theorem 5.1], one can
exponentiate the corresponding facts relative to the Lie subalgebra ^A θ α of gΛ.
By [KU, p. 195], the Lie algebra g satisfies

0° = I M u -^ + Mv ^- : M G gΛ, M G flZίV), MΦ(t;, υ)

= Φ(Mv,v) + ΦC
)

In order to show that M is uniquely determined by M, assume Mv — G g° for

some M G gl(V). According to [KU; Corollary 5.3 (iii)], we have {(MV1)OL*V2} -f
{v1α*(Mv2)} = 0 for all a G X and vvv2 G V. Therefore M = 0, and M »-> M
is a well-defined homomorphism from g^ to g£(̂ 0> which proves the first part of the
lemma. According to [KU; Theorem 2.5], g° contains all commutators

for all a,β G X. Thus Mu = {βa*u} corresponds to Mv = {βa*v}. Now
let M G /fA θ α. In case M G ^ , we have M G ^ by (2.67) and hence
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trace M = trace M = 0. In case M G α, we may assume M = Mek for some
1 < k < r and obtain

4- ^ r -A- ^ Vile * * nk

2 lJ

and

for all x^ € Xi3 and v^ € Vy Therefore

traceM= ^ a • ̂ ± ^ + ^ δjk = 1 + f (r -
l<»<J<r j=l

and

Since —— = -, we obtain trace M = —— trace M for all M G ^ Θ f l .
2nx 2 + α ( r - l ) 2nt

 Λ

Q.E.D.

3. The Berezin Transform and Invariant Differential Operators

In this section we study the Berezin transform for an arbitrary complex symmetric
domain and express it in terms of canonically chosen invariant differential operators.
We may assume that the domain is irreducible and is given in its realization Π as a
Siegel domain (2.57), including the tube domain case (V = {0}) as a special case.
Then A is an irreducible symmetric cone (but is not irreducible as a symmetric space)
in a euclidean Jordan algebra X, U is the complexification of X and Φ: V x V —• U
is a sesqui-linear mapping as described in Sect. 2. We put Z = U θ V, and write
Zx := U, Z2 := V. We put ni := dimc Zi and obtain the genus p of Π as

(3.1)

where r is the rank of Π. Then n := nγ + n 2 = dimc Z. Let dV(z2) be the Lebesgue
measure on Z 2 associated with the inner product (z2 | w2) := (Φ(z2 )w2) \ e). Given
any ί e 4̂, and any function /ι holomorphic on Z 2 such that

/ | oo,

z2

one has

e-27r(<^(2;2,2;2)-^(w2^2) I ̂ ^ ( ^ )dV(z ) = 2~n2Λ(t) r h(w ) (3 2)

2 2 2 •

z2
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for every w2 £ Z2. This follows from the reproducing property of the Segal-Bargmann
kernel (1.31) in the case when t = e, and the general case follows from an application
of Lemma 2.73. In particular, we obtain for all z2, w2 £ Z2,

z2

Now let dx and dViz^ denote the Lebesgue measures on X and Zv respectively
77

assoc

[Fl]

77

associated with the euclidean structure of X. For all λ > — — 1 and t £ Λ, we have
r

e-2π(x I t)Δ^
χ

 r dχ = rΛ(X)Δ(2πtyλ , (3.4)
j

A

where

ΓΛ(λ) := ( 2 π ) ^ f[r(λ-Uj- lΛ (3.5)

is the Γ-function of the cone /I [Fl]. Assuming λ > p — 1, consider the measure

^ ^ f χ ) (3.6)

on 77 and the associated λ-Bargmann space

H2

λ(Π):=H2(Π,dμλ) (3.7)

of holomorphic functions on Π, with inner product denoted as (h \ k)λ. Let us consider
also, on A x Z2, the measure

dm(t, z2) := e-
2^(^2^2) I »Δ(t)~^ dtdV(z2) (3.8)

and the Hubert space L\o]{A xZ 2 ) consisting of all functions u(t, z2) which are square-
integrable with respect to dm and, for almost all t, are holomorphic with respect to z2.

