
Commun. Math. Phys. 144,601-622 (1992) Communications in
Mathematical

Physics
© Springer-Verlag 1992

On the Solvability of Painleve II and IV

A. S. Fokas1 and Xin Zhou2

1 Department of Mathematics and Computer Science, Institute for Nonlinear Sciences,
Clarkson University, Potsdam, NY 13699-5815, USA
2 Department of Mathematics, Yale University, New Haven, CT 06520, USA

Received December 6,1990; in revised form October 18, 1991

Abstract. We introduce a rigorous methodology for studying the Riemann-
Hilbert problems associated with certain integrable nonlinear ordinary differential
equations. For concreteness we investigate the Painleve II and Painleve IV
equations. We show that the Cauchy problems for these equations admit in
general global, meromorphic in t solutions. Furthermore, for special relations
among the monodromy data and for ί on Stokes lines, these solutions are bounded
for finite t.

1. Introduction

Flaschka and Newell [1] and Jimbo, Miwa, and Ueno [2] have introduced a
powerful approach for studying the initial value problem of certain nonlinear
ODE's: They have shown that solving such an initial value problem is essentially
equivalent to solving an inverse problem for an associated isomonodromic linear
equation. This inverse problem can be formulated in terms of monodromy data
which can be calculated from initial data. Fokas and Ablowitz [3] have shown that
the inverse problem can be formulated as a matrix, singular, discontinuous
Riemann-Hilbert (RH) problem defined on a complicated contour. Hence
techniques from RH theory can be employed to study the solvability of certain
nonlinear ODE's. The above method, which is an extension of the inverse
scattering transform method, is called inverse monodromic transform (IMT), and
can be thought of as a nonlinear analogue of the Laplace's method for solving
linear ODE's.

The six Painleve transcendents, PI-PIV, are thp most well known nonlinear
ODE's that can be studied using the IMT method. PII has been studied in [1,3], a
special case of P III in [1], PIV and P V in [4]. We refer the interested reader to [4]
for a historical perspective on the Painleve equations. Here we only note that these
equations: (a) have the Painleve property, i.e. their solutions are free from movable
critical points [5], (b) possess particular solutions which are either rational or can
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be expressed in terms of certain classical transcendental functions [6], (c) are
intimately related to nonlinear PDE's solvable by the inverse scattering transform
[7], (d) appear in a wide range of physical problems [8-17]. In particular it has
been shown recently that Painleve equations play an important role in two
dimensional quantum gravity [18-20].

In this paper we introduce a rigorous methodology for studying the RH
problems appearing in the IMT. For concreteness we investigate PII and PIV,
however similar results can also be obtained for other nonlinear equations. We will
show that the Cauchy problems for PII and PIV in general admit global
meromorphic in t solutions. Furthermore, for special relations among the
monodromy data and for t on Stokes lines, these solutions have no poles. It should
be noted that although the inverse monodromy problem was formulated as a RH
problem in [3,4] the question of solvability of this RH problem was left open. In
this paper, in addition to simplifying the formalism introduced in [3,4], we are able
to investigate the above question. Actually, the proof of the existence of
meromorphic solutions (which is the first such proof using the isomonodromy
approach) is quite more transparent than the original proof of Painleve. Also, for
the first time in this paper, a method is introduced using RH theory for finding
those monodromy data (and hence those initial data) for which the solution is free
from poles.

The RH problems associated with the IMT have several novelties. For example,
in connection with PII one needs to reconstruct a sectionally holomorphic
function m(z; t) with the following properties: (a) m(z; t) has certain jumps on the

/4iz3 λ
contour defined by Re I —-—h Hz I = 0, (b) m(z; t) tends to the identity for large z off

the contour, but it oscillates on the contour, (c) m(z; ή~τho(z; ήzθσ3 as z->0, where
rh0 is analytic at z = 0, σ3 = diag(l, — 1) and θ is a constant parameter. The situation

for PIV is similar but now the contour is defined by Re I — + tz ) = 0 and m(z; t), in

addition to being singular at the origin, has also a singularity of the type (ί/z)θao<T3

on the contour. To study a RH problem of this type we first study a RH problem
which is formulated on a new contour, obtained from the original one by:
(a) inserting a circle around the origin, (b) performing a small clockwise rotation.
The new RH problem is analytic both at the origin and at infinity and hence can be
studied by standard methods, in particular is equivalent to a certain Fredholm
integral equation. Having established the solution of the new RH problem it is
straightforward to establish the solution of the original one.

The matrices defining the jumps on the relevant contours have an explicit
analytic dependence on t. This has important implications: (i)The associated
Fredholm integral equation depends analytically on t, and since it is solvable at
ί = 0 (which follows from the direct problem), it has solutions meromorphic in t
[21]. (ii) It is possible to introduce a quadratic from of the type mhm\ where h is
piece wise constant, as opposed to the standard form mm^. Here f denotes Schwarz
reflection, i.e. / f(z)=/(z)*, where * denotes complex conjugation and transpo-
sition. Using this form it follows that for certain constraints on the monodromy
data and for t on Stokes lines the homogeneous RH problem has only the zero
solution (i.e. there exist a vanishing lemma). Alternatively, it is possible to define an
equivalent RH problem on fewer contours and then use the standard quadratic
form mnΰ. In the case of PII,

(1.1)
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for real t, one finds the constraints

b = b and | α - c | < 2 , |Re0|<i, (1.2)

where the monodromy data a, b, c are related via [1]

a + b + c + abc= -2ϊsin0π. (1.3)
The special cases

a = c, 0 = 0 (1.4)

and

a = c = ίoc, | α | < l , 0 = 0 (1.5)

were suggested by Its and Novokshenov [22] who have studied the large t
behavior of Painleve equations. These authors have formally shown that if the
monodromy data satisfy (1.4) or (1.5) then the solution of PII for real and large t
has no poles. They have also noted that one of the two cases corresponds to y being
purely imaginary (see also [26,27]).

