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Abstract. The measure of the splitting of the separatrices of the rapidly forced
pendulum

3c -f sin x = μ sin - ,
ε

is considered as a model problem that has been studied by different authors. Here
ε, μ are small parameters, ε > 0, but otherwise independent. The following formula
for the angle a between separatrices is established

cosh —
2ε

This formula is also valid for the particular case μ = εp, with p > 0, ε > 0, and
agrees with the one provided by the first order Poincare-Melnikov theory that
cannot be applied directly, due to the exponentially small dependence of α on the
parameter ε.

1. Introduction

Let us consider the equation of the rapidly forced pendulum

x + sinx = μsin- , (1.1)
ε

where ε, μ are small parameters, 0 < ε < 1, but otherwise independent. This
equation can be considered as a model of a two-dimensional integrable system
perturbed by a very rapidly oscillatory forcing. Also, performing the change of time
τ = t/ε, it can be considered as a nearly integrable system with slow dynamics:

x" + ε 2sinx = με 2sinτ Γ = — ) . (1.2)
V dτl
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Since the forcing in (1.1) is 2πε-periodic, the dynamical properties of this equation
can be better visualized with the help of the associated Poincare map P, defined in
the usual way: if z = (x0, x 0) is a point of the plane, and x(t) is the solution of (1.1)
satisfying the initial conditions x(0) = x0, x(0) = x0, then P(z) is defined simply as
(x(2πε), x(2πε)). Since Eq. (1.1) can be written as a (non-autonomous) hamiltonian
system, it turns out that P is an area preserving map on the plane.

If μ = 0, the phase portrait of P is very well known. We can consider x defined
mod 2π, and thus the phase space is a cylinder, filled up with integral curves of the
simple pendulum, consisting of closed orbits, except for one elliptic fixed point at
(0(mod2π), 0), one hyperbolic fixed point at ( — π(mod2π),0), and two separatrices
associated to the hyperbolic point, given by the two homoclinic orbits of the simple
pendulum:

Γ± = {(xo(ίλ ±3Ό(0)} >

with

xo(t) = 2arctan(sinh t),

2
yo(t) = xo{t) =

coshί

The phase space looks more complicated if μ Φ 0, at least near the unperturbed
separatrices. If μ is small enough, there is still a hyperbolic fixed point of P near
( —π, 0), corresponding to a hyperbolic 2πε-periodic orbit of (1.1), as well as the
stable and unstable invariant curves C\ C", that lie near the unperturbed separatri-
ces Γ+. They intersect in the so-called homoclinic points. Due to the special form of
Eq. (1.1), they must intersect on a point zh on the axis x, as well as along its orbit
{Pn(zh\ neZ}. Let us call α the angle between the invariant curves CM, Cs.

If α is different from zero, the invariant curves intersect transversally at zh and
enclose loops whose area S is an invariant, i.e., it does not depend on the
homoclinic point zh that has been chosen. The "width" of these loops is measured
by the distance between the invariant curves along orthogonal lines to the unper-
turbed separatrix. We call d the maximum of such distances in the first loop. These
three quantities are very related, but only S is an invariant. All they measure the

Fig. 1. Phase space of the pendulum equation
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Fig. 2. Phase space of the perturbed pendulum equation

stochastic layer produced by the transversal intersection of C", Cs. In fact, this
layer is thicker by an algebraic factor in ε, which was derived by B.V. Chirikov and
rigorously obtained by V.F. Lazutkin for the standard map in [La91]. The main
goal of this paper consists of obtaining asymptotic formulae for such quantities,
and is summarized in the following result.

Theorem 1. The Splitting of Separatrices. For ε -> 0, μ -• 0, the following asymptotic
formulae hold:

- O(μ) + O(ε2)] ,

d =

s π
cosh —

2ε

πμ Γ 1

S =

cosh —
2ε

Aπμε

O(μ) + O(ε2)] ,

0{μ) + O(ε2)] .

cosh
2ε

In the above theorem, μ, ε are independent parameters. A particular case takes
place if one considers μ as a positive power of ε: μ = εp.

Corollary 2. Ifμ = εp in Eq. (1.1), with p > 0, then the following asymptotic formulae
hold, where y = min{2, p}:

π
sinα = -

cosh —

d =
πεp

cosh —
2ε

0(8')],

cosh I
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The main problem in establishing the theorem on the splitting of separatrices
comes from the fact that the measured quantities sin α, d, S are exponentially small
in the parameter ε, and because of this, the classical perturbation methods do not
apply.

In fact, in a first attempt, one can try to apply directly the so-called Poincare-
Melnikov theory, that gives the following formula for the splitting of separatrices

d = ^max|M(s) | + O(μ2),

where M(s) = M(s9 ε) is the celebrated Poincare-Melnikov integral

00 σ
M(s) = j xo(σ + s)sin- dσ ,

- o o ε

that only depends on the unperturbed separatrix and the perturbation, and thus
can be calculated using residues, giving rise to the 2πε-periodic in the variable
s expression:

M(s) = sin - .
π ε

cosh —
2ε

In this way we arrive at the following formula:

^

coshj

where the first term gives the correct result, but this first term only can dominate
the second term 0(μ2) if the parameters μ, ε are related by

μ = ol—i
\ cosh —
\ 2ε

i.e., if μ is exponentially small with respect to the parameter ε. Thus, this direct
approach gives the correct estimate for the splitting of separatrices, but cannot be
justified in the case that μ, ε are independent small parameters. As we shall see later
on, the main point in establishing such result will consist of computing M(s) also
for complex values of s.

The study of the splitting of separatrices was initiated by H. Poincare in [Po93],
and he was aware of the fact that the splitting was not of finite order in the
parameter ε for this kind of singular problems. Later on, Arnold [Ar64] and
Melnikov [Me63] developed the so-called Poincare-Melnikov theory. This theory,
as well as the above discussion, can be also found in chapter 4 of the book [GH83]
by J. Guckenheimer and P. Holmes. J. Sanders [Sa82] noticed also the problems,
previously stated by Poincare, arising from the direct application of the Poincare-
Melnikov integral, when this one depends on the small parameter ε.

Upper bounds for the exponentially small splitting of separatrices in the case of
hamiltonian systems with two degrees of freedom were given by A.I. Neishtadt
[Ne84], and A. Benseny, A. Delshams [BD87]. Upper bounds for families of area
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preserving diffeomorphisms close to the identity, having homoclinic points, have
been obtained by E. Fontich, C. Simό, [FS90], and by E. Fontich [Fo91] for o.d.e.

for p > — 2, and zero-mean functions g. The case of families of volume preserving
g-dimensional maps, q > 1, is considered by C. Amick, S.C.E. Ching, L.P. Kadanoff
and V. Rom-Kedar [AC89]. V.F. Lazutkin [La84] investigated the standard
mapping

where/(x) = sinx, and was able to give an asymptotic expression for the angle
between separatrices

sm α =

where the coefficient | θί | does not depend on ε,

|0i | = 1118.82770595 . . . ,

and was later computed by V.F. Lazutkin, I.G. Schachmannski and M.B. Tabanov
[LST89]. For the standard mapping, but with/(x) a polynomial or a trigonometri-
cal polynomial, V.G. Gelfreich, V.F. Lazutkin, and M.B. Tabanov [GLT91]
obtained also asymptotic expressions for the splitting of separatrices.

