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Abstract. A new way of solving the descent equations corresponding to the
Wess-Zumino consistency conditions is presented. The method relies on the
introduction of an operator δ which allows to decompose the exterior space-time
derivative d as a BRS commutator. The case of the Yang-Mills theories is treated in
detail.

1. Introduction

It is well known that the anomalies in gauge theories have to be nontrivial
solutions of the Wess-Zumino consistency conditions [1]. These conditions, when
formulated in terms of the Becchi-Rouet-Stora transformations [2], yield a co-
homology problem for the nilpotent BRS operator s:

sA = 0 , (1.1)

where A is the integral of a local polynomial in the fields and their derivatives. An
useful way of finding non-trivial solutions of (1.1) is given by the so-called descent-
equations technique [3-9].

Setting A = j s/, Eq. (1.1) translates into the local condition

SJ* + dl = 0 , (1.2)

for some =2; d being the exterior differential on the space-time M. The operators
s and d verify:

s2 = d2 = sd + ds = 0 . (1.3)

One can easily prove that Eq. (1.2), due to the triviality of the cohomology of
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d [5, 7,10], generates a tower of descent equations

sΆ + dl1 = 0

s J 1 + d£2 = 0

s£k = 0 , (1.4)

where the J f are local polynomials in the fields.
The aim of this work is to give a procedure for generating explicit solutions of

the descent equations (1.4). This will be done in the class of polynomials of
differential forms [5] and for any space-time dimension and ghost-number. The use
of the space of polynomials of differential forms; i.e. polynomials in the variables A,
dA, c, dc (A and c being respectively the gauge connection and the ghost field), is the
natural choice when dealing with anomalies and Chern-Simons terms. This is due
to the topological origin of the latters [11]. It is worthwhile to mention that
actually, as recently proven by M. Dubois-Violette et al. [12], the use of the space
of polynomials of forms is not a restriction on the generality of the solution of the
consistency equations. To avoid the introduction of a reference connection [4] we
will assume that the principal fiber bundle for the gauge potential is trivial, i.e. of
the form (M xG) with G a compact semisimple Lie group.

The main idea which we will use to solve the descent equations consists in
writing the exterior derivative d as a BRS commutator; i.e. we will be able to make
the decomposition:

d = - [5, <S] , (1.5)

where δ is an operator which will be specified later. One easily shows that, once the
decomposition (1.5) has been found, repeated applications of the operator δ on the
polynomial l k which solves the last of Eqs. (1.4) will give an explicit solution for the
higher cocycles Άk~ \ . . ., J 1 , 2 , and si. One has to remember also that the form of
the polynomial Qk is well known [4, 5, 7,10, 13, 14] and is uniquely specified by
invariant ghost monomials of the form Tr ck (k odd). This completes the general
strategy.

We emphasize that this scheme represents an alternative way of solving the
descent equations which is completely different from the usual homotopy set up
given by the "Russian-formula" [3, 4, 5, 6]. However we will see that the two
schemes identify the same class of solutions, i.e. they give expressions which differ
only by a trivial cocycle.

It is interesting to note that the decomposition (1.5) naturally appears in the
context of the topological field theories [15, 16]. In this case the operator δ is the
generator of the topological vector supersymmetry and allows for a complete
classification of anomalies, counterterms and nontrivial observables [17].

The paper is organized as follows. In Sect. 2 we briefly recall some basic
properties concerning the cohomologies of d and s. Section 3 is devoted to the
study of the algebraic structure implied by the decomposition (1.5). In Sect. 4, after
giving some explicit examples, we present the solution of the descent equations in
the general case.
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We hope that this work will be of some help in understanding the algebraic
structure which underlies the topological nature of the anomalies.

2. General Results on the d and s Cohomologies

2.1. Notations and Functional Identities. Let /V(A9 dA, c, dc) be the space of poly-
nomials of differential forms. The BRS transformations of the one-form gauge
connection Aa = Aμdxμ and of the zero-form ghost field ca are:

sAa = dca + fabccbAc,

sca = ^fabccbcc, (2.1)

where fabc are the structure constants of the gauge group G and d is the exterior
derivative defined by

dωp = dxμdμωp , (2.2)

for any p-form

= Ίωil...ipdxί*...dxi>9 (2.3)

where a wedge product has to be understood.
As usual, the adopted grading is given by the sum of the form degree and of the

ghost number. The fields A and c are both of degree one, their ghost number being
respectively zero and one. A p-form with ghost number q will be denoted by ω | ; its
grading being (p + q). The two-form field strength Fa reads:

