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Abstract. The method used to construct the bicovariant bimodule in ref. [CSWW]
is applied to examine the structure of the dual algebra and the bicovariant
differential calculus of the complex quantum group. The complex quantum group
Funq(SL(N, C)) is defined by requiring that it contains Funq(SU(N)) as a subal-
gebra analogously to the quantum Lorentz group. Analyzing the properties of the
fundamental bimodule, we show that the dual algebra has the structure of the
twisted product Funq(SU(N)) (§) Fxmq(SU{N))?eg. Then the bicovariant differential
calculi on the complex quantum group are constructed.

0. Introduction

The question of whether the physics of microscopic scale such as the Planck scale is
incorporated by the noncommutativity, which is different from the one provided by
the quantization of the field theory, has concerned physicists already for a long
time.

Such a theory may be described by a noncommutative algebra belonging to
a wider class than the one which physicists are now handling. To consider such
a possibility, we need to understand more about the general structure of the
noncommutative algebra. From this point of view, the quantum group, a class of
noncommutative Hopf algebra found in the investigation of the integrable systems
is a very interesting example [Dri, Jim, Worl]. Imposing the covariance under the
quantum group, we can also get some other examples of the noncommutative
algebra such as the algebra of the comodule, i.e. the quantum space (quantum
plane) introduced by Manin [Manin, RTF]. These algebras give some interesting
examples of noncommutative algebras such as the quantum Lorentz group
[PW,CSSW] and the quantum Poincare group [LNRT,LNR]. The construction
of the noncommutative differential calculus on the quantum group
[Wor2,Rosso,Stach,Jur,Weich,MNW,MH,CSWW] and also on the quantum
space [Wess,WZ,Zumino, Pusz,CSW,Schm] shows us various promising features
peculiar to the noncommutative algebra.
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In this paper we consider another class of noncommutative algebra which is
also related to the quantum group: the algebra of the bicovariant bimodules
generated by the fundamental bicovariant bimodule. We have used such an algebra
implicitly in our previous paper [CSWW], where we have investigated the bi-
covariant bimodule over the compact quantum groups in order to write down the
explicit formulae of the differential calculus proposed by Woronowicz [Wor2].
Here we consider the bicovariant bimodule over the complex quantum group
Funq(SL{N9C)).

To define the commutation relations of the generators of the complex quantum
group Funq(SL(N, C)), we can use the same method as applied in the construction
of the quantum Lorentz group [PW,CSSW]. The problem of defining the
quantum Lorentz group, i.e. the *-Hopf algebra Funq(SL(2, C)) was to find the
commutation relations between the generators M) and (M}*). The result in ref.
[CSSW] can be generalized straightforwardly to obtain the commutation relations
oϊFunq(SL(N,C)).

Here we analyze the structure of the bicovariant bimodule over the complex
quantum group Funq(SL(N, C)). We consider the algebra of the bicovariant
bimodule generated by the right invariant basis requiring the covariance under the
coaction. We define the bicovariant commutation relations among the right invari-
ant basis and we find the relation among the bimodules which have the different
ordering of the product of the right invariant basis. The commutation relations
among the bimodules then can be translated into the commutation relations among
the functionals where the product is given by the convolution product. Using this
result we give the definition of the dual algebra of the complex quantum group
F\mq(SL(N, C))} We show that the resulting dual algebra of the complex quantum
group has the structure of the twisted product F\mq(SU(N)) ® Funq{SU(N))%g.
Using these results we construct the bicovariant differential calculus on the com-
plex quantum group. Comparing with the compact quantum group case, we find
that the condition of the nilpotency of the exterior derivative plays a crucial role.

This paper is organized as follows. In Sect. 1 we introduce the definition of the
Fxmq(SL(N, C)). In Sect. 2, the bicovariant bimodule is defined and the functionals
relating the left and right multiplication are calculated in terms of the R-matrix of
F\mq(SU(N)). In Sect. 3, we examine the structure of the product of the bicovariant
bimodules defining the commutation relation between the fundamental bimodules.
In Sect. 4, we translate the result obtained in Sect. 3 into the commutation relations
among the functionals and define the dual algebra of Funq(SL(N, C)). In Sect. 5,
using the bicovariant bimodule possible differential calculi on complex quantum
groups are proposed.

1. Complex Quantum Group

Let us introduce briefly the concept and notations which we need in the following.
The quantum group Funq(SL(N, C)) is defined as a *-Hopf algebra of the

xIn ref. [DSWZ], the universal enveloping algebra of the complex quantum group is also
derived by generalizing the methods of RTF [RTF]. Relating investigation about the quantum
Lorentz algebra, i.e., the dual algebra of Fun, (SL (2, C)) have been performed by [SWZ,OSWZ]
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^-deformed Fun (SL(N, C)). The generators of the quantum group are the matrix
elements M) of the N x N ̂ -fundamental representation and its ̂ -conjugate where
the ^-operation is the antimultiplicative involution. The coproduct A, counit ε and
antipode K are defined in the standard way [Abe, Worl]. (For more details of our
notations see ref. [CSWW].)

= MJ,<g>M}\ (1.1)

) = Mi;®M\.9 (1.2)

and

ε(M)) = ε(MJ) = δ), (1.3)

where we have introduced M as

M) = (Mi)* . (1.4)

The complex quantum group Funq(SL(N, C)) is a noncommutative algebra
and the commutation relations among the generators are given by the matrix R^ of
Funq(SU(N)) which satisfies the braid equation:

R12R23R12 — ̂ 23^12^23 (1-5)

With the R-matrix, the commutation relations can be represented as:

Rl^Mi'Mf = MJ,Mj,Riy, (1.6)

RS7'M^Mr = Mj'Mί'R?^ • (1.7)

The second relation (1.7) is just the ^-conjugation of (1.6). Note that we take the
normalization of the R-matrix as

R = q-llN(q!?s-q-1!?A), (1-8)

where &s and 0>A are the ^-deformed projectors onto the ^-symmetric and
^-antisymmetric product, respectively (see also ref. [CSWW]).

To complete the definition of the quantum group Funq(SL(N, C)\ we must also
give the commutation relation among M and M*. In this paper, we define it such
that the resulting algebra reduces under the unitarity condition to the compact
quantum group Funq(SU(N)) like in the case of the quantum Lorentz group
[PW,CSSW] and thus we can take q > 0.2

A heuristic argument to find this relation is the following: Multiplying the
antipode on M we can rewrite Eq. (1.6) as

Mικ(M\)Mk

k = MIM'KM) . (1.9)

Recalling that the unitarity condition in the Funq(SU(N)) is given by M — κ(M),
we replace κ(M) in Eq. (1.9) by M. Then, we get

M^MζRy^ = RU^'MJ.M]' . (1.10)

We take this relation as the definition of the commutation relation among the
M and M in the complex quantum group. By construction it consistently reduces
to the Funq(SU(N)) when we impose the unitarity condition.