It has to be noticed that the problem for maps is significantly more difficult
than for flows, because the linear difference equations that appear in that case do
not lead to a computational Poincare-Melnikov theory, as happens in the case of
flows, and the analysis is more intricate (see [La84]).

Concerning our model equation (1.1), it was first considered by P. Holmes, J.
Marsden and J. Scheurle [HMS88] in the case μ = δεp:

x + sinx = <5εpsin- ,
ε

and the following lower and upper bounds were derived:

c 2 δ ε p e ~ π / 2 ε ^d^ c γ b ε p e - % ί 2 z ,

for <5, ε small enough, and p ^ 8. This result was improved by V.G. Gelfreich
[Ge90], and he gave the asymptotic expression for the angle only under the
assumption p > 5. Numerical computations performed by C. Simό [Si90], A.
Benseny and C. Olive [BO91] show that the asymptotic expression may be valid
for the range of values of the parameter μ = εp for p ^ — 1.

The rest of this paper is organized in the following way. In the next two sections,
we recall the results about the existence of a 2πε-periodic orbit γ of (1.1) near the
point (x, x) = ( - π , 0). This periodic orbit is hyperbolic and thus the Birkhoff
normal form is convergent in a complex neighborhood of y, with a radius of
convergence not depending on ε, μ. This analytical normal form provides good
parameterizations for the local manifolds associated to γ, in terms of time t and
a complex parameter s. The extension theorem of Sect. 4 shows that these para-
meterizations can be extended, on a strip of values of ί, s, for instance for the
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Unstable manifold, as far as it comes back to the neighborhood of convergence of
the normal form. The extension theorem is crucial in our result, and it involves
several technicalities as a good choice of the solutions of the variational equation
associated to the unperturbed separatrix, as well as a partition of the strip in
different regions in order to get this result. Its proof is relegated to Sect. 7. In Sect. 5,
the local first integral provided by the analytic normal form is defined, and
extended along the invariant manifolds, using the extension theorem. Finally, in
Sect. 6, the distance function φ(s) between invariant manifolds is introduced,
following [La84, Ge90], its main properties are proven, and the announced results
relating this function with the Poincare-Melnikov integral follow from the exten-
sion theorem and Fourier series arguments.

Our approach for obtaining the exponentially small splitting follows the main
ideas of [La84, Ge90], but we do not try to extend the first integral defined in
a neighborhood of the periodic orbit. Instead, we use the extension theorem
to "come back" to this neighborhood of the periodic orbit, and we use the
Poincare-Melnikov integral for complex values of the variable s. Our method is
applied in this paper only to Eq. (1.1), because it has become "the" model equation
for this matter of splitting of separatrices, but we think it can be applied to different
kinds of systems with rapidly oscillatory forcing, at least if the singularities of the
homoclinic solution on the complex field are uniquely poles.

2. The Periodic Orbit

The equation of the rapidly forced pendulum

x + sinx = μsin- , (2.1)

ε
can be written as a hamiltonian system:

y = — sin x + μ sin - , (2.2)
ε

with associated hamiltonian

hlx9y,-9μ) = h°(x9 y) - μxsin - , (2.3)
V ε ) ε

h being non-autonomous, 2π-periodic in the variable -, and where
ε

h°(x, y) = j ~ (cos x + 1) = ^ - 2 cos2 ^ . (2.4)

Equation (2.1) is a perturbation, of order μ, of the pendulum equation

x + sinx = 0 , (2.5)

or equivalently, of the hamiltonian system:

y = — sin x , (2.6)

associated to the autonomous hamiltonian h°.
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Equations (2.2) and (2.6) are 2π-periodic in the variable x, and therefore we can
consider this variable defined mod 2π. System (2.6) has a hyperbolic equilibrium
point at γ0 = ( — π, 0). The level set h° = 0 is composed of this hyperbolic point and
two homoclinic orbits Γ+ = {(xo(ί)> ±yo(t))}, given explicitly by:

xo(t) = 2arctan(sinh t),

^ (2 7)

Considering now the full system (2.2), it is well known that it has, for μ small
enough, a hyperbolic 2πε-periodic orbit γ = {(xp(t)9 yp(t))} near γ0.

In fact, rescaling time through τ = t/ε and shifting y0 to the origin by x = x + π,
we get from (2.1) the equivalent equation

x" = ε2sin x + με2sin τ ( ' = — I , (2.8)

V dτJ
2π-periodic in the time τ. The 2π-periodic orbit γ of (2.8) near the origin can be
found using the standard method of successive approximations. Thus, beginning
with a 2π-periodic approximation xo(τ) = 0, we can define recursively 2π-periodic
approximations xn(τ), τ e R , by

1 T ( c o s h | > ( * - σ)] - l)fH(σ)dσ , (2.9)
2εsinhπετ_7 ]

where

fn(τ) = ε2(sin(xΠ(τ)) - xΠ(τ)) + με2 sinτ . (2.10)

The recurrence (2.9) preserves the symmetry properties of (2.8):

its first non-zero iterate is

με2 .
= - 7 — 5 sinτ,

and gives, for μ small enough, the desired uniform convergence of (xn)n^o to
a 2π-periodic solution xp(τ) = xp{τ, μ, ε) of (2.8) satisfying:

8 ) . (2.12)

Remark. From the expression (2.12), one can see that the condition of smallness on
μ is not strictly necessary for the existence of the periodic orbit γ. For the relevant
case, i.e., the existence of a hyperbolic periodic orbit y, it is only required that με2 be
small, and therefore μ can be big (for instance, μ = 1/ε). For more details see
[Fo91].

Concerning the original system (2.2), from (2.12) we get the form of the
2πε-periodic orbit γ9 and we summarize all these previous results in the following
proposition.
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Proposition 3. Existence of the Periodic Orbit. If μs2 is small enough, system (2.2)
has a 2πε-periodic orbit y = {(xp(t), yp(t))} near the point y0 = ( —π(mod2π), 0):

ε \ / "'

In order to study the local behavior of the periodic orbit, we perform in system
(2.2) the canonical change of variables:

q = x - xp(t),

P = y- yP(t), (2.14)

obtaining the equivalent hamiltonian system

p' = -sin(xp(i) + q) + s inx^ί) . (2.15)

This is again a hamiltonian system, with hamiltonian given by k, where

P2

k = k(q, p, t, μ, ε) = — - cos(xp(ί) + q) + cosx^ί) - gsinxp(ί) . (2.16)

The hamiltonian k depends on the variables μ, ε, through the periodic orbit
xp(t) = xp(t, μ, ε), and can be separated in two parts

where

k°(q,p) = ^- + cosq-l= h°(q - π9p) = \(p2 ~ I2) + 04(q) , (2.18)

with 04(q) denoting an analytic function of q, beginning with terms of order
greater than or equal to 4 in the variable q, and

k1 := k — k° = —cos(xp(t) + q) + cosxp(ί) — qύnxp(t) + 1 — cosg

where we have used that xp(t) = —π + O(με2) (see (2.13)).
Now, the origin q = p = 0 is a hyperbolic equilibrium point of the hamiltonian

system associated to fe°, and the separatrices given by the equation k° = 0 are the
invariant stable and unstable curves of this equilibrium point. In order to obtain
good parameterizations for the invariant manifolds associated to the periodic orbit
y, i.e., the origin in system (2.15), we shall deal with the (Birkhoff) normal form of
k in a neighborhood of the origin.