As a consequence of (3.4) with λ replaced by λ -, and of PlanchereΓs formula,
one can see that the map u ι—> u#, with r

^ / e-2 7 ru\zx,z2) = 2^(2π)^ΓΛ(λ)^ / e-27r(^ I ^ ^ ^ J ^ ώ (3.9)

is an isometry from L^ol(yl x Z2) into H\{Π)\ it is classical but harder to prove [KS1]
that it is onto. Setting, for any w = (wι, w2) 6 Π,

= 2 ̂  J ^ _ ^ ( t ϋ l + w* - ^ i Q )

2 + 2r e -2π(iϋ 1 -Φ(z2,w2) \ t)

one can see, as a consequence of (3.3) and (3.9), that ε^ has norm 1 in Llol(Λ x Z2):
also,

Δ(wx + «;* - Φ(w2, w2))λ/2u#(™) = (εi, | u), (3.11)
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where the inner product is taken in the same Hubert space; finally, one may write

where
Eλ(z,w) = Δ(z{ + w* - Φ(z2,w2)Γχ . (3.13)

From this it follows that Ex(z, w) is the reproducing kernel of 772(77) and that e^ is
the normalized coherent state at w. Also, as a consequence of (3.13), one has

\{ex

z\ex

w)x\
2 = 6{zM~2X (3.14)

with

δ(z w) \Δ(zι+wf-Φ(z2,w2))\
δ(z w )

°KZ'W) - Δ{zx +zf -Φ(z2,z2))^Δ(Wι +w* -Φiw2,
for z = (zι,z2), w = (wι,w2) in Π. According to (1.8), we put

dμo(z) = π~n ^ Λ ( Λ )

 λ Δ{zx + z* - Φ(z2, z2))~pdV(z,)dV{z2). (3.16)

Note that (3.16) agrees with the measure (3.6), for λ = 0, up to a constant factor
depending on λ. For λ = p, we obtain the "standard" Bergman space, with reproducing
kernel

EΠ(z,w) = Δ(zx +wf- Φ(z2,w2)ΓP . (3.17)

3.18 Lemma. The function δ defined in (3.15) satisfies the "triangle inequality"

δ(z,w)<2rδ(z,y)δ(y,w)

for all z,w,y G 77.

Proof. By Aut(iT)-invariance, we may assume y = e. According to (3.15), we have
to show \Δ(z{ +w* -Φ(z2, w2))\ < \Δ(z1 +e) | \Δ(e+w*)\ for all points z = (zuz2),
w = (wuw2) in 77. Taking the (-p)-th power and using (3.17), we have to show

\EΠ(e,w)\\EΠ(z,e)\ < \EΠ(z,w)\ (3-19)

Now consider the Cayley transformation η:Ω —> 77 associated with the bounded
realization Ω of 77 [LI]. Then e = 7(0) and z = j(x), w = η(y) for some x, y e Ω.
Multiplying both sides of (3.19) by |Det^7(0)|2 |Det07(a;)| \Όetdj(y)\ and using
the transformation formula (1.35) for the (standard) Bergman kernels, it follows from
the formula Det<97(0) = 2 p r / 2 that we have to show

\EΩ(0,y)\ \EΩ(x,0)| < 2V\EΩ(xiy)\.

Now the Bergman kernel of Ω is given by EΩ(z, w) = Δ{z, w)~p, where Δ:ZxZ —»
C is the so-called Jordan triple determinant [LI]. Since 7*^(0, y) = 1 = EΩ(x, 0) and
\Δ(x, y)\<2r for all x, y £ Ω, the assertion follows. Q.E.D.

Consider the Berezin calculus / *-> σ*(/) associated with H\{Π) (for λ > p — 1).
Since (3.13) is a power of (3.17) and 77 is simply-connected, it follows from (1.25)
and (3.6), that, for any g G Aut(77), g*dμλ/dμx is the square of the modulus of
some holomorphic function on 77. According to Sect. 1, the Berezin calculus is
covariant under some project!ve representation τrλ of G := Aut(77)° on 772(77) (a
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continuation of the holomorphic discrete series). In particular, the Berezin transform
σλσ* commutes with the action / ι—>• / o g of G on symbols. We now need to define
σ*(/) for certain unbounded symbols: we first define the possible domain of such an
operator.

3.20 Definition. Given λ > p — 1 and N > 0, define Wχ as the subspace consisting
of all functions h G H\(Π) such that

ι λ := fδ(e,z)2N\(ex \ h)χ\
2dμ0(z) < oo.

