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Abstract. The method used to construct the bicovariant bimodule in ref. [CSWW ]
is applied to examine the structure of the dual algebra and the bicovariant
differential calculus of the complex quantum group. The complex quantum group
Fun,(SL(N, C)) is defined by requiring that it contains Fun,(SU(N)) as a subal-
gebra analogously to the quantum Lorentz group. Analyzing the properties of the
fundamental bimodule, we show that the dual algebra has the structure of the
twisted product Fun,(SU(N)) ® Fun,(SU(N)),. Then the bicovariant differential
calculi on the complex quantum group are constructed.

0. Introduction

The question of whether the physics of microscopic scale such as the Planck scale is
incorporated by the noncommutativity, which is different from the one provided by
the quantization of the field theory, has concerned physicists already for a long
time.

Such a theory may be described by a noncommutative algebra belonging to
a wider class than the one which physicists are now handling. To consider such
a possibility, we need to understand more about the general structure of the
noncommutative algebra. From this point of view, the quantum group, a class of
noncommutative Hopf algebra found in the investigation of the integrable systems
is a very interesting example [Dri, Jim, Worl]. Imposing the covariance under the
quantum group, we can also get some other examples of the noncommutative
algebra such as the algebra of the comodule, i.e. the quantum space (quantum
plane) introduced by Manin [ Manin, RTF ]. These algebras give some interesting
examples of noncommutative algebras such as the quantum Lorentz group
[PW,CSSW] and the quantum Poincaré group [LNRT,LNRT. The construction
of the noncommutative differential calculus on the quantum group
[Wor2,Rosso, Stach,Jur, Weich, MNW MH,CSWW] and also on the quantum
space [ Wess, WZ,Zumino, Pusz, CSW,Schm] shows us various promising features
peculiar to the noncommutative algebra.
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In this paper we consider another class of noncommutative algebra which is
also related to the quantum group: the algebra of the bicovariant bimodules
generated by the fundamental bicovariant bimodule. We have used such an algebra
implicitly in our previous paper [CSWW ], where we have investigated the bi-
covariant bimodule over the compact quantum groups in order to write down the
explicit formulae of the differential calculus proposed by Woronowicz [ Wor2].
Here we consider the bicovariant bimodule over the complex quantum group
Fun,(SL(N, C)).

To define the commutation relations of the generators of the complex quantum
group Fun,(SL(N, C)), we can use the same method as applied in the construction
of the quantum Lorentz group [PW,CSSW]. The problem of defining the
quantum Lorentz group, ie. the *-Hopf algebra Fun,(SL(2, C)) was to find the
commutation relations between the generators M and (M §*). The result in ref.
[CSSW ] can be generalized straightforwardly to obtain the commutation relations
of Fun,(SL(N, C)).

Here we analyze the structure of the bicovariant bimodule over the complex
quantum group Fun,(SL(N, C)). We consider the algebra of the bicovariant
bimodule generated by the right invariant basis requiring the covariance under the
coaction. We define the bicovariant commutation relations among the right invari-
ant basis and we find the relation among the bimodules which have the different
ordering of the product of the right invariant basis. The commutation relations
among the bimodules then can be translated into the commutation relations among
the functionals where the product is given by the convolution product. Using this
result we give the definition of the dual algebra of the complex quantum group
Fun,(SL(N, C))." We show that the resulting dual algebra of the complex quantum
group has the structure of the twisted product Fun,(SU(N)) ® Fun,(SU(N))},.
Using these results we construct the bicovariant dlfferentlal calculus on the com-
plex quantum group. Comparing with the compact quantum group case, we find
that the condition of the nilpotency of the exterior derivative plays a crucial role.

This paper is organized as follows. In Sect. 1 we introduce the definition of the
Fun, (SL(N, C)). In Sect. 2, the bicovariant bimodule is defined and the functionals
relatlng the left and right multlphcatlon are calculated in terms of the R-matrix of
Fun,(SU(N)). In Sect. 3, we examine the structure of the product of the bicovariant
bimodules defining the commutation relation between the fundamental bimodules.
In Sect. 4, we translate the result obtained in Sect. 3 into the commutation relations
among the functionals and define the dual algebra of Fun,(SL(N, C)). In Sect. 5,
using the bicovariant bimodule possible differential calculi on complex quantum
groups are proposed.

1. Complex Quantum Group

Let us introduce briefly the concept and notations which we need in the following.
The quantum group Fun,(SL(N, C)) is defined as a =-Hopf algebra of the

In ref. [DSWZ], the universal enveloping algebra of the complex quantum group is also
derived by generalizing the methods of RTF [RTF ]. Relating investigation about the quantum
Lorentz algebra, i.e., the dual algebra of Fun,(SL(2, C)) have been performed by [SWZ,OSWZ]



Complex Quantum Group 489

g-deformed Fun(SL(N, C)). The generators of the quantum group are the matrix
elements M ; of the N x N g-fundamental representation and its *-conjugate where
the =-operation is the antimultiplicative involution. The coproduct 4, counit ¢ and
antipode x are defined in the standard way [Abe, Worl]. (For more details of our
notations see ref. [CSWW].)

AMY =M @M, (1.1)
AMS)=M; @M, (1.2)
and ' N A
e(M5) = e(Mj) =0, (1.3)
where we have introduced M as
M'= (M. (1.4)

The complex quantum group Fun,(SL(N, C)) is a noncommutative algebra

and the commutation relations among the generators are given by the matrix RY, of
Fun,(SU(N)) which satisfies the braid equation:

ﬁuﬁzsﬁu:ﬁzsﬁuﬁzs : (L.5)
With the R-matrix, the commutation relations can be represented as:

R?JM M| =MiM Ri/, (1.6)

R M. MY =M MR, . (1.7)

The second relation (1.7) is just the *-conjugation of (1.6). Note that we take the
normalization of the R-matrix as

R=q 'NqPs—q'2,), (1.8)

where #5 and 2, are the g-deformed projectors onto the g-symmetric and
g-antisymmetric product, respectively (see also ref. [CSWWT).

To complete the definition of the quantum group Fun,(SL(N, C)), we must also
give the commutation relation among M and M *. In this paper, we define it such
that the resulting algebra reduces under the unitarity condition to the compact
quantum group Fun,(SU(N)) like in the case of the quantum Lorentz group
[PW,CSSW] and thus we can take ¢ > 0.

A heuristic argument to find this relation is the following: Multiplying the
antipode on M we can rewrite Eq. (1.6) as

k/lK(M )Mk = Mj Rkl IC(M ) . (19)

Recalling that the unitarity condition in the Fun,(SU(N)) is given by M = k(M),
we replace k(M) in Eq. (1.9) by M. Then, we get

MIM{R' =R ML M| . (1.10)

We take this relation as the definition of the commutation relation among the
M and M in the complex quantum group. By construction it consistently reduces
to the Fun,(SU(N)) when we imposc the unitarity condition.