3. The Normal Form

First of all, we can put the linear part of system (2.2) into its normal form, using
standard Floquet theory. This is summarized in the following proposition.
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Proposition 4. Linear Normal Form. There exists a linear, 2πε-periodic in time,
canonical change

q = a l x I -, μ, ε j Q + a 1 2 ί - , μ,εjP ,

verifying

P = a21 K μ, ε j Q + α2 2 h | i , e ) P , (3.1)

1 c
aίl=- + O(με2l a12 = -- + O(με2),

«2i = - + O(με2) , «22 = ̂  + O(με2) , (3.2)

where c Φ 0 is an arbitrary constant. With this change and the translation (2.14), ί/ie
original system (2.2) is transformed into a hamiltonian system:

hamiltonian K is in normal form up to order 2:

/ t \ ( t \
K β, P, -, μ, ε = K°(β, P) + KM β, P, -, μ, ε

\ ε J \ ε J

K3(Q,P>

t-,μ,ε\, (3.4)

with

and ω = ω(μ, ε) = 1 + O(μ2ε4).
The 2πε-periodic orbit y of system (2.2) is now placed at the origin in these

coordinates (β, P), and its characteristic exponents are given by ±ω.

Moreover, it is rather clear that the unperturbed linear change of variables

P=l-Q + ̂ P, (3.5)

transforms the unperturbed hamiltonian k° in its normal form up to order two, i.e.,
expressing k° in the new variables β, P, it gets the form:

k°(q, p) = K°(Q, P) = QP + 0 4(β, P) (3.6)

The hamiltonian K of (3.4) is now ready to perform on it the nonlinear normal
form. In our case, this procedure has two important properties.

On the one hand, since the origin of the hamiltonian system associated to K is
hyperbolic, the transformation to normal form is convergent in a neighborhood of
the origin (see [Mo56, Br71, Br72]).
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On the other hand, as K depends smoothly (in fact analytically) on the
parameters μ, ε, the same will happen to the normal form (see [AKN88, Br89, FS90,
Se91]), and, as a consequence, for ε, μ small, the radius of convergence for the
transformations to normal form can be bounded by a constant R not depending on
μ, ε. We can now collect these results about the nonlinear normal form near γ in the
following proposition.

Proposition 5. The Nonlinear Normal Form. There exists positive ε0, μ0, R and
a canonical change of variables:

Q = φ(x, Y>-ε>μ>*\ = Φ°(X, Y) + Φ

P = ψ(x, Y, \ μ, s) = φ°(X, Y) + φ1 (x, 7, ̂  μ, ε) , (3.7)

analytic for \X\2 + | Y\2 < 2R, teWL, |μ| < μ0, 0 < ε < ε0, 2πε-periodίc in ί, that
transforms the hamiltonian system (3.3) into the hamiltonian system generated by
a hamiltonian H that is in normal form:

H(X, Y, μ, ε) = F(XY, μ, ε) = F°(XY) + F\XY, μ, ε)

= ωXY+F2(XY,μ9ε), (3.8)

with

φ\ φ\F' = O(με2), F2 = O2(XY) . (3.9)

This hamiltonian system is given by the equations:

X = F'(XY,μ9s)X9 Ϋ=-F'(XZμ,ε)Y, (3.10)

where F'(I9 μ, ε) denotes the derivative of F with respect to its first variable I:

dF dF° dF1

F'(I, ^ε) = ~sJ (7> ̂ z) = ̂ [f(/) + ~dΓ(/? μ' ε )

= ω + ̂ ( / , μ , ε ) . (3.11)

Notice also that by means of the unperturbed change (φ°, φ°):

Q = φ°(X, Y) = X + ' - ,

P = ψ°(X,Y)= Γ + , (3.12)

the hamiltonian system of unperturbed hamiltonian K° is transformed in the
hamiltonian system of hamiltonian F°.

System (3.10) can be easily integrated, using the fact that / = XY is a first
integral:

X(t) = eF'(XoYo,μ,ε)tXo ?

e-FtiXoYo μ Λ*Yθ9 (3.13)

the solutions being defined for ί e R , and (Xo, Yo) in the complex disk
|Xol2 + l^o I2 < 2R. Also note that F is a real analytic function at least for
|/ | < R, \μ\ < μ0, and 0 < ε < ε0.
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4. Parameterization of the Invariant Manifolds

For Yo = 0 (Xo = 0) we have the unstable (stable) invariant curve of the origin of
(3.10), and the solution along it can be parameterized as

(XM(ί, s), Yu{t, s)) = {eω(t+s\ 0) (unstable curve) ,

(X% s)9 Y
s(t, s)) = (0, e-

ωit+s)) (stable curve), (4.1)

the parameterizations being defined for t e R, s e <C.
Returning to the original coordinates (x, y) through the changes (3.7), (3.1) and

(2.14), we get the following parameterization for the unstable manifold W"oc(y)
associated to the hyperbolic periodic orbit y:

, 5) = xp(t) + axl rλ Qu(t, s) + a12 rλ P»(ί, 5 ) ,

/(t, 5) = x"(ί, 5) = yp(t) + a21 Q β"(ί, s) + α2 2 Q P"(ί, 5) , (4.2)

where fly ί ^ J = atj μ , μ, ε \ and βtt(ί, s) = β"(ί, s, μ, ε), PM(ί, s) = PM(ί, 5, μ, ε) are in

fact the parameterizations of the unstable manifold associated to the origin of
system (3.3). These functions are given by:

Ou(t s) = ώ I eω(t+s) 0 - ιi F\

(4.3)