2The complex quantum groups of this type are also proposed by Podles [Podl]. The commuta-
tor in Eq. (1.10) is also considered by [Koor] and [DSWZ]
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Note that we can also consider the algebra which is defined by taking in
Eq. (1.10) R instead of R~1 which leads to the equivalent algebra. The choice made
in Eq. (1.10) is such that the conventions in this paper coincide with the ones of our
previous papers.

The generators also satisfy

det.M = 1 and (det.M)* = 1 . (1.11)

The g-deformed determinant in Eq. (1.11) is defined by using the Nth rank
^-antisymmetric tensor

N(N- 1

q)l{σ) , (1.12)

where σ denotes the permutation of the suffices (ίu . . . , iN) = σ(l, 2,. . . , N) and
l(σ) is the minimal number of inversions in the permutation σ [Dri]. The ^-number

Qx — ϋ~x

is defined as {xj = —[• We also define the tensor with upper indices as

gii . ijV _ (_i^g^ .̂  χ h e ^-determinant is then given by

εI l i i i jNM]1

1 . . . Myv = detqMεji 7 v . (1-13)

With the normalization of determinant as (1.11), the antipode K is defined by

κ(M)) = ε"1- iN~ίMj

i

1 . . . Mj^'iεji^jN j , (1.14)

κ(M\) = &Jh ..h^M)N

N\ . . . Mj ε^...^^- , (1.15)

The complex quantum group s$ — F\mq(SL(N, C)) is defined as the *-Hopf
algebra with

si = C<M;, M;>/((I.6),(I.7),(I.IO),(I.Π)) . (l.iβ)

Although these definitions are sufficient to describe the complex quantum
group, it is convenient to introduce the following convention for raising and
lowering indices: Using the antisymmetric tensor, we represent the lower (upper)
suffix by iV — 1 antisymmetrized upper (lower) indices.

For the lower and upper suffix Vt and Wj:

y[i] = y.rj[i] y — y[j]r (\ 17)

where p ] = p\ . . . JΛΓ-I] denotes N —1 ^-antisymmetrized indices as introduced
in ref. [CSWW]. We have taken the normalization of the ε tensor in Eq. (1.12) such
that

Fi[J]F — fii (\ 10)

Using this convention we can write the same object either with usual index or
with N — 1 antisymmetrized indices. For example

(1.20)
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The reason to introduce this notation is that then the coproduct of M becomes
similar to the case of the generators M)\

[k]

and the naturally ordered index structure is kept such that the graphical analysis
explained in ref. [CSWW] can be applied without any complication. Actually,
some of the equations in the following sections become simpler when we use the
antisymmetrized suffix. Tn such a case, we give the equations in the simpler form
and sometimes with using both types for clearness.

With this notation Eq. (1.7) and Eq. (1.10) are rewritten as

K[JΊί'M[k] Ml - Mi'M[j']Kίk]l ' KίΛ{J)

Note that we do not apply the rule of raising and lowering suffices (1.17) and (1.18)
for the R-matrix. The definition of each R-matrix is given in the Appendix.

2. Bicovariant Bimodule over the Complex Quantum Group

To construct the bicovariant bimodule [Wor2] of the general tensor representa-
tion, we first investigate the structure of the fundamental bicovariant bimodules,
i.e., the N- dimensional bicovariant bimodules as is performed in ref. [CSWW]. We
denote the right invariant basis as η\ The right and left coactions are defined as

ARW) = rf®\, (2.1)

AL(ηί) = Mί

j®ηj, (2.2)

where I is the unit of stf.
We also have to consider the ^-conjugation of this bimodule. We denote the

^-conjugation of the basis by ηi9 where

ηt = faO* (2.3)

The ^-conjugation of a bimodule is given as follows [Wor2]: For any p which is
an element of the bimodule

(apb)* = b*p*a* , (2.4)

where a,bejtf.
Taking the ^-conjugation of Eqs. (2.1) and (2.2) we get the relations

Δ R { ή i ) = η ι ® l , (2.5)

ΔL{ηi) = M\®ηj. (2.6)

The latter equation may be written as

ΔL(η[i]) = MΪ]]®η[j\ (2.6')
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where

η[i] = rij8j[i] . (2.7)

To complete the definitions of the bicovariant bimodule over srf we have to give
the relations between the left and right multiplication.

The requirement of bicovariance fixes the general form of these relations like in
the case of the compact quantum groups as shown in ref. [Wor2]. In general, the
relation of left and right multiplication for each right invariant basis is described by
a functional f)esrf' [In this stage we denote the space of the linear functionals by

/}: j*-C. (2.8)

As we shall see later there are two different functionals for each basis ηι and ήi
like in the case of Funq(SU(N)). We distinguish these functionals with a suffix
+ and — as /+ . Correspondingly, we have to distinguish also the right invariant

bases for which the relation between the left and right multiplication is given by
different functionals. Therefore we also introduce for them the corresponding suffix
as ηι+ and η±i, where

In Funq(SU(N)\ due to the unitarity condition, we end up with 2 types of
N dimensional representations. On the other hand, when we consider the
F\mq(SL(N, C)\ all 4 types must be considered.

For the present case, this means that there exist functionals fι

±j and fι

±j for
each right invariant basis ηι+ and ή±i, where the relation between the right and left
multiplication is represented as: Ma e stf,

η

ί

±a = (a*fί

±j)ηj

± , aη\ = ηj

± (a*f±j o K) , (2.10)

ή[ι

±

]a = {a*f%n)η[i] , af±

] = ήψ(a*f[ι

±\jΊ o K) . (2.11)

The relation between the functionals f{±[n and fι

±j is given by using the rule
(1.17) and (1.18)

fl±ιn = *ιnJk±ι*ιm> (2 1 2 )

where in order to keep the summation convention of the suffix, we have introduced
the f±j as

/ ± ; = ( / ± i ) * . (2-13)

The ^-conjugation of the functional fesrf' is defined as

f*(a) = (f(κ(a*)))*. (2.14)

Equation (2.10) is the one given in ref. [Wor2]. Equation (2.11) is the
^-conjugation of Eq. (2.10). To prove that they are the ^-conjugation of each other
we have to show how the convolution product of an element of s/ with an element
of jtf' behaves under the ^-conjugation.

Proposition 1. The ^-operation on the convolution product Vαej/ and \/fes/f is

(a*f)* = (a**g*oK) . (2.15)
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Proof. We can prove this equivalence directly using the definition of convolution
product. The l.h.s. is

(a*f)* = ((f® id)A(a))*

/
= Σf(a's)a's

s

(2.16)

s

On the other hand, the r.h.s. of Eq. (2.15) gives

a**f*°κ=f*(κ(a's*))a's*

Σ , (2.17)
s

where
A (a) = X % ® % . (2.18)

s

q.e.d.
With the help of Proposition 1, it is straightforward to show that Eqs. (2.10) and

(2.11) are the *-conjugation of each other.
The definition of the bicovariant bimodule over s/ is completed by giving the

functional fι

±j. We give them_as the value of functional fι

±j when acting on the
generators of s/, i.e., M.\ and M.\.