2The complex quantum groups of this type are also proposed by Podles [Pod1]. The commuta-
tor in Eq. (1.10) is also considered by [Koor] and [DSWZ]
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Note that we can also consider the algebra which is defined by taking in
Eq. (1.10) R instead of R ™! which leads to the equivalent algebra. The choice made
in Eq. (1.10) is such that the conventions in this paper coincide with the ones of our
previous papers.

The generators also satisfy

det, M =1 and (det,M)*=1. (L.11)

The ¢-deformed determinant in Eq. (1.11) is defined by using the N™ rank
g-antisymmetric tensor
N(N—-1)

L (1.12)

Eiy iy \/m

where ¢ denotes the permutation of the suffices (iy,...,iy) =0d(1,2,..., N)and

[(c) is the minimal number of inversions in the permutation ¢ [ Dri]. The g-number

is defined as [x] = q——qﬁl We also define the tensor with upper indices as
q p—

gl v = (— 1)¥e; ;.. The g-determinant is then given by

e, MG Mj.-;:dethajl N (1.13)

I Nt

With the normalization of determinant as (1.11), the antipode « is defined by

K(M;) — 8iil. i,\-,lel_'i L Mj:’\ul'gjl...jy,[j R (114)

Iy-1

k(M) =ellI s MY MPe, (1.15)

The complex quantum group ./ = Fun,(SL(N, C)) is defined as the *-Hopf
algebra with

o = C{ME, MEY/(1.6),(1.7), (1.10), (1.11)) . (1.16)

Although these definitions are sufficient to describe the complex quantum
group, it is convenient to introduce the following convention for raising and
lowering indices: Using the antisymmetric tensor, we represent the lower (upper)
suffix by N —1 antisymmetrized upper (lower) indices.

For the lower and upper suffix ¥; and W9:

vl =yt oy =yl (1.17)
Wiy = eu; W, W=V, (1.18)
where [i] =[i; ... iy—1] denotes N —1 g-antisymmetrized indices as introduced

in ref. [CSWW1]. We have taken the normalization of the ¢ tensor in Eq. (1.12) such
that

eUle i1 = Oy . (1.19)

Using this convention we can write the same object either with usual index or
with N —1 antisymmetrized indices. For example

M[l]] = S[j]kMicSl[i] . (120)

L
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The reason to introduce this notation is that then the coproduct of M becomes
similar to the case of the generators M j:

ZM{',{] M (121)

[l]
M [J] >

[J]

and the naturally ordered index structure is kept such that the graphical analysis
explained in ref. [CSWW] can be applied without any complication. Actually,
some of the equations in the following sections become simpler when we use the
antisymmetrized suffix. In such a case, we give the equations in the simpler form
and sometimes with using both types for clearness.

With this notation Eq. (1.7) and Eq. (1.10) are rewritten as

L1041 [ A lin] [i1 [j1 pllli’l ’
R[l Biva ]M[k] M[l] M M[J ]R[k][l] > (1‘7)
i[Jj] [J’] [Jj1 pi'lil ,
R[j o M[k] M M M[“R[k]l . (1.107

Note that we do not apply the rule of raising and lowermg suffices (1.17) and (1.18)
for the R-matrix. The definition of each R-matrix is given in the Appendix.

2. Bicovariant Bimodule over the Complex Quantum Group

To construct the bicovariant bimodule [ Wor2] of the general tensor representa-
tion, we first investigate the structure of the fundamental bicovariant bimodules,
i.e., the N- dimensional bicovariant bimodules as is performed in ref. [CSWW]. We
denote the right invariant basis as #'. The right and left coactions are defined as

Ar() =n'®T, (2.1)
A(n') = M;®@n, (22)

where I is the unit of .&7.
We also have to consider the #-conjugation of this bimodule. We denote the
x-conjugation of the basis by #;, where

fi = (n')* . (2.3)

The *-conjugation of a bimodule is given as follows [ Wor2]: For any p which is
an element of the bimodule

(apb)* = b*p*a* , (2.4)
where a, be /.
Taking the =-conjugation of Egs. (2.1) and (2.2) we get the relations
Ar(m) =1 @1, (2.5)
AL() = MI®7; . (2.6)

The latter equation may be written as

4, = M @7, (2.6)
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where
gl = j;elt 2.7)

To complete the definitions of the bicovariant bimodule over .7 we have to give
the relations between the left and right multiplication.

The requirement of bicovariance fixes the general form of these relations like in
the case of the compact quantum groups as shown in ref. [Wor2]. In general, the
relation of left and right multiplication for each right invariant basis is described by
a functional f Je% " [In this stage we denote the space of the linear functionals by
A"]:

[l —C. (2.8)

As we shall see later there are two different functionals for each basis  and 7;
like in the case of Fun,(SU(N)). We distinguish these functionals with a suffix
+ and — as f.. Correspondingly, we have to distinguish also the right invariant
bases for which the relation between the left and right multiplication is given by
different functionals. Therefore we also introduce for them the corresponding suffix
as 'y and 7j+;, where

fiai= (0 )" (2.9)

In Fun,(SU(N)), due to the unitarity condition, we end up with 2 types of
N dimensional representations. On the other hand, when we consider the
Fun,(SL(N, C)), all 4 types must be considered.

For the present case, thls means that there exist functionals f+J and f+, for
each right invariant basis n', and #+;, where the relation between the right and left
multiplication is represented as: Vae .o,

nea=(axfin, an'i =l (axf;on), (2.10)
P ax T 00 (2.11)

The relation between the functionals /' ;. and f is given by using the rule
[J1
(1.17) and (1.18)

+
=il Li] []
77+a—(a*fi[,] . a"]i

711 Sk
[ = e e, (2.12)

where in order to keep the summation convention of the suffix, we have introduced
the %, ; as

fh=hox. 2.13)
The =-conjugation of the functional fe./’ is defined as
[*(@) = (f(a*)* . (2.14)

Equation (2.10) is the one given in ref. [Wor2]. Equation (2.11) is the
x-conjugation of Eq. (2.10). To prove that they are the *-conjugation of each other
we have to show how the convolution product of an element of .o/ with an element
of .o/’ behaves under the *-conjugation.

Proposition 1. The #-operation on the convolution product Yae .o/ and Nfe .</" is

(axf)* =(a**g*ex). (2.15)
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Proof. We can prove this equivalence directly using the definition of convolution
product. The Lh.s. is

(axf)* = ((f®id)4(a)*
<Zf as)“s)

=Y (flas))* (as)* . (2.16)
S
On the other hand, the r.h.s. of Eq. (2.15) gives
a*x f*ox = f*(x(as"))as™
(f(rc (c(a5" ") >as
= Y (f(as))*as* (2.17)
S
where
=Y as®as . (2.18)
N
g.e.d.

With the help of Proposition 1, it is straightforward to show that Egs. (2.10) and
(2.11) are the *-conjugation of each other.