Fa = -Fa

μvdxμdxv = dAa + -fabcAbAc, (2.4)

and

is its Bianchi identity.
To characterize the cohomology of s and d on the space of polynomials of

differential forms it is convenient to switch from (A, dA, c, dc) to another set of
more natural variables. Following [5], we choose as independent variables the set
(A, F9c9ξ = dc); i.e. we replace everywhere dA with F by using (2.4) and we
introduce the variable ξ = dc to emphasize the local character of the descent
equations (1.4). Indeed, since integration by parts is not allowed, the variable
ξ = dc is really an independent quantity. On the local space i^(A9 F9c9ξ) the BRS
operator s and the exterior derivative d act as ordinary differential operators given
by

^ £ ^ cbF^a, (2.6)

(2.7)
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One easily checks that s and d are of degree one and satisfy

s2 = d2 = sd + ds = 0 . (2.8)

2.2. The d Cohomology. Even if the vanishing of the cohomology of the exterior
derivative is a well established result [5, 7,10] we give here a simple proof which
may be useful for the reader.

Proposition I. The exterior derivative d has vanishing cohomology on i^(A9 F, c, ξ).

Proof. The proof is easily done by introducing the filtering operator Jf [13, 14]

according to which the exterior derivative (2.7) decomposes as

d = d{0) + J ( 1 ) , (2.10)

with

ξ'£+F'-£c > (2 Π)

and

d<0>d<0> = 0 . (2.12)

It is apparent from (2.11) that d{0) has vanishing cohomology. It then follows that
also d has vanishing cohomology, due to the fact that the cohomology of d is
isomorphic to a subspace of the cohomology of d{0) [13,14].

2.3. The s Cohomology and the Descent Equations. The triviality of the cohomo-
logy of d allows for a simple algebraic derivation of the descent equations. To do
this, let us begin by recalling the main result on the cohomology of s.

s-Cohomology [5, 7,10, 13,14]. The cohomology of s on i^(A, F, c, ξ) is spanned
by polynomials in the variables (c, F) generated by elements of the form

with έ?2n+2(F) the invariant monomial of degree (2n + 2); i.e.

0>2n+2(F) = TrFn + 1 , (2.14)

where in matrix notation

F = TaF\ c = Taca, (2.15)

\T\ Γb] = ifabcT\ Tr TaTb = δab, (2.16)

Ta being the generators of a finite unitary representation of G.
Due to the Bianchi identity (2.5), the invariant monomial ^2n+i{F) has also the

remarkable property of being d-closed:

dP2n+2(F) = 0 . (2.17)
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The triviality of the cohomology of d implies then

P2n+2(F) = dωϊn+l9 (2.18)

which, due to (2.8), is easily seen to generate a tower of descent equations:

sω2n+i + dω\n = 0

sω\n -i-dω^-! =0

1 = 0

ί =0. (2.19)

In particular, Eq. (2.13) implies that the non-trivial solution of the last equation in
(2.19) corresponding to ^2n+2(F) is given by the ghost monomial of degree
(2/ι + 1):

One has to note that the descent equations (2.19) are still valid in the more general
case of an invariant polynomial Ά2n + 2(F) which is the product of several elements
of the basis (2.14):

£2n + 2(F) = Π »mβ\ Σ ^ = 2n + 2 . (2.21)
i=l i

However, as one can easily understand, the knowledge of the solution of Eqs. (2.19)
for the basic monomials Φ2n+2{F) allows to characterize also the more general case
of Eq. (2.21). We can assume then, without loss of generality, that the descent
equations (2.19) refer always to the monomials of the basis (2.14).

3. Decomposition of the Exterior Derivative

The purpose of this section is to analyse in detail the algebraic relations implied by
a decomposition of the exterior derivative d as the one proposed in (1.5).

5.7. Algebraic Relations. Let us introduce the operators δ and ^ defined by

and
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It is easily verified that δ and ^ are respectively of degree zero and one and that the
following algebraic relations hold:

d = - [s, <S] , (3.3)

[d, δ]=29, (3.4)

id, ^} = 0, yy = 0 , (3.5)

(s, ^} = 0, [^, <5] = 0 (3.6)

One sees from (3.3) that, as announced, the operator δ allows to decompose the
exterior derivative d as a BRS commutator. This property, as it will be shown in the
next chapters, will allow to produce new expressions which solve the descent
equations (2.19) and which turn out to be cohomologically equivalent to the
particular solutions obtained by the "Russian-formula" [3-6]. Notice that the
closure of the algebra between d, s and δ requires the introduction of the operator
^. Remarkably, this operator, already present in the work of Brandt et al. [7], here
appears in a natural way.

3.2. Properties of&. We will establish here some algebraic properties concerning
the operator ^ which will be useful in the following. Let us begin by showing that
the action of ^ on the ghost-monomial (2.20) gives a trivial BRS cocycle.

Proposition II.

r2n+l
1 ~'n~Λ (3.7)

for some two-form Ω^"'1 with ghost number {In — 1).