Theorem 1. The complete definition of the functionals fι

±j and fι

±j are:

fj(l) = δ), (2.19)

/j(I) = δ), (2.20)

/^(Mf) = R /f, (2.21)

/%.(M[ϊί) = R™ , (2.22)

(2.23)

where R + = R and R " = R " x (see Appendix).

Proof Equations (2.19) and (2.20) hold due to the fact that the unit element of the
algebra commutes with any element of the bimodule.

The other equations are derived by requiring bicovariance as in the case
[CSWW]. The derivation is performed in two steps. First we will prove Eqs. (2.21)
and (2.22). Then, Eqs. (2.24) and (2.23) are derived by taking the ^-conjugation of
Eqs. (2.21) and (2.22), respectively.

We start the derivation of Eq. (2.22) with the relation of left and right multipli-
cation of the M) on the basis ηι

±

J , (2.25)
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wherewe have used the definition of the convolution product. To fix the value of
fι

±j(M\) we examine the covariance of the above equation, i.e., we apply the left
coaction on this equation and calculate it in two ways:

[j (2.26)

and applying the coaction on the r.h.s. of Eq. (2.25) we get

™ i [ J ? [ f ; ] i / ? [ ^ (2.27)

Bicovariance means that both derivations must be equivalent and therefore we get
the condition

/^(M[ftjMl^Mf = M\.M\γΊfUM\ί?) (2.28)

Thus, from Eq. (1.10) we conclude that

f'1 (lQW\ — r/Hi[k] O ?QΪ
/ ±j\1VI [I]) — α K M J ' \Δ.Z^)

or equivalently

fi

±j{Mk

ι) = Λjι

ki, (2.29')

where α is a nonzero constant.
The constant α is defined by the requirement that the ^-determinant commutes

with the basis η± which implies

fi

±j({detqM)*) = δ ) . (2.30)

Using the definition of the ^-determinant we get

(2.31)

Substituting Eq. (2.29') into (2.31) yields

/ ' ± J ((det,M)*) = x»δ) . (2.32)

Therefore the constant a satisfies

aN = 1 . (2.33)

It means the constant α is the Nth root of unity. However in the limit q -> 1 the
commutative case has to be reproduced. Therefore it follows that α = 1 and the
result is Eq. (2.22).

The proof of Eq. (2.21) follows analogously to the one of the quantum group
Funq(SU(N)). We findj wo cases: the relation between the right and left multiplica-
tion is given either by R or by R ~1. We distinguish these two cases by a suffix + of
functional /, respectively. Note that we must also require the consistency of
Eq. (1.6) with the bimodule structure. See ref. [CSWW].



Complex Quantum Group 495

To complete the proof of the theorem, we have to show that these definitions of
the functionals are consistent with the other quantum group relations (1.7) and
(1.10). For this we have to show that the equations

R^f(M),M**flt) = (MJ'M^*flt)R];}r, (2.34)

and

(M\,Mj

k*fs

±t)RJ,liΊ = R^'fMj-Mf*/;,) (2.35)

hold also when applying the definitions of the functional (2.21) and (2.22) first. By
using the property of the convolution product, the expression inside the bracket in
Eqs. (2.34) and (2.35) can be rewritten using R matrices. Then both relations above
hold simply due to the braid relation (1.5) of the R matrix.

To prove Eq. (2.24) we use the definition of the ^-conjugation of the functional
given in Eq. (2.14). Then Eq. (2.24) is rewritten as

fi

±j(Mk

ι)=fl\{M[*)

kκ_ιk

(2.36)

Using the R-matrix representation of the functional / in Eq. (2.21) we see that the
r.h.s. can be represented by the R matrix as:

fi

±j(MΪ) = RΪjik. (2.37)

Changing the suffix into the antisymmetrized index convention using Eqs. (1.17)
and (1.18) and the definition of the R-matrix in Eq. (A.3), we get (2.24).

The proof of Eq. (2.23) can be performed analogously,
q.e.d.

As already mentioned in the beginning we had as well the possibility of
choosing R instead of R " 1 in Eq. (1.10). Then, in Eqs. (2.22) and (2.23) the effect of
taking the other choice of the relation between the M and M in Eq. (1.10) would
have been to convert R into R " 1 and vice versa.

3. The Algebra of the Bicovariant Bimodule

Our aim is to construct the bicovariant differential calculus on the complex
quantum group by generalizing Woronowicz's construction in ref. [Wor2]. Fol-
lowing the method developed in ref. [CSWW], we consider the differential calculus
defined by the right invariant basis of the adjoint representation.

The construction of the adjoint representation in ref. [CSWW] is performed by
taking the tensor product of two fundamental bimodules. We will proceed here in
the same way.

The product of two bimodules ηx and η2 is understood to be defined over stf\

(3.1)

We also extend the ^-conjugation in a natural way as the antimultiplicative map:

. (3-2)
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In the present case, by using the analogy to the classical case, the adjoint
representation can be obtained by using the ^-antisymmetric tensor ε^...^ as

θi^η'η^ ...η^-^j^.^^k, (3.3)

or equivalently by using the upper suffix

βϋk] Ξ ηiηh .. m ηi*-^h ) v _ i / ε

/ [ / c ] , (3.4)

and their ^-conjugation. It is easy to show that

ΔL{θ)) = Mi

vκ{Mi

j)®θi

Γ . (3.5)

In Eq. (3.3) we did not write the suffix + for the basis since for any combina-
tion of the ηι+ and η1-, the θ) transforms as the adjoint representation. This
additional structure did not appear in the case of Funq(SU(N)), since the require-
ment of the unitarity fixed the choice of the basis. In the present case, the different
choice of the combinations of η± in Eq. (3.3), for example η + η + η^ . . . ^_,
η + η_η+ . . . η- and etc., can either lead to different types of differential calculi or
to such ones which are isomorphic to each other. This is the reason why in this
section we examine the detailed structure of the product of bimodules and the
tensor representations constructed by the fundamental bimodules η± and ή+.

First we consider the product of the same basis, i.e., the product of η+ with η +

and η_ with η^ and their conjugate.
The product of two equal bimodules is reducible as the usual (non-deformed)

representation and by using the projection operators 0>s and 0>A in Eq. (1.8) it can
be decomposed into the irreducible representations:

η\ηj

+ = &siη\η\®&Aίη\η\ , (3.6)

and the same for the product of r\-.
The former choice gives the ^-symmetric product, whereas the latter one gives

the g-antisymmetric product. In both cases, it is easy to see that the product of the
bases becomes again a bimodule over .90 and the resulting bimodule also splits into
two parts.

Note that one can consider the algebra imposing either the symmetric or the
antisymmetric combination to be zero like in the case of the g-plane algebra
[Manin]. However, since these subalgebras contain only a part of the whole
representation by definition, we do not impose such conditions since we want to
have all kinds of tensor representations in the algebra.

When considering the product of different types of bases like η + with η _, or η +
with ή +, we find that multiplying the projection operator onto such products is not
compatible with the bimodule structure since the relation of the left-right multipli-
cation involves all components. On the other hand we find that the products of the
same number of basis elements η+ and 77 _ but with different ordering generates
equivalent bimodules with the right invariant bases given by these products. This
situation can be represented compactly as commutation relations among the
fundamental bimodules. Naturally the commutation relations must be bicovariant
and must give consistency with the relation between the right and left multiplica-
tion given in the previous section.

