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Abstract. We study the technique used in proving the exponential localization for
one-dimensional difference Schrόdinger operators with quasi-periodic potential.
In this way we get some corollaries concerning the spectrum structure near the
boundaries and the existence of bounded, non-exponentially decaying solutions of
the equation on eigenvalues.

1. Introduction

In this paper we study the family of Schrodinger operators, acting in ^ ( Z 1 ) as

follows: (Hε(α)φ)(n) = ε (ψ(n-1) +φ(n +1)) + V(α + n ω) ψ(n), (1.1)

with α e S 1 , ω e R 1 , VeC 2 (S 1 ), and ε being sufficiently small. One can consider
Hε(α) as a metrically transitive operator in the sense of [5]. Indeed, Hg(Tα)
= U~ ̂ ( α J U , where Tα = (α 4- ω) (mod 1) and U is a unitary shift operator: (U/)(n)
=f(n — 1). For V(α) = cos(2πα) we get the Almost-Mathieu operator as an
important particular case. We shall use the results for (1.1) obtained by Sinai [1]
and Frohlich, Spencer, and Wittwer [3, 4] :

Main Theorem (Sinai, Frohlich, Spencer, and Wittwer). Let V e C2(S1) have exactly
two critical points, both being non-degenerate. Let ω e [ 0 ; 1] be a Diophantίne
number, i.e. a number, satisfying the condition \ω—p/q\^const q~δ~2 for some
δ>0. Then there exists a positive number ε0 = εo(V, δ) such that for any ε, |ε| < ε0 and
a.e. α e S 1 the operator Hε(α) has purely point spectrum. All its eigenfunctions decay
exponentially. The support of the density of states for Hε(α) is a nowhere dense
Cantor set of positive Lebesgue measure and the total Lebesgue measure of all
spectral gaps for Hε(α) is less than const |ε|.

We shall derive in this paper several corollaries from the Main Theorem:

Corollary 1. For all ε : | ε | < ε 0 there exists a countable set s/(s)cSl such that for
every α e j / : λm3LX = k\xp{λ: λeSpHε(oc)} is an eigenvalue of Hε(α).
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Remarks, a) For all α, SpHε(α) does not depend on α (see [5]).
b) s/ is an exceptional set in the following sense: for a.e. oceS1; λmax is not an
eigenvalue of Hε(α) [5].
c) The same result holds for /lmin = inf{/l: Λ,eSpHε(α)}.
d) The countable set of exceptional phases si is a trajectory of T on S 1.
e) For ocesi essential support of eigenfunctions (in the sense of [1, 2])
corresponding to λmin and λmax is a one-point subset of Z 1 .

Corollary 2. Let \ω — p/q\^const q~2~δ for every p.qeΈ1 and some δ>0. Then
for every ε: | ε | < ε 0 one can choose such α(ε)eS r ; Λ,(ε)eSpHε(α) that there exists a
bounded solution of the equation Hε(a)ψ = λ(ε) - ψ for which lim sup \ψ(n)\ > 0.

n-*oo

Remarks, a) There exists a continual set of pairs (λ, α) for which the statement of
Corollary 2 holds.
b) Corollary 2 is useful in connection with the following theorem, proven by
Riedel [6]:

Theorem (Riedel). Assume that the condition L holds.
L: Every bounded solution ψ of the almost Mathieu equation ε (ψ(n — 1) + ψ(n + 1))
+ cos(2π(α + ω ri)) ψ(ή) = λψ(n); decays exponentially as \n\ -> + oo. Then SpHε(α)
is not a Cantor set.

Corollary 2 shows that generically the condition L does not take place.

Corollary 3. Let be \θί—p/q\ ^const q~2 (\nq)~β; β> 1 Vp; q e Z . Then for every
σ>0 one can find such aσeS1; ΛσeSρHε(α) that
a) the solution ψσ{n) of the equation Hε(oc)ψσ = λψσ has a polynomial rate of decay at
infinity.
b) limsup|φσ(n) nσ | = 0.

The plan of the paper is the following. In Sect. 2 we discuss the main steps of the
inductive procedure, suggested in [2]. Using the technique of [2] we prove in
Sects. 3, 4, and 5 all Corollaries 1, 2, and 3.

