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Abstract. In the recently discovered (2 + l)-dimensional relativistic Chern-Simons
model, self-duality can be achieved when the Higgs potential density assumes a spe-
cial form for which both the asymmetric and symmetric vacua are ground state so-
lutions. This important feature may imply the coexistence of static topological and
non-topological vortex-like solutions in R2 but the latter have been rather elusive to
a rigorous construction. Our main purpose in this paper is to prove the existence of
non-topological radially symmetric iV-vortex solutions in the self-dual Chern-Simons
model. By a shooting method, we obtain a continuous family of gauge-distinct N-
vortex solutions. Moreover, we are also able to classify all possible bare (or 0-vortex)
solutions.

1. Introduction

Although it has long been speculated that the addition of a Chern-Simons term to
the usual Yang-Mills-Higgs action density in (2+ 1) dimensions would lead to static
finite energy vortex-like solutions that carry both electric and magnetic charges, it is
the work of Hong, Kim, and Pac [10] and Jackiw and Weinberg [15] (see also Lee [17]
for the nonabelian case) which enables one to make a rigorous study of such solutions.
The crucial feature in their approach is that, when the Yang-Mills (or Maxwell) term
is dropped from the Lagrangian and the Higgs potential takes on a special form,
the static equations of motion can be reduced to a new BogomoΓnyi type system of
first order equations. Due to the form of the Higgs potential, both topological and
non-topological solutions may be present [11-14]. In fact, the system shares some
common properties with the BogomoΓnyi equations arising from the abelian Higgs
model [5] and hence, partial understanding may be achieved using some techniques
developed earlier. In particular, Wang [25] has proved the existence of topological
multivortex solutions by the variational method in Jaffe and Taubes [16]. Moreover,
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we have shown [22] that topological multivortex solutions can actually be constructed
by a globally convergent iterative method, which may be implemented efficiently in
practical numerical computations, and that our solutions are most superconducting.
However, non-topological solutions are much more difficult to obtain than topological
ones. For example, the structure of the equations and the lack of a suitable function
space setting makes it forbidding to formulate a variational problem. Even in the
radical case, the method of Tyupkin, Fateev, and Shvarts [24], used so successfully
in the study of existence of solutions in gauge field theories, does not seem to be
applicable here.

In this paper, we shall construct non-topological radially symmetric 7V-vortex
solutions in the self-dual Chern-Simons model proposed by Jackiw et al. We will view
the reduced ordinary differential equation as a dynamical system and use a shooting
argument to prove the existence of a continuous family of gauge-distinct solutions.
We are also able to find all possible bare (or 0-vortex) solutions. Our method here
may be suggestive to some other problems in this and other related areas.

The contents of the paper are as follows. In Sect. 2 we introduce the problems
that we are going to study and then state our main results. In Sects. 3-5 we present
our proofs. Finally we complete the paper in Sect. 6 with some concluding remarks.

2. Statements of Main Results

We shall follow the notation in Jackiw and Weinberg [15]. The (2 + l)-dimensional
Minkowski space metric tensor gμv is diag(l, — 1, — 1). Assuming normalized units
and the critical coupling, the Lagrangian action density of the Chern-Simons model
is given by the expression

% = (Dμψ)(D»φf + \ κεaβiAaFβΊ - -I \φ\\\ - \φ\2)2 , (2.1)

where φ is a complex scalar field, Aμ (μ = 0,1,2) a vector field, Dμφ = dμφ — iAμφ,
/ ί > 0 a constant, εa^Ί the Levi-Civita totally skew-symmetric tensor with ε 0 1 2 = 1,
and Fμv = dμAv - dvAμ.

The Euler-Lagrange equations of (2.1) read

\ ^F = i{φ[DaΦ\* - Φ*W«φ\),

χ (2.2)
= - - (2\φ\2[\φ\2 - 1] + [\φ\2 - \f)φ.

We will only be interested in the static solutions of (2.2). Hence the a = 0
component of the first equation in (2.2) implies the Chern-Simons Gauss law

κFn = -2A0\φ\2 . (2.3)

Inserting (2.3) into the (0,0)-component of the energy-momentum tensor

Tμv = 2Re {(Dμφf(Dvφ)} - gμv \{DΊφ) (D^φf - -^ \φ\\l - \φ\2)2]

it is seen that the energy density is

ar = j • ^ + \D^\2 +1 |«A|2(i - \φ\2)2, (2.4)

where j = 1,2. Hong, Kim, and Pac [10] and Jackiw and Weinberg [15] first showed
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via (2.4) that (2.2) allows a reduction to the first order BogomoΓnyi system

coupled with Eq. (2.3).
The form of the energy density (2.4) implies that a finite energy solution of (2.5)

verifies either
\φ(x)\ —> 1 as \x\ —• oo

or
\φ(x)\^0 as | a : | - * o o . (2.6)