π

When TV = 0, Wχ coincides as a Hubert space with H\(Π), since Lemma 1.10
implies for all h G H\(Π\

ft)λ
= J\(eχ

z\h)χ\
2dμQ(z). (3.21)

The projective representation π λ of G on H\(Π) acts on the coherent states in the
following way: Given g E G and z G 77, one has

irχ(g)eϊ = θ e$, (3.22)

for some 0 G C (with |β| = 1) depending on (g,z). Since

δ(e,g-zfN <22rNδ(e,g-efNδ(e,zfN

it is clear that πλ(g) defines a continuous linear automoφhism of Wχ for all g. Only
when ^ G K is πχ(g) an isometry.

3.23 Proposition. Given N > 0, assume that \ > p - I + N. Then (i) ί/ze coherent
states e^ belong to Wχ (ύ) the map f t-> σ*(/), initially defined from L°°(Π) to the
space of bounded operators on H\(Π), can be (uniquely) extended as a continuous
map from the Banach space of all symbols f such that

suV\δ(e,zΓNf(z)\<(χ) (3.24)
zen

to the space ̂ (Wχ , H\(Π)) consisting of all bounded linear operators from Wχ to
Hχ(Π); (iiϊ) for every f satisfying (3.24), the function

(σλσtf):=(ex

z\σt(f)ex

z)χ (3.25)

(well-defined in view of(ϊ) and (ii)j is linked to f by the integral equation (independent
ofN)

(σχσ*χf)(z) = ίδ(z,wΓ2Xf(w)dμ0(w). (3.26)

π

Proof. From Lemma 1.10, one has

/
π

\(eλ

z\eϊu)λ\
2dμ0(z)=l
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for all w e Π if λ > p — 1. For the coherent state ex (at z — e), we obtain

Ikβll^A = Jδ(e,z)2N\(eχ

z I eχ

e)χ\
2dμ0(z) = J6(e,z)2N~2Xdμo(z)

π π

which is finite ifλ — JV > p — 1. Thus e\ £ W^ under this assumption. Since Wχ
is invariant under any πλ((/), the assertion (i) follows from (3.22). If / £ L°°(Π),
Lemma 1.17 shows that

= J f(z)(k I eλ

z)χdμ0(z)
π

for all h,k£ H\{Π). Using (3.21), we obtain

\(k\σ*(f)h)χ\<\\k\\H2,π)
J\f(z)\2\(eλ

z\h)χ\
2dμ0(z)

π

1/2

(3.27)

By Definition 3.20, it follows that the left-hand side of (3.27) extends as a sesqui-
linear form of (fc, h) £ H\(JI) x W^ if / satisfies (3.24). This proves (ii). In view
of (3.27), the integral link from / to σ λ σ*(/) is a consequence of Proposition 1.19
in case / is a bounded symbol. I f λ > p — 1 + iV and / satisfies (3.24), both sides of
(3.26) are, for any fixed z G Π, continuous linear forms in /. Thus (3.26) holds for
all / in the Banach space determined by (3.24) and all z e Π. Q.E.D.

3.28 Lemma. For all points z = (z1? z2) and w = (wγ,w2) in Π, we have

δ(z, w)>δ(\ (Zι + z\ - Φ(z2, z2)), \ (wx +wf- Φ(w2, w2))) .

Proof. The mapping φ(zι,z2) := \ (zx + zf — Φ(z2,z2)) maps Π onto A C Π and

satisfies φ\Λ = id. Now put ia := (2* — z{)/29 b := — z2 and consider the associated
"quasi-translation" ^ defined by (2.58). Then g(z) = (φ(z),0) and φ(g(w)) = φ(w).
Since <5 is G-invariant, it follows that δ(z,w) = S(g(z),g(w)) = δ(φ(z),g(w)). Thus
we have to show δ(x,w) > δ(x,φ(w)) for all x e A and w e Π. Using (3.15), this
is equivalent to

\Δ(x + w*)| > Δ(x + 5 K + wf - Φ(w2, w2))) . (3.29)

Write wx=y + iη with y £ A and 77 £ R n i . Then

Δ(x + w*) = Δ(x + y — iη)

Here Px := 2M2 — MX2 is the so-called quadratic representation operator on

C™1. It satisfies the properties that / v preserves A and sends e to or. Since
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\Δ(e-iP~+£2η)\ > 1 by spectral theory [LI], it follows that \Δ(x + w*)\ > Δ(x + y).
On the other hand

Δ(x + \ (w{ + wf - Φ(w2,w2))) = Δ(x + y - \ Φ(w2,w2))

= Δ{PxJ2

y ( e " \ Pχlί2*(*>2, ™2»)

= Δ(x + y)Δ(e-\ P~^2Φ(w2, w2))

< Δ(x + y),

since Φ(w2, w2) lies in the closure of A for all w2 G Z2. Combining both inequalities,
we obtain (3.29). Q.E.D.