In proving some of the above results we choose the parameters of the given
Painleve equation in such a way that the singularities at zero and at infinity are
integrable. However, this is without loss of generality since there exist Schlessinger
transformations [4] which shift by an integer or by a half integer all the parameters
of a given Painleve equation.

In Sect. 2 we review the direct problem (see [1,4]) and we also show that it is not
necessary to consider the connection matrix as part of the monodromy data. In
Sect. 3 we prove the uniqueness and existence of global solutions meromorphic in ί.
(Such a result does not exist for integrable PDE's). Furthermore, we note that for t
in a bounded region in (C, if the absolute value of the monodromy data is
sufficiently small then the relevant operators are always invertible. In order to give
sharp estimates one would need to calculate certain operator norms on a
complicated contour. This is beyond the scope of this paper; however it appears
that the technique of decomposing the complicated RH problem to a series of
simple RH problems [3] could be useful in this respect. In Sect. 4 we derive the
vanishing lemmas for PII and PIV, i.e. we find certain constraints on the
monodromy data which guarantee the solvability of the associated RH problem
without the small norm assumption. These constraints imply, in principle, certain
constraints on the initial data. For example, we show that if y, the solution of PII,
is purely imaginary these constraints are always satisfied.

2. The Direct Problem for PII and PIV

2.1. PII

The PII equation (1.1) can be written as the compatibility condition of the
following system of equations:

YZ = AY, (2.1a)

Yt = BY, (2.1b)
where

A=-i(4z2 +1 + 2y2)σ3 + Uzy- -) σ,-2ytσ2, B = -ίzσ3 + yσί9 (2.2)
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the Pauli matrices σp j = 1,2,3 are defined by

-

o
( 2 J )

and 7(z, ί) is a 2 x 2 matrix valued function in <C x <C.
The essence of the direct problem is to establish the analytic structure of Y with

respect to z, in the entire complex z-plane. It should be pointed out that, in contrast
to the analogous problem in the inverse scattering transform (see the discussion in
[3]), this task here is straightforward: Equation (2.1a) is a linear ODE in z,
therefore its analytic structure is completely determined by its singular points.
Equation (2.1a) has a regular singular point at the origin (if 0+0) and an irregular
singular point at infinity.

(i) Analysis near z = 0. It is well known that if the coefficient matrix of a linear ODE
has a regular singular point at z = 0, then the solution in the neighbourhood of
z=0 can be obtained via a convergent power series. In this particular case

Y0(z)=Ϋ0(z)zθ°>, as z^O, neZ, (2.4a)

where Ϋ0(z) is holomorphic at z = 0 [23]. The dominant behavior near z=0 is
Q

characterized by YOz~ — 0σx Y0/z; thus ΫOz(z)~ — ( σ ^ ^ z ) - ^ Ϋ0{z)σ3) and
Z

; = 0. (2.4b)

(ii) Analysis near z= oo. The solution of Eq. (2.1a), for large z, possesses a formal

[ /4z3 \ I
— i ( —r- + tz I σ3 , where Ϋ̂  is a formal

power series. However, because z = oo is an irregular singular point, the actual
asymptotic behavior of Y changes form in certain sectors of the complex z-plane.
These sectors are determined by Re [/f z3 + itz] = 0; thus for large z the boundaries

of the sectors, Σj9 are asymptotic to the rays argz = —9 0 ̂ j ^ 7. Let Sj be the sector

containing the boundaries Σp i.e. if z e Sl9 0 ̂  argz < —, etc. Then, according to the

Stokes phenomenon, if Y~ Ϋ as z-^oo in Sl9 Y~ YG1G2...GP as z-^oo in S J + 1,
5. The matrices

Σ3 Σ2

Se

Fig. 2.1



Solvability of Painleve II and IV 605

Gj, 1 ̂ 7^6 are triangular and are called Stokes multipliers. Alternatively, for
the formulation of the RH problem it is more convenient to introduce different
solutions Yj9 l ^ / ^ 7 such that YJ is asymptotic to Ϋ in Sj. Then Yj+ί = YjGj9

1^7 = 6; also it can be shown [24] that Yί(z)=Y7(ze2iπ). Thus the nonsingular
matrices Yj satisfy:

>, as z^tt>,zeS,.,β=-ί(fz 3 + ίz)σ3, (2.5)

where Ϋ^ (z) is piecewise holomorphic (relative to the contours of Fig. 2.1) at z = oo,
with asymptotic expansion of the form Ϋ^ (z) ~ / + 0(l/z) as z-^ oo. They are related
by

YJ+1(Z)=YJ(Z)GJ, 1ZJZ5; Yl(z)=Y6(ze2i")G6, (2.6)

where the Stokes multipliers are given by

(2.7)
/i n\ /i FA

G s =

We note that although Yί~Ϋ as z->oo on 2Ί, Yί~ΫGί * as z-»oo on Z^
similarly ϊ ^ y G J 1 as z->oo on Σ3, etc.