The former is called topological which gives rise to quantized magnetic and electric
charges, etc., while the latter is called non-topological [11-14] for which the charges
may be fractal. (However, at this moment, such a statement remains more or less
a conjecture. Unlike topological solutions, the charges of non-topological solutions
depend on their accurate decay rates at infinity which are rather difficult to obtain. One
of the most interesting features of these solutions is that they carry more than twice
as much as the charges of a topological solution realizing a given vortex number.
See Remark i) in Sect. 6 for details.) Topological multivortex solutions are already
well understood. The purpose of this paper is to establish some existence results for
non-topological solutions.

Concerning TV-vortex solutions, we have

Theorem 2.1. For any x G M? and a given integer N ^ 1 and any a > Inl, the
BogomoΓ nyi equations (2.5) have a finite energy solution (φ^a\ AS°^) so that the only
zero of φ^ is x — x and the multiplicity of the zero is N. Moreover, (φ^a\ A^) is
radially symmetric about the point x — x and

xeR2

\φ(a\x)\2 = O(r~σ) for large r = \x\ , (2.8)

where σ > 2N + 4 is a constant which may depend on a and x.

Since (2.7) is gauge-invariant, we see that different values of a give rise to gauge-
distinct solutions. In particular, there is non-uniqueness.

Let (φ,A) be a finite energy solution pair of (2.5). If φ is nonvanishing in M2,
the solution is called a bare (or 0-vortex) solution following Jackiw, Lee, Pi, and
Weinberg [12, 14]. For bare solutions, we have the following description.

Theorem 2.2. If(φ, A) is a finite energy solution of (2.5)-(2.6) so that φ φ 0 in R2,
then (φ, A) is necessarily radially symmetric about some point x G l 2 and

\φ(x)\2 = max \φ(x)\2, \φ(x)\2 < 1,
xeR2

and |0(x)|2 is a strictly decreasing function of r = \x — x\. Moreover, for any i G l 2

and a > 0, the system (2.5)-(2.6) has a unique solution (0 ( α ), A^) which is radially
symmetric about x and

max \φia\x)\2 = \φ(a\x)\2 = e~a , (2.9)

\φ(a\x)\2 = O(r~σ) for large r = \x\, (2.10)

where σ > 4 is a constant which may depend on a and x.
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It is obvious that any nonvanishing topological solutions of (2.5) must be trivial:
\φ\ = 1, A = 0 (see the discussion in the first paragraph of Sect. 4). Therefore we
have found that all possible bare solutions of the self-dual Chern-Simons equations
(2.5). As for the 7V-vortex solutions (see Theorem 2.1), this is also a three-parameter
continuous family of gauge-distinct non-topological solutions, labelled by a > 0 and
x G l 2 .

The above theorems will be proved in the subsequent sections.

3. Existence of Vortices via Shooting

Since (2.5) is invariant under space translations, we may assume that x is the origin.
Therefore we shall look for a solution (φ, A) of (2.5)-(2.6) so that φ has the local
property

\φ(x)\ = \x\Nη(x) near x = 0, (3.1)

where N > 1 is a given integer and η(x) is a nonvanishing function. In view of (3.1),
it is standard that the substitution u = In \φ\2 reduces (2.5) to the elliptic equation

Δu = -Γ eu(eu - 1) + 4πNδ(x), x G l 2 , (3.2)

where δ{x) is the Dirac distribution. Let v — u — AT In \x\2. Then (3.2) becomes

Aυ - A \χ\2Nev(\x\2Nev - I) x G R2 (3 3)

We will restrict our attention to radially symmetric solutions of (3.3): υ = υ(r),

r = x\ > 0. Hence (3.3) takes on the form

vrr + - vr = ^ r2Nev(r2Nev - 1), r > 0. (3.4)
r κι

Eventually we want to extend a solution of (3.4) defined in R2 — {0} to recover
a smooth solution of (3.3) in full R2 (so that u is asymptotic to 2iVln \x\ as x tends
to zero). For this purpose, we need the following special form of the well-known
removable singularity theorem [21]:

Lemma 3.1. Let Ω be a domain in M? containing the origin x — 0 and f a harmonic
function defined in the punctured domain Ω — {0}. Then f can be extended to a
harmonic function in Ω if and only if

lim ^ r = 0 . (3.5)
|x|->o In \x\

Using Lemma 3.1 in our problem, we have

Lemma 3.2. The solution v of (3.4) can be extended to a smooth solution of 03) in
R2 if and only if

v(r)
lim — = 0. (3.6)
r^o lnr

Proof Let υ(r) be a solution of (3.4) verifying (3.6). Then for any a > 0, we have

lim raeυ{r) = lim elnr(α+^) = 0.
rwO r->0
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Thus it is easily seen that the right-hand side of (3.4) can be viewed as a Holder
continuous function over the full M2.