For convenience we first list the resulting relations among the right invariant
basis ηι+ and ή±i:
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Theorem 2. Requiring the bicovariance, the possible commutation relations among
the right invariant bases which coincide with the (and-)commuting case in the limit
q -> 1 are

η'+ηL = βR^ηk.ηι

+ , (3.7)

η% = yRΰlkiήkη
ι, (3.8)

where (3.8) holds for any combination of the suffix ± . β and γ are nonzero constants
which go to ± 1 in the limit q -> 1.

The other relations among ή±i are given by taking the ^-conjugation of
Eq. (3.7).

Proof We consider the product of two bases belonging to different functional, i.e.
the product of n\ and ηL . As in the case of two different ^-planes as considered in
ref. [CSSW], we can fix the commutation relations of these two different right
invariant bases as follows. Take the ansatz

ηW- = AlU-ri\ , (3-9)

where A1^ e C. To impose the covariance we apply the coaction on both sides of
Eq. (3.9). Then the l.h.s. gives

AL(ηi

+ηL) = Mi

vM
j

r®ηι'+ηj: = M^MJ^f <g) Ά\η\ . (3.10)

The r.h.s. gives

ΔL(η\ηL) = Ai'i>Mk

kM\ ®ηk-η\ . (3.11)

Comparing both equations, the condition of the covariance for A^ is

A{lvM
k

kM\ = M\ Mj

ΓAζf . (3.12)

Then we get the solution: A% = βR^ + /ΓR^10' with constants β and β'. Thus,
as a possible commutation relation of ηι+ and nL we get

ηW-^iβK^ + β'K^W-n+ (3.13)

This is the result analogous to the case of the differential calculus on the
g-Euclidean space [CSW]. There, the existence of the singlet component forces us
to choose either R or R " r in the commutation relation, and the choice of R or R~x

was simply a matter of convention. However, when we consider the bimodule
structure of the SLq(N, C) we get a further condition which fixes the R-matrix of
the above relation (3.13).

We require now that the product of two bases ηι+ηJ- satisfying Eq. (3.13) is
consistent with the basic commutation relations of the two fundamental bimodules,
respectively. For this we examine the relations between left and right multiplication
of sd on this product of the bases.

For aestf

ηW-a = (a*fLr*f\iήηW-=(a*fi-r*fi

+i'4ι)riW+ , (3-14)

4\ iι'ι*fkLk)ηk.η\ . (3.15)
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Comparing these two equations we have the following relation

^ 4 / ' /*/-*) (3.16)

Taking a to be a generator a = Ms

t and using the property of the convolution
product

fLjiM^ΓMMf)^!' = 4!'i'flUMs

s>)fk:k(Mf) (3.17)

Using Eq. (2.21) we see that Eq. (3.17) holds_if and only if A^ = βR%. With this
choice Eq. (3.16) holds also for the case a = Ms

t. Thus we get Eq. (3.7).
The commutation relation between η+ and ή±j can be derived similarly. We

again start with the most general ansatz:

η% = Ak)ηkη
ι. (3.18)

Taking the coaction on both sides to examine the covariance condition, we get
the equation for A\]. The coaction on the l.h.s. of Eq. (3.18) yields

ΔL{η%) = MiMJ' <g> ηvηΓ = M\.MJ' ® Ak^Ϋ]kΆ

ι . (3.19)

The coaction on the r.h.s. of Eq. (3.18) gives

ΛL{ηiηj) = Ak

v

i

jM
k

rM
i;®ηkη

ι . (3.20)

Comparing Eqs. (3.19) and (3.20) we get

Ak

v)M\.M\ = M\W;A%. (3.21)

Comparing this result with Eq. (1.10) we conclude that Aι

k\ is proportional to
RUUj and this leads to Eq. (3.8).

To complete the proof, we also examine the consistency of the relations between
left and right multiplication of s/ with (3.8). We repeat the computation analogous
to Eqs. (3.14)—(3.16). As a consistency condition we get

(a*fi.*f\.)Rk-
u'jt = Rk-.ϊij(a*fΐ*fk

k') . (3.22)

We can confirm this equation straightforwardly by taking a = Ms

t and a = Ms

t

using the similar manipulation as done from Eq. (3.16) to Eq. (3.17).
q.e.d.

Now when we consider the product of the basis η+ and ή+ , using the commuta-
tion relations (3.7) and (3.8), we can reorder the product, since we cannot distin-
guish them as bicovariant bimodules. The product depends now on the number of
bases of each type.

Left-right invariant bicovariant bimodule. The left-right invariant elements play
a key role when we define the exterior derivative. They will also enable us to show
some important properties of the dual algebra. According to the result concerning
the algebra of the bicovariant bimodule discussed above, one can find 2N + 2
independent elements which are left-right invariants denoted by X ( 0 and their
^-conjugation counterparts. Explicitly, they are

x(Z) = 8 f l... f jy; . . . / 7 V - 1 •.•>?-, (3.23)

where the suffix / = 0,. . . , iV counts the number of the bases with suffix +.
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Using the definition of the fundamental bimodule we can calculate the relation
of the right and left multiplication of the element α e j / o n X , :

X{l)a = *h..,h(a*fl-is* - • * / - } I + 1 */ + ;, * • *f\jM • • - iW-1 - V - -

(3.24)

From the definition of the functional /+, we find the following result.

Proposition 2. The left-right invariant bases X(/) commute with M), i.e., for any

1 = 0 ... N:
Xil)M

ί

j = Mi

jX{l). (3.25)

Furthermore the elements X ( 0 ) and X{N) commute with any element of the
algebra: Maeszf and I = 0 or / = N

X ( l ) a = aX{l). (3.26)

Proof. Using Eq. (3.24) we get

. . f"+ , (Mil, )Ml n\ • • η\ ηjll' • • ηh- • (3.27)

From the definition of the /+ in terms of the R matrix given in Eq. (2.22) we have

(3.28)

Thus in the r.h.s. of Eq. (3.27), the product of N bases ηJ+ becomes again X ( 0 and we
get Eq. (3.25).

The above result is due to the fact that f±(M) is independent of the suffix
+ and all is given only by R + as in (2.22). On the other hand /+ (M) is given by

either R + or R~ depending on the suffix as (2.21). Therefore, M) does not commute
with X ( 0 for general /, except for X(0) and X(N) which consist of bases η with the
same suffix. Therefore the similar mechanism like (3.28) works again and we get

X ( 0 ) M ; = M ; X ( 0 ) , (3.29)

X{N)M) = M)X{N) . (3.30)

This means that X (0) and X(iV) commute with all generators of algebra srf.
q.e.d.

Among the left-right invariant elements in the context of the differential
calculus there are 4 special elements: X(1) and X(N~D and their ^-conjugates.