The definition of the bicovariant bimodule over .7 is completed by giving the
functionals f, ;. We glve them as the value of functional /' ; when acting on the
generators of o7, i.c., M} and M?.

Theorem 1. The complete definition of the functionals f;j and fﬂ_w are:

[ =55, (2.19)
HUEEN (2.20)
oM7) =Rj", (2.21)
TG =R (2.22)
T =R, (2.23)
S M) = R, (2.24)

where R* = R and R~ = R™! (see Appendix).

Proof. Equations (2.19) and (2.20) hold due to the fact that the unit element of the
algebra commutes with any element of the bimodule.

The other equations are derived by requiring bicovariance as in the case
[CSWW]. The derivation is performed in two steps. First we will prove Egs. (2.21)
and (2.22). Then, Egs. (2.24) and (2.23) are derived by taking the *-conjugation of
Egs. (2.21) and (2.22), respectively.

We start the derivation of Eq (2.22) with the relation of left and right multipli-
cation of the M on the basis 7',

o NI = (T £ . = (VD ST, (.29
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where we have used the definition of the convolution product To fix the value of
f+J ) we examine the covariance of the above equation, i.e., we apply the left
coactlon on this equation and calculate it in two ways:

Anln'y M) = My My ® n's M)
= My ML ® [ (M) Mn (2.26)
and applying the coaction on the r.h.s. of Eq. (2.25) we get
AL(n's M) = e (M) My M ® Mign's . (227)

Bicovariance means that both derivations must be equivalent and therefore we get
the condition

feoMPOME MY = MM (M) (228)
Thus, from Eq. (1.10) we conclude that
fiy(Mi) = aRyf] (2.29)
or equivalently
SL (M) = aRy", (2.29)

where o is a nonzero constant.
The constant o is defined by the requirement that the g-determinant commutes
with the basis #, which implies

[ ((det, M)*) = 5} . (2.30)

Using the definition of the g-determinant we get

i —Nt Dk e
fij((deth)*) =(_[|:1V)—ﬂ8kl »ukaij(M;(N' o MZ)SII"'IN
(=Nt ; — ky ky Y e N
:——[Nﬂ 8k14..kaii1(M[A‘.) +’2(M1~ 1 f (M v
(2.31)

Substituting Eq. (2.29') into (2.31) yields
[ ((det, M)*) = o5 . (2.32)
Therefore the constant « satisfies
oV =1. (2.33)

It means the constant « is the N'® root of unity. However in the limit ¢ — 1 the
commutative case has to be reproduced. Therefore it follows that & = 1 and the
result is Eq. (2.22).

The proof of Eq. (2.21) follows analogously to the one of the quantum group
Fun,(S U( ))- We find two cases: the relation between the right and left multiplica-
tion is given either by R or by R~ 1. We distinguish these two cases by a suffix + of
functional f, respectively. Note that we must also require the consistency of
Eq. (1.6) with the bimodule structure. See ref. [CSWW].
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To complete the proof of the theorem, we have to show that these definitions of
the functionals are consistent with the other quantum group relations (1.7) and
(1.10). For this we have to show that the equations

J My Mixfi) = (MM «f1 )R, (2.34)

and

(MM *f )R = R (ML MY+ £ (2.35)

hold also when applying the definitions of the functional (2.21) and (2.22) first. By
using the property of the convolution product the expression inside the bracket in
Egs. (2.34) and (2.35) can be rewritten using R matrices. Then both relations above
hold simply due to the braid relation (1.5) of the R matrix.

To prove Eq. (2.24) we use the definition of the *-conjugation of the functional
given in Eq. (2.14). Then Eq. (2.24) is rewritten as

FLs My =fHMF)
= (fLi(k(M}))*
_ Il, ..IN,lf{;_i(Mlx. Mkw ok €y, ko ik - (236)

Iy-1

Using the R-matrix representation of the functional fin Eq. (2.21) we see that the
r.h.s. can be represented by the R matrix as:

LMy =RG™. (2.37)

Changing the suffix into the antisymmetrized index convention using Egs. (1.17)
and (1.18) and the definition of the R-matrix in Eq. (A.3), we get (2.24).

The proof of Eq. (2.23) can be performed analogously.
g.ed.

As already mentioned in the beginning we had as well the possibility of
choosing R instead of R™! in Eq. (1.10). Then, in Egs. (2.22) and (2.23) the effect of
taking the other choice of the relation between the M and M in Eq. (1.10) would
have been to convert R into R~ and vice versa.

3. The Algebra of the Bicovariant Bimodule

Our aim is to construct the bicovariant differential calculus on the complex
quantum group by generalizing Woronowicz’s construction in ref. [Wor2]. Fol-
lowing the method developed in ref. [CSWW ], we consider the differential calculus
defined by the right invariant basis of the adjoint representation.

The construction of the adjoint representation in ref. [CSWW ] is performed by
taking the tensor product of two fundamental bimodules. We will proceed here in
the same way.

The product of two bimodules #; and 5, is understood to be defined over .o7:

NNy =0, Qutz (3.1

We also extend the *-conjugation in a natural way as the antimultiplicative map:

(1m2)* = (n2)*(n2)* . (3.2)
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In the present case, by using the analogy to the classical case, the adjoint
representation can be obtained by using the g-antisymmetric tensor &; . ; as

Or=n'n .o ok, (3.3)
or equivalently by using the upper suffix
O = pigh ophrg, o '™ (3.4)
and their =-conjugation. It is easy to show that
AL(0)) = Mik(M1) ® 05, (3.5)

In Eq. (3.3) we did not write the suffix + for the basis since for any combina-
tion of the 't and n°, the 0} transforms as the adjoint representation. This
additional structure did not appear in the case of Fun,(SU(N)), since the require-
ment of the unitarity fixed the choice of the basis. In the present case, the different
choice of the combinations of 7. in Eq. (3.3), for example ninn_- ...71n_,
nsn-n4 ... n- and etc, can either lead to different types of differential calculi or
to such ones which are isomorphic to each other. This is the reason why in this
section we examine the detailed structure of the product of bimodules and the
tensor representations constructed by the fundamental bimodules #, and 7. .

First we consider the product of the same basis, i.c., the product of . with .
and n_ with #_ and their conjugate.

The product of two equal bimodules is reducible as the usual (non-deformed)
representation and by using the projection operators #s and 2, in Eq. (1.8) it can
be decomposed into the irreducible representations:

’7i+ 77j+ = 95257111771 @ 9),4;’177]:-’71+ > (3.6)

and the same for the product of n' .

The former choice gives the g-symmetric product, whereas the latter one gives
the g-antisymmetric product. In both cases, it is easy to see that the product of the
bases becomes again a bimodule over .7 and the resulting bimodule also splits into
two parts.

Note that one can consider the algebra imposing either the symmetric or the
antisymmetric combination to be zero like in the case of the g-plane algebra
[Manin]. However, since these subalgebras contain only a part of the whole
representation by definition, we do not impose such conditions since we want to
have all kinds of tensor representations in the algebra.