Let w be a solution of

in a small neighborhood of the origin, say Ω. Then w is C2-HόΊder continuous and
/ = v — w is harmonic in Ω — {0}. However, (3.6) says that / fulfills the condition
(3.5). Therefore, using Lemma 3.1, we see that υ is C2-HόΊder continuous in Ω. A
bootstrap argument then shows that υ is C°° in R2. D

Thus from now on we shall look for solutions of (3.4) under the condition (3.6).
It will be most convenient to study the equation in the original variable u(r) =
ΛΠnr2 + υ(r) [see (3.2)]. Hence (3.4) is changed into the simpler form

urr + - ur = -^ eu(eu - 1) r > 0. (3.7)
r κι

The boundary condition (3.6) now becomes

u(τ)
lim — = IN. (3.8)
r->o lnr

Recall that we need to find non-topological solutions of the BogomiΓnyi system
(2.5)-(2.6). Therefore the relation \φ\2 = eu implies that u is subject to the following
boundary condition at r = oo:

lim u(r) = — oo . (3.9)
r—κx>

Our goal now is to find solutions of (3.7) under the boundary constraints (3.8)-
(3.9). We shall show that for suitable r 0 > 0, we can obtain global solutions of (3.7)
coupled with some adequate initial data at r = ro to fulfill (3.8)-(3.9). In other words,
we are going to solve (3.7)-(3.9) by a two-side shooting technique.

To motivate our shooting data, we first make a simple observation.

Lemma 3.3. Ifu(r) is a solution of (3.1) satisfying

lim u(r) = —oo , lim u(r) = —oo ,
r—>0 r^oo

then u(r) < 0 for all r > 0.

Proof The conclusion can be seen directly from a maximum principle argument. D

From Lemma 3.3 we see that a desired solution of (3.7)-(3.9) must have a global
maximum UQ = — a < 0 at some r = ro > 0. Therefore we should look for solutions
of (3.7) under the initial condition

u(ro) = -a, ur(r0) = 0. (3.10)

We expect that, when ro > 0, a > 0 are suitably chosen, the unique solution of (3.7)
under the condition (3.10) will verify both (3.8)-(3.9). Our study in this section shows
that such a goal can be achieved.

To simplify the discussion, we introduce a change of independent variable

(3.11)
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Then (3.7) and (3.10) become

u" = \ e2teu(eu - 1), -oo < t < oo ,

where, and in the sequel, u' = du/dt and u(t) denotes the dependence of the solution
u of (3.7) on the new variable t (or vice versa, for simplicity).

Lemma 3.4. For any to G M. and a > 0, (3.12) has a unique global solution u(t).
This solution satisfies u(t) < 0 and

lim u(t) = —oo , lim u(t) — —oo . (3.13)
t—>—oo t—>oo

Proof. Let u(t) be a local solution of (3.12). Then in the interval of existence,

t

u\t) = 4r / e2seu{s\eu{s) - \)ds . (3.14)
κ2 J

to

We can show that, for all t, where u(t) exists, there holds u(t) < 0. In fact, if
there is a ί > to s o that î (f) > 0, we may assume t is such that

t = inf {t > to I u(t) exists and u(ί) > 0}.

Then t > to and u(ΐ) = 0. Obviously u(t) < 0 for all to < t < i. However, from
(3.14), we see that u'(t) < 0 for t0 < t < t. So u(t) < 0. This reaches a contradiction.

Similarly, if there is a t < to so that u(ΐ) = 0 and u(t) < 0 for t < t < to, then
u'(t) > 0 for t < t < to. So u(ΐ) < 0. This is again a contradiction.

From the property u(t) < 0 and (3.14), it is seen that u\t) cannot blow up in finite
time. As a consequence the solution of (3.12) exists globally in t G (—OO, OO).