Proof The proof is easily done by noticing that the general result (2.13) on the
cohomology of s and the relations (3.6) imply that

0 (3 8)

c2n/ c \
which shows that ^ Tr— — is s-invariant. Moreover from (2.13) it follows

\ (2n+l) !/
/ c2n + 1 \

that ^1 Tr- — I cannot belong to the cohomology of s; hence it is trivial.

The two-form Ω1"'γ in (3.7) is easily computed by using the expression (3.2) for
the operator ^ and its general form reads

Ω!"-1 = pj ijjTrFc2»-1. (3.9)

This completes the proof.
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Repeating now the same argument of Eq. (3.8) one can prove that, if

gΩ2

2

n~ι ΦO, one has

gQl"-1 +sΩln~3 = 0. (3.10)

Acting again with <& on Eq. (3.10) and using properties (3.5), (3.6) one gets

s%Ωln~3 = 0 , (3.11)

from which it follows that, if ^Ω2

A

n~3 Φ 0,

^Ωln~3 + sΩln~5 = 0. (3.12)

As one can easily understand, this process gives a tower of descent equations
between the operators s and ̂ . They read

f"1 +5Ω4""3 = 0

9Ωln.2+sΩln = 0. (3.13)

To close the tower, let us apply once more the operator 0 on the last of Eqs. (3.13).
Using (3.5) and (3.6) one has:

s<#Ω\n = 0 , (3.14)

from which it follows that ^Ω\n is a BRS invariant (2n + 2)-form with zero ghost
number. Expressions (2.13), (2.14) show then that ^Ω\n is nothing but the invariant
monomial of degree {In + 2):

90ln = (cowt)P2n + 2(F)9 (3.15)

where the constant can be computed by means of the general formula (3.9).
Equation (3.15) closes the tower of descent equations (3.13) generated by ^ and s.

To conclude this section let us compute, for a better understanding of Eqs.
(3.13)—(3.15), the Ω-cocycles for the BRS invariant ghost monomials of degree three
and five:

where

In the

dabc

case

jabcC

is the invariant

Of fabccacbcc

*α c cc cacmcnc*)ct*

3! ' 5! '

totally symmetric tensor of rank three

2

the tower (3.13)-(3.15) reads

„ abccac"cC i
3! S 2 '

9Q\ = - 9A(F),

(3.

(3.

(3.

(3.

ίfλ
ΪO)

17)

18)

19)



238 S.P. Sorella

with Ω\ and ^(F) given by

θi — Fara &PΛ(F\ — FaFa Π ?0ϊ

For the ghost monomial of degree five the descent equations (3.13)—(3.15) are
a little more extended

dabcfbmnfcPq . j = sflf , (3.21)

f sΩl = 0 , (3.22)

= ^ 6 ( F ) , (3.23)

where Ω|, ί24 and ^ 6 ( ^ ) a r ^ computed to be

ί 2 i = --dabcFaFbcc,

P6(F) = dabcFaFbFc . (3.24)

4. Solution of the Descent Equations

In this chapter we will apply the results established in the previous sections to
obtain in a closed form a class of solutions of the descent equations (2.19). This will
be done by using the decomposition of the exterior derivative (3.3) as well as the
descent equations (3.13)—(3.15) involving the operators ^ and s.

For the sake of clarity and to make contact with the solutions given by the
"Russian-formula" [3-6] let us proceed by discussing some explicit examples.

4.1. The Case n = 1. In this case, relevant for the two-dimensional gauge anomaly
and for the three-dimensional Chern-Simons term, the descent equations (2.19)
read:

SCO3 + dω\ = 0 ,

sω\ + dω\ = 0 ,

sω\ + dωl = 0 ,

sω3

o=0, (4.1)

where, from Eq. (2.20), ωl is given by

rarbrc

ωl=jΓ -JΓ (42 )

Acting with the operator δ of Eq. (3.1) on the last of Eqs. (4.1) one gets

= 0, (4.3)
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which, using the decomposition (3.3), becomes

sδωl H- dωl = 0 . (4.4)

This equation shows that δωl gives a solution for the cocycle ω\ in Eqs. (4.1).
Acting again with δ on Eq. (4.4) and using the algebraic relations (3.3), (3.4) one has

s — ωl - <$ωl + dδωl = 0 . (4.5)

Moreover, from the previous results (3.7) and (3.18)-(3.20), we get

Ω\ = Faca , (4.6)

so that Eq. (4.5) can be rewritten as:

s(δδω3 Ω1

One sees that (%δδωl — Ω\) gives a solution for ω\. To solve completely the tower
(4.1) let us apply once more the operator δ on Eq. (4.7). After a little algebra we get:

— ω o - Ω 2

1 ) = 0 , (4.8)

which shows that the cocycle ω% can be identified with I — δδδωl — δΩ\ I. It is

apparent then how repeated applications of the operator δ on the zero-form
cocycle COQ and the use of the tower (3.13)—(3.15) give in a simple way a solution of
the descent equations.