The parameterization (4.2) is well defined and analytic for t e IR, s e € with real
part of their sum small enough:

l n : = Γ )

and satisfies for these values of ί, s the property:

xu(t + 2πε, s) = xu(t, s + 2πε), (4.5)

as a consequence of the 2π-periodicity of φ9 φ with respect to the variable -.
o

Concerning the stable manifold W*oc(y\ we can now use the symmetry proper-
ties of system (2.2), and more precisely the fact that the hamiltonian h satisfies

hl-x9y, --9μ\ = hlx9y9-,μj9 (4.6)

i.e., is reversible under the action of the involution

l) (4.7)
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Therefore, if x(t) is a solution of Eq. (2.1), —x( — t) is also a solution, and thus
Ws(γ) = 0ZWu(y)(mod(2π, 0)), and we can parameterize W\y) by:

xs(ί,s) = 2π-x"(-ί, -s),

y% s) = xs(t, s) = xu( - ί, - 5) = / ( - ί, - 5), (4.8)

for

ί e R , 5 G C such that ω(t + 91s) > χ l n — : = - 7\ (4.9)
2 2iv 2

For μ = 0, on the one hand parameterization (4.2), (4.3) for Wu(y0) = (/z0)"1^)
becomes

x«ί, 5) = - π + l- φ°(e«+s\ 0) - ^ ^0(β<
ί+->, 0)

where we have used (2.13), (3.7), (3.2) and (3.12), but on the other hand we already
have the previous parameterization (2.7):

xo(t + s) = 2arctan(sinh(ί + 5)) = - π + 4e(t+s) + O(e3{t+S)) .

These two parameterizations coincide if we choose c = i , and in this way

xo(ί + 5) = - π + 4φ°(e(t+s\ 0) - £ φ°(e(t+s\ 0) .
o

With this choice of c, from (4.2), (3.2) and (3.9), we obtain

x"(ί, 5) = xp(t) + 4(/>°(βω(ί+s), 0) - ^ ^°(^ ί + 5 >, 0) + O(με2eω(t+S))
o

= xp(ί) + xo(ω(ί + s)) + π + O(με2^ω ( ί + S )) (4.10)

for ί e R, 5 e C satisfying (4.4).
Since ω = 1 + 0(μ 2ε 4), we can assume, restricting μ0 if necessary, that

| ω - 1| < £ . Then

for t + 9ίs < —, with cr depending only on T. From (4.10) we now obtain the

following expression for the parameterization of Wϊoc(y) near y:

xu(t, s) = xp(t) + xo(t + s) + π + 0 ( μ ε V ( ί + s ) ) + O(μ 2 εV ί + s ) / 2 ) . (4.11)

In the same way we arrive at

/ ( ί , s) = xu(t, s) = yp(t) + yo(t + 5) + O(με2eω ( ί + S )) + O(μ 2 εV ί + s ) / 2 ) (4.12)

for the same set of values of ί, 5, and we get analogous expressions for xs(t, s), ys(ί, 5),
for ί e R , s e C satisfying (4.9).
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We nό\V want to extend these two formulae relating the parameterization of
T̂ocOO to the unperturbed separatrix for other values of ί, s. However, it has to be

noticed that xo(t + s) has a singularity in the complex field for t + s = + - i . More

precisely, xo(ί + s) has a simple pole at these points with residue + 2i:

xo(t + s) = — — + θ(t + s + ^ Π .

That means that we will not be able to control the growth of the parameterization

for 3s = ± - We will restrict ourselves, following [HMS88], to a complex strip of

imaginary width equal to - — ε. More precisely, for

ίeJR,se(C, | 3 s | ^ - ε , |t + 9 l s | ^ 7 \ (4.13)

the following extension theorem will ensure us that the parameterization of Wu{y)
is still defined and 0(μ)-near the unperturbed separatrix. We state it first, for the
sake of generality, for arbitrary solutions x(ί, s) of (2.1).

Theorem 6. Extension Theorem. Let xo(t + s) = 2arctan(sinh(ί + s)) the unpertur-

bed separatrix (2.7), defined for ί e R , |3s | < - . Let s e C , |3s | g - - ε, and x(ί, s)

a solution of{2Λ) defined for t = tθ9 with t0 + 5Rs = -T= - I n — , such that:
2iv

x(ί0, s) - xo(to + s) = O(με2) ,

x{t0, s) - yo(to + s) + μεcos — = O( με2) .

ε

Then x(ί, 5) is defined for — T ^ t + 9ϊs ^ Γ, and satisfies:

x(t, s) - xo(t + s) = O(μ), x(ί, 5) - yo(ί + s) = O(μ).

By (4.11), (4.12) and the asymptotic expression of yp(t\ it is clear that the
parameterization (x"(ί, 5), yu{t, s)) of Wu(y) satisfies the hypothesis of the extension
theorem for t0 = — 9ϊs — Γ, and we have:

xu(U s) - xo(t + s) = O(μ),

/ ( ί , 5) - yo{t + 5) + μεcos - = O(μ), (4.14)
ε

for ί, s in the strip (4.13).
The extension theorem is a crucial tool in this paper. When (xo(t + s), xo(t + s))

comes back near y0 — ( —π(mod2π), 0) as t + 9ΐs grows, (xo(t + s), xo(ί + s)) re-
enters the neighborhood of γ9 where the normal form is convergent, and the same
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will happen to the parameterization of Wu(y\ due to the bounds (4.14) given by the
extension theorem. The main point here is that this is valid for a complex strip of

s satisfying |3s | ύ -z — ε, and Fourier series methods will be useful, as we shall see

later on. The proof of this theorem involves several technicalities, as a good choice
of the solutions of the variational equations associated to the separatrix, and also
the partition of the strip in different regions, and is deferred to the last section.

Remark. It has to be noticed here that when selR this extension theorem becomes
a well known result and the bounds (4.14) are of the same order as the ones at the
initial conditions, i.e.,

x(t, s) - xo(t + s) = O(με2),

x(U s) - yo{t + s) = O(με2) - μεcos- , (4.15)
ε

for — T S t + s ^ T, and ί, s e R. (In fact the proof of these bounds is contained in
Proposition 7.2 if we take there s e R.)

5. The First Integral

The hamiltonian H(X, Y, μ, ε) = F(XY9 μ, ε) given by (3.8) is a first integral of
system (3.10), analytic at least for complex X, Y satisfying

\X\2 + \Y\2<2R, | μ | < μ 0 , 0 < ε < ε0 .

We recall that R does not depend on μ, ε. If we denote now

X = Φ ίβ, P, t, μ, ε J = Φ°(β, P) + Φ1 (β, P, -^ μ, ε

(5.1)

the canonical change of variables inverse of (3.7), it turns out that Φ, Ψ are

2π-periodic in the variable -, analytic for
ε

| β | 2 + | P | 2 <2R, \μ\<μθ9 0 < ε < ε0 ,

and Φ 1 , Ψ1 = O(με2). Here K does not depend on μ, ε.
The hamiltonian H induces a first integral e in system (2.2), simply performing

the inverse changes of variables of (3.7), (3.1) and (2.14), and therefore given by

e[x,y, *-, μ, ε j = F ( Φ \Q, P, ^ μ, εj Ψ ( Q, P, *-, μ, ε ), μ, ε ) , (5.2)

where
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and

q = x - xp(t)9 p = y- yp(t). (5.4)

e is 2π-periodic in the real variable -, and analytic for complex x, y satisfying
ε

| χ - χ P ( ί ) l 2 + l3>-;Mί)l 2 <2/ (5.5)

for ί e R , and |μ| < μ0, 0 < ε < ε0. Here r does not depend on μ, ε.
Due to the fact that H is zero for X = 0 or 7 = 0 , it turns out that the

first integral e vanishes on the periodic orbit γ and on the invariant manifolds
Wχoc{y\ Wfoc(y). Moreover, taking into account the form (3.8) of H, as well as
the expressions (5.1), (3.5), and (3.1) for the canonical changes, it follows that

Ψ° ( π + g + ) ; , 4(y - x - n)Jj + O(με2)

(5.6)

on the domain (5.5) of definition of e.