3.30 Proposition. Let a be a measurable function on A, satisfying

ί \N

\a(x)\<CδU^) (xεΛ) (3.31)

for some C > 0 and N > 0; assume Λ > p — 1 4- N. Then the function

on Π satisfies (3.24), and one has

(σλσ*/) (z) = b(zγ + z* - Φ(z2i z2)),

where b is linked to a through the equations

λ——

9is) = Δ(2;S) / e~^ I

Proof By Lemma 3.28, / satisfies (3.24). Using Proposition 3.23 and (3.26), we
obtain

(σλσ*/) (z) = 7Γ-" Γ,Λ{X) A{zλ + z* - Φ(z2, z2))x

x / a(2x - Φ(w2, w2))Δ(2x - Φ(w2, w2))λ~p

x \Δ(zλ + x - iξ - Φ(z2,w2))\~2λdx dξdV(w2).

Here we put wλ = x + iξ, with ξ G X ~ Mni, tϋ2 G Z2 and y = 2 Φ(w2,w2) running
through A. Applying (3.4) and PlanchereΓs formula, we obtain

\Δ{zx +x-iξ- Φ(z2, w2))\~2λ dξ

( 2 τ r ) 2 ^

A

XT f A τ

) 2 J
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Thus

(σλσ*/)(z) = ( 2 π ) 2 Λ ' π " N A{zλ + z* - Φ(z2, z2)f

rΛ(λ)rΛ(λ--

J
2"2 x A x A

x a(2y) Δ(2y)λ'p Δ(s) r dV(w2) ds dy.

VUsing (3.3) to compute the integral with respect to w2, and changing y to -, we
obtain

(σλσ*λf)(z) = ( 2 7 ° 7 λ Δ(Z] + z* - Φ(z2,z2))

/
AxA

x e~2n(s ' y)a(y) Δ(y)λ~p ds dy . Q.E.D

The function g that acts as an intermediary from a to b has the following
interpretation: By combining the Laplace transform (associated with the cone A)
and the Segal-Bargmann realization of L2(Rn2), one can construct a Hubert space
isometry from L2(Λ x Rn2,Δ(t)~n^rdtdx2) onto H\(Π). Then, on functions of
(t, x2), cr*(f) is just the operator of multiplication by the function g(t).

3.32 Lemma. For any 1 < k < r, the k-th minor Δk on A satisfies the inequalities

Δk(x)<Ckδ(e,x)2k (3.33)

and
Δk(xΓι < Ckδ(e,x)2(r~k+l) (3.34)

for all x e A, where Ck > 0 is independent of x.

Proof The norm \x\ := (x \ x)χl2 on X is ^-invariant and thus satisfies |x| <
Δ(e + x) for all x G A (use a spectral decomposition of x). Since Z\(x) < Z\(e -f- x)
(by spectral theory) and Δk is fc-homogeneous, we have

Λ(τΛ^ - Λ (ΎΛ < (Ί Λ(p -4- TΛ^

Since

the first assertion (3.33) follows. Now consider the idempotent c := eι +... + ek and
the associated Peirce decomposition [LI]

I = I , ( c ) f f i I l / 2 ( c ) Θ I 0 ( c ) .
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Then Δk is the determinant function of Xλ(c). Let Δ*_k denote the determinant
function of X0(c), so that Δ(x+z) = Δk(x)Δ*_k(z) for all x G Xx(c) and z G X0(c).
For every b G Xly/2(c), the endomorphism 2bπeι G QΛ is nilpotent and satisfies

exp(26αe 1 )(e 1 +w) = βi+w + b + Pbe
beι

for all w G X0(c), as follows from the Peirce multiplication rules [LI]. Putting
w := e2 - P&el5 we obtain

Δ(e + 6) = Z l ^ + e2 + 6) = Z\(exp(26 α ex)

since P6ej G vϊ. Now let x = Xj + x1//2 + x0 ^ ^ Then Xj + x0 G yl and

Δ(x) = i ^ ^>

since Pχλ-lXQX\/2 £ X1//2(c). Since there exists # G K^ such that Z\*_fe(x) =
Zir_fc(0x) for all x G yl [LI], we obtain from (3.33) and the i^-invariance of
δ:

< C «(e, 6>x)2(r~fc) δ(e, θxf = C 5(e, x ) 2 ( r ~ / c + 1 ) . Q.E.D.