The behavior u(t) -» — oo as ί ^ - oois easy to verify because u(t) < 0 and
(3.14) imply that

—oo

lim u'(t) = Xr ί e2seu{s\eu{s) - \)ds = C>0.
t-^-oo κ

to

Finally we show that u(t) —> — oo as t —> oo. By virtue of u(t) < 0 and (3.14), we
have u'(t) < 0 for t > to. Therefore, either u(t) —> —oo or u(t) —> a finite number
a < — α < 0 a s t — > o o . However, the latter situation cannot happen. To see this, we
assume otherwise. Thus by a < u(t) < —a and (3.14) we find the estimate

t

u(t)>^ [e2sί min {eu(eu -
K, J [ a<u<-θί

= -C ί e2sds = - y (e2t -

(3.15)

2 2t 2 t t > t0 ,

where C > 0 is a constant. A simple consequence of (3.15) is that u(t) —> —oo as
£ —> oo. This contradicts our assumption. D
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In terms of the new variable t [see (3.11)], the boundary condition (3.8) reads

lim — = 2N. (3.16)

t->-oo t
Lemma 3.5. For any given a > In 2, there is a to — to(ά) such that the unique
solution of (3.12) verifies the condition (3.16).

Proof. For t0 e (—00,00) and a > 0, let u = u(t; t0, oί) be the unique global solution
of (3.12). Then u < 0 and u —* —00 as t —> —00 by Lemma 3.4. Therefore, using
the LΉόpital rule, (3.16) reads

η(to,a) = lim u'(t;to,a) = 2N , (3.17)
t-*-oo

where, in view of (3.14), the function 77(̂ 0, oί) has the representation

η(t0, a) = ~ ί e

2 β e u ( β ; ^ α ) (e u ( β ϊ t ° > α ) - \)ds . (3.18)

^2 J
Since ιx < 0 and u depends continuously on to, a, (3.18) says that η is a continuous
function of to, a. In the following, we shall show that there are to, a to make η fulfill
the condition (3.17).

Step 1. From (3.12) we get u" > -(4/κ,2)e2teu. Set w = 2t + u. Then

w">~ew. (3.19)

However, since v! > 0 for t < to, we have w' > 0 when t <to. Multiplying (3.19)
by w1 and integrating on (t, to), we find

4 - (w'(t))2 > \ (ew(t) - e2t°~a), t < to,

namely,

/ 2
0 < u(t; to, a)< 2 \ 1 + -r e2to-« - 2 = K , t < t0 . (3.20)

V /̂
From (3.20), we obtain another useful inequality

-a > u(t; to, a)> -a- K(t0 - t), t < t0 . (3.21)

2. It is straightforward to examine that eu(eu — 1) is a decreasing function in
u e (-00, -In 2]. Therefore the condition a > In 2, (3.21), and (3.12) imply

u" < 4 e2te-*-K(to-t)(e-a-K(to-t) _ 1 } t < tQ ( 3 > 2 2 )

Integrating (3.22) over (—00, ίo) gives

jor) = — lim u(t;to,a)
t->-oo

τ0

< 4 /
κ2 J
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Or

<3 23)

Step 3. In view of (3.20), we have

/ 2
0 < 77(ί0, α) < 2 A/ 1 + — e2ίo-« - 2.

V At/

Therefore, for any a > In 2 > 0, we can find a suitable t0 = tf

0 so that 77^, a) < IN.
On the other hand, (3.23) says that for fixed a > In 2, there is some to — ̂ 0 t 0 m a k e
77(̂ 0, OL) > 2N. Consequently, there is a point to = to(a) between t'o and £0' so that

D

We next study the asymptotic behavior of the solution u(t) of (3.12) (as t —> 00)
produced in Lemma 3.5. We have

Lemma 3.6. There is a constant β > 2N + 4 so that

\im u'(t) = -β. (3.24)
t->oo

Proof. Since u" < 0 [see (3.12) and Lemma 3.4], we see that either u'(t) —>• —00 or
a finite number as t —> 00. First suppose that u'(ί) —> — 00 as t —• 00. Then there
is a f so that u'(f) < - 3 (say) for t > t. Hence u(t) < -3 ί + C it > to) for some
constant C and

oo

lim u'(t) = —2 ί e2seu(s\eu(s) - l)ds

to

to

which is a contradiction.
Thus, in the sequel, we assume there is a β > 0 to make (3.24) hold. It remains

to show that β > 2N + 4.
First of all, since u'{t) is decreasing for t > t0, therefore u'{t) > —β, t > to and

u(t) > -βt + C, t > t0, where C is a constant. It is obvious that (3.14) and (3.24)
imply the convergence of the integral

oo

ίe2seu(s)ds.

to

As a consequence, we must have β > 2. Such a property in turn implies that

lim e2teu(t) = lim e £ ( 2 + H ^) = 0 . (3.25)
t—>oo t—»oo
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Next, multiplying the first equation in (3.12) by uf, integrating over (—00, 00), and
using (3.25), we obtain