2. The Main Steps of the Proof of the Main Theorem

a) Assume that for all α e S 1 we constructed a family ψ(oc) of eigenfunctions
(EF's) having the eigenvalues (EV's) A(α). Then all functions ψn(a) = \Jnψ(oί + n ω)
n— — oo,..., + oo are EF's for the individual operator with EV's λ(a + n ώ). The
main idea of [1,2] was that in order to construct all EF's \p(a) for a fixed α e S 1 it
is sufficient to construct for all α e S 1 only those EF's for which zero point is a left
boundary of an essential support of ψ(oc). (In fact, ES is a finite subset of Z 1 , where
EF takes values of order of 1; see [1,2] for precise definitions.)

Remark. Actually, eigenfunctions with the above mentioned condition on ES will
be constructed only for α belonging to some Cantor set of positive Lebesgue
measure, which will be sufficient for our purposes.

Denote the ES of ψ(a) by &(ip(oc)) and

pos(φ(α)) = min {k:
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b) Exponential localization will be proven by induction, and on each step s ^ s0 of
the inductive process we shall construct approximate eigenfunctions (AEF's) φ%a)
and approximate eigenvalues (AEV's) Λ%a); l ^ / ^ n s , rcs:£const s ms such
that:

2. (Hε(α)-ΛK«M(«) = W , (2.1)

Tf(n, α) is different from zero only at the points n, where

dist(n, # ( # ( « ) ) ) - [2s/ln(ε-*)] = 0 ; 1.

3. \φ%n, α)| ̂  (αε)dist<" : *(*ί(")M (2.2)

provided that

+ 00

4. IJ Uw(φs(α + nω)) is a complete set of functions in ^ ( Z 1 ) , where we denoted

We also define the many-valued function

5. diam(iT(#(α)) g const s/ln(ε ~ ι ) . (2.3)

Remark. Un(φs(oc + nω)) is also an AEF of Hε(α) in the same sense as in (2.1) with
AEV A%oc + nω) but pos (Un(φ%oc + «ω)) = rc.
c) Because we may assume ε to be sufficiently small, we can consider Hε(α) as a
perturbation of the multiplicative operator

(U0(oc)ψ)(ή) = V(α + n ω) t/?(n).

The EF's of H0(α) concentrated at one-point subsets of the lattice are AEF's of
Hε(α) and EV's of H0(α), which are V(α + m ω);m= — oo,...,+oo are also AEV's
of Hε(α). So at the initial step of induction so = [ln(ε"x)/2]:

and

(2.4)

+ 00

The set of functions (J {\Jnφf(θL + n- ω)} is a basis in i?2(Zl).
n= - oo

d) Let us discuss the construction of the first non-trivial approximations φSo + 1(a)
and ΛSo+ι((x). We shall use the perturbation formulas of the first order:
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t-ω)

(2.5;

Remark. Actually, the sum in (2.5) contains only the finite number of terms and in
the case s = s0 +1, in fact only two, corresponding to t = ± 1. But the formulas (2.5)
are applicable only under certain "non-resonant" conditions. More precisely, (2.5)
makes no sense if the denominator is zero, while the corresponding numerator is
nonzero, and the precision of that approximation is insufficient if the denominator
is small enough. This is the reason why the resonant zone [the neighbourhoods of
the points, where Λf((x) = Λf(oc + ω); Λf((ή = Λf((x-ωy] appear. The width of the
resonant zone on the α-axis at the 5th step of induction has an order of e~s (see [2]).
The former and the latter resonant neighbourhoods play essentially different roles
in inductive constructions. Recall that we should construct only those AEF φs

€(a)
for which pos(<^(α)) = 0. As was shown in [1,2] in resonant zones there appear two
AEV's which are close to each other and close to Λf(a); Λf(cc±ω\ but the
corresponding AEF are linear combinations of φS!°(α) and U±1φs

1°(α±ω) up to
terms of higher order of smallness. The ES of new AEF is defined as a union of the
ES's for φfia) and \J±ίφs

ί°((x±ω). Therefore, in the case of \Jφs

1°(oc + ω) the new
AEF satisfies the condition pos(<^°+1(α)) = 0, while in the other case we have an
AEF with pos= —1. So we should exclude the RZ of the latter type from the
domain of definition φSo+ί(oc), while in the former case there appears an additional
AEF in the resonant zone (RZ). We shall follow this strategy at all inductive steps
s ̂  s0, so in the limit s -* + oo the domain of definition of any φ€ = lim φs

€ will be a
nowhere dense Cantor set.