(iii) Connection between Yo and Yv Since both Yo and yχ satisfy (2.1a) they are
related by a constant matrix,

= 1. (2.8)

The condition on the determinant follows from the fact that we have
normalized Yj9 Yo to have unit determinant.

(iv) Symmetry Relations. For a complex matrix function / we denote

fσι(zeiπ) = σj(z)σί. (2.9)

Equations (2.2) imply that the A and B of Eqs.(2.1) satisfy

Aσ* = -A, B°i = B. (2.10)

Hence

Equations (2.11) and the fact that Y, Yσi have the same asymptotics at z = 00 imply

y = γσ\

Yj+3(zeiπ) = σ1Yj(z)σί, 7 = 1,2,3. (2.12)

Equations (2.12) imply

Gj+3 = σίGjσί, 7 = 1,2,3, i.e. ά = a,6=b,c = c. (2.13)
Furthermore Eqs. (2.12) also imply [for an appropriate choice of Y0{z)~] the

important relationship

(2.14)
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Indeed, the equations

Y4(z)=Y1(z)G1G2G3 and Γ4(zβiπ) = σ171(z)σ1,

yield,

Using Y1 = Y0E0, and Yo = Ϋoz
θσ\ this equation becomes

z-θ^Ϋo-
ί(z)σίΫo(z)zθ^ = eiπθ^EoGίG2G3σίEol. (2.15)

Let F = eiπθσ3EoGίG2G3σίEo 1; using Eq. (2.4b), it follows from the limit of (2.15)
as z^O that ( F ) D i a g = - σ 3 . By Eq. (2.4a), Θφ±+X. If 0 = 0, or if θφZ, then
F = F D i a g = — σ3, and Eq.(2.14) follows. If 0eZ/{O}, then F in general is upper
(lower) triangular for Re0>O (Re0<O); however, it follows from Eqs.(2.4a) and
(2.8) that it is possible to choose a Y0(z) such that the corresponding F is also
diagonal.

We note that, since σ1G1G2G3σ1 = G4G5G6, the square of Eq.(2.14) yields

Eoxe2i^Eo ft Gj = I. (2.16)

This equation is a consistency condition (see [1]). The trace of Eq. (2.14) implies

a + b + c + abc= -2ιsin0π. (2.17)

(v) The Monodromy Data. In previous investigations the components of the
connection matrix Eo were taken as part of the monodromy data. This is not
necessary since Eo can be determined from (a, b, c). Here we call monodromy data
the set (a,b,c) defined on the algebraic variety (2.17). Since detG ίG2G3σ ι = — 1
and tτGίG2G3σ1 = —Hsinπθ, it follows that G1G2G3σί has eigenvalues — eiπθ

and e~ίπθ. Also Qφ\+TL, thus these two eigenvalues are unequal and GίG2G3σί is
diagonalized to — σ3 e

ιπθσ3. Therefore there exists a matrix Eo, with det Eo = 1, such
that Eq. (2.14) is valid. For the inverse problem we will define a RH problem for the
matrices Y, defined in Eqs. (2.5) and (2.6), where Yγ satisfies Yi = Ϋ0(z)ziθσ3E0, %{z)
is analytic at z = 0, and Eo is any matrix obtained from Eq. (2.14) (det Eo = 1). We
note that the equation for Yί is well defined. Indeed, if Eo is another solution of
(2.14), then E^EQ1 iŝ  diagonal and Yi satisfies a similar equation with Ϋ0(z)
replaced by Ϋ0(Z)E0EQ

 ί. Therefore, the different choices of Eo do not affect

If y evolves according to PII, then the monodromy data (α, b, c) are time
independent. To show this we note that if Y satisfies (2.1a) and y satisfies PΠ, it
follows that Yt satisfies

Y—BY+PY, (2.18)

where B is defined in Eq. (2.2) and P = P(t) is some matrix independent of z. If
Y= Ypj=l, ...,6, then eQPe~Q must vanish as z->oo from two adjacent sectors,
which implies P = 0. Therefore Y satisfies Eq. (2.1) and hence Gj9j = 1,..., 6 are time
independent.

2.2. PIV. The PIV equation

y t t = Yy y2χJr \ 3
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is associated with the Lax pair (2.1) with

G

(2.20)

—^ σ3

z z

α = 2 β G 0 - l , β=SΘ2

0,

o ψ\
(2.21)

In the above equation v, u, y are related via the following equations:

Έ =

dv 2 , /40,
-r = v2 +

(2.22)

(i) Analysis near z = 0.

70(z)= 7o(Φ'o σ 3, ^ o * f , «eZ, (2.22a)

where Ϋ0(z) is holomorphic at z = 0 [25].

(ii) Analysis near z = oo. The formal expansion Y is now of the form

Γ^2 Ί
The relevant sectors are given by Re — + tz = 0; thus for large z the boundaries

. L 2 ^ -I π π 3π - 3 π
of these sectors, Σj9 are asymptotic to the rays argz= — - , —, — , — — .

Fig. 2.2 Σ4 Σi

As before YJ+1 = YjGp 1 ̂ ; ^ 4 , and Y1(z)= Y5(ze2iπ)e2ίπθ~σ\ Thus

,*3 / Z 2

, as Z-KX), Z G 5 . , 0 = I -r- +tz I σ λ , (2.23)
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where t^{z) is holomorphic at z = oo, and ^ ( z J ^ J + Oί - j . Also

γj+ X(Z) = YJ(Z)GJ 9 1 £j = 3, yx(z) = r4(ze2 f*)G4e
2 ί*»~"3, (2.24)

where

(iii) Connection between Y% and Yv As before Yo, ϊ i are related via (2.8).