00 00

β2 _ 4N2 = _ 16 f e2seu(s)ieu(s) _ ι ) d g + 8 Γ e2se2u(s)ds _

κ2 J κ2 J
—00 —00

Namely
00

β2 - 4β - 2N(2N + 4) = 4r ί e2se2u(s)ds > 0. (3.26)
K2 J

— OO

Therefore β > 2N + 4 as desired. D

Let u be the solution of (3.12) satisfying the properties stated in Lemmas 3.5-3.6.
Thus, in terms of the original variable r = e*, the function u is a solution of (3.7)-
(3.9). Thus, from the earlier discussion, it is seen that u is in fact a radially symmetric
classical solution of the 7V-vortex equation (3.2). In E 2 = C, set

z = xι + ixi, d = (dχ- id2)/2, 9* = (dλ + id2)/2.

Define

θ(z) = 2N arg (z), 0(z) = exp(^ [u(z) + i0(*)]),

= -Re {2i9* In φ(z)} , A2(z) = -Im {2i<9* In 0(z

Then (0, A) is a solution of the BogomoΓnyi equations (2.5) so that φ(0) = 0, the
multiplicity of this zero is N, and φ is nonvanishing elsewhere.

Since u is globally strictly concave in r > 0 and max u(r) = u(ro), we have

mnί\φ(x)\2 = euiro) = e~a .
xeR2

This yields (2.7).
Next, to see the asymptotic behavior of φ, we proceed as follows.
Let σ be such that 2N + 4 < σ < β (see Lemma 3.6). Then

) , (3.27)
r-σ

where r = \x\ and £ = lnr. However, since

lim — = lim u\t) = -β
t—>OO t ΐ—XX)

and β > σ, therefore as £ —> oo the right-hand side of (3.27) goes to zero. This proves
that φ satisfies (2.8).

Finally we show that the solution pair (0, A) is of finite energy. In fact a simple
calculation gives

D\φ = φ\u — id2u)φ, D2φ = (id\u + d2u)φ.

Thus the second term in (2.4) has the representation \Djφ\2 = 2u2eu, r = \x
However, from the relation rur — u'it) and Lemma 3.6 we have ur = O(r~ι) for
large r > 0. As a consequence,

\Djφ\2 = O(r~(σ+2)) for large r = \x\ > 0.
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Hence / \Djφ\2dx < oo. Moreover, from the decay estimate (2.8) and (2.5), we see
immediately that the other two terms in (2.4) also have finite integrals over R2. This
proves the finiteness of the energy.

The proof of Theorem 2.1 is complete.

4. Proof of Symmetry for Bare Solutions

Let (0, A) be a solution pair of (2.5). If φ φ 0 in R2, then the substitution u = In \φ\2

transforms (2.5) into the elliptic equation

An = ̂  eu(eu - 1 ) , xeM2. (4.1)

In fact (4.1) corresponds to the N = 0 sector of (3.2). An easy application of the
maximum principle shows that if u gives rise to a topological solution (0, A) so that
u = 0 at infinity, then u = 0 in R2 because the structure of (4.1) says that a solution
of the equation cannot have a positive maximum or a negative minimum in R2. Thus
we will only be interested in non-topological solutions of (4.1) which satisfy

lim u(x) = — oo . (4.2)
|x|—>oo

We shall show that any solution of (4.1)-(4.2) must be radially symmetric about some
point in R2. In fact, our result can be established under the slightly weaker condition

ί eu(l-eu)dx<oo. (4.3)

R2

In other words, we will prove that any solution of (4.1) satisfying (4.3) is necessarily
radially symmetric.

The study of the symmetry properties of solutions of the equation Δu = f(u) in
R n (n > 3) has a rich history beginning with the work of Gidas, Ni, and Nirenberg
[8]. Many of the results of [8] were simplified and improved by Li [18] (see also the
recent paper [4]). One interesting special case of [8] says that when f(u) — —uv and
p = (n+2)/(n — 2), a positive solution of the equation decaying at infinity sufficiently
fast must be radially symmetric about some point in R n . This result was improved by
Caffarelli, Gidas, and Spruck [6] who showed the same symmetry property without
any decay assumption. Recently, Chen and Li [7] studied the symmetry problem for
the equation in R2 with f(u) = — eu (the completely integrable Liouville equation
[19]). This is the natural analogue for n = 2 of the critical nonlinearity f(u) = —up

with p — (n + 2)/(n — 2) when n > 2 studied in [6]. Chen and Li showed that
a solution satisfying J eudx < oo must be radially symmetric about some point in

R2

R2. In this section, we present an adaptation of their work to Eq. (4.1) under the
assumption (4.3). Note that no nontrivial explicit analytic solution of (4.1) is known.