Since the properties of these singlet elements are important in order to under-
stand the differential calculus and to discuss the relation to the ¥unq(SU(N)) in the
following section, let us examine them in detail.

X(1) and X(JV-I) can also be represented as

X{i) = eiU]η
i

+η[-\ (3-31)

and

X(*-D = W ] y - , (3.32)
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where

li^i^ii^i,..!,-/1. (3.33)

In the ¥unq(SU(N)), these elements have been related to the conjugate repres-
entation [CSWW]:

η™~η™ = ητiε™. (3.34)

Therefore, when considering the Fxmq(SU(N)) the X ( 1 ) is equivalent to the singlet
element X defined in ref. [CSWW]. However in the F\mq(SL(N, C)) case con-
sidered here, such an equivalence does not exist and we have to consider all
bimodules constructed out of tensor products of the fundamental bimodules as
independent objects.

The functional which gives the relation between the left and right multiplication

on η[ιj, which we call F[ι+[n defined as

ηi!*a = (a*F%])ηψ, (3.35)

can be represented by the functional fι±f

fϊΊjr^^'ί/i^ (3-36)

Using (2.21) and (2.22) we can derive the value of the functional F + for the
generators:

, (3.37)

Here the functionals F+ are again expressed in terms of the jR-matrix. Compar-
ing Eqs. (3.37) and (3.38) with Eqs. (2.23) and (2.24), we find that Fιί\n has the same
value as f[-]

U] for M) and M). It means that they are the same functional. This is
already an indication for the fact that the number of functionals does not increase
in the same manner as the number of independent bimodules does when consider-
ing the tensor product of the fundamental bimodules. We come back to this point
in the next section.

4. Dual Algebra and Relation to Fun^(SU(N))

As in the case of the compact quantum groups discussed in ref. [CSWW], the
algebra generated by the functionals fι

±j and fι

±j can be interpreted as the Hopf
algebra dual to the Funq(SL{N, C)) with appropriate commutation relations which
are the point of this section.

The coalgebra structure is induced straightforwardly through the definition of
the functionals (2.10) and (2.11):

The coproduct, counit and antipode of the dual algebra are given due to the
definition of the functional as in ref. [Wor2], by the matrix product.

9 (4.1)

, (4.2)

ε(fί

±j) = δi

j. (4.3)
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We have also a natural definition of antipode:

κ(f)=foK. (4.4)

The product of the dual algebra is defined by the convolution product [Wor2]
and the unit is given by the counit of F\mq(SL(N, C)).

Therefore, the problem of defining the dual Hopf algebra is to find the consist-
ent commutation relations among the functionals, i.e. the generators of the dual
algebra. We have seen in the previous section that when we consider the product of
two fundamental bimodules, the functional relating the left and right multiplication
is given by the convolution product of the functionals / + 7 and fι

±j. This means
that when we consider the commutation relations among the bimodules, we are
implicitly considering also the commutation relations among the functionals.
Actually, requiring that the algebra of these functionals must be consistent with the
algebra of the bicovariant bimodule we can find the commutation relations among
the functionals.

It can be shown that the following relations among the functionals follow from
the algebra of the bimodule discussed in the previous section:

From the fact that the irreducible decomposition of the bimodule constructed
by the product of the same basis splits correspondingly to the decomposition of
(3.6), we find the relation

RίV/±i*/*±* =fiy */±(-Rw' • (4-5)

See also ref. [CSWW].
The other relations are given by

Proposition 3.

RίV/±/*/-W'-r*Λ/'R«'> (4-6)

Rj u'7i'*/!'=/ί'*/i'R«v1*' i. (4 7)

where Eq. (4.7) holds for all combinations of the suffix + .

Proof The consistency of the relation (4.6) and (4.7) with the algebra of the
bicovariant bimodule can be proven in a similar way. We show here Eq. (4.7).

For any element a e J / , we can calculate the relation between the left and right
multiplication of the bimodule as

η%a = {a*Γ;*f\.Wηy = γ(a*fj' *f\.)RΓΓ

lki'ηkη
ι . (4.8)

On the other hand, we can also calculate it in the different order,

η%a = yR;jlkίηkη
ιa = γR^kti(a*fΐ*fk

k.)ήkη
ι . (4.9)

The consistency requires that both calculations must give the same result and
comparing Eqs. (4.8) and (4.9) we get Eq. (4.7).
q.e.d.

As we know from the investigations of the ¥unq(SU(N)) there is a condition on
the determinant of the functionals. We can find this condition from the fact that



502 U. Carow-Watamura and S. Watamura

X(0) and X{N) are commuting with all elements of the algebra A, as we have seen in
the previous section. This means that we can impose

εil..ij
ilk!ί* * f ι ± k ι = e k ι . . . k ί t , (4.10)

ε'Ί 1 " * / ^ * * . . . * / ^ N = β*i *Λ . ( 4 . 1 1 )

This requirement can be written symbolically as

detβ/± = 1 , (4.12)

where detg/+ is defined as a possible overall factor in the r.h.s. of (4.10) similar as in
(1.13).

In the case of the Funq(SU(N)) due to the unitarity condition we had a further
identity between /+ and /+ (Proposition 3 in ref. [CSWW].) In the complex
quantum group case we cannot impose the same relations since there is no
unitarity condition. However still we can find similar relations among the fun-
ctionals.

From the previous section we know that comparing Eqs. (3.37) and (3.38) with
Eqs. (2.23) and (2.24) we see that we can perform the following identifications:

Using the relation (3.36), this identification can be written as

fi-j = κ-1(fίj). (4.14)

Now we are in the situation to conclude our result about the dual algebra. We
defined the commutation relation among the generators of the dual algebra by
requiring the consistency with the algebra of the bicovariant bimodules discussed
in the previous section. We have shown that Eqs. (4.5)-(4.7), (4.12) and (4.14) (and
their ^-conjugations) are the ones which satisfy the consistency requirement.
However, from this approach we cannot exclude the possibility that there may still
be some additional relations among the functionals.

Nevertheless, we conclude here that the Hopf algebra generated by the func-
tionals / and / with the above relations are the dual algebra of the complex
quantum group defined in Sect. 1. The reason is that the relations listed above are
the ones which define the complex quantum group Funq(SL(N9 C)) as the twisted
product of the compact quantum group Funq(SU(N)) and its dual Funq(SU(N))feg

as follows:
Like in the case of F\mq(SU(N)) [CSWW], comparing the Hopĵ  algebra

structure with the results obtained in [RTF] the algebra of /+ and /+ can be
identified with the algebra dual to the F\mq(SU(N)) by identifying the functionals
with L+ and L%{ = K~^{LLJ) in ref. [RTF]: The values of the functional /+ and
/+ on the generator M) given in Eqs. (2.22) and (2.24) are consistent with the
unitarity condition oϊ_F\mq(SU(N)) and thus we cannot distinguish the algebra
generated by /+ and /+ from the dual algebra of F\mq(SU(N)) (see also [DSWZ]).
On the other hand the defining equations of the functionals /_ and /_ in Eqs. (2.22)
and (2.24) are not compatible with the unitarity condition. However, the algebra of
the functionals /_ and /L can be identified with the Funq(SU(N)) itself. To see this
we identify f*-) with the quantum matrix M] of F\mq(SU (N)). Then for example
Eq. (4.14) is equivalent to the unitarity condition of the quantum matrix.
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Therefore the structure of Fun'q(SL(N, C)), the dual algebra of the quantum
group Funq(SL(N, C)) is found to be the twisted product

Fun'q(SL(N, Q) = F\mq(SU{N)) <g> Fun'q(SU(N))?eg . (4.15)

It means that Fun'q(SL(N9 C)) is generated by the generators of the two subalge-
bras and thus

Fun'q(SL(N, C)) => F\xnq(SU(N)) and Funq(SL(N, C)) =) F\m'q{SU{N))*^ .