(iv) The Monodromy Data. The trace of the consistency condition

o ή
J = l

implies

(2.27)

We further notice that (2.27) is invariant under the transformation ά = r2a, β= b/r2,

d=cr2

9 3=d/r2, rφO. Also if we define Ϋ by Ϋ=R~XYR9 where £ = d i a g ί r , - 1

rφO, the Lax pair for Ϋ is the same as the Lax pair for Y with the only change of
replacing u by u/r2; this does not affect y, the solution of PIV. We therefore choose
to define the monodromy data for PIV as the equivalent classes induced by the
transformation A, on the algebraic variety (2.27). These monodromy data imply Eo

as in case of P I I : Since tτGίG2G3G4re
2iπθoo = e2iπθo + e~2iπθo and

d e t G 1 G 2 G 3 G 4 e 2 ί π θ o o = l it follows that the relevant eigenvalues are e2iπθo and
e ~ 2iπθo. Using the fact that θ0 φ \+Έ Eq. (2.26) follows. Then, for the solution of the
inverse problem we demand that Yί satisfies Y1 = Ϋ1(z)zθσ°Eθ9 where %(z) is
analytic at z = 0 and Eo is any solution of (2.26). Again different choices of Eo do not
affect Yl9..., Y4. It is also straightforward to show that the monodromy data are
time independent.

3. The Inverse Problem

The relations (2.6) and (2.24) indicate that the Inverse Monodromy Problems are
RH problems on self-intersecting contours, with singularities at z = 0 and z = oo. In
this section we first remove these singularities by using an analytic solution inside a
circle around the origin and by performing a small clockwise rotation near z = oo.
We then use the method introduced by one of the authors (Zhou) [21] to study the
resulting regular RH problems. Since the procedure is essentially the same for both
P I I and PIV we give details only for PIV.

We define Φp7 = 0,...,4 by

(3.1)

We then obtain a piecewise holomorphic function Φ = (Φ0, Φί9 Φ2, Φ3, Φ4) and a
contour ΣA = Σu {circle} indicated in Fig. 3.1. We note that the augmented
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93 +

Fig. 3.1 Φ4

contour, ΣA9 need not be precise except near z = oo, where it is precisely defined by

Inside the circle, Φ = Φo is holomorphic, hence the multiplicative jump of Φ across
the dotted lines is /. We denote by Ω± the union of all ± regions as marked in
Fig. 3.1. The orientation used in Fig. 3.1 makes Σ the positively oriented boundary
Σ+ for Ω+ and the negatively oriented boundary Σ~ for Ω~. Let V denote the
global jump on ΣA,V=I on the rays inside the circle, V={fu f2, /3, /4) on the circle
and V=(gl9 g2, g2, g*) on the rays outside the circle. V may be expressed in terms of
the monodromy data:

Φ2 = Φ1e
Qg1e

 Q, g1 =

2 3 62 ' 62

Φ4 = Φ 3 e β g 3 e- β , g3 =

" Ώ » 84 =

G,-1

GΓ1



610 A. S. Fokas and X. Zhou

where - means the boundary value of - from the + region. If we
W + W

denote by Φ+ the boundary values of Φ from Ω^we have
Φ+ = Φ-VQ, VQ = eQVe-Q. (3.2)

The function Fis smooth (in fact analytic) away from the intersections A, B, C, and
D. At these intersections, it satisfies the following cyclic product conditions,

gJϊ'1fΓ1=I near A> fig21f3 = I near B,

/ a Λ a Λ " 1 ^ near C, f4g^fi=I near D.

The above products make sense because the relevant functions admit analytic
continuations. The conditions in (3.3) follow directly from (3.2). We may also check
their validity directly. For example consider the condition near/):

fM2iπ)U V2iπ)/i(z) = /, or e2M°°>E0 f Π θ) e2iπθ^Eό ' = /,

which is the compatibility condition (2.18). Roughly speaking, the cyclic product
conditions (3.3) represent the "smoothness" of V at the intersections A, B, C, D.
Having established that the global Fis smooth it is then possible to factorize Finto
a product of two functions in certain Sobolev spaces [see below (3.5)].

Now F satisfies all the conditions needed in the theory of [21] except that VQ

may oscillate or even grow as z-> oo. Nevertheless we can still define a RH problem
without ambiguity.

Definition 3.1. Let Φ be holomorphic on (C\ΣA with smooth extension Φ+ satisfying

Φ+ = Φ-VQ. (3.4)

Then Φ is said to be a normalized solution of the RH problem (3.4) if:
1. Φ has at worst polynomial growth at z-»oo.
2. Φ tends to I as z->oo in certain directions.

Conditions 1 and 2 appear weak, but they actually imply the uniqueness of the
solution:

Proposition 3.1. The normalized solution in Definition 3.1 is unique and detΦ = l.

Proof Since detFQ = l, detΦ+=detΦ_. Hence detΦ is an entire function. By
Conditions 1 and 2, detΦ = l.