As a consequence of Lemma 3.32, there exists for each α e C r a constant TV > 0
such that

e^) <oc. (3.35)
xeΛ \ 2/

For β = (βv . . . , βr) G Cr with R e ^ > (j - 1) | , define

ΓΛ(/3):=(2π) 2 J J r i ^ - - ϋ - 1)) (3-36)

Identifying λ with (λ, . . . , λ) G C r , (3.36) specializes to (3.5).

3.37 Lemma. For a G C r , choose N satisfying (3.35) and let \> p- I + N. Then
the function f(z) := ̂ ( ^ + ̂ f - Φ(z2, z2)) on Π satisfies

where —a — (—α r , . . . , —α^).

/ Generalizing (3.4), we have the identity [Fl]

/ •
dy = ΓΛ(β)Δβ((2πsΓι) (3.38)
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for all β e Cr with Re/?, > (j - 1) ̂ . With β := α + λ - - and for λ large enough,
J 2 r

the function g(s) associated with a(x) = Δa(x) as in Proposition 3.30 becomes

g(s) = ±- ^ - Δa((2πsΓι).

Choosing θ £ KΛ with θ2 = id and θeJ = er_J+1 for all 1 < j < r [Fl], we have

for all β G C r and s G A and obtain (with the notations of Proposition 3.30)

ΓA(a + \-ϊ) ,
b{χ) = ^ L/ Δ(x)λ / e" ( s I x)Δa-λ(s-ι)Δ(s) - ds

•j—i / \ \ 7~ι / \ l «/

and, since

/
-— ί Λ - —

y

This completes the proof when λ is large enough, but σ λσ*(/) is well-defined under
the sole assumption that λ > p — 1 + N: to prove Lemma 3.37 it thus suffices to
show that σ λ σ*(/), as given by (3.26), extends as a holomorphic function of λ for λ
complex with Re λ > p — 1 + N. Now, as a consequence of (3.35) and of Lemma 3.28,
one has |/(w)| < cδ(e, w)N for some constant c, and using Lemma 3.18 it remains to
be shown that <S(e, w)~2λ+N is summable with respect to dμo(w) under the assumption
made on λ, this follows from (3.14) and (1.21). Q.E.D.

Now consider the Iwasawa decomposition (2.68) of G. For each v e α# « Mr,
define the spherical function

φ"(g):= ίe^WWdk

K

on G; φu depends only on the orbit of v under the Weyl group W. Using (2.71), we
may identify φv with the X-invariant function

u(z)= I Δρ+iu{k-z)dkφ
K

on 77.



Berezin Transform and Invariant Differential Operators 591

3.39 Proposition. PutN=l+[—-l) (r + 4) + -± and let λ > p- 1 + N. Then
r I r

one has for all v = (z/j, . . . , z/r) G W\

By (2.69), we have ρ. = - + - 0' - 1) -f - with - (r - 1) = — - 1 and
J 2 2 2 2 r

= — . By Lemma3.32,
r

satisfies |zi^(x)| < C 6(e, x)^ for all x G Λ, if AT = a(r + (r - 1) + . . . + 2) +

1 + α(r - 1) + & = 1 + °- (r - 1) (r + 4) + b. Since λ > p - 1 + N, we may apply

Lemma 3.37 with a — ρ + iv and average over K, since σ λ σ* commutes with the
action of G on symbols. By (3.36), we have

and the other Γ"-factors can be expressed in a similar way. Q.E.D.