(4.16)

On the other hand, the algebra is not the direct product of the two since the two
subalgebras do not commute.

5. Bicovariant Differential Calculus on Complex Quantum Group

Using the result of the previous sections, now we can construct the bicovariant
differential calculus on the complex quantum group Fxmq(SL(N, C)). For this
purpose, we introduce the basis of the right invariant bicovariant bimodule. We
require that the basis contains the adjoint representation in the limit q -> 1 and
therefore its general form is given by 0) in Eq. (3.3) and its ^-conjugated basis. The
choice of the η+ and /?_ in Eq. (3.3) must be denned so that the projection to the
antisymmetric product appearing in the definition of the 0) is consistent with the
bimodule structure. Therefore we have the following two choices as the right
invariant basis θ) for the differential calculus:

Ό — η + η _ . . . η _ Lji j N i ι i , wΛ)

or

It is clear that the differential calculus based on the basis (5.2) is obtained by
exchanging the suffix + and — of the calculus based on (5.1). Therefore, we take
(5.1) as the definition of the basis θ).

Using the definition (3.33), we can write θm in (5.1) as

θiιn = η\η{- - (5-3)

Correspondingly we also introduce the ^-conjugation of the basis θ). Recalling our
convention in Eqs. (1.17) and (1.18) we denote them as

g u n = ε i [ / ] ( 0 f c [ i ] ) * ε * [ j ] = ε i i y u - i η _ l N i , m η _ h ή + k s k [ n . (5.4)

We define the bicovariant bimodule Γ 1 as the one which is generated by the
bases θ) and θ). In this way, the number of the bases of Γ 1 is IN2 rather than
2N2 —2 which is the dimension of the adjoint representation, since Γ 1 contains
also two singlets. Like we discussed in ref. [CSWW], we cannot project out these
singlets covariantly. On the other hand, these singlets play an important role in the
following construction of the differential calculus.
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The relation between the left and right multiplication can be derived straight-
forwardly using (5.3) as

θi^a = (a*FίllJΊ*fi

+v)θi'[n, (5.5)

where we have used Eq. (3.35).
For the definition of the differential calculus the reversed relation of (5.5)

appears frequently, therefore we introduce the following functionals A and A:

) , (5.6)

\ ]

] ) , (5.7)

where the functionals A and A are given by

A ^ ] ] = (FU]

[l]*fί

+k)oκ = {κ(f\k)*fm-n)ε»Uhmm , (5.8)

λ™ = (fLk)*κ(fm

+n))εnίjhmm. (5.9)

To define the exterior derivative, we need the left-right invariant forms. As we
discussed in Sect. 3, we can construct such elements with N bases η and define as
X(ί) in Eq. (3.23). Reminding the choice of the basis (5.3) for the differential calculus,
the singlet elements which we must consider here are X ( 1 ) and its conjugate. In
terms of θ they are given by:

X(i) = ε i m 0 ί [ j ' ] , (5.10)

X(i) = ( - l ) Λ r ε [ j Ί ί θ
ί m = (X (i))*. (5.11)

It was shown in ref. [CSWW] that the exterior derivative which is bicovariant
and satisfies the Leibniz rule can be given by the commutator of an algebra element
with the singlet part of the tensor product of two bases of the fundamental
representation. We find that this construction is applicable for the present case and
thus we define the exterior derivatives as

Definition 1. The exterior derivative d is the map

ά .jrf^Γ1, (5.12)

and for an element a e stf it is defined by

άa = Da + Da , (5.13)

where

Dα = -j-[α»X(i)]> (5 1 4 )

(5.15)

where the normalization constant j \ r is real and proportional to q — q~ι in the
limit q -> 1 otherwise the commutator vanishes with this limit. (About this constant
see also ref. [CSWW].) Note that Da = (Da*)*.
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Since the exterior derivative is defined as a commutator, it satisfies automat-
ically the Leibniz rule

ά(ab) = (άa)b + a{άb) , (5.16)

where a.bestf. Under the ^-conjugation, it behaves as

(άa)* = άa*. (5.17)

Higher differential forms. After fixing the basis of the right invariant 1-form, we
define the higher differential forms. For this we define the wedge product of the
basis θ) and θ) and consider the bimodule Γp(= Γ1 Λ . . . Λ Γ 1, p times) with the
basis of pth order ^-antisymmetric product using this wedge product [Wor2]. From
the analysis given in ref. [CSWW], knowing the commutation relation among the
bases η, the ^-antisymmetric product of θ can be defined by the combination of the
symmetric and antisymmetric product of each η appearing in the definition of θ.
Therefore, we define the wedge product as

Definition 2. The wedge product of two θ) is defined as the q-antisymmetric tensor
product over stf\

0ι

kΛ θj^θi^^θί (5.18)

with the condition of the vanishing of the q-symmetric combination:

{up ~p yoDl/oϋ] (Qkolk] Λ n/0[/]\ _ A (C om

where the projection operator (^, Φ) is defined in Eq. (7.4) of ref \_CSWW~\.

The wedge product among the θ) can be obtained by taking the ^-conjugation
of Eqs. (5.19) and (5.20) where the ^-conjugation of a p-form p and a p'-form p' is
defined by

(p Λ p')* = (-l)pp'p'* Λ p * . (5.21)

In order to define the wedge product of θ) and θ) we cannot use the above
method since we do not have the definition of the g-(anti)symmetric product of
η and ή. Instead we have the consistent commutation relation among them as given
in Eqs. (3.7) and (3.8). Using these we can find the covariant commutation relation
between θ) and θ):

where α is a constant and Q is defined in terms of the R-matrix as

[k"][J'Ί

It is clear that the wedge product which is bicovariant must satisfy the same
commutation relation as (5.22) with an appropriate constant a. It turns out that the
constant α can be determined by requiring the nilpotency of the exterior derivative.
We define the exterior derivative of the p-form as
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Definition 3. The exterior derivative is the map

ά:Γp^Γp+1, (5.24)

where d is defined by d = D + D and for the p-form p it acts as

Dp^~lpΛ X ( 1 )] ± = -L (p Λ X(1) - ( - 1)*X Λ p) , (5.25)

D> = y [ P Λ X ( 1 ) ] ± } (5.26)

where [ , •] + denotes the graded commutator with wedge product.
The above exterior derivative satisfies the Leibniz rule

ά(p Λ p') = (dp) Λ p' + {-\)pp Λ (dp') , (5.27)

where peΓp and p' eΓp'. Under the ^-conjugation, it behaves as

(dp)* = dp* . (5.28)

With this definition, we can prove the following theorem.