When considering the product of different types of bases like . with _, or 5
with %, , we find that multiplying the projection operator onto such products is not
compatible with the bimodule structure since the relation of the left-right multipli-
cation involves all components. On the other hand we find that the products of the
same number of basis elements 1. and #_ but with different ordering generates
equivalent bimodules with the right invariant bases given by these products. This
situation can be represented compactly as commutation relations among the
fundamental bimodules. Naturally the commutation relations must be bicovariant
and must give consistency with the relation between the right and left multiplica-
tion given in the previous section.

For convenience we first list the resulting relations among the right invariant
basis ', and 7j4;:
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Theorem 2. Requiring the bicovariance, the possible commutation relations among
the right invariant bases which coincide with the (anti-)commuting case in the limit
q—1 are

nen’ = BREn 'y (3.7)
n'i; = Ry M’ (3.8)

where (3.8) holds for any combination of the suffix + . [ and y are nonzero constants
which go to +1 in the limit g — 1.

The other relations among ij+; are given by taking the x-conjugation of
Eq. (3.7).

Proof. We consider the product of two bases belonging to different functionals, i.e.
the product of ', and n’_. As in the case of two different g-planes as considered in
ref. [CSSW], we can fix the commutation relations of these two different right
invariant bases as follows. Take the ansatz

nhn’ = Ajn“ 'y . (3.9)

where A} e C. To impose the covariance we apply the coaction on both sides of
Eq. (3.9). Then the Lh.s. gives

Avin'nt) = MyM} @ n'nt = MM} A @0 (3.10)
The r.h.s. gives
Acin'onl) = AL MM @' 'y (3.11)
Comparing both equations, the condition of the covariance for A}fl is
A MEMY = MM A" (3.12)

Then we get the solution: Ay = SR} + f Rk, " with constants § and f’. Thus,
as a possible commutation relation of #'y and #.. we get

nhen’ = (BRGY + BRIl (3.13)

This is the result analogous to the case of the differential calculus on the
g-Euclidean space [CSW ]. There, the existence of the singlet component forces us
to choose either R or R™!in the commutation relation, and the choice of R or R™*
was simply a matter of convention. However, when we consider the bimodule
structure of the SL,(N, C) we get a further condition which fixes the R-matrix of
the above relation (3 13). o

We require now that the product of two bases 5y satisfying Eq. (3.13) is
consistent with the basic commutation relations of the two fundamental bimodules,
respectively. For this we examine the relations between left and right multiplication
of .« on this product of the bases.

For ae .o/

’7+’7 a —(a*fj *f+: )77+7’l— (a*fi~j’*fiJri’A;:Ii/)’//k—’?L > (3.14)

ninla=Adn'n'ia= Al (axflx ol (3.15)
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Comparing these two equations we have the following relation
(axfLyaffn) Al = Alas x5 (3.16)

Taking a to be a generator a = M; and using the property of the convolution
product

FLipM) flLa M)A = AL M) M) (3.17)

Using Eq. (2.21) we see that Eq. (3.17) holds if and only if A}, = SR}]. With this
choice Eq. (3.16) holds also for the case a = M;. Thus we get Eq. (3.7).

The commutation relation between 'y and 77, ; can be derived similarly. We
again start with the most general ansatz:

n'i; = A’ (3.18)

Taking the coaction on both sides to examine the covariance condition, we get
the equation for AZ’ The coaction on the lh.s. of Eq. (3.18) yields

ALn'iy) = MiMj @'y = MiMj ® Ajpijn’ (3.19)
The coaction on the r.h.s. of Eq. (3.18) gives
AL(n'iy) = Ay Mg MY @ i’ (3.20)

J
Comparing Egs. (3.19) and (3.20) we get
ALSMEM | = MM AL (3.21)

J

_ Comparing this result with Eq. (1.10) we conclude that A is proportional to
R,,'”7 and this leads to Eq. (3.8).

To complete the proof, we also examine the consistency of the relations between
left and right multiplication of ./ with (3.8). We repeat the computation analogous

to Egs. (3.14)—(3.16). As a consistency condition we get
(ax [} SRy = R axf1 i) (322)

We can confirm this equation straightforwardly by taking a = M} and a = M;
using the similar manipulation as done from Eq. (3.16) to Eq. (3.17).
g.e.d.

Now when we consider the product of the basis . and 7+ , using the commuta-
tion relations (3.7) and (3.8), we can reorder the product, since we cannot distin-
guish them as bicovariant bimodules. The product depends now on the number of
bases of each type.

Left-right invariant bicovariant bimodule. The left-right invariant elements play
a key role when we define the exterior derivative. They will also enable us to show
some important properties of the dual algebra. According to the result concerning
the algebra of the bicovariant bimodule discussed above, one can find 2N +2
independent elements which are left-right invariants denoted by X, and their
x-conjugation counterparts. Explicitly, they are

In

Xoy =i, nt oo™ (3.23)

where the suffix [ = 0,..., N counts the number of the bases with suffix +.
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Using the definition of the fundamental bimodule we can calculate the relation
of the right and left multiplication of the element ae.«/ on X;:
Xpa=e, laxf™; %.. *f“j}m w1 * 1Lh)n ool gy
(3.24)

From the definition of the functional f;, we find the following result.

Proposition 2. The left-right invariant bases X, commute with M j ie., for any
I=0...N:

XoyMi=MiX, . (3.25)

Furthermore the elements X, and Xy, commute with any element of the
algebra: Vae o and [=0or =N

Xpa=aXg, . (3.26)
Proof. Using Eq. (3.24) we get
Xoy My =&, i ™, (M) .. f"t;,‘xMA, D (M)
LM Mot (3.27)

From the definition of the f in terms of the R matrix given in Eq. (2.22) we have

N _kl 41*1 kl‘-l k_\
&i, «~i.\'fl‘—];\'(M’77) T l_jl 1 l‘l L)f+lr Mkr ) f+]1 k\ 1) =&, ~f.\'5'” :
(3.28)

Thus in the r.h.s. of Eq. (3.27), the product of N bases #”’; becomes again X, and we
get Eq. (3.25).

The above result is due to the fact that f, (M) is independent of the suffix
+ and all is given only by R* as in (2.22). On the other hand f; (M) is given by
either R* or R~ depending on the suffix as (2.21). Therefore, M ; does not commute
with X;, for general I, except for X4, and Xy, which consist of bases n with the
same suffix. Therefore the similar mechanism like (3.28) works again and we get

X, Mi=MiXq,, (3.29)
XM= M;iXy) - (3.30)

This means that X o, and Xy, commute with all generators of algebra .o7.
g.e.d.
Among the left-right invariant elements in the context of the differential
calculus there are 4 special elements: X(;, and X -, and their *-conjugates.
Since the properties of these singlet elements are important in order to under-
stand the differential calculus and to discuss the relation to the Fun,(SU(N)) in the
following section, let us examine them in detail.
X(1) and X(y_;, can also be represented as

X1 = i) !, (3.31)
and

X(N—l) = S[i]jﬂ[i]’?j- 5 (3.32)
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where
i =l onte e (3.33)

In the Fun,(SU(N)), these elements have been related to the conjugate repres-
entation [CSWW:

nE ~ i = 7 el (334)

Therefore, when considering the Fun, (SU(N)) the X, is equivalent to the singlet
element X defined in ref. [CSWW]. However in the Fun,(SL(N, C)) case con-
sidered here, such an equivalence does not exist and we have to consider all
bimodules constructed out of tensor products of the fundamental bimodules as
independent objects.