6. The Distance Between Invariant Manifolds

The first integral e is well defined and vanishes on Wιoc{y)\

T
for ω(t + 9ίs) > - , 0 < ε < ε0.

Now, by means of the extension theorem, e can also be defined on the
parameterization for the unstable manifold for t + 9ls big enough, since x"(ί, s) is
near to the separatrix xo(t + 5), and this one comes back at a distance of order of
με2 of xp(t) for t + 9is big. More precisely, we can assume that R has been chosen in
such a way that

|xo(ί + s) - π\2 + |xo(ί + s)\2 < r

T
for t + 9ls > —. Then, restricting μ0 if necessary, we can assume that

|x«(ί, s) - xp(t)\2 + | /( ί , 5) - yp(t)\2 < 2r

for

ηn

ίeR, -<t + dis<T, |3s|^--ε=:rε (6.1)

and |μ| < μ0, 0 < ε < eo
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As a consequence, (xM(ί, s), yu(t, s)) lies on the domain of definition (5.5) of e for
these values of ί, s, and therefore e can be extended along the orbits (xu{t9 s), y

u(t, s))
T

for t + 9Ϊ5 ^ —, simply taking constant values along these trajectories.

Now following [La84, Ge90], we are finally led to the function that will
measure the distance between the invariant manifolds Wu(y\ Ws(y). Let us define

φ(U 5, μ, ε) = e (xu(t, s), yu(t, s), *-, μ,ε\-e (xs(t, s), / ( t , s), -^ μ, ε J

(6.2)

on the domain (6.1). Since e is a first integral, it is constant along trajectories of
system (2.2) and consequently φ does not depend on t. We will write simply

φ(s) = φ(s, μ, ε) = ψ(t, 5, μ, ε),

for

seC, | 2 s | < ^ - ε , \μ\ < μ0, 0 < ε < ε0 . (6.3)

The function φ gives a measure of the distance between the invariant manifolds
Wu{y\ Ws(y). It was introduced by V.F. Lazutkin in [La84], and used in [Ge90,
GLT90, LST89, FS90]. A similar and previous approach takes place in [Zi82]. The
next proposition establishes the relation between φ and the Poincare-Melnikov
integral.

Proposition 7. For \^s\ ^ rε = - — ε, we have

φ(s) = μlM(s) + O(μ) + O(ε 2 )] , (6.4)

where M(s) is the Poincare-Melnikov integral:

M(s) = f yo(σ + s)sin- dσ = sin- . (6.5)

cosh —

2ε

Proof. From (5.6) and the definition (6.2) of φ, it follows that

φ(s) = ft V ( ί , s), / ( ί , s)) - h°(x% si y% 5)) + O(με2) (6.6)

Introducing now the functions

Δ'(t9 s) = ft°(x^ί, s), / ( ί , s)) - h°(xp(t), yp(t)) (6.7)

for β = s, w; ίGR, |3s | ^ rε, and
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relation (6.6) becomes

φ(s) = Au(t, s) - ΔS{U s) + O(με2) = Δ(t9 s) + O(με2). (6.8)

We can differentiate (6.7) with respect to the time £, obtaining

Δ*(U s) := — (ί, 5) = μ(/( ί , 5) - yp(t)) sin *-, β = s,u. (6.9)

By the asymptotic properties (4.11), (4.12) of xβ(t, s) it turns out that

Aβ(t, s) -* 0 as t -> + 00, — 00 if β = s, u, respectively , (6.10)

and consequently

A(t,s) = μ ] (/(σ, s) - yp(σ))ύn - dσ + μ f (/(σ, s) - yp(σ))sin - dσ . (6.11)
-00 ε ί ε

We can now use the approximations provided by (4.12) and (4.14) to compute
the above integrals in terms of yo(σ + s), obtaining, for instance for t = T — ίϊs:

. (6.12)

Inserting (6.12) in (6.8), we get (6.4). |

We have now all the ingredients needed for the proof of Theorem 1. During the
rest of this section, 5 will denote a real number. Using properties (4.5) and the fact
that φ does not depend on ί, it follows that φ is a 2πε-periodic function, φ is also
analytic in the domain (6.3) due to the analyticity of the first integral e and the
parameterization of the invariant manifolds.

Let us consider now the Fourier expansion of φ\

with Fourier coefficients

1 2πε k pkj 2πε k

Φk = y- I ψ(s)e-t''ds = — J ψ(s + irt)e-'?ds (6.13)
2πε 2πβ

2πβ 0

= j φ(s — ίrε)e ι&sds . (6.14)

We compute the first Fourier coefficients φί9 φ -x using (6.4), (6.5):
rε

Φ-i = 7L— f Φ(s + irε)eιεds
zπε Q

rε

I I/O F. £'&£• S

J [M(s + ίrε) + O(μ) + O(ε2)']eι^ds

2 ) ] (6.15)

2πε J

o

iπμ

cosh —
2ε
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(6.16)

cosh
2ε

The higher order Fourier coefficients can be simply estimated, using (6.13) if
k< - 1 , and (6.14) if k> 1, by

I 2πε k o-\k\-2πε k

k " 2πε J 2πε

μe
~\k\j2πε

2πe
[M(s ± irε) + O(μ)

(6.17)

and in this way we arrive at the formulae:

φ(s) = φ0
fcΦO

f(s)=

= Φo •

2πμ

2πμ Γ . s
sm -

^u π L βc o s h -

O(ε2)

fcΦO
ε cosh —

2ε

- Γ
π |_

cos - + O(μ) + O(ε2) \ , (6.18)

forselR.
In order to prove Theorem 1 we only need to compute the coefficient φ0, and to

relate the function ψ with the quantities d, sinα, S. Inserting (6.18) in the expres-
sions c), d), e) given by the next proposition we obtain the asymptotic formulae for
these quantities and Theorem 1 is completely proven.