Proposition 4. Defining the wedge product of the θ) and θ) as

0<M Λ θm = -QfψlPwθWi A erik], (5.29)

and taking Eqs. (5.19) and (5.20) for the wedge product of θ) the exterior derivative
d = D + D satisfies

d2 = (D + D)2 = 0 . (5.30)

Proof It is sufficient to prove that

(X ( 1 ) + X ( 1 ) ) Λ ( X ( 1 ) + X ( 1 ) ) = 0 . (5.31)

Since Eqs. (13.2) and (13.3) are the same relation as the wedge product among
the right invariant bases in the case of Funq(SU(N)) in ref. [CSWW], we get

X ( D Λ X ( 1 ) = 0 , (5.32)

and thus D2 = 0. Taking the ^-conjugation we also get

X(D A X(1) = 0 , (5.33)

which implies D2 = 0.
Therefore in order to prove Eq. (5.31) we have to prove that (5.29) implies

X ( 1 ) Λ X ( 1 ) + X ( 1 ) Λ X ( 1 ) = 0 . (5.34)

For this we need the following property of the matrix Q:

εi[k]£[l]jQlj'[lJ']i'[k'] = εί'[k']εUΊJ' ' (5.35)

Using this relation and (5.29) we get (5.34).
q.e.d.

Therefore Eqs. (5.19), (5.20) and (5.29) give the definition of the wedge product
and the exterior derivative becomes nilpotent as (5.30).
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Note that in the present case the requirement of the nilpotency of the exterior
derivative is essential. On the contrary, in the construction of the differential
calculus on Funq(SU(N)) given in ref. [CSWW], the nilpotency of the exterior
derivative gives no new condition.

By the definition of the derivatives D and D, Eqs. (5.34) implies that

DD + DD = 0 . (5.36)

Furthermore we can prove that X ( 1 )(X ( 1 )) commutes with any of the ~θ){θ)) and
thus we get

Dθ) = 0 and Dθ) = 0 . (5.37)

Using these results we can consider the Lie derivatives on F\xnq(SL(N, C)) and
examine their properties. For the complex quantum group, the right invariant
vector fields χi[j] and χi[n are introduced by

(5.38)

m (5.39)

where

K , (5.40)

[] (5.41)

The Leibniz rule of the Lie derivative ( * χ), i.e., coproduct of the functional χ is

= iXnn ® ε ) + (Ann ® Xmύ > ( 5 4 2 )

= tinn ® c) + (λnn

These Lie derivatives satisfy the ^-deformed commutation relations which can
be derived by using the Maurer-Cartan equation. We briefly give the results here.
In the present calculus the Maurer-Cartan equation is

Dθ1 = #rI

Jκθ
J A θκ , (5.44)

Dθ1 = 0 , (5.45)

and the ^-conjugation of these equations. Here, the upper case suffix / denotes the
pair io[/#] with projection to the adjoint representation:

The structure constant ^jK is given by

where Fι

JK is given in Eq. (7.16) of ref. [CSWW] replacing ε[r]ko with the one in
Eq. (1.12) in Sect. 1.
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Using the projection to the adjoint representation, we can decompose the
derivative of a e stf as

Da = θ'iatχj) + ^ - ^ X ( α * Z o ) , (5.47)

where χ0 = Xi[j]£i[j]> We can prove that χ0 commutes with other functionals ya and
XJ. Then we get

D2a = ΘJ A θκ{a*^IJK*XI)- θ1 A θJ{a*χ7 * χ 3 ) , (5.48)

where the functional $F ι

JK is defined by

(5.49)

Therefore we obtain the commutation relation of the functional χ as

LXJ,XK]R = &JK*XI, (5.50)

where the commutator [ , ~]R is defined as

[XK,XL1R = {(&S,&Λ) + (^A,^S))κάXι*Ώ) • (5.51)

From (5.45) we get the relation

XI*XJ-QUXK*XL = 0. (5.52)

Relation to Quantum Space Algebra. In the rest of this section, we want to give
a method to represent the above differential calculus on the quantum group by
means of the algebra of the quantum space. Especially, here we write the action of
the Lie derivative on the quantum space by the ^-commutator of comodules. This
provides the direct translation of the differential calculus on the quantum group as
the infinitesimal transformation of the quantum space represented by the differen-
tial operators on this space. This will also be helpful to compare our result with the
approach taken by [SWZ].

The quantum space algebra Jί is generated by the coordinate functions zι

which give a left-comodule over srf [Manin]:

AL(zi) = Mi

j®zj

9 (5.53)

and satisfy the commutation relations

9ιLx*zι = 0 (5.54)

In order to connect the differential calculus on the quantum group with the
quantum space algebra, first we define the product * of an element of quantum
space algebra -M and a functional fes/':

* : Jl x sέ' -> M , (5.55)

which is the generalization of the convolution product. [Analogous formula is also
used in ref. [Pod2] in connection with the differential calculus on the quantum
sphere.]
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Definition 4: Vx e M and V/e si'

. (5.56)

By this we can define the action of the functional fe srf' on the quantum space
algebra Jί. And using this definition we define the action of the exterior derivative
D and D on Jί which can be interpreted as the infinitesimal transformation with
parameter θί[j] and θi[j] respectively. We require that the derivative acts on the
quantum space algebra covariantly, i.e., the coaction and derivative satisfy the
relation

AL(άx) = (id ® ά)AL(x) . (5.57)

A natural definition which satisfies this requirement is:

Definition 5. We define the action of the derivative operator d = D + D on an
element xeJί by

i ) , (5.58)

m ) . (5.59)

We also require that the Leibniz rule of d acting on Jί is

ά(xy) = (dx)y + x(dj ) , (5.60)

for x, yeJί.

Proposition 5. With Definition 5, the Leibniz rule (5.60) holds by setting the following
bicovaήant commutation relations:

xθί[j] = θk[l]{x*Aiψ]) , (5.61)

xθi[j] = θk[l\x*Ά[\{]

]), (5.62)

where the bίcoυariance is imposed by the left coaction on the product ofMx, yeJί and
ω = θι[j] or θι[j] being defined as

ΛL(xωy) = AL(x)AL(ω)AL(y) . (5.63)

Proof The l.h.s. of Eq. (5.60) is given by d(xj ) = D(xy) + D(xy\ where

D{xy) = Θ^\(χi[n®iά)AL(xy))

= Θί[j]((χi[n®id)AL(x)AL(y))

= 0i[n{{x^χi[n)y + (x*A^)(y*χm)), (5.64)

and correspondingly

D(xy) = ei{i]((x*yjin)y + ( ^ * A ^ ) ( y * / f c m ) ) (5.65)

To derive above expressions we have used the definition in Eqs. (5.58) and (5.59),
Eq. (5.56) and the coproducts of χ and χ given in Eqs. (5.42) and (5.43).
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On the other hand the r.h.s. of Eq. (5.60) is given by the summation of the
following two terms:

(Dx)y + xψy) = θi[j\x* Xi[j])y + xθi[ n (y * χ i [ n ) , (5.66)

(Dx)y + xφy) = ~θi[j\x*χi[n)y + xθί[j](y*χnn) (5-67)

Comparing Eqs. (5.66) and (5.67) with Eqs. (5.64) and (5.65) respectively and
using the fact that they hold for any element x, y, we can conclude Proposition 5.
The bicovariance of the relation is clear from the bicovariance of the relations (5.6)
and (5.7).
q.e.d.