Let us write down the perturbation formulas, which are used in the RZ:

xU'φfia + tω). (2.6)

f M°(α) + (Fl°(α); φtfμ))

+ Λfioc + ω) + (UFftα + ω);

- (Λ?(α + ω) + (UFi°(α + ω);

+ 4(Fl°(α); Uφf(α + ω)) (UFf(α + ω); ^ ( α ) ) ] ̂ , (2.7)

+ ; A_N

B.; B ' s 0 ( 2 >
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(Figure 1 presents the graph of A%+1 in RZ.)
e) The exponential decay of AEF's (and EF in the limit) is derived from the

representation (see [1, 2]):

φl+ \n-1 α) = Ms(n; λ%a); α) φ\{n\ α) + o ( / " ( 3 ~ β ) s ) ,

dist (n, ^{φ\+1 (α)) ̂  [2(s + 1 )/ln (ε ~ ι ) ] ,

where φSj+1l φl+1 e[j Unφs(<x + nω),
n

Ms(n; λ;oc) = ε Gs(n — 1 π — 1 A; α)/(l + ε Gs(π; n — 1 A; α)

and

"""'^"""""ϊ ( 2.8)
is an approximate Green function. Factors Ms(n; λ\\ α) take values of order of ε at
"most" points n. Besides that, for points n which are in the fixed neighbourhood of
the ES we have:

Remark. The formulas (2.8), (2.9) are obtained from the perturbation formulas
(2.5)-{2.7) and the inductive assumptions b).
f) The Lebesgue measure Mes(Afc) of the set of points αeS 1 which take part in
more than k—ί resonances for all "history" of the inductive procedure is estimated
as:

+0° ( \ (\ Λ ίs\ \ \ \
M e s ( A f c ) ^ Y c o n s t - e x p — - e x p - e x p - . . . e x p . . . . . . . . . . .

s=s0 \ o \δ \δ \δj ) ) )
^ - f c - 1 ^
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+ 00

Therefore, £ Mes(Ak)< oo, so according to the Borel-Cantelli lemma a.e. α e S 1

k=l

takes part only in a finite number of resonances,
g) Define

# 0 = l i m </Φ)>
s—• + oo

Λ(α)= lim Λs(a).
s-* + oo

+ 00

For a.e. α e S 1 the set (J Unφ(oc-{-nω) is the basis of exponentially localized

eigenfunctions of Hε(α) and (J Λ(α + n ω) is the corresponding set of EV's.

3. Proof of Corollary 1

According to the inductive procedure at every step s^s0 we have the real (in the
general case multi-valued) function Λs(oc)* with the domain of definition DsCS1

such that D s + 1 CDS; Vs^s0 and D s + 1 obtained from D s by deleting the resonant
zones, corresponding to the resonance of Λ%μ) and ΛJ(α-K ω) for some t,
[-2s/ ln(ε~ 1 ) ]^ ί<0. Λ s + 1(α) is obtained from Λs(oc) with the help of the
perturbation formulas (2.5H2.7). Passing to the limit, define Λ(a) = lim Λs(oc)

s—* + oo

with the domain of definition Όε= f]D5. Then D ε is a Cantor set of positive
Lebesgue measure s

Mes(S1\Dε) = ρ(β).

The form of the graph of Λs(<x) for s = s 0 + 2 is presented in the Fig. 2. In the more
general case s > s0 + 2 the graph Λs(cc) differs only by a larger number of resonant
zones and resonances.

i Λ v

Fig. 2

So + 2

1_
So + 1 α
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The proof of Corollary 1 requires the analysis only of the behaviour of the top
part of the graph Λs(oc). Namely, let us denote by αs the point, where Λs(oc) takes its
maximal value.

Proposition. Let all conditions of the Main Theorem be valid and ε be sufficiently
small: |ε| < εo(V, <5). Then there exists a positive constant αt(ω) such that for every
s^s0 the neighbourhood Os = (αs — ajsδ; αs + ajsδ) of the point as belongs to a non-
resonant zone at the 5th step;

O s + 1 (α s + 1 )Cθ s (α s )

and

d2Λ\a)
inf

<xeθs(as) da2 >exp ( - - s ) . (3.1)

Remark. Assume that the proposition is already proven. Then the set of
exceptional phases si is the trajectory { T X ^ J + j * ^ , where α e x c is the unique
common point of all Os(αs); s^s0, i.e. α e x c = f] Os(ocs). •

Choose a1(ω)>0 such that for any s^s 0 and any αeθs(αs)
= {(xs-a1/sδ; 0Ls + aJsd) and all ί, \t\<[2s/\n{ε~1)']9 we have

oc + tωφOs(as). (3.2)

The existence of this positive constant follows from the Diophantine condition
on ω.