Proposition 8. The function ψ satisfies the following properties:

a) ψ(s0) = Ofor some real s0 = O(με2), and therefore we can consider \j/{ϋ) = 0
performing a translation in the parameter s.

b) Ifx"(t, Sj) = xs(t, s2) (giving an homoclinic connection), then ψ{sι) = 0, and

δxs dxu

sinΘ(ί, st,s2),

where xβ(t, s):= (xβ(t, s), yβ(t, s)), β = s,u, Λ denotes the exterior product on 1R2,
and Θ(t, s l s s2) is the angle between x"{t, s t ) and xs(t, s2).

c) f(0) =
d) S = Γo

ε
O(με2)]sinα.

s, Ψo = iTψ(β)ds = 0.

Proof. Let s 0 e R be the value of s such that (x"(0, s0), y"(0, s0)) belongs to the line
of fixed points of the involution (4.7), i.e.:

x"(0, so) = 0 , (6.19)
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then (xu(ΐ, &o\ yu(t, s0)) is the homoclinic orbit of Eq. (1.1), because the symmetry
(4.8) implies that

xw(ί, s0) = x% - s 0 ) , f(t, so) = y% - s 0 ) , ί e R .

In order to know the value s0 we have to solve Eq. (6.19). Since selR we can use
property (4.15) for t + s ^ Γ, and from the variational equations satisfied by the

-^- (ί, s), -f- (ί, s) ):
OS OS )

dt\ds) ds'

d_

it follows

^ ^ , (6.20)

^ 5 OS

for ί + s ^ T and therefore

s0 = 0 + O(μs2) . (6.21)

Now, we can change the parameterization of the invariant manifolds performing
the translation s — s0 on the unstable manifold and consequently, by (4.8), s + s0

on the stable one. Due to (6.21), the asymptotic properties (4.11), (4.12) do not
change under this translation. From now on, we will consider that we have chosen
these parameterizations, and then we have that

) = / ( t , 0 ) , (6.22)

and thus ^(0) = 0.
b) We differentiate (6.2) at the point sx:

( W ), f(t, si), ή ^ (ί, Si) + γy ( W s,\ f(t, si), ή ^ (ί, si) .

Using the normal form theorem given in Propositions 4 and 5, the change of
variables

(x9y)\-+(s,e) (6.23)

is symplectic, and one can check that

e(x% s), f(t9 s), ί) = 0 ,

s(xs{U s), f{t9 s), t) = s.
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Differentiating these two equations and using that the change is area preserving we
obtain:

Έ(ί'S2) = % ( χ S ( ί ' S 2 ) ' / ( ί ' S 2 ) ' l) = % ( x " ( ί ' S l ) ' y"{t'sΛ I ) '

ϊ ( ί ' s 2 ) = - f
and inserting these equalities in the formula of ψ'(sι), we get the required expres-
sion:

dys dxu dxs dvu

_ _ ( t ) S 2 ) _ ( ( , S l ) + _ ( ί , S 2 ) ^ ( ί , S l ) .

c) is a direct consequence of a), b), and formula (6.20).
d) Consider the Poincare map P defined in the introduction. Using property

(4.5), it follows

P(xs(0, s\ / (0, s)) = (x*(2πε, s), /(2πε, 5))

= (xs(0, s + 2πε), /(0, s + 2πβ)),

and a similar property for the unstable manifold. This means that the invariant
stable and unstable curves Cβ

9 β = s,u for the Poincare map are given by

C* = { ( ^ ( 0 , 4 / ( 0 , S))}9 5 G R .

The points zh = (xs(0,0), /(0,0)) and P(zh) = (xs(0, 2πε), /(0, 2πε)) are homo-
clinic points of P, and due to the fact that P preserves the orientation we have
another homoclinic point between them. Consequently the function φ has one zero
in ]0 ? 2πε[. Due to the symmetries (4.8) and the periodicity of ψ this new point is
given by (xs(0, πε), /(0, πε)), and therefore φ(πε) = 0.

Since P preserves area, the area of the loop (see Fig. 2) is given by

xs(O, 2πε) xs(O, 0)

S= I (f(x) - y"(x))dx = J (f(x) - y"(x))dx ,
xs(0,πε) xs(O,-πε)

where y = yβ{x) is the explicit expression of the curve Cβ in terms of the variable
x, β = s, u. By the symmetry we can also write

xs(0,πε)

S= ί (f(x)-f(x))dx = SSdxdy,
xs(0,0) D

where D is the set D = {(x, j) |x s(0, 0) ^ x ^ xs(0, πε), /(x) ^ ^ ^ / W } Perform-
ing the area preserving change of variables (6.23) and introducing

D' = {(5, e) 10 ^ s ^ πε, φ s ( 0 , s), /(0, s), 0)£e£ e(xu(0, s), / ( 0 , s), 0)} ,

the area S is given by

S = JJ dsde = ]ψ{s)ds.
D' 0
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Using again the symmetry, one easily gets

ψo = j φ(s)ds = 0 .
0

e) follows from the mean value theorem applied to φ. |

7. Proof of the Extension Theorem

The proof of Theorem 6 will be performed through two propositions that will
assure the extension of x(t, s), in principle only defined for t + Ms = - T. The first
proposition gives the whole extension of x(ί, s) for t -f Ms ^ T, but only if

0 ^ 3s ^ - — ε1 / 2. For the values of 5 with - — ε1 / 2 ^ 3 s ^ - — ε this proposition

only assures the extension of x(t, s) up to a distance of order ε1 / 2 to the singularity
of xo(t + s), or equivalently for t + Ms ^ ε1 / 2. With the second one we will be able
to enlarge the domain for these values of 3s up to t + Ms ^ Γ. These two

propositions are also true for ε — - ^ 3 5 ^ 0, and putting this altogether, Theorem

6 will be proven.
In order to carry out this procedure we will compare the solution x(ί, 5) with the

homoclinic solution xo(t + s) of the unperturbed equation (2.5), and thus we
introduce:

ξ(t,s):=x(t,s)-xo(t + s)9

η(t,s):=x(t9s)-y0(t + s).

The system of differential equations verified by (ξ(t, s), 77 (ί, s)) with respect to the
variable t is:

ή = -sin(ξ + xo(t + s)) + μsin- + sinxo(t + s).
ε

In order to study this system it is very convenient to write it as:

ή = - c o s x 0 ( t + s ) - ξ + μ s i n - + g ( t + s , ξ ) , (7.2)
ε

where

g(τ, ξ):= - sin(£ + xo(τ)) + sinxo(?) + cosx0(τ) ξ (7.3)

The initial conditions for a value tQ = — T — Ms are

η(tθ9 s) = x(tθ9 s) - yo(to + s)

= —μεcos — + x(tθ9 s) — yo(to + 5) + μεcos — , (7.4)
ε ε
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and taking into account the hypothesis of Theorem 6 the following bounds hold:

ξ(to,s) + με2sin —

+ μβcos — ^ c0μs2 , (7.5)

c0 being a constant independent of μ, ε.
We will look for the solution of system (7.2) with initial conditions (7.4). First of

all we seek for a fundamental matrix of the corresponding homogeneous linear
system. This is a crucial point, since an adequate fundamental matrix will give the
best bounds for (ξ(t), η(t)).