Let Φ' be another solution. Then it is easily checked that Φ'Φ" 1 is entire and
hence by Conditions 1 and 2, equals /. QED

Remark. If Φ is a solution from the direct problem, then obviously Φ satisfies all
the conditions enumerated in Definition 3.1. We may in fact derive better
properties for Φ from the direct problem. For example, if the sector in Fig. 3.2(a) is
slightly rotated clockwise to the sector in Fig. 3.2(b), then Φ obtained from Φj by
restriction and analytic extension approaches / as z-»oo.
However we prefer to establish such properties directly from the inverse problem.
This will show that all the necessary information to derive these properties is
already contained in our characterization of the data V.
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Fig. 3.2 (a) (b)

Fig. 3.3

We make a slight rotation of Σ near z — oo clockwise as in Fig. 3.3. Since the
asymptotes of Σ are independent of ί, the rotated contour, ΣAR, can actually be
made independent of t.
In general, a contour Γ for a RH problem may be deformed to another contour Γ
within the domain of holomorphicity of the jump functions. However, in our
problem, V is not smooth at z= oo. Therefore we used more careful argument for
the equivalence of the RH problems before and after the rotations. We still denote
our jump function by V after the rotation, since it is obtained by a direct analytic
extension of the original V. Since V is triangular near z=oo it follows that
e~QVeQ — I, and its derivatives, decay exponentially as z-»oo, on the rotated
contour ΣAR. By condition (3.3), V can be factorized (see [21]),

V=(l-W-)-\I+W+) (3.5)
in such a way that
1. det(/± W*) does not vanish.
2. For every " + " region, the restriction of I± W± to its boundary is smooth.
3. W~ = 0 away from a neighborhood of A, B, C, and D.

A matrix function / on ΣAR belongs to H\Σ^ if f/dw is Hι for every ± region
w (see [21]), H1 is the space of functions /, such that / and its distributional
derivative both belong to L2. Clearly W£ =e-QW±eQeH\Σ^R).
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Define the Cauchy integral operators C ± by

C±/(z'')= lim -L , ψL,
z'^z" 2πi ΣΛR z-z

where the nontangential limit z'-+z" is taken from ± regions. The following results
are given in [21]: Hί(ΣAR) are Banach algebras (under certain equivalent norms),
and the Cauchy integral operators are bounded on them,

±\5R)-+H\Σ±R)9 (3.6)
and

Σ2R)^ (3.7)

We therefore have a linear integral equation on the space H1(ΣAR),

Y=VI + C+WQ +C.W+ =vI + CwY, veC. (3.8)

Equation (3.8) is in fact Fredholm of zero index, where the Fredholm index
(Id — Cw) = dim ker(Id — Cw) — dim coker(Id — Cw). It is easily checked that Y is a
solution of (3.8) iff

Q W+), (3.9)

is a solution of the RH problem

Φ+=Φ-VQ, (3.10)

satisfying Φ±(oo) = v/. As usual we denote by Φ the sectionally holomorphic
function obtained from the analytic extension of 4>±, and sometimes call $ the
solution of the RH problem (3.10). The function Φ is said to be a normalized
solution, if v = l, and a vanishing solution if v=0. The normalized solution is
always unique.

Proposition 3.2. Let Φ be holomorphic on (C\ΣΛ satisfying (3.4) and let Φ which is
holomorphic on <£\ΣAR be obtained from Φ by restricting it from one side of each
sector and analytically extending it into the shadowed area from the other side. Then
Φ is a normalized solution of the RH problem described in (3.4) iff Φ is the normalized
solution of the RH problem (3.10).

Proof If Φ happends to be a normalized solution for (3.10) in H1 space, then
obviously the corresponding Φ satisfies all the conditions enumerated in
Definition 3.1.

Now assume that Φ is a normalized solution in the sense of Definition 3.1. We
first show that I—Cw is invertible by showing that there exist not nontrivial
vanishing solutions for the RH problem (3.10). Let Φo be a vanishing solution for
that RH problem. Let Φ be obtained from Φ J>y the restriction, extension
procedure described above. Then it is clear that Φo Φ~ι is entire. By the conditions
in Definition 3.1 for Φ, ΦoΦ~1=0. This shows Φo = 0. Then since the Fredholm
index of Id — Cw is zero, it is invertible, and we obtain a solution Φ' in H1 space for
(3.10). A similar argument as above shows Φ = Φ'. QED.

Remark. The above proposition shows that from the function Φ described in
Definition 3.1 we obtain a solution Φ in Sobolev space with lim Φ(z) = /. Therefore

z-+oo

Φ has limit / on z->oo in the unshadowed regions in Fig. 3.3, and behaves like
eQVe~Q or its inverse in the shadowed regions.
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Fig. 3.4

For PΠ we define Φj,j=0,1, ...,6 by

Then again we obtain the RH (3.2), where the jumps are given by

Φ2 = Φ1e
QG1e~Q, Φ2 = 4

4 = Φoe
Qf4e~Q,

where

fj = z Θ σ > E 0 G ί . . . G j _ ί , .7 = 1 , . . . , 6 , G0 = I.

Theorem 3.1. The Cauchy problems for PIV and PΠ always admit global
meromorphic in t solutions. These solutions can be obtained by solving RH
problems of the form Φ+ = Φ_eQVe~Q (see Figs. 3.1 and 3.4). For PIV the RH
problem is specified in terms of the monodromy data (a, b, c, d) defined on the
algebraic variety VIV given by Eqs. (2.27) [£ 0 is any solution of Eq. (2.26)]. For PII
the RH problem is specified in terms of the monodromy data (a, b, c) defined on the
algebraic variety Vπ given by Eq. (2.17) [Eo is my solution of Eq. (2.14)]. Having
obtained Φ, the solutions of PIV and PII are constructed from

y=-2t-dtln(Φ-i)i2 and y = 2(Φ.ί)12

respectively, where

-T I, z- • 0 0 .
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For each ίoe(C, there exists an analytic variety Vγy9 dim^v<2, such that the
monodromy transformation for PIV is a bijection, C 2 ^^ v /Kv 5 M ôX /(^o))
h->(α,b,c?d)ePiv/l^v a n < i {a,b,c,d)eV^ iff the inverse monodromic transform
does not exist at t0. Similarly for PII.