Recall [H2] that the space spanned by the G-translates of φυ has a natural inner
product: denoting as 3@u its (Hubert-space) completion, one then has the direct integral
decomposition

= J &v\c(.v)\-2dv, Tπ= JL\Π)= J &v\c(.v)\-2dv, Tπ= J Tu\c(v)\~2dv, (3.40)

where c is Harish-Chandra's c-function. Tπ is the natural action of G in L2(Π) and
Tv is the (irreducible) spherical representation of G in 3@v. Given any VF-invariant
function F on o# ~ l r , continuous and real-valued, one can define the G-invariant
self-adjoint operator F on L2(Π) by the formula

jc(v)\-2dv. (3.41)

The domain of F is defined as the space of functions / such that

and F is bounded if F is a bounded function. For each k = 1, . . . , r, let Qk G
Diff(i7)G be the differential operator associated with the polynomial

r

...,tr)=-Σt? (3.42)
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via (2.70). The direct integral decomposition above diagonalizes simultaneously the
operators Qx, ..., Qr :Qk = Fk if Fk(y) — qk(iv). Moreover, since any VF-invariant
function of v can be expressed as a function of (qx(iv), . . . , qr(iv)), it is clear that,
for any bounded VF-invariant continuous function F on α#, the bounded operator F
is, in the spectral-theoretic sense, a function of the (commuting) operators Qk.

3.43 Theorem. For λ > p - 1, let Gλ = Gx(qx, ..., qr) be the function, defined and
analytic in a neighborhood 0/([O, oo[)r in C r, characterized by the identity

r

π
A —

for all v € W, with qk(t) defined in (3.42). Then the Berezin transform σ λ σ* is the
bounded operator on L2(Π) defined in the spectral-theoretic sense as

σxσZ = Gx(Qu...,Qr), (3.45)

with Qk associated with qk via (2.70).

Proof If λ is large enough, the assertion follows from Proposition 3.39, from the
fact that σ λ σ* commutes with Tπ and from the direct integral decomposition (3.40).

Since (^<ρj<- + -(r-\) + - = ?—— for all j , both sides of (3.44) are still

defined as bounded operators whenever λ > p — 1. For such λ, σΛσ* has the kernel
6(z, w)~2λ with respect to the measure

P Γ(λ-βj + Z

dμo(w) = π~n Y[

x Δ(wι +w* - Φ(w2, w2))~pdV(wι)dV(w2)

(cf. (3.16) and (3.36)). Let P be the polynomial in r variables such that

P(qι(iv),...,qr(iu)) = T]\(x-1-

and consider the differential operator D = P ( Q l 5 . . . , Qr) on 77. As a consequence
of the functional equation of the Γ-function we obtain

( ί ? ^ ) (3 46)

whenever Λ is large enough. Here Dz is D acting on the z-variable. Since both sides
of (3.46) are analytic in Λ, for λ complex with Re(λ) > p — 1, (3.46) remains valid
for real λ > p — 1. Using the functional equation of the Γ-function in the reverse
direction, one may easily extend (3.44) to all λ > p — 1. Q.E.D.
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4. Limit and Expansions as λ —• oo

In the case of the Wick calculus, the Berezin transform is, as recalled in (0.3) the

operator exp ( - - — Δ], with Z\ = - V ( — τ + — Λ then, if h e L2(Cn, dV)
χ )

lies in the domain of exp Z\, one has the strongly convergent expansion (as
4πρ

Q-X -> 0)

Nothing of the kind, with ρ replaced by λ, can be valid, even formally, for the Berezin
transform characterized by Theorem 3.43, for, as a function of λ, the function Gx has
an essential singularity at infinity. This forbids to base on the formal inversion of such
a series (as is sometimes done in the physics literature) any claim for the validity of
a "composition formula" for Berezin contravariant or covariant symbols: indeed, if it
is trivial to compute the covariant symbol of the composition of two operators of the
form σ*(/), there is no going back from the covariant to some contravariant symbol
of the product.