We first observe in the following lemma that if u ψ 0 is a solution of (4.1), then
necessarily u < 0 in R2. In particular the condition (4.3) makes good sense.

Lemma 4.1. Let u^O be a global C2-solution of (4.1). Then u < 0 in R2.

Proof. We first show that a radial solution v = v(r) of (4.1) with ^(0) = a > 0 and
τ/(0) = 0 goes to oo at some finite radius R = R(a).
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Consider

vrr H— yr = — ev(eυ — 1), r > 0,

υ(0)=ra, K ( 4 4)

It is well-known that (4.4) has a unique local solution for any given a e R and
this solution gives rise to a solution of (4.1) in a neighborhood of the origin. See
for example Berestycki, Lions, and Peletier [3]. As in Sect. 3, the substitution (3.11)
transforms (4.4) into

ί v" = — e2tev(ev — 1), —oo < t < oo ,

υ(t) —> a , v'(t) —> 0 as t —> -oo .

In particular, v is convex and strictly increasing, so that eu — 1 > ea — 1 > 0. Hence
there is a constant δ > 0 such that i/' > δe2tev or with w = 2t + υ,

w" > δew on (-oo, T(α)), (4.6)

the maximal interval of existence for υ. We now show T(ά) < oo. For convenience,
we assume T(a) > 0.

Multiplying (4.6) by w' > 0 and integrating over (—oo,ί) (ί < T(cκ)) lead to the
inequality (w'(t))2 > 2δew(t) + 4 or

w'(t) > y/2δ{\ + \ [w(t)f) for t > 0, (4.7)

because w(£) > 0 when t > 0. It is then standard from (4.7) that w(t) blows up in
finite time and T(a) is necessarily finite.

Returning to the r variable, we see that υ(r) exists on [0, R(a)) where R(a) — e T ( α )

and that υ(r) —> oo as r —• i? = .R(Q ).
To prove the lemma, it suffices to show that u < 0 since then u < 0 follows from

the strong maximum principle.
Suppose otherwise u > 0 at some point in R2. Without loss of generality, we

assume u(0) = 2a > 0. Let Ϊ; = v(r) be the solution of (4.4) on BR (the ball in
R2 with radius R and centered at the origin). Since u — υ —> —oo on 9 5 ^ and
(u — v) (0) = a > 0, u — v has a positive interior maximum at x e BR. Therefore,
with f(ξ) = eZ(et - 1), ξ > 0, f(ξ) > 1, we have

0 > (Δ[u - v]) (x) = \ [f(u(x)) - f(v(x))]

4 4
> — [(u - v) (x)] > — a > 0,

a contradiction. D

We next determine the asymptotic behavior of u by a standard potential theory
argument. Note that if u is already known to be radially symmetric, then the result
follows as a special case of Lemma 3.6.

Lemma 4.2. Let u ψ 0 be a C2solution 0/(4.1) satisfying (4.3). Then

ΊJ(r\ 1 ί
~ -> - 5 - / e n ( e " - 1 ) ^ ΞΞ -/? ,

In |x| κ;2π y

uniformly as r = |x| —> oo, where β > 0 is a constant.

= XjdjU -> -
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Proof. Set f(x) = -(4/κ2)eu(x)(eu(x) - 1). Then / e L(R2) and 0 < / < 4/κ2 by
virtue of Lemma 4.1.

Define

v(x) = — / (In \x - y\ - In \y\)f(y)dy.

R2

Then by standard arguments, Δv = / and

• β, rvr —> β uniformly as |x| —> oo .
ln|a

Put h = u + υ. Then h < υ < C(ln |x| + 1) and Δh = 0. Hence h =constant and
the lemma follows. D

The following statement gives an estimate for the value of β in Lemma 4.2. See
also Lemma 3.6.

Corollary 4.3. There holds the inequality

πβ2 > 2πβ + 4" / eudx > 4πβ .
κ2 J

β (4.8)

Thus in particular β > 4.

Proof. By the well-known Pohazaev identity, we can write for any R > 0,

ίdS= f lί
8BR

4 Γ 4 ί
>-r / e^(l-eu)ώ+— / eudx.

κ2 J κ2 J

8BR 8BR BR

BR

Letting R —> oo and using Lemma 4.2, we find the desired comparison (4.8). D

Using the above results and the method in Chen and Li [7], we can now prove the
main result of this section.