We shall prove the proposition by induction. At the first step s = s0 one can
verify the validity of the proposition, provided ε is sufficiently small. Assume the
proposition on the 5th step of induction is true. Take ocs

res which is the nearest center
of the resonant zone on the sth step, to αs:

lαs —αl> where α is such that there exist />0; | ί |
1 }

It follows from (3.2) that oξes φ Os(as). This is the origin where the resonant
neighbourhood of the point ots

res does not intersect Os+ ι(ocs+ J . Actually, As(a) is a
monotone function on the required interval and the following estimates hold:

sup \Λ\a)-Λ\as

rJ\<e-s

αeR s(α? e s)

(this is a consequence of the definition of RZ) and

\Λs(as ± ajsδ) - Λ\as + ± ± aj{s + \)δ)\

inf
αeθs(αs)

d2Λ

da2

1
x - αs — c

2

2 \
^const exp( — -s *• ° 2 2<5

So, we get Λίs+ L(α) from yls(α) in the top neighbourhood with the help of the non-
resonant perturbation formulas (2.5):

Below we verify the validity of (3.1) on the (s + l) t h step of inductive procedure.



472 A. Soshnikov

Lemma.

ln(ε-1))), Vί,;.

The proof of this lemma is inductive, too. We have:

if-8"1 ω5'1)

according to the perturbation formulas. Therefore,

( fs-ί. ,ns-l\
, 2 . V VJ ff i

x ^ Γ1;
(

jΦi Λ>i —Aj

( (f.s~1-ωs~1) (f.s'1'ωs~v

\Ji >Ψi ) jjs-i ΛS-I s-1 s-1

/ fs-l. ,
n
s-l\

L s-l s-1 Ui ' Ψj ) VΦi
 ?
 Ψj )

jΦi A
{
 —Aj

(f
s
~

l
 (D

S
.~

X
)

L
 λ
i T s ^ l — J ^ Γ \Ψj > Ψi )

jΦi A
t
 —Aj

h *i

= ( / Γ
1
; Φ ? -

1
) ( I - ( < ? > Γ

1
; Φ Γ

1
) ) + ' V (3-3)

The remainder sum rs contains no more than const s2 terms, whose C2-norm is
not more than

const exp(—4s(l —
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The formulas (3.1), (3.3) give us the estimate of | α s + 1 — αs|. Namely,

d2Λs+x

, - α J inf

dAs+1, , dAs

da v S + 1 ; da v

^const exp( —2s(l—lnα/lnε"1))) => | α s + 1 — αj^const-e~ s.

The proposition is proven.
Now we can say more about the non-exceptional phases. Let us recall the main

result of the inductive procedure (see [1,2] and the brief description in Sect. 2). For
a.e. α e S1 there exists in /2(Z*) the orthogonal basis of eigenfunctions of Hε(α) such
that for every EF φs(a) with EV A€{a) one can find the finite subset of Z1, named the
essential support of φj,a) and denoted by &{φ€{a)). The smallness of the value
Φs(n; a) is estimated through the distance until n from

Besides, for every φ^a) with pos(φ^(a)) = m one can find a sequence of AEF's
Vmφ%a + m ω); s^s0 with AEV's Λ%a + mω) such that

lim
S~* + CO

lim
s^- + oo

and

for all s, except the finite number of ones. Now take α, such that: 1) α satisfies the
above-mentioned condition; 2)α does not belong to the countable set of
exceptional phases. Then Amax isn't an eigenvalue of Hε(α). Indeed, for such α
α + mω + αexc. So there exists the number s' such that 0L + mωφOs(aLs) and \Jmφs^
does not take part in any resonance for all s^s'. It means that on some step s",
s" > s' of inductive procedure a forbidden zone will appear, such that this forbidden
zone lies in 0 s(α s) and the length of the appearing gap on the spectral axis
separates the values Λs(αexc) and Λs(a + mω) for every s^s".