The linear system:

ή = - (7.6)

can be integrated using the fact that (yo(t + s), yo(t + s)) is a solution of (7.6).
Another independent solution can be obtained in the form: ξ = y0 W9 η = ξ with:

W{τ) = \-
1

-dσ .

It is very important to choose adequately the parameter "α." We will consider

first the case 0 ^ 3s ^ - . We note that yo(t + 5) has a simple pole at the point

π
t + s = -i:

yo(t + s) = xo(t + s) =
cosh(ί + 5)

- 2 ί / π .
+ 0 ί + s - - i .

π I 2

As we want a good second solution of the linear system (7.6) near

τ := t + 5 = - i we choose a = -L In this way W(τ) has a triple zero at τ = - i, and

yo(τ) W(τ) has a double zero at τ = - i.

Introducing:

-^i\ sech(τ)Φ(τ) := !P(τ)

the associated fundamental matrix M(τ) = M(ί + s) of (7.6) is:

(Ψ(τ) Φ(τ)

\Ψ'(τ) Φ'(

(7.7)

(7.8)
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and the fundamental solution φ(t, σ) of (7.6) satisfying φ(t, t) = Id is given by

φ(t, σ) = M(t +~s)M(σ + s ) " 1 .

Expanding the functions Φ, Ψ near τ = - i we get:

2l

(7.9)

That means that the fundamental matrix M(τ) behaves near the pole as:

/ , / ^ \ 2 \— i i

— 3

\

(7.10)

Returning to system (7.2) we can easily write the solution (ξ(t9 s), η(t, s))
with initial condition z(t0, s) as:

with

and

z(ί, s) = z i n(ί0, U s) + J φ(t, σ)F(ξ(σi s), σ, s)dσ ,
ίo

Zin(to,t,s):= φ(t9to)z(to,s)9

: Z{t, S)

(7.H)

μsin - + g(t + s9 ξ)
G

Writing Eq. (7.11) in components we get:

U s) = ξin(t0, t,s)+] G(t + s, σ + s)F2(ξ(σ9 s), σ, s)dσ ,
ίo

' dG

where

i(t, s) = f7in(£0, t,s)+ J — (ί + s, σ + s)F2(ξ{σ, s), σ, s)dσ ,

G(t,to):=Φ(t)Ψ(to)-Ψ(t)Φ(to)

= Ψ{t)lW{t)-W{to)-]Ψ{to),

(7.12)

(7.13)
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and

ξ i n(ί 0, ί, s) = Ψ{t + s)(Φ'(ί0 + s)ξ(t0, s) - Φ(ί0 + s)η(t09 s))

+ Φ(ί + s)(- ψ'(t0 + s)ξ(t09 s) + Ψ(t0 + s)η(ί0, s))

dG
= ~ T - (ί + s, ί0 + s)ξ(tθ9 s) + G(ί + s, ί0 + s)ιj(ί0, s),

ot0

μ

Vinih, t,s) = -j^{to,t9 S)

d2G
(

dGdG
5, ί0 + S)ξ(tθ9 S) + — (t + 5, ί0 +

We also can write (7.12) in the following way:

ξ(t, s) = ξι{t) + J G(ί + s, σ + s)g(σ + s, ξ(σy s))dσ ,

η(t, s) = tf(t)+]—(t + s,a + s)g(σ + 5, ξ(σ9 s))dσ ,

with

(7.14)

(7.15)

c^(ί) = ^ ( ί o , ί, s) = ξin(tθ9 ί, 5) + μ [ G(ί + 5, σ + s)sin - dσ
ίo ε

^ x(ί) = — (ί0, U s) = ηin(t0, ί, s) + μ j -Γ- (ί + s, σ + s)sin-
3ί *0 dt ε

(7.16)

We can integrate by parts the integrals appearing in (7.16) obtaining new
expressions for (^(ί), ηι{t))\

. t

ε

dt0

ξ(tθ9s) + με2sm1j

\ η{t0,L
G{t + s, ί0 + s)\ η{t0, s) + μ ε c o s -

L ε

2 r

- μεz J
μεz J —-j (ί + s, σ + s)sin - dσ ,

ίo dtO ε

(7.17)

d2G

dtdt0

— (
dt

-με2\

(t + s, ί0 + s) + με2 sin -
Γ
I Fit

L
Γ it s) ε c o s ^ l
L** ί o' s + μεcos ε J

s)sm-dσ .
e

(7.18)



Splitting of Separatrices of the Rapidly Forced Pendulum 457

At this moment we write several bounds that will be useful in the sequel. First of
all, from the expressions (2.7) for xo(τ) and (7.3) for g(τ, ξ\ we get the following
equalities:

tan ° = sinh τ ,

2 sinh τ

cosh2 τ '

1 — sinh2 τ

cosh2 τ ' J

- cos£) + cosx0(ί + s)(ξ —

that imply, in terms of Ψ(τ) given by (7.7):

for |Mτ| ^ T, \ξ1\, \ξ2\ ^ 1, c being a constant depending only on T.
The following bounds are a consequence of (7.9):

Ί<Γ f f

3 '

1

~κ
π

π

(7.19)

(7.20)

(7.21)

(7.22)

for |9tτ| ^ T9 0 g 3 τ ^ ^? with X a constant depending only on Γ.

The following lemma will be used in the proof of the next two propositions:

Lemma 7.1. Let t, ί e R, se(C such that

- T ^ ϊ + Ms ̂  t + 9is ^ T, 0 ^ 3s ^ I - ε ,

and feί us introduce the notation

where the supremum is taken for σe[ί , t~\. Then the following inequalities hold:

a) J
d2G

(t + s, σ + s)sin - dσ ί P(\Ψ(t + s)\

b) [\G(t + s,σ + s)Ψ2(σ + s)\dσ ^ P(\Ψ(t + s)
t

s)\),

+ s)\) ,
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. σ

dtdtl
(t + s, σ + s)sin-

-(t + s9 σ + s)ϊ/2(σ + s) dσ g + P [ F f

P being a constant depending only on T.

Proof. It follows easily from the form of G and the bounds on Φ(t + 5), Ψ(t + s), if
we prove the following inequality

J
1

σ + s — - i

- dσ
3 M,w _

Considering first the case t + 9ls 5Ξ ί + 9ΐs ^ 0,

π
(7 + S — -I

σ + s - - i

and therefore,

t + s - - i
2 t 1

π
σ + 5 - - i

- dσ

•+1

^ (x2 + 1) Γ * + l l :=f(x) ,
Lχ/x2 + 1 J

where x = . Since/(x) ^ 1 for xe( — 00,0], we get

1

π
σ + 5 - - ; ί + s - - i

^ P[f,?](s)

When t + 9ls < 0 < t + 9ts we have

1

π
σ + s — - i

= P[t,t

The other two cases are symmetric. |

We are now going to continue (ξ(t, s% η(t, s)) for values of (ί, s) satisfying
s E <C, and:
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_ T = t0 + Ms ^ t + Ms ^ Γ, and 0 ^ 3s ^ - - ε1 / 2

or

^ ί = β1/2, and | - ε1 / 2 ^ 3s ^ | (7.23)

Proposition 7.2. Let (ξ(t9 s), ^(ί, s)) be a solution of (7.2) with initial condition on
t0 = — 71— 9ίs satisfying (7.5). 77ien, ί/iβrβ exisίs μ 0 > 0, swc/z that for \μ\ < μ0 the
solution (ξ(t9s)9η(t9s)) can be extended for (ί, s) in the domain (7.23), satisfying the
following bounds:

(7.24)
|f,(ί, s)| g ciμ(ε2\Ψ'(t + s)\ + \Φ'(t + s)\),

being a constant independent of μ and ε.