Summarizing, the solution of the descent equations (4.1) is given by

ωl = -δδδωl-δΩ\ , (4.9)

3!

col =-δδωl -Ω\ , (4.10)

ω\ = δωl, (4.11)

where, using expressions (4.2), (4.6), ω?, ω\ and ω\ read:

ω\ = - \jabcAacbcc = ξaca - s(Aaca), (4.12)

col = ^fabcAaAbcc - Faca = - dAaca, (4.13)

£ = FaAa - -fabcAaAbAc = TτlFA + ^A3) . (4.14)
6 V 3 /
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One easily recognizes that the expressions (4.12)-(4.14) coincide, modulo an s or
a d-coboundary, with the solution given, for instance, in the work of Zumino, Wu
and Zee [3]. In particular, (4.13) and (4.14) give respectively the two-dimensional
gauge anomaly (modulo a d-coboundary) and the three-dimensional Chern-
Simons term.

4.2. The Case n — 2. In this example, relevant for the gauge anomaly in four
dimensions, the tower (2.19) takes the form:

sω°5 + dωl = 0 ,

sω\ + dωl = 0 ,

sω\ + dωl = 0 ,

sωl + dω\ = 0 ,

scoi + dωo = 0 ,

5 = 0 , (4.15)

( 4 1 6 )

where, according to Eq. (2.20):

s , u ,u „ CaCn

As in the previous case, a solution of Eqs. (4.15) is easily obtained by applying the
operator δ on the cocycle (4.16):

ω s = i δδδδδωo - ~ δδδΩl - δΩ\ , (4.17)

l ^ o -UδΩ3

2 - Ωl , (4.18)

δΩl, (4.19)

^ l - Ωl , (4.20)

ωt = <5ω0

5 , (4.21)

where Ω% and Ωl belong to the tower (3.21)—(3.23) and are given by (see also Eq.
(3.24)):

Ωf = —dabcFecbfcmncmcn, (4.22)

Ωi = -jdΛcF'Fbce. (4.23)
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In particular, co® and ω\ are computed to be:

ω°5 = - ~dabcFaFbAc - -λ-dabcfbmnfcpqAaAmAnΛpAq

+ —dahcFaAbfcmnAnAn

= -±ττ(F2A+l-FA*-±A*y (4.24)

col = l-άabcFaFbcc - J-dabcFacbfcmnAmAn

fiabc pa £b rcmn j^rn cn _. ^abc fbmn fcpqj^a j^rn ^n j^p ^q

6 24 J

= -cad(dabcAbdAc + λ-dabcAbfcmnAmAn\ (4.25)

and give respectively the generalized five-dimensional Chern-Simons term and the
four-dimensional gauge anomaly. Again, expressions (4.24) and (4.25) coincide,
modulo a d-coboundary, with that of ref. [3].

4.3. The General Case. It is straightforward now to iterate the previous construc-
tion to obtain the solution of the descent equations (2.19) in the general case of an
arbitrary n (n ̂  1).

The solution of the ladder

ln-i = 0

sωln + dωln + 1 = 0

sωln + 1 = 0 , (4.26)

is given by

*2p p 1 s2j
2n+ί-2p _ _^ 2«+l Y _^ Q2n+l-2p + 2j

ω2> ~(2pyωo -£0m
Ω2p-2J

for the even space-time form sector and

ωln = δω2

0

n + \ (4.29)

s:2p+l p-ί Z2J+1
2n~2P 2«+l V n

V nn+l-2p + 2j

for the odd sector and p = 1, 2,. . ., n.
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The Ω-cocycles in (4.28), (4.30) belong to the tower (3.13)-(3.15) and are

computed by using the general formula (3.9).

Equations (4.27)-(4.30) generalize the results of the previous examples and

show how the use of the operator δ gives a simple way of generating explicit

solutions. It is easy to check indeed that, for n > 2, the expressions (4.27)-(4.30)

coincide, modulo an s or a d-coboundary, with the results obtained in [3-6].

5. Conclusion

We have presented a new way of solving the descent equations associated with the

Wess-Zumino consistency conditions. The main ingredient has been the introduc-

tion of the operator δ which decomposes the exterior derivative d as a BRS
commutator and which allows to introduce in a natural way the operator ^ . This

operator, already used by Brandt et al. [7], generates together with the BRS

operator s a new tower of descent equations which are easily disentangled using the

general results on the cohomology of s. Moreover the algebraic properties of δ and

^ allow for a characterization of the solutions of Wess-Zumino consistency

conditions. These solutions turn out to coincide, modulo trivial cocycles, with the

ones already obtained by using the homotopy "Russian-formula" [3-6].

Applications to gravity and topological theories are under investigation [19].
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