4. Proof of Corollary 2

Let us consider the complete set of AEF's

of the operator Hε(α) on the s^ step of the inductive procedure. AEF's φl<x) and
ψj{a) are resonant in the neighbourhood R1 = {α: ^(α) — λj(a)\<e'Sι}. Let be
pos(φf(α)) = 0, pos(φJ(α)) = n 1>0, then there exists ί, 1 ^ / ^ n s :

φ/α) = UWlφs/(α + n.ω), λfμ) = As/(a + nx
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Two new AEF's φs± + 1{oc) appear in the resonant zone Rx on the (s+ l) t h step of
induction. These AEF's are the linear combinations of <pb φ} to within the small
terms of order ρ(exp(—2s1(l — lnα/lnε"1)),

Ψϊ + 1(«) = A±(α) φj(α) + B±(α) φ/α)+ ... (4.1)

(the dots will systematically mean the smaller terms). The corresponding AEV's
λ±(α) are:

± ^ ( 5 n ( α ) - 5 2 2 ( α ) ) 2 + 45f2(α). (4.2)A±(«)-

Therefore, (sx x — λ)(s22 — λ) — s\2 = 0, where

«i i(«) = Φ) + ( / M <PiW), Λα) = (Hε(α) - λfa))φtμ),

s22(α) = λ/α) + (//αλ φ/α)), //α) = (Hε(α) - A/α))φ/α),

Below, we follow only one branch of λ{a\ for definitiness, the plus branch of λ(a):
λ+(oc). Denote by α i n t the point of intersection of graphs of 5xl(α) and s 2 2 (α), a n ( * ̂ y
αc r the minimal point of λ+(a). In fact, we intend to follow the countable number of
resonances, taking place in reduced resonant zones. The reduced resonant zones
will be embedded one into another and will be so small that |A(α)/B(α)| will take
values close to 1. The second resonance will appear in the neighbourhood of the
point α, where λ+(a) = λ+(<x + n2cύ). The corresponding inductive step will be
denoted by s2. Then

φs{ +' = A2(α) (A^α) Ψi(oc) + B^α) φ/α) + ...)

+ B2(α) (At(α + n2ω) UW2φf(α + n2ώ) + B t(α + n2ω)

In the case S i = s 0 , nx = i, φi(oc) = δn0; φfa) = δnΛ we have

) 5 I I > l l 2 + 1 + . . . . (4.3)

It isn't difficult to understand that after the kth resonance, </>5£+1(α) is the linear
combination of 2fc functions δn0,δnί, δnn2, δnitl2 + 1, and so on, with the coefficients

Π At(α), ( Π Ar(α)) Bx(a), ( Π Af(a)) B2(a) Ax(a + n2ω)...Π
ί=l V / \ /

up to smaller terms. Suppose that there exist the limits

lim (2^2 ί ft A f(α))), lim (2k>2 Π A,(α)) B^α)), (4.4)
fc-> + o o \ \ί=l / / fc-»- + oo\ ί=2 / /

and so on, uniformly with respect to all expressions which are bounded from zero
and infinity at the point α, where α is the intersection of all constructed reduced
resonant zones. Then, the needed bounded solution of the equation Hε(α)φ = λψ is

ψ= lim 2k/2φsϊ+ί((x), λ= lim λsϊ+1(oc).



Difference Almost-Periodic Operators 475

Note that 0 < lim sup \ψ(n)\ < + oo. Below we pay attention to the technical details

(i.e. the construction of the reduced resonant zones and the estimates on smallness
of |j/2A+| - 1 , |j/2B+| - 1 , |A+/B+| -1). The coefficients A+(α), B+(α) are defined
as the solutions of the spectral problem:

(s11-λ+)A++s12'B+=09

s1 2 A + + ( s 2 2 - Λ + ) B + = 0 , (4.5)

A 2 + B 2 = l

(see [2]). Since (B+/A+)2 = (sί x — λ+)/(s22 — λ+) we have to analyze the behavior of
{slί—λ+)/s22 — λ+){(ή in the resonant zone:

Lemma4.1. a) // sίl—s22 = o(sί2), then |B+/A+| = l
V S 12

b) // s1 2 = o(s 1 1-s 2 2) and sgn(s1 1-s2 2)=-sgn(s'1 1), then |B+/A+|
2

*u-ί

c) V si l ~~ 522 *s °f order ofs12, then |B+/A +1 takes values of order the constant, but
sufficiently smaller than 1, i.e.

This lemma follows from (4.2).