Proof. We shall use the method of successive approximations. We begin the iteration
process with ξ°(t, s) = 0, and consider for n ^ 0 and (ί, s) in (7.23) the recurrence
suggested by Eq. (7.15):

?n+1(t *\ =(t, s) = ξ\t, s)g(σ + s, ξn(σ, s))dσ . (7.25)

In order to carry out this procedure it is necessary to bound accurately | Ψ(t + s)\
and |p[7off](s)Φ(ί + s)\. Dividing the domain (7.23) in several subdomains, and using
(7.22) and Lemma 7.1, we get the following bounds:

a) if t + 9ls ^ 0:

P[7o?t] ^ 2
π

t + s--i

t+s--ι

π .
t + s--ι

-2

- 1

2

b) if 0 ^ t + 9ls ^ ε1 / 2 and | - ε1 / 2 ^ 3s ^ | - ε:

Pϋfβ g 2ε"2

c) if 0 ^ t + 9ϊs ^ Γ and 0 ^ 3s ^ - - ε1 / 2:
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and consequently, in the whole domain (7.23) we have

(7.26)

The first iterate in (7.25) is ξ1^ s) = ξ1(t0, t, s), as given by (7.17). By the hypothesis
(7.5) of Theorem 6 about the initial conditions (ξ{tθ9 s), η(t0, s)), the bounds (7.22) for
G, dG/dtθ9 and Lemma 7.1 with t = tθ9 we can bound ξ1^, s) by:

\ξ% s)\ g με2 + 2c0K (τ2 + j \ μs2\Ψ(t + s)\ + 2c0K^με2\Φ(t + s)|

•s)\+Pμε2pίt

2

t]\Φ{tΛ
i.e., we get:

where the sup is taken on (7.23). If n ^ 1, using the bound (7.21) for g9 the Lemma 7.1,
and (7.26), we arrive at

\ξn+1(t,s)-ξn(t,s)\= ' G(ί + s, σ + s)(g{σ + s, ξ"(σ, s)) - g{σ + s, ?-\a, s)))dσ

ύ c(\\ξn\\ + l i e " 1 ||)||ί» - ξn~ι || f \G(t + 5, σ + 5 ) ^ 2 ( σ + S)|dσ
ίo

If we choose now μ0 small enough ί μ0 ^ I, it follows by induction that
ocCKJ

for n^ 1, \μ\ ^ μθ9

and consequently (ξn)n^o converges uniformly on (7.23) to the solution ξ(t9s) of
(7.15), satisfying the required bound (7.24).

Enlarging cx if necessary, the bound for η(t9 s) follows from its expression (7.15)
and (7.18), in terms of ξ(t9 s), and Lemma 7.1. |

From the bounds (7.24) we get the following global estimates:

| ι , ( ί , s ) | ^ 2 C l ϋ : μ , (7.27)

on the domain (7.23). When ^ - ε 1 / 2 ^ %s ̂  ^ - ε, on the final point

ίi = ε 1 / 2 — SRs, (7.24) gives a better bound for η(tl9s):

\ξ(tu s) ύ ciμε, \η(tu s)\ S ic.Kμε1'2 . (7.28)

Proposition 7.3. Let se<L and t1 e R such that
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Let (ξ(t, s), ή(t, s)) a solution o/(7.2) with initial condition on tx satisfying (7.28). Then,
there exists μ0 > 0, such that for \μ\ < μ0 the solution {ξ(t,*s)9 η(t, s)) exists also for

t^t^T-Vls, - - ε1/2 ^ 3s ^ - - ε (7.29)

and verifies

\ξ(t,s)\^c2μ, \η(t,s)\£c2μ9 (7.30)

c2 being a constant independent on μ, ε.

Proof We shall use exactly the same method of successive approximations as in
Proposition 7.2, but replacing the initial condition t0 by tx\

ξn + 1(t, s) = ξ\tu ί, 5) + } G(t + s9 σ + s)g(σ + s, ξn(σ, s))dσ .

Now, the first iteration is given by ξ1(tί, ί, s) as specified by (7.17), with t t instead of
£0, and on the strip (7.29) we have

^ 2ε"

K K

<
K = K

π
-

(7.31)

Proceeding like in Proposition 7.2, but using now the initial conditions (7.28),
we can bound the first iterate on (7.29) as follows:

\ξx(t9 s)| ^ με2 + 3ClK
2μ\Φ(t + s)| + 3 C l X V / 2 | Ψ(t + s)\

^4cii<: 4μ|Φ(ί + s ) | : = y μ | Φ ( ί + s)| . (7.32)

In view of this bound, we define the norm

\ξ(t,s)\

\Φ(t + s)\9

with the supremum taken on the strip (7.29). With this new terminology, (7.32)
becomes simply

(7.33)

For the successives iterates we have:

\ξn+1(t9s)-ξn(t,s)\^

\Φ(t + s)\ ~ C U ζ "Φ
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\G(t + s9σ + s)Ψ(σ + s)2Φ(σ

Φ{t + s) J

^ K 5 J σ + s - - ί dσ
Kη

ί

KΊT < 2KΊT2 .

dσ

Choosing now μ0 small enough I μ0 ^ -— ; ^7^2 )' ^ f °H° w s by induction that for

n ^ 1,

and thus (^w)w^o converges uniformly on the strip (7.29) to the solution ξ(t9s),
satisfying the required bound (7.30). Again, the bound for η(t, s) follows from its
expression (7.15) and (7.18) in terms of ξ(t9 s), and Lemma 7.1, replacing t0 by tx. |

Proof of Theorem 6. First consider 0 ^^s ^- — ε. Putting Propositions 7.2 and

7.3 together, as well as the bounds (7.27) produced by Proposition 7.2, we immedi-
ately obtain the extension theorem, with the required estimates.

For — ( - — ε l ^ 3 s ^ only have to choose a— — - ϋ n the definition of

W(τ\ i.e., we choose

in order to get a second solution Φ(τ) of the linear system (7.6) with a double zero at
K 71

τ = — - i. Bounds (7.22) are now valid for — - ^ 3 s ^ 0> a n d Propositions 7.2, 7.3

follow exactly in the same way, as well as the extension theorem. |
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