What remains of these formal considerations is the result of an application of
Stirling's formula for Γ(x + 1) to the various factors involved in Gx. Indeed, the
unbounded factors essentially cancel out and, using again the Weyl group symmetry
of Gx as a function of z/, one gets an asymptotic expansion (as remarked by Berezin
[B3] who did not, however, make the meaning of this expansion specific)

GX{QX, . . . , Qr) ~ £ >rkPk(Qx, , Qr),
/c>0

where the Pk

9s are polynomials: the meaning of it is that if a symbol h G L2(Π)
is such that (ΠQ^~j)h belongs to L2(Π) whenever Σβj is less than some number
depending on k, then the difference

fc-l

Gλ(Qi, , Qr) ~ Σ X~JPj(Qn ' ' > Q
3=0

lies in a bounded subset of L2(Π) as λ —> oo. From this one can get an asymptotic
expansion, in powers of λ" 1, of the covariant symbol of a product cr*(hl)a*(h2) if
hx and h2 have sufficiently many derivatives in L2(Π) in the sense explained above:
only, this is meaningless for fixed λ; also, one has to make assumptions about the
contravariant symbols of the two factors whereas the conclusion concerns the much
softer covariant symbol of the product. (In contrast, for the Weyl calculus associated
with the Poincare half-plane, there is for fixed λ an exact (integral) composition
formula [U7] involving only one type of symbol: such a formula does probably
admit generalizations to the higher rank case, depending on generalizations of special
function theory.)

One may also wish to have a look at possible limits as λ —• oo of the Berezin
quantization: several are possible, among which we shall briefly describe one that is
best associated with the bounded realization Ω. It is common knowledge [01] that
a suitably renormalized version of the measure dμλ on Ω tends, as λ —» oo, to the
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measure associated with the Segal-Bargmann space H2(Cn) recalled in Sect. 1: indeed,
considering the "Jordan triple determinant" Δ [U4] and the probability measure

on Ω, the expansion Δ(z, z) ~ I — \z\2 + o(\z\2) valid for z near 0 implies that

as λ —> oo. This makes it plausible that, under some pair of transformations (one, the
obvious dilatation, acting between the phase spaces, the second one acting between the
Hubert spaces involved), the Berezin calculus will contract to the Wick calculus: this
is, indeed, the case; let us describe the somewhat subtler Hubert space transformation
involved.

For any λ > p — 1, let Hχ(Ω) be the λ-Bergman space defined in (3.7). It
contains the polynomial algebra &(Z) as a dense subspace. Under the natural action
of K := GL(Ω), ^{Z) has a decomposition

where a = (α 1 ? . . . , α r ) G N r satisfies aλ > . . . > ar [SI, U5, KS2]. The K-
invariant inner products on ζPa(Z), regarded as a subspace of Ή.\(Ω) or H2(Z),

respectively, are proportional for each a G N r , and one can show [FK]

) z = ((λ))a(h\k)λ (4.1)

for all h,ke ^a(Z), where

^ π H )
is the "multi-Pochhammer symbol." This implies

4.3 Proposition. There exists a Hubert space isomorphism

H2

X(Ω) —^ H2(Z)

such that

t

X h

for every h G

As a consequence of Proposition 4.3, we may, for any polynomial / G
consider the commuting diagram

H2(Ω) - ^ H2(Z)

H\{Ω) —^ H\Z).
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Here σ*(/) is the Berezin operator (1.14) with symbol /, and we put Ad(.ίζ)T :=
β^Tβ^*. On the other hand, we may deform the underlying phase space Ω via the
biholomorphic mapping

Ω

The mapping

H2

χ(Ω) >H2(VλΩ)

~ι
h i—> h o φ~

defines a Hubert space H2(^f\Ω) of holomoφhic functions on y/\Ω. For any real-
analytic polynomial / : Z —> C there is a commuting diagram

H\(Ω)

σ*(/)

H\(Ω) > H2(ΛfλΩ)

for the respective Toeplitz operators. In this sense the correct active symbol, as
λ —> oo, is / o φχ.

4.4 Theorem. For every real-analytic polynomial f:Z—>C,

lim
λ—>OO

is the flat Berezin operator with contravariant symbol f (cf. Example 1.27 with ρ = 1).

Proof. Write

Σ £ (finite sum)'

where fι,gi e ^(Z). Then the flat Berezin quantized operator satisfies

and a similar relation holds for σ*(/). We may therefore assume that / G £P(Z). We
may even assume that /(z) = (z \ b) is linear. Then

Now suppose h e ^a(Z) for some α d r . Then [U6] implies

where we put
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provided this multi-index belongs to N r . Using (4.1) and denoting the (a + ε^)-

component by a subscript, we obtain

It follows that

lim

= Σ (Kz) {z I 6 ) ) α + e i = ft(z) {z \b) = σ*(f)h(z). Q.E.D.
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