The functional which gives the relation between the left and right multiplication

on n¥, which we call F%!;, defined as

n[j—]a = (a*F[Jlr][J]) L > (3.35)
can be represented by the functional f jt
F[il_][J] = E[j]k’c_l(fkil)gl[i] . (3.36)

Using (2.21) and (2.22) we can derive the value of the functionals F . for the
generators:

FU M1 = RiEHE (3.37)

FO L (MED = RE (3.38)

Here the functionals F . are again expressed in terms of the R-matrix. Compar-
ing Egs. (3. 37) and (3. 38) with Eqs (2.23) and (2.24), we find that F[']m has the same
value as f"! 11 for M and M It means that they are the same functional. This is
already an 1ndlcat10n for the fact that the number of functionals does not increase
in the same manner as the number of independent bimodules does when consider-

ing the tensor product of the fundamental bimodules. We come back to this point
in the next section.

4. Dual Algebra and Relation to Fun, (SU(N))

As in the case of the compact quantum groups discussed in ref. [CSWW], the
algebra generated by the functionals f ;and i ; can be interpreted as the Hopf
algebra dual to the Fun,(SL(N, C)) with appropriate commutation relations which
are the point of this section.

The coalgebra structure is induced straightforwardly through the definition of
the functionals (2.10) and (2.11):

The coproduct, counit and antipode of the dual algebra are given duc to the
definition of the functional as in ref. [Wor2], by the matrix product.

ASfe) =@, 1)
ASL) =05 @, (4.2)
e(fi;) =0, (4.3)
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We have also a natural definition of antipode:
K(f)=f-xk. (4.4)

The product of the dual algebra is defined by the convolution product [Wor2]
and the unit is given by the counit of Fun,(SL(N, C)).

Therefore, the problem of defining the dual Hopf algebra is to find the consist-
ent commutation relations among the functionals, i.e. the generators of the dual
algebra. We have secn in the previous section that when we consider the product of
two fundamental bimodules, the functional relating the left and right multiplication
is given by the convolution product of the functionals /% ; and f;. This means
that when we consider the commutation relations among the bimodules, we are
implicitly considering also the commutation relations among the functionals.
Actually, requiring that the algebra of these functionals must be consistent with the
algebra of the bicovariant bimodule we can find the commutation relations among
the functionals.

It can be shown that the following relations among the functionals follow from
the algebra of the bimodule discussed in the previous section:

From the fact that the irreducible decomposition of the bimodule constructed
by the product of the same basis splits correspondingly to the decomposition of
(3.6), we find the relation

RU [ ff=ri LRy (4.5)

See also ref. [CSWW].
The other relations are given by

Proposition 3.
R fls [ =1 LR (4.6)
R s flo= 11 % fERE™E, @4.7)
where Eq. (4.7) holds for all combinations of the suffix +.

Proof. The consistency of the relation (4.6) and (4.7) with the algebra of the
bicovariant bimodule can be proven in a similar way. We show here Eq. (4.7).

For any element a € .o/, we can calculate the relation between the left and right
multiplication of the bimodule as

n'iga = (ax fi « fi)n'ip =yplax [ fi)RG ' (4.8)
On the other hand, we can also calculate it in the different order,
n'na = yRy ien'a = R ax f1 % fio )i’ (4.9)

The consistency requires that both calculations must give the same result and
comparing Egs. (4.8) and (4.9) we get Eq. (4.7).
q.ed.

As we know from the investigations of the Fun,(SU(N)) there is a condition on
the determinant of the functionals. We can find this condition from the fact that
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X 0yand Xy, are commuting with all elements of the algebra A, as we have seen in
the previous section. This means that we can impose

T A T T (4.10)

g i w L w =k (4.11)

This requirement can be written symbolically as
det,fy =1, (4.12)

where det, f, is defined as a possible overall factor in the r.h.s. of (4.10) similar as in
(1.13).

In the case of the Fun,(SU(N)) due to the unitarity condition we had a further
identity between f. and f. (Proposition 3 in ref. [CSWW1].) In the complex
quantum group case we cannot impose the same relations since there is no
unitarity condition. However still we can find similar relations among the fun-
ctionals.

From the previous section we know that comparing Egs. (3.37) and (3.38) with
Egs. (2.23) and (2.24) we see that we can perform the following identifications:

FU =7 (4.13)
Using the relation (3.36), this identification can be written as

fhi=r" ML) (4.14)

Now we are in the situation to conclude our result about the dual algebra. We
defined the commutation relation among the generators of the dual algebra by
requiring the consistency with the algebra of the bicovariant bimodules discussed
in the previous section. We have shown that Egs. (4.5)—(4.7), (4.12) and (4.14) (and
their =x-conjugations) are the ones which satisfy the consistency requirement.
However, from this approach we cannot exclude the possibility that there may still
be some additional relations among the functionals.

Nevertheless, we conclude here that the Hopf algebra generated by the func-
tionals f and f with the above relations are the dual algebra of the complex
quantum group defined in Sect. 1. The reason is that the relations listed above are
the ones which define the complex quantum group Funj (SL(N, C)) as the twisted
product of the compact quantum group Fun,(SU(N)) and its dual Fun, (SU(N))},
as follows:

Like in the case of Fun,(SU(N)) [CSWW], comparing the Hopf algebra
structure with the results obtained in [RTF] the algebra of f, and f, can be
identified with the algebra dual to the Fun,(SU(N)) by identifying the functionals
with L, and L*) = rc‘l(L ;) in ref. [RTF] The values of the functional f, and
f, on the generator M) given in Egs. (2.22) and (2.24) are consistent with the
unitarity condition of Fun 4SU(N)) and thus we cannot distinguish the algebra
generated by f, and f, from the dual algebra of Fun,(SU(N)) (see also [DSWZ]).
On the other hand the defining equations of the functlonals f- and f_ in Egs. (2.22)
and (2.24) are not compatible with the unitarity condition. However, the algebra of
the functionals f_ and f_ can be identified with the Fun,(SU(N)) itself. To see this
we identify f", with the quantum matrix M of Fun (SU(N)) Then for example
Eq. (4.14) is equivalent to the unitarity condltlon of the quantum matrix.
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Therefore the structure of Fun,(SL(N, C)), the dual algebra of the quantum
group Fun,(SL(N, C)) is found to be the twisted product

Fun)(SL(N, C)) = Fun,(SU(N)) ® Fun,(SU(N))%, . (4.15)

It means that Fun,(SL(N, C)) is generated by the generators of the two subalge-
bras and thus

Fun,(SL(N, C)) > Fun,(SU(N)) and Funj(SL(N, C)) = Fun,(SU(N))%, .
(4.16)

On the other hand, the algebra is not the dircct product of the two since the two
subalgebras do not commute.