Remarks. 1. ||512||ci = ρ(exp(-2s(l-lnα/ln(ε"1))).
2. Case a) takes place if α belongs to the o(s12)-neighbourhood of the point αint.
Case c) takes place if |α — α int| is comparable with sί2.
Case b) takes place if α doesn't belong to any neighbourhood of αint, whose length
is comparable with s12. From one side, the next resonant interval has to be a
neighbourhood of αCΓ, a minimal point of λ+. But on the other hand, we would like
the points from the next resonant interval to satisfy the condition a) of Lemma 4.1.
Differentiating (4.2), we get:

λ' — ' 5 H ~ ^ + _, / . 5 22~^+ , ,Λ r\

Sγγ~\-S22 2>l+ ^11~^"^22 2 A +

Therefore, (sli— λ)/{s22 — A)(αCΓ)= — s'u/s22 + ..., a n ^ correspondingly,

withμ=-(5'1 1/52 2)|α = α c r.
We shall introduce the notion of the reduced resonant zone in order to make

the ratio s\ Jsf

22 sufficiently close to — 1. Consider the first resonance. The resonant
zone is, according to the definition

We define the reduced resonant zone as

ftx = jα: lα-o&l < ^-(F^(α); Vn^\(oc + nkω))J,
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where α*r is uniquely determined by the condition —(Λs_ί + 1)(αcr) =
don

and

(F$\; Unuφs/J(μ + nkω)) play the same role as sί2 above. Further, we shall take into
account only resonances, appearing in Rί. Consider the second resonant step s2.
Then, in the neighbourhood of the intersection of the graphs Λs/2{a) and
Λs/2((x + n2aή, \n2\<2s(ln(ε~1)), we define

and

R ,= <α: | α - α * r | < — (FJ2

2(α);
' I S2

[recall that Λs/2(oc) is obtained from Λ+1 + 1 with the help of the unresonant
perturbation formulas (2.5) during s1<s<s2]. Then Rfc, δ k , k > 2 are defined in the
same way. Under the construction R^CR*, (fi f e + 1)cfik, V&>0. We have two new
AEFs in φSk+1(oc), provided

φst+1 = A,, ±(α) φfta) + Bk ±(α) VnψJ<k(a + nkω) + ...

if, besides that, we have αeR k , then |Ak +|, |Bk +| are close to l/|/2:

Lemma 4.2. Let α e ftfc. Then the ratio of derivatives of λs$+1(α) in symmetric points
α and 2ak

cr — (x is close to —1 in the following sense:

The lemma follows from the estimates on
differentiating (4.6):

da2

—S 2 2

const

h

(λs£+ί) which one can obtain,

"22 ΛSi 1 ~~ S 22Λ S 11 ~ ^)
•+

4-s 2 2-2λ) ' (si! +s22-2λψ

Sii (s2 2-Sn) (s22-

( 5 1 1 + 5 2 2 - 2 ^ ) 2

S l 1 ' (S22 ~ ^) * ( S l 1 ~~ *

(Siι+s22-2λ)3

(Sll+s22~2λ)3

The main terms are the third and the forth ones. Using the lemma one has:

1 const const

with αeft fe. Thanks to the superexponential increasing of sfc, all limits in (4.4)
successfully exist. Thanks to the Diophantine condition on ω, all unresonant
perturbations of λSk+1 on the steps sk<s<sk+1 are negligibly small. •

5. Proof of Corollary 3

The construction of the corresponding solution is quite similar to one presented
in Sect. 4. It is based on the same method of reduced resonant zones. We can
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define

ftfc = {α: | α - α * r | <(sk)
d (F£(α), U*φ£(α + nfcω))},

where d is a positive sufficiently large constant, depending on coefficient β in

Diophantine condition (1.3). Lemma 4.1b) ensures Afe(α),Bk(α) taking values

± (1 - ^ ^ - ) , ± ^^2 w i t h y& β) > ° L e t u s consider
\ Ksk) J \sk)

where

nέ if |A^(a)| is a small term and |B^(α)| is near 1,

' [0 if IA^α)| is near 1 and |B^(α)| is a small term.

If we choose a subsequence kt-> + oo so that \ (( £ ri€) ω ) mod 1 > converge to a

limiting point, one can find the polynomially decreasing solutions as

\
ψ= lim ψkt; λ= lim λsϊ + 1 α - J nj ω . D

k + ' / + \ \/l / /
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