Proof. Since WQ may be viewed as holomorphic functions in t from <E->H(Σ%R),

the operator Id — Cw is holomorphic in t. Hence if it is invertible at some ί0, then its
inverse is meromorphic in t (see [21], Proposition 4.3). For the Cauchy problem,
let Φ(£o, z) be the solution obtained from the direct problem at t = t0. As shown in
the proof of Proposition 3.2, Id — Cw is invertible at t0. Once Φ is obtained one can
use (2.1) to determine y, provided that one can prove that Φ satisfies (2.1). In other
words one needs to show that the solution of the inverse problem solves the direct
problem:

(i) PIV. Recall that

(^\θΰ°σ\ 7 = 1,2,3,4 and Y0 = ΦΌe^^.

We denote by Y, Φ the solutions piecewise defined by Yj9 Yo, Φj, Φo and we define A
by A = YJ-\ Then

It follows from the fact that Yz and Y both admit the same jump across Σ that A is
holomorphic in <C\{0}, thus A = z~ιA_1+A0 + zA1 (note that the oscillation and
the possible polynomial growth of Φ near Σ is insignificant to the determination of
the growth of A as z-*oo), hence

Φ, (3.11)

where z is outside the circle. Let

Φ_i Φ_o / 1 \
Φ = I+ L + - ^ + θ U , is

z z 2 \z3j

in any sector but away from its boundary. Then the large z asymptotics of Eq. (3.11)
implies

3 ] ,

+ [σ3,Φ_1]Φ_1.

Similarly, considering z inside the circle we find

The asymptotics of this equation as z->0 yields

A.^θoΦ^ήσ^-^ή^dQtA.^-θl. (3.13)

Let us define w, v by

t/=-2(Φ_ 1 ) 1 2 , t ^ o + ̂ - ^ Φ - ^ Φ - ^ . (3.14)

Then Eq. (3.12b) implies

0

Ao = tσ3
-(v-θo-ΘJ 0J

(3.15)
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To determine A_γ we note that Eq. (3.12c) yields

(3.16)

that (A-x)21 = —(υ

Thus / -uy

/ θ v

If we let {A_x)21 = - y , then Eqs. (3.16), (3.13) imply that (A-x)21 = —(υ-2θ0).

. (3.17)

J.(V-2ΘO) -θo

This concludes the proof that the inverse problem solves (2.1a). In a similar way it
can be shown that it also solves Eq. (2.1 b) and hence PIV.

(ii) PΠ. Recall that Y=ΦeQzθσ3 inside the circle and Y=ΦeQ outside the circle.
Introducing the notation

fσi{e^z) = σ1f(z)σl9 (3.18)

the equations Gj+3 = σ^σ^j = 1,2,3 can be written in the compact form G = Gσi.
This implies

Φ = Φσi, z outside the circle. (3.19)

The symmetry condition (3.19) plays a crucial role in establishing that the solution
of the inverse problem also solves the direct problem. Let us first consider
Eq. (2.1b): Following the same arguments as in (i) above it follows that

Φt - izΦσ3 = (Bo + zBJΦ. (3.20)

The large z asymptotics of (3.20) yields

B1 = -iσ39 B 0 = i[>3>Φ-i] (3 2 1 )

However, we need to show that Bo = yσx for some y. This can be achieved by using
(3.19):

Φ-ί=-Φσ}1^B^ = ilσσ

3\ΦσJί2 = ilσ39Φ.^=B0,

which implies

B0 = ί[σ3,Φ_1]=yσ1, for some y. (3.22)

We now consider Eq. (2.1 a),

Φz-ί(4z2 + t)Φσ3 + θz-ίΦσ3 = (z-1A_1+A0 + zAί+z2A2)Φ, (3.23)

where z is inside the circle. Hence

σsΦ-^t). (3.24)

However, we need to show that A_ί = —θσί. This can be achieved by using the
symmetry relation. This relation implies (for z inside the circle),

-Q^Φσι(0, t)= -ίΦ(0, t)σ2. (3.25)

Equations (3.24), (3.25) yield
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To determine Ao, Au A2 we use

Φ, (3.26)

for z outside the circle. The large z asymptotics of (3.26) yields

A2 = -4iσ3, Ax =4z[σ3, Φ_ J =

Ao = - itσ3 - 4yσ1 Φ _ ± + 4ί[σ3, Φ _ 2 ] .

Equation (3.20) implies

Φ-lt=-ilσ3,Φ-2]+yσίΦ_1. (3.28)

Using Eqs. (3.28) and (3.22) we find

(Φ-iU-diag= \ *2, (Φ-it)diag= ^ σ3 (3.29)

Using the relations (3.29) in (3.27c) we obtain

Ao= -itσ3-4Φ_u = -itσ3-2ytσ2-2iy2σ3. (3.30)

Finally, from the direct problem at t = t0 there exist (a, b, c, d) such that Id — Cw

is invertible at ί0. Then the analytic Fredholm theorem on irreducible varieties
implies that the set ί̂ y = {(α,b,c,d)ePiV/corresponding Id — Cw at t0 is not
invertible} is an analytic variety with dim V^ < dim Vιy = 2. QED.