5. Bicovariant Differential Calculus on Complex Quantum Group

Using the result of the previous sections, now we can construct the bicovariant
differential calculus on the complex quantum group Fun,(SL(N, C)). For this
purpose, we introduce the basis of the right invariant bicovariant bimodule. We
require that the basis contains the adjoint representation in the limit ¢ — 1 and
therefore its general form is given by 0; in Eq. (3.3) and its =-conjugated basis. The
choice of the n, and #_ in Eq. (3.3) must be defined so that the projection to the
antisymmetric product appearing in the definition of the 0 is consistent with the
bimodule structure. Therefore we have the following two choices as the right
invariant basis 0} for the differential calculus:

ifk] — i jn - 1[k

O =plonl oy '™ (5.1
or

ifk] — i ] Jx- Ik

O =n"ylt ooy, g et (5.2)

It is clear that the differential calculus based on the basis (5.2) is obtained by
exchanging the suffix + and — of the calculus based on (5.1). Therefore, we take
(5.1) as the definition of the basis ;.

Using the definition (3.33), we can write '™ in (5.1) as

0"t =ty gt (5.3)

Correspondingly we also introduce the x-conjugation of the basis 9; Recalling our
convention in Egs. (1.17) and (1.18) we denote them as

DI = (R gh ) = il Dosy e (5.4)

We define the bicovariant bimodule I'! as the one which is generated by the
bases 0; and 0}. In this way, the number of the bases of I'' is 2N? rather than
2N? —2 which is the dimension of the adjoint representation, since I'' contains
also two singlets. Like we discussed in ref. [CSWW ], we cannot project out these
singlets covariantly. On the other hand, these singlets play an important role in the
following construction of the differential calculus.
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The relation between the left and right multiplication can be derived straight-
forwardly using (5.3) as

Gi[j]a — (a*F[—jgj'] *fiJri,)Hi'[j'] , (55)

where we have used Eq. (3.35).
For the definition of the differential calculus the reversed relation of (5.5)
appears frequently, therefore we introduce the following functionals A and A:

ahitil = Qk[l](a*Ai[[{]]) , (5.6)
afilil — gk[ll(a*g;;l[{ll) , (5.7
where the functionals A and A are given by
AL = (FYL s f Lo ore = (e(f ) 5/ ™) e e (58)
Al = (Sl (F))e" e (39)

To define the exterior derivative, we need the left-right invariant forms. As we
discussed in Sect. 3, we can construct such elements with N bases 1 and define as
X in Eq. (3.23). Reminding the choice of the basis (5.3) for the differential calculus,
the singlet elements which we must consider here are X(;, and its conjugate. In
terms of 0 they are given by:

Xy = e 0ty (5.10)
X1 = (= )e ;1,00 = (X1))* . (5.11)

It was shown in ref. [CSWW ] that the exterior derivative which is bicovariant
and satisfies the Leibniz rule can be given by the commutator of an algebra element
with the singlet part of the tensor product of two bases of the fundamental
representation. We find that this construction is applicable for the present case and
thus we define the exterior derivatives as

Definition 1. The exterior derivative d is the map
d: o/ > T, (5.12)

and for an element ae€ .o/ it is defined by

da =Da+ Da, (5.13)
where
1
Dafj[a, X(l)]’ (5.14)
_ —1 _
Da57[a, X(l)] N (515)

where the normalization constant ./ is real and proportional to ¢ — ¢~ ' in the

limit ¢ — 1 otherwise the commutator vanishes with this limit. (About this constant
see also ref. [CSWW.) Note that Da = (Da*)*.
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Since the exterior derivative is defined as a commutator, it satisfies automat-
ically the Leibniz rule

d(ab) = (da)b + a(db) , (5.16)
where a, be o/. Under the x-conjugation, it behaves as
(da)* = da* . (5.17)

Higher differential forms. After fixing the basis of the right invariant 1-form, we
define the higher differential forms. For this we define the wedge product of the
basis 0 and 0} and consider the bimodule I'?(=I'* A ... A I'!, p times) with the
basis of p™ order g-antisymmetric product using this wedge product [ Wor2]. From
the analysis given in ref. [CSWW ], knowing the commutation relation among the
bases 7, the g-antisymmetric product of 6 can be defined by the combination of the
symmetric and antisymmetric product of each n appearing in the definition of 6.
Therefore, we define the wedge product as

Definition 2. The wedge product of two 0;- is defined as the g-antisymmetric tensor
product over of -

0: A0l =0L®,,0] (5.18)

with the condition of the vanishing of the g-symmetric combination:
@1 BRSO 5 ) =0, 519
(Ps, Ps)HHHL (0% A gty = 0, (5.20)

where the projection operator (2, ?7) is defined in Eq. (7.4) of ref. [CSWW].

The wedge product among the 9; can be obtained by taking the x-conjugation
of Egs. (5.19) and (5.20) where the *-conjugation of a p-form p and a p’-form p’ is
defined by

(p AP = (=1 p"™* A p*. (5.21)

In order to define the wedge product of 6; and 0; we cannot use the above
method since we do not have the definition of the g-(anti)symmetric product of
n and 7. Instead we have the consistent commutation relation among them as given
in Egs. (3.7) and (3.8). Using these we can find the covariant commutation relation

between 0 and 0j:

iK1 7410 ikl ik
Qitklgitl — O(Q;"[l’]]i’[k’]gl Wigitkd | (5.22)
where « is a constant and Q is defined in terms of the R-matrix as
ifk]jIl _ P~ 1mlip —1Im'1Ik] i 1RsI IRk 1]
Qi 1w = €omj Ropwy Rpeyrjoy &/ Ry Ry - (5.23)

It is clear that the wedge product which is bicovariant must satisfy the same
commutation relation as (5.22) with an appropriate constant . It turns out that the
constant « can be determined by requiring the nilpotency of the exterior derivative.
We define the exterior derivative of the p-form as
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Definition 3. The exterior derivative is the map
d: P> [r*t (5.24)
where d is defined by d = D + D and for the p-form p it acts as

1 1
Dp=—-[pnXale =0 A Xy = (DX A p), (5.25)

N

_ 1 _
Dp = Lo arXunle . (5.26)

N

where [+, -]+ denotes the graded commutator with wedge product.
The above exterior derivative satisfies the Leibniz rule

d(p A p)=p) A p' +(=1)Fp A (dp'), (5.27)
where peI'? and p’eI'?". Under the *-conjugation, it behaves as
(dp)* =dp* . (5.28)