Theorem 4.4. Let u be a solution 0/(4.1) and (4.3). Then u is radially symmetric
about some point X G M 2 and attains its global maximum at x = x. Moreover, u is a
strictly decreasing function ofr = \x — x\.

Proof It suffices to show for any direction, say the x\-direction, that u is symmetric
in the direction (with respect to some choice of origin), and that d\u < 0 for x\ > 0.

Initially we choose the coordinate system so that d\u{—3,0) < 0. This is possible
by Lemma 4.2 and will ensure that the eventual line of symmetry x\ = λo satisfies
λo < —3. For λ e M, we use the notation x = (xι,x2), xx = (2λ — x\^xi), and

Σx = {x I xx < λ} , Γx = dΣλ = {x I xx = λ} .

Set wχ(x) = u(xλ) — u(x) and wχ(x) = wχ(x)/g(x) with g(x) = In (|x| — 1). Both
wx and u)χ are well-defined (g > 0) for x e Σ\ with λ < - 2 .

With f(ξ) = (4/κ2)e^(l — e^), a simple calculation gives

(4.9)
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and so

Δwx + - Vg \7wχ + (/'(£ dθ) + — )wλ = 0, (4.10)
9 \ 9 )

where ξ(x) is some real number between u(x) and u(xx).

Step 1. There exists R$ > 0 such that if x is a point where w\ has a negative
minimum, then \x\ < Ro.

For ξ(x) < max{u(x), u(xλ)} = u(x) and

Δg. , 1
(x) =

so that

if

for Ro large enough by Lemma 4.2 and Corollary 4.3 (/? > 4). Hence (4.10) and the
maximum principle imply the claim.

Step 2. With Ro as in Step 1, wχ(x) > 0 for x G Σ\, X < -RQ. For by Lemma 4.2,
I/)AOE) —• 0 as |x| —> oo (x G Σ'Λ) and trivially w\ — 0 on Γ\. Hence if ΪDΛ < 0 at
any point, w\ has a negative minimum at some x with |x| > .Ro. contradicting Step 1.

Step 3. Define λ0 to be the largest λ such that w\(x) > 0 for x G Σ\ and λ < λ0.
Then
a) wχ(x) > 0 for x G £ \ , λ < λo and d\u(x) > 0 for x G ΣΆ0.
b) uu 0 = 0 for x G £\ 0 -

To prove a), observe that voχ > 0 implies <9iiz > 0 for x\ < λo and wχ(x) = 0
if and only if d\u — 0 somewhere on Γ\ by the maximum principle and the Hopf
Lemma.

Now suppose there is δ > 0 such that wχos(x) = 0. Then dιu(x\,X2) = 0 for
Xo — 2δ < x\ < XQ and so d\u — 0 on -Γ\o-2<5 and thus wχQ-2δ = 0. Repeating
this argument we would have <9i?i = 0 for x{ < λ0, contradicting Lemma 4.2. Thus
iί;λ(x) > 0 for a: G Σ*Λ, λ < λo Then by the Hopf Lemma, d\wχ = —2d\u > 0 on
7\ for λ < λo Thus Claim a) is proved.

To prove Claim b) we note that since d\u > 0 for xx < λ0, we must have
λ0 < —3 by our choice of the original coordinates. Hence for λ < λ o + 1 and x G Σ\,
g(x) > 0 and u)χ is well-defined. Now suppose wχ0 φ 0. Then by (4.9), the maximum
principle, and the Hopf Lemma, we must have wχQ > 0 in Σ\ and d\WχQ < 0 on
Γχ0. On the other hand, the definition of λ0 implies there exist a sequence of λ^ > λ0

with wχk(x) < 0 for some x G Σχk. Let Xf~ be points where wχk has a negative
minimum in Σχk. By Step 1, \xk\ < Ro and a subsequence xχk -^ x G M2. Clearly,

x G ΣχQ U Γχ0, wχQ(x) < 0, and Vwχo(x) = 0. This is a contradiction. D

Applying Theorem 4.4 to the BogomoΓnyi system (2.5) via (4.1), we see that finite
energy non-topological solutions are all radially symmetric about some points in E 2 .
Moreover, if (φ,A) is such a solution, then |0(x)|2 attains its global maximum at its
point of symmetry, say x, \φ\2 is strictly decreasing with respect to r — \x — x\, and
|0(x)|2 < 1. Therefore the first part of Theorem 2.2 is proved.
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5. Existence of Bare Solutions