In the following we show that we can represent this operation with a commut-
ator among the comodules. We consider a second rank tensor Vi[n together with
coordinate functions. The tensor ViU] does not commute with the elements of the
quantum space algebra and the commutator gives the generalization of the infin-
itesimal transformation. Therefore, this tensor Vi{j] can be interpreted as a differen-
tial operator on the quantum space.

Definition 6. We introduce the tensor Vi{j] as an operator acting on Jί which satisfies
the relation

)> ( 5 6 8 )

[ n q [ n ) , (5.69)

where xe Jί and [ , -~\q is defined by

ί ViW, x ] , = Vi[nx - (x* A ί $ ) Vm , (5.70)

[£[;].*],= Viinx-(x*λψ\)Vkll]. (5.71)

Before we prove the consistency of Definition 6 with the bicovariance, we
explain how this definition encodes the action and the coproduct of the Lie
derivative χ and χ. Actually, the definition of the q-deformed commutator in the
above definition is determined so that the Leibniz rule (5.60) is satisfied naturally in
the new algebra. This is shown by direct computation of the action of the Vi[n on
the product of the elements x, y e M:

Vm

(5.72)

where from the first line to the second we have used Eq. (5.70) and the relation
Δ{A\f}]) — ̂ 4ί[j] ® Ak

sft]. From the second line to the third we have used again
Eq. (5.56) for Vmy.

The corresponding equation for ^ [ ; ] is derived in the same way. The result is

ίViU], xy\ = ίViW, x\y + (x*λ1llj\)[Vm, y], . (5.73)



Complex Quantum Group 511

By virtue of definitions (5.68) and (5.69) the derivative in Eqs. (5.58) and (5.59) are
now represented as

Dx^θ^lV^x],, (5.74)

Dx = θί[j][Vi[jhxlq. (5.75)

Then Eqs. (5.72) and (5.73) imply that the relations which are given by substituting
(5.68) and (5.69) into Eqs. (5.64) and (5.65), respectively, also hold. Hence, the
Leibniz rule (5.60) is valid when we define the derivative as άx = Dx + Dx with Dx
and Dx in (5.74) and (5.75).

To show that the algebra generated by Vi{n and Vi[n together with the
coordinate functions zι and zt is also covariant under the quantum group trans-
formation, we have to show the consistency of Definition 6 with the bicovariance.
This can be achieved by the following property of the tensors V^^ and Vi[n as
a left-comodule:

Proposition 6. If we define the coactίon for Vi[n and V^^ as

ΔάVnn) = κ-ι(Mk

tκ{Mψn))® Vm , (5.76)

ALWIJI) = κ-ι(κ{M\)Mψn)® Vm , (5.77)

then the commutators with xeJί defined in Eqs. (5.70) and (5.71) satisfy

Σ X k ϊ h s \ ) , (5.78)

s - ] q ) , (5.79)

where asestf and xseJi and ΔL(x) = Σ s ( α s ® xs)

Proof Since the coaction on the first term in Eq. (5.70) and in Eq. (5.71) has the
same form as Eq. (5.78) and (5.79), respectively by definition, we have to prove that
the second term in Eq. (5.70) and in Eq. (5.71) behaves in the same way under the
coaction. For this we use the relation: Vα e J /

^ [ ί J [ ί *α) , (5.80)

(5.81)

It is sufficient to prove this relation for the generators. We give here the proof only
for Eq. (5.80), since the proof for Eq. (5.81) follows analogously. Taking
α = fc"1(M?)9 Eq. (5.80) is

s

p)) . (5.82)

Using

f f t H ^ ^ ^ ) , (5.83)

and the R-matrix representation of the functionals F and /, we find that Eq. (5.82)
holds due to the fundamental relation of the quantum group (1.6). When
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a = κ~ι{Ms

t\ the proof is parallel to the previous one and Eq. (5.80) holds due to
Eq. (1.10).

Then using the relation Eq. (5.80), the coaction on the second term of Eq. (5.70)
is calculated as

)^n]=Σ(α^^^^

(5.84)

where AL(x) — ̂ s(fl s ® χs) ^vith asestf and xseJi. Equation (5.79) can be derived
analogously by using Eq. (5.81). Therefore, we get the transformation of the
commutators (5.78) and (5.79) from the definitions (5.76) and (5.77).
q.e.d.

This proves the covariance of the comutators given in Eqs. (5.70) and (5.71).
Furthermore, Proposition 6 implies

^L(θiU]ίViιn,x^q) = Σas®θiU]lViιn,xJ, (5.85)
s

Φi[i\ Y i ^ , x s - ] , (5.86)

where Δ(x) = ]Γs(βs ® xs). This means if we use the derivative defined in Eqs. (5.74)
and (5.75), i.e., if we define the derivative by

Λx = θi^lViU]9x^ + θi^lVi[n9χ-]9 (5.87)

then the derivative d satisfies the requirement of the covariance (5.57) and this
shows the consistency of the identifications (5.68) and (5.69). Note that in our
construction, the condition of the covariance (5.57) holds separately for D as well as
for D.

Therefore, the Vi[n and Vi[n define comodules and the commutators in
Eqs. (5.70) and (5.71) transform in a consistent way with the transformation
properties of θι[j] and θι[j\ respectively3 and thus they are consistent with
Eq. (5.57).

To complete the algebra containing Vt[j] and Vi{^, we must also define the
commutation relation among them. This can be performed using the correspond-
ence between Vi[n{Vi{n) and the functionals XHJ](7J[J]) given in Eq. (5.68) (resp. Eq.
(5.69)).

3 R e c a l l t h a t in o u r p r e s e n t n o t a t i o n t h e t r a n s f o r m a t i o n r u l e of t h e b a s i s 0ι[j] is

AL(θi[j]) = Mί

ι,κ(Mί

[

j

j

]

Ί)®θί'[r] ,

which is equivalent to Eq. (4.3) in ref. [CSWW] using the definitions (1.17) and (1.18) together with
(1.14). Similarly for the basis θι[n in our present notation, the left-coaction is given by

AL(Θ1[J]) = κ(M;. , )M[^(x) ίK [ j ' ] .
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Appendix

We give here the definition of the various R-matrices. As we mentioned, we do not
apply the index convention (1.17) and (1.18) for the R-matrix,

= ε s

εs[j] ,

6 ± st

 Pn[i] Pm[k]

(A.2)

(A.3)
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