With this definition, we can prove the following theorem.
Proposition 4. Defining the wedge product of the 9; and Q_E as
BII A I = _ QU G 5 giIkT (5.29)
and taking Egs. (5.19) and (5.20) for the wedge product of 6; the exterior derivative
d = D + D satisfies

d?=(D+D)*=0. (5.30)
Proof. 1t is sufficient to prove that
X1y + X)) A Xpy + X1)) = 0. (5.31)

Since Egs. (13.2) and (13.3) are the same relation as the wedge product among
the right invariant bases in the case of Fun,(SU(N)) in ref. [CSWW], we gct

X(I) N X(l) = O 5 (5‘32)
and thus D? = 0. Taking the x-conjugation we also get

which implies D? = 0.
Therefore in order to prove Eq. (5.31) we have to prove that (5.29) implies

X(l)/\ X(l)-l_i(l)/\ X(1)=0. (534)
For this we need the following property of the matrix Q:

e QU = Gt - (5.35)
Using this relation and (5.29) we get (5.34).

q.e.d.
Therefore Egs. (5.19), (5.20) and (5.29) give the definition of the wedge product
and the exterior derivative becomes nilpotent as (5.30).
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Note that in the present case the requirement of the nilpotency of the exterior
derivative is essential. On the contrary, in the construction of the differential
calculus on Fun,(SU(N)) given in ref. [CSWW], the nilpotency of the exterior
derivative gives no new condition. B

By the definition of the derivatives D and D, Egs. (5.34) implies that

DD+ DD =0. (5.36)

Furthermore we can prove that X(l)()_(m) commutes with any of the @’}(0;) and
thus we get

D0;=0 and DO;=0. (5.37)

Using these results we can consider the Lie derivatives on Fun,(SL(N, C)) and
examine their properties. For the complex quantum group, the right invariant
vector fields z;;;; and %, are introduced by

Da = 0" (ax zy) (5.38)
Da = Q_k“](a*ik[l]) > (5.39)
where
T = & n AR — Guné > (5.40)
T = C[j]ixff[[ﬂ — Euyké - (5.41)
The Leibniz rule of the Lie derivative (- = y), i.e., coproduct of the functional y is
A ) = iy ® ) + (AT ® 1) (5.42)
AGip) = Gupn ®8) + AL ® Zum) - (5.43)

These Lie derivatives satisfy the g-deformed commutation relations which can
be derived by using the Maurer—Cartan equation. We briefly give the results here.
In the present calculus the Maurer—Cartan equation is

DO" = 7 5,07 A OF, (5.44)
DO =0, (5.45)

and the x-conjugation of these equations. Here, the upper case suffix I denotes the
pair iy[i] with projection to the adjoint representation:

(-

pl — priolil _ N7 golilg o VIt

The structure constant Z ¢ is given by

(g—q H(=D"! £l
m<qN q— q”)) e
IN]

where F g is given in Eq. (7.16) of ref. [CSWW] replacing &[j1k With the one in
Eq. (1.12) in Sect. 1.

(5.46)

I
3711(2
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Using the projection to the adjoint representation, we can decompose the
derivative of ae .o/ as

(— DY
[N]

where 7, = 7:;;6'"/!. We can prove that y, commutes with other functionals y; and
71- Then we get

Da = 0" ax*y;) + X(ax*yo), (5.47)

D2a= 0" A O%axF fixgy) — 00 A 0% (axzi%7,) (5.48)

where the functional # !¢ is defined by

)N 1
- <s — (T\)f]— N Zo> ) (5.49)

Therefore we obtain the commutation relation of the functional y as

Y

~1

L2 7k dr = F Sxxn s (5.50)

where the commutator [ -, - ]z is defined as

[k 2]r = (Ps, Pa) + (Pas PR 14) - (5.51)
From (5.45) we get the relation
L%y — Qf(JLZK x7,=0. (5.52)

Relation to Quantum Space Algebra. In the rest of this section, we want to give
a method to represent the above differential calculus on the quantum group by
means of the algebra of the quantum space. Especially, here we write the action of
the Lie derivative on the quantum space by the g-commutator of comodules. This
provides the direct translation of the differential calculus on the quantum group as
the infinitesimal transformation of the quantum space represented by the differen-
tial operators on this space. This will also be helpful to compare our result with the
approach taken by [SWZ].

The quantum space algebra .# is generated by the coordinate functions z*
which give a left-comodule over .« [ Manin]:

A(2)=M;®27, (5.53)
and satisfy the commutation relations
Pzt =0. (5.54)

In order to connect the differential calculus on the quantum group with the
quantum space algebra, first we define the product * of an element of quantum
space algebra .# and a functional fe.o/"

x  MX A — M, (5.55)

which is the generalization of the convolution product. [Analogous formula is also
used in ref. [Pod2] in connection with the differential calculus on the quantum
sphere.]
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Definition 4: Vxe.# and Vfe.o/’
xxf)=(f®id)4.(x) . (5.56)

By this we can define the action of the functional f€.7 on the quantum space
algebra .. And using this definition we define the action of the exterior derivative
D and D on .# which can be interpreted as the infinitesimal transformation with
parameter 01 and 0"/ respectively. We require that the derivative acts on the
quantum space algebra covariantly, i.e., the coaction and derivative satisfy the
relation

Ap(dx) = (1d ® d) 4. (x) . (5.57)
A natural definition which satisfies this requirement is:

Definition 5. We define the action of the derivative operator d = D + D on an
element xe.Z by

Dx = 0" (x %5 , (5.58)
Dx = 0 (x# 7, 57) - (5.59)
We also require that the Leibniz rule of d acting on .# is
d(xy) = (dx)y + x(dy) , (5.60)
for x, ye /.

Proposition 5. With Definition 5, the Leibniz rule (5.60) holds by setting the following
bicovariant commutation relations:

X0 = G (A L) | (5.61)
0l = gkm(x*g;;[[{]l) , (5.62)

where the bicovariance is imposed by the left coaction on the product of Vx, y e .4 and
w = 0 or 01 being defined as

Ar(xwy) = AL(x) AL (@) AL (y) . (5.63)
Proof. The Lhs. of Eq. (5.60) is given by d(xy) = D(xy) + D(xy), where
D(xy) = 0" (i) ®id) 4, (x))
= 01 () ®1d) AL (x)4L(y))
= 0V ((xx 7 0)y + (ex ALY (0 # 7m) (5.64)
and correspondingly
Dxy) = 0V (xx 7 1)y + (e A (7% Zaam) - (5.65)

To derive above expressions we have used the definition in Egs. (5.58) and (5.59),
Eq. (5.56) and the coproducts of y and 7 given in Egs. (5.42) and (5.43).
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On the other hand the r.h.s. of Eq. (5.60) is given by the summation of the
following two terms:

(Dx)y + x(Dy) = Qim(x* Ziin)y + Xgi“](y*li[j]) > (5.66)
(Dx)y + x(Dy) = 6" (x ZiiDy + xe_i[”(y*ii[j]) . (5.67)

Comparing Egs. (5.66) and (5.67) with Egs. (5.64) and (5.65) respectively and
using the fact that they hold for any element x, y, we can conclude Proposition 5.
The bicovariance of the relation is clear from the bicovariance of the relations (5.6)
and (5.7).
g.ed.