In this section we complete the proof of Theorem 2.2 by showing that, for any x e R2,
(2.5) has a continuous family of bare solutions which are radially symmetric about
x and satisfy (2.9)-(2.10). Since (2.5) is invariant under space translations, we may
assume x = 0 and consider the corresponding radially symmetric solutions of (4.1).
In this situation, we need to make a solution u achieve its global maximum at x = 0.
Thus (dju)(0) — 0. This motivates the initial condition for the radial version of
Eq.(4.1):

1 4
<irr + -ur = — eu(eu - 1), r > 0,

r κλ

In the proof of Lemma 4.1, we have seen that (5.1) has no global solution if a < 0.
If a = 0, the only solution is the trivial one u = 0. However, if a > 0 we have

Lemma 5.1. For any a > 0, the problem (5.1) has a unique global solution u(r). This
solution satisfies u(r) < 0, ur(r) < 0, and is strictly concave when r > 0. Moreover,
u(r) also fulfills all the properties stated in Lemma 4.2.

Proof. Let u(r) be the unique local solution of (5.1). Then in the trivial of existence,
there holds

rur(r)= ί ρeu(ρ\eu(ρ) - l)dρ.

o

Using the proof of Lemma 3.4, we see that for all r > 0 for which u(r) exists, we
have u(r) < 0. Therefore ur(r) < 0 also holds. Hence u(r) and ur(r) remain finite
for all r > 0 and the global existence follows in particular.

It is again convenient to use the substitution (3.11). Now the equation becomes
(3.12) with to = — oo. Thus the concavity of u is clearly seen from the property
u < 0. Using the proof of Lemmas 3.4 and 3.6, we easily find

lim u(t) = -oo , lim u'(t) = -β for some β > 4. (5.2)
t—>oo t—>oo

Returning to the variable r = e*, we see that our solution u verifies all the
statements in Lemma 4.2. D

From each solution u produced in Lemma 5.1 we can construct a solution pair
(</>, A) of (2.5) as in Sect. 3. As a consequence, \φ\2 — eu is a decreasing function of
r = \x\. In particular (2.9) follows (with x = 0). Finally, by virtue of the discussion
in Sect. 3 and β > 4 in (5.2), we see that (2.10) can also be fulfilled with some
suitable σ > 4. Such a solution is of course of finite energy. This concludes the proof
of Theorem 2.2.

6. Further Remarks

In this paper we have proved the existence of radially symmetric non-topological
N-vortex solutions in the self-dual Chern-Simons model: The vortices are all super-
imposed at one point. The existence of non-topological solutions with an arbitrary
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vortex-line distribution is still an open question. We would also like to call attention
to the following problems.

i) We were unable to decide the exact value of the decay exponent σ = σ(a) in (2.8)
or (2.10). In fact we could not decide the value of the β > IN + 4 in (3.24) or β > 4
in (5.2) which is the sharp upper bound for σ. At this moment, it seems impossible
for example to find the true value of β from (3.26) because the right-hand side of the
equation is in general unknown. However, β is an important physical quantity which
yields the values of charge, energy, and magnetic flux of the solutions. For instance,
using (2.5), (3.14), (3.17), (3.24) [or (5.2)], we see that the flux Φ takes the form

Φ = j Fl2dx = - ^ f \Φ\2(\Φ\2

R2 R2

\)dt

oo oo

= -% ί reu(eu - \)dr = -% f e2teu(eu -
κ2 J K2 J

0 -oo

= - π Γ lim u'it)] + π Γ lim u'(t)] = (IN + β)π ,
L *-°° J L*—°° J

for TV = 0,1,2, It is interesting to compare this result with the flux of a topo-
logical 7V-vortex solution for which Φ — 2πN. Since β > 2N + 4, therefore a
non-topological 7V-vortex solution carries more than two times magnetic flux as that
for a topological solution. Our estimate Φ > 4(N + l)π also slightly improves the
earlier conclusion Φ > 4(N + l)π reached in [12-14].
ii) We only proved that any solution of (4.1) under the condition (4.3) must be

radially symmetric. An interesting open question is: Should a solution υ of (3.3) be
radially symmetric about the origin if / \x\2Nev(l — \x\2Nev)dx < oo?

R2

iii) It is not known whether the Chern-Simons model (2.1) allows vortex condensates.
(In the Yang-Mills systems, such solutions do occur. For example, in the classical
electroweak theory [1,2, 23].) This question is equivalent to the solvability of the
equation

4 N

Δu=^ eu(eu - l) + 4π
.7 = 1

over a two-torus M (see [20, 26]). It is easily seen that a necessary condition for the
existence of a solution to (6.1) is [26]

Ά (6.2)

However, it is not clear whether (6.2) is also sufficient. Actually no sufficient condition
for the solvability of (6.1) has been found yet.
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