In the last section, we will obtain certain conditions on the monodromy data.
Under those conditions, the solutions of PII and PIV have no poles when t is
restricted to Stokes lines. In this respect the following lemma will be useful.

Lemma 3.1. Every vanishing solution Φ of the RH problem has strong decay,

Proof. By (3.8),

d ( z ) = 2ΪΓ JAR VTz Y(ξ) (WQ~(ξ) + WQ+{ξ))'
where Φ is the vanishing solution for the equation corresponding to Φ. Therefore

zΦ(z)= ^ T ί ^ Y(ξ)ξ(WQ-(ξ)+ WQ

+(ξ))

- ^ τ ί dξY(ξ)(WQ-(ξ)+WQ

+(ξ)).

The first integral is bounded because Yξ(WQ + WQ) is a Hι function and the
second is bounded because Y{WQ + WQ) is an L1 function.

Because of the analytic structure of the jump matrices, it is possible to define an
equivalent RH on fewer contours. Consider for example PΠ. Since Y2 = YίGu

Y3 = Y2 Gi and Yi9 Y2, Y3 tend to eQ on Σl9 Σ29 Σ3 respectively (see Fig. 2.1), it follows
that Y2 can be defined in S^uS^ and Y2 ~eQ away from 2ΊuΓ 3 , Y2 ~eQGί on Σl9

Y2~eQG2

1 on Σ3. Similar considerations apply to the other Y/s and to PIV.
We shall use this fact to obtain vanishing lemmas. Suppose Φ is a vanishing

solution. We can use it, to construct via analytic continuation a vanishing solution
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Y. From Lemma 3.1, the asymptotic behavior of Yj9 as z^oo in sector
given as follows:

For PII:

J- ι is

0 ( - J eQ away from Σj+ xuΣj-1

oil - 1
near

near

(3.31a)

where β = — i(fz3 + ίz)σ3, and; = l,...,6mod6.
For PIV:

γί

0 -

where Q= ( — +ίz )σ3, ^-=0^

away from Σ7 +1uΣj_ x

near (3.31b)

= 1,2,3, 64 = G4e
2iπθ~, and7 = l, ...,4, mod4.

4. Vanishing Lemmas

In this section we show that under certain constraints on the monodromy data,
every vanishing solution of the RH problems associated with PII and PIV is zero.
As described earlier, a vanishing solution is an element in Ker(Id — Cw). Therefore
the vanishing lemma shows that ld — Cw is invertible and the RH problem is then
uniquely solvable.

We denote by / t(z) = /*(z) the Schwarz reflection of a matrix function /
Consider the RH problem ψ + = φ ~ V on the contour Σ containing the real axis. Let
VAR and VΛΣ\M. denote V on the real axis and on the rest of Σ respectively. It is
shown in [21] that if V satisfies

and

VAΣ\R is Schwarz reflection invariant

R e F Λ R > 0 ,

(4.1a)

(4.1b)

then every vanishing solution to the above RH problem must be zero. This result is
obtained as follows: Let H = φφ\ where φ is a vanishing solution. Then Eq. (4.1a)
implies that H is holomorphic on C\R, and on R
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• 0 0 ,

ί H + = J φ
R R

Then Eq. (4.1b) implies that φ~ =0.
Using the above result and Eqs. (3.31) it is straightforward to obtain vanishing

lemmas for PII and PIV. The only difference here is that the relevant solutions for
PII and PIV may possess singularities at z = 0 and z=co. We therefore also
impose appropriate constants on 0, θ0, θ^ to ensure that such singularities for H+

are integrable.
It is interesting that a direct application of the above result to the original RH

problems for PII and PIV, i.e. before the reduction of the number of contours, fails
to yield vanishing lemmas. However, it is possible to obtain vanishing lemmas for
the original RH problems provided one uses H = φ/zφ1", instead oΐH = φφ\ where
h is an appropriately chosen piecewise constant matrix. This is shown in the
appendix.

Lemma 4.1. (Vanishing Lemma for Pϊl). Assume that the matrix function Y,
holomorphic on (D/Σ9 has the following properties:

(i) possesses the jumps Gj, 1 ̂ ./ = 6 on Σ given by (2.6),
(ii) behaves near z = 0 according to Eq. (2.4) with |Re0|<^,

(iii) the analytic continuation of Y behaves near z = co according to (3.31a).
Then 7(0 = 0,

for ί e R if b = b, \a — c\<29

for
2πi

-2πi

if c = c, \b-a\<2,

for tee 3 R if a = ά, \c-b\<2.

(4.2a)

(4.2b)

(4.2c)

Proof

G2

Fig. 4.1

Ye

As it is illustrated in Fig. 4.1, the conditions (4.1) yield

G2 = G%, ReG3G4>0, RQG^^O. (4.3)

Equation G2 = G% implies b = b, while Eqs. (4.3b) and (4.3c) imply \a — c\<2. The
conditions (ii) and (iii) in the lemma guarantee that the singularities of H at z = 0, oo
are integrable. Hence the Vanishing Lemma follows.
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The cases (4.2b) and (4.2c) are obtained in a similar way after performing
suitable rotations of the (C-plane.