In the following we show that we can represent this operation with a commut-
ator among the comodules. We consider a second rank tensor Vj;;; together with
coordinate functions. The tensor V};;; does not commute with the elements of the
quantum space algebra and the commutator gives the generalization of the infin-
itesimal transformation. Therefore, this tensor Vj;;; can be interpreted as a differen-
tial operator on the quantum space.

Definition 6. We introduce the tensor V;;;; as an operator acting on .4 which satisfies
the relation

(Vi Xl = (e 0) (5.68)
[Vt X]g = (65 Zig0) » (5.69)
where xe # and [ -, -], is defined by
[ Vs XJo = Vinnx — (cx AL Ve (5.70)
[ Vi xTg = Viepnx — (e AL Vi - (5.71)

Before we prove the consistency of Definition 6 with the bicovariance, we
explain how this definition encodes the action and the coproduct of the Lie
derivative y and j. Actually, the definition of the g-deformed commutator in the
above definition is determined so that the Leibniz rule (5.60) is satisfied naturally in
the new algebra. This is shown by direct computation of the action of the Vj;;; on
the product of the elements x, ye .#:

[V xv1a = Vanxy — (y# Aif5) Vi
= ([ Wiy, X] + (o AR) Vi) y — Cex A7) (v AG) Vg
= [Vi[j]7X]qy+(x*A?[[;]])[ Vk[l]’y]qa (572)
where from the first line to the second we have used Eq. (5.70) and the relation
k[l t | . d .
A(A,-[[j]) = Af[[j]] ® AS[[,]. From the second line to the third we have used again

Eq. (5.56) for V. N
The corresponding equation for V/;;; is derived in the same way. The result is

(Vi X31g = [Visys X1gy + Cex ARO[ Vi v], - (5.73)
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By virtue of definitions (5.68) and (5.69) the derivative in Egs. (5.58) and (5.59) are
now represented as

Dx = 0V [V, x], - (5.75)

Then Egs. (5.72) and (5.73) imply that the relations which are given by substituting
(5.68) and (5.69) into Egs. (5.64) and (5.65), respectively, also hold. Hence, the
Leibniz rule (5.60) is valid when we define the derivative as dx = Dx + Dx with Dx
and Dx in (5.74) and (5.75).

To show that the algebra generated by V; and V[ ;1 together with the
coordinate functions z' and z; is also covariant under the quantum group trans-
formation, we have to show the consistency of Definition 6 with the bicovariance.
This can be achieved by the following property of the tensors V;;;; and Vj;;; as
a left-comodule:

Proposition 6. If we define the coaction for Vi and Vi, as

AL(Vigyy) = ’C_I(M?K(MF}])) ® Viy » (5.76)
ALViy) = 17 (M M) ® Ve » (5.77)
then the commutators with x e ./ defined in Egs. (5.70) and (5.71) satisfy
Ap([Vigj, x1y) = (k™ I(M?’C(M{lj]]))as ® [ Vs Xs14) (5.78)
ALV, X1g) = Y (e (e (M) M) a, ® [Vigy, x.1,) » (5.79)

N

where a,e o/ and x;e M and Ap(x) =) (a5 ® x;).

Proof. Since the coaction on the first term in Eq. (5.70) and in Eq. (5.71) has the
same form as Eq. (5.78) and (5.79), respectively by definition, we have to prove that
the second term in Eq. (5.70) and in Eq. (5.71) behaves in the same way under the
coaction. For this we use the relation: Vae ./

(ax Al e\ M M) =k {(M (M) (Ar «a) (5.80)
(ax Ak e MPYMED) = k71 0e(ME) M) (AR + a) . (5.81)

It is sufficient to prove this relation for the generators. We give here the proof only
for Eq. (5.80), since the proof for Eq. (5.81) follows analogously. Taking
a=x~Y(M3), Eq. (5.80) is

AT e M) e M) kT M R(MED)
=k MM kT MDA (7L (M) (5.82)
Using
A0 M) = FY (M) M) (5.83)

and the R-matrix representation of the functionals F and f, we find that Eq. (5.82)
holds due to the fundamental relation of the quantum group (1.6). When
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a =k '(M?), the proof is parallel to the previous one and Egq. (5.80) holds due to
Eq. (1.10).

Then using the relation Eq. (5.80), the coaction on the second term of Eq. (5.70)
is calculated as

AL[(X*Af[[i‘]]) Vk[l]] = Z (as "AL[J])K_ ! (Mk K(MH]])) ® X Vk’[l’]

N

—ZK M KMH]]))( f{[[l;]]*as)@)xsvk'[r]
—Zrc (M k(M) a, ® (xex AL Ve, (5.84)

where A, (x) =) (as ® x,) with a,e o7 and x,€ ./. Equation (5.79) can be derived
analogously by using Eq. (5.81). Therefore, we get the transformation of the
commutators (5.78) and (5.79) from the definitions (5.76) and (5.77).
g.e.d.

This proves the covariance of the comutators given in Egs. (5.70) and (5.71).
Furthermore, Proposition 6 implies

AL(gi[j][ Vi[j]: X]q) = Zas ® ei[j][vi[jb X1, (5.85)
AL(EiU][ ﬁ;[j], x]q) = Zas ® Q_i[j][ﬁi[j]a X5 ], (5.86)

where A(x) = ) (a; ® x,). This means if we use the derivative defined in Egs. (5.74)
and (5.75), i.e., if we define the derivative by

dx = 0V V50 x1 + 0 [V, x] (5.87)

then the derivative d satisfies the requirement of the covariance (5.57) and this
shows the consistency of the identifications (5.68) and (5.69). Note that in our
construction, the condition of the covariance (5.57) holds separately for D as well as
for D.

Therefore, the Vj;;; and ﬁ-m define comodules and the commutators in
Egs. (5.70) and (5.71) transform in a consistent way with the transformation
properties of 0'U7 and 61 respectively® and thus they are consistent with
Eq. (5.57).

To complete the algebra containing V;;;; and V[J], we must also define the
commutation relation among them. This can be performed usmg the correspond-
ence between Vi ;1( ,m) and the functionals y;; (7 ;) given in Eq. (5.68) (resp. Eq.
(5.69)).

3Recall that in our present notation the transformation rule of the basis 014 is
AL (O = MM @077

which is equivalent to Eq. (4.3) in ref. [CSW W] using the definitions (1.17) and (1.18) together with
(1.14). Similarly for the basis 6"/ in our present notation, the left-coaction is given by

4,00 = k(M) MU, @ 011
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Appendix

We give here the definition of the various ﬁ-matrices.AAs we mentioned, we do not
apply the index convention (1.17) and (1.18) for the R-matrix,
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