Lemma 4.2. (Vanishing Lemma for PIVj. Assume that the matrix function Y,
holomorphίc on C/Γ, has the following properties:

(i) possesses jumps Up l ^ j ' ^ 4 on Σ, Gj = Gj,j = 1,2,3, 64 = G4e
2iπθ«>σ\

(ii) behaves near z = 0 according to Eq. (2.22a) with | R e # 0 | < ^ ,
(iii) the analytic continuation of Y satisfies (3.31b) with

Then y(ί)Ξ=0,
_ 7 Γ ί

for tee ^ R , if \b~c)<2,

and

e2nime^a_ j | < 2 | c o s 2 π Re0 J , (4.4a)

πi

for teeτJH, if \c-3\<2,

and

έΓ 2* /^α-fil<2|cos2πRe0 o o | . (4.4b)
iπ

Proof Performing the rotat ion z' = e4z,Σίis mapped on to the real axis and q
/ ,2 iπ \ iπ

becomes q = -il — + te*zf J, thus for te4 e R , Q t = - β ,

Σ 3

Fig. 4.2

As it is illustrated in Fig. 4.2, Eq. (4.1b) implies

R e G 2 G 3 > 0 , ReG 4 e 2 i π θ o o < T 3 G 1 >0. (4.5)

Let MφG 4 e 2 i π β o o < T 3 G 1 . One of the diagonal entries of M + M* is e^e^^-nπθ^.^
positivity of this entry is equivalent to I R e θ J ^ . Also demanding that
det(M + M*)>0 we find e2πIrnθΰO\a- 3 |<2|cos2πReθ 0 0 | . Again conditions (ii) and
(iii) in the lemma guarantee that the singularities of H at z = 0, oo are integrable.

iπ

In the case of ί = e4lR, we take the branch cut along Σ2. Then the rotation
3iπ

z' = e 4 z yields the jumps indicated in Fig. 4.3 and Eq.(4.4b) follows similarly.

Fig. 4.3
G1e

2i*β-σ»G2

Σ2
Yι Σ4

G3G4

Theorem 4.1. For each Stokes line, there exists a set of conditions on the monodromy
data given by Eqs. (4.2), such that for t on a Stokes line, the solution for P I I with
| 0 ^ r has no poles.
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Remark 4.1. If the Cauchy data is purely imaginary and t is real, then Eq. (4.2a) is
always satisfied. Indeed, if q and θ are purely imaginary, then A defined by (2.2a)
satisfies σ 2Ά{z)σ 2 —A{z). Thus if Y(z) is a solution of (2.1a), σ2Ϋ(z)σ2 is also a
solution. Hence

σ2 Y2(z)σ2 = Y6(z), σ2 Y3(z)σ2 = Y5(z), σ2 Y1{z)σ2 = Yx(z). (4.6)

But

thus b = B. Also

thus ά = c.

Remark 4.2. Unfortunately, we do not have such a theorem for PIV. The reason
for this is that y has a pole when Φ_ x has a zero. But the vanishing lemma for PIV
is still useful, for instance, regarding the long time asymptotic behavior of PIV.

Appendix

We now show how the vanishing lemmas can be derived on the original contours.
Let h be a piecewise constant matrix. We consider H=YhY* and we choose h, G/s
in such a way that H is holomorphic in <C+, and H can be reduced on 1R to a
quadratic form with positive definite real part.

PII.

Fig. A.1

We note that for t e R, Q} = — Q, thus in order for H to be bounded, the large z
behavior of Y suggests that h must be lower triangular in Sects. I, III, V and upper
triangular in the complement. Also continuity across Σ3 implies

H+ = Y2h2YΪ = Y2h2G%Y} = H- = Y3h3Yj = Y2G2h3Yl.

Thus h2G% = G2h3 and the uniqueness of upper-lower triangular factorization
yields

h G h G% (A1)
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Continuity across Σ2 implies

H+ = Y2h2Yξ = Y

T h u S (A.2)

Equations (A.I), (A.2) yield the constraint G2 = G%, i.e. b = b. On Σ4, Σu H
becomes:

On Σ^H~ = Y3h3Yl=Y3G%G^Y3\
OnΣι.H- = YιhιYi = Y6G^GιYl
H is holomorphic in <C+ with continuous extension to R, except possibly at

z = 0 and oo. But for |Re0| <\ the possible singularities at 0 and oo are integrable.
Thus

(A.3)

Let

z = 0, => J tτ(H-+H-*)dz = 0.
R

= G 3G 4, M = G 6 G 1 . (A.4)

If the eigenvalues of the Hermitian matrices L+If, M + M* are positive then
Eq. (A.3b) implies 7=0. Since both these matrices have 2 as one of their diagonal
entries, it follows that the positivity of the eigenvalues is equivalent to the positivity
of their determinants. Demanding that det(L+L*)>0 and det(M + M*)>0 we
find|α-c|<2. D

Σ2

Σ3

Fig. A.2

Continuity of H= 7/z7t implies

(A.5)

On Σ3, Σu H+, H~ become

and

respectively. The positivity of the eigenvalues of G2 G3 + (G2 G3)* implies \b — c\ < 2.
Let MφG4^2 ί π θ o o < 7 3G1. One of the diagonal entries of M + M* is e2^=o_f-β-2^co.
positivity of this entry is equivalent to IRef lJ^ . Also demanding that
detίM + M*ϊ>0 we find e2πIrnθ«>\a-d\<2\cos2πReθΛ
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