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Abstract. Let Jί be a von Neumann algebra with cyclic and separating vector Ω,
and let U(a) be a continuous unitary representation of R with positive generator
and Ω as fixed point. If these unitaries induce for positive arguments endo-
morphisms of Jί then the modular group act as dilatations on the group of
unitaries. Using this it will be shown that every theory of local observables in two
dimensions, which is covariant under translations only, can be imbedded into a
theory of local observables covariant under the whole Poincare group. This theory
is also covariant under the CPT-transformation.

I. Introduction

The CPT-theorem played an important role in relativistic quantum field theory.
In the beginning of the fifties Schwinger [22] observed that there is an extra
symmetry in Lagrange field theory which is now called the CPT-symmetry, i.e. a
combination of space-time reflection and charge conjugation. However, this sym-
metry was not a symmetry in the usual sense, because Schwinger had to reverse
the order of factors in the products of field operators. Three years later G. Lίiders
[16,17] showed that the CPT-operation is, indeed, an exact symmetry of Lagrange
field theory following from the Lorentz-symmetry and the standard assumptions
of commutativity and the requirement that the Lagrange-function must formally
be selfadjoint. For a detailed discussion see W. Pauli [19]. In 1957 R. Jost [14]
gave a proof of the CPT-theorem in the frame of Wightman field theory [26] in
which he revealed the connection of the CPT-symmetry with the assumptions of
positivity of the energy, Lorentz-invariance, and the standard locality assumptions.
In this proof the existence of a vacuum state was essential. But up to now there
is no proof of the CPT-theorem in the theory of local observables in the sense of
Araki, Haag and Kastler.

Initiated by the result of R. Jost also many results about the connection of
spin with statistics have been obtained in the Wightman frame, large parts of
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which are presented in the book by Streater and Wightman [23]. In the theory
of local observables the question about the connection of spin with statistics went
along another line because charged fields are not the fundamentals of this theory
and they have to be constructed. The first result in that respect has been obtained by
Borchers [3]. Some years later the subject has been re-investigated and generalized
by Doplicher, Haag and Roberts [10,11] and again some years later by Buchholz
and Fredenhagen [9]. In these investigations no CPT-symmetry was required.
However, there was one question for which the CPT-symmetry would have been
useful, namely, for the existence of anti-particles. K. Fredenhagen [12] succeeded
to prove their existence without using the CPT-invariance.

An absolutely different aspect of the CPT-operator has been realized in con-
nection with the Tomita [25] Takesaki [24] theory of modular Hilbert-algebras.
Bisognano and Wichmann [1,2] observed that the CPT-operator and the Lorentz-
boosts are related to the modular conjugation and to the modular group of the
wedge algebra (see Sect. IV for its definition), provided the theory of local observ-
ables is generated from a Wightmann field which is covariant under Lorentz-
transformations. Here, again, one is dealing with the vacuum-sector.

The result of Bisognano and Wichmann shows that the modular group of the
wedge algebra coincided with the Lorentz-boosts of the wedge. This result held
out hopes for some converse conclusion to be true, namely, that the modular
group of the algebra, associated to the wedge domain, can indeed be identified
with a Lorentz-boost. This hope has been supported by a recent result of the
author [5] showing that there is a close connection between the translations and
the modular operator for local regions.

In this paper we want to show that the modular group for the algebra of the
wedge domain can always be interpreted as the group of Lorentz-boosts, provided
the cyclic and separating vector is the vacuum-vector. In order to obtain this result
one must show that the modular group induces outer automorphisms of the
translation group. To prove this two properties are essential. One is the spectrum
condition for the translations, the other is the structure of the wedge domain,
which is mapped by a semi-group of translations into itself. If the wedge is fixed
then one is dealing with a two-dimensional problem. Therefore, in most of the
investigations we shall only deal with field theories in two space-time dimensions.
Also in this situation the construction of the Lorentz-group is not unique because
one can start either with the right wedge or the left wedge. Only if the algebra of
the left wedge is the commutant of the algebra of the right wedge then the con-
structed Lorentz-group is unique. If we don't have this identity then one can
construct two local nets containing the original net and both fulfilling the duality
condition. The construction will be done by a method due to Bisognano and
Wichmann. We call these nets Bisognano-Wichmann-nets. If the original net
happens to be a Lorentz-covariant net then the given Lorentz-transformations
and those constructed from the modular group need not to coincide. If they are
different then the difference gives rise to a local gauge. Such situations might appear
when considering Wightman fields with an infinite number of components.

All of our investigations are essentially two-dimensional. This implies that we
can prove a CPT-theorem only for the theory of local observables in two dimensions.
An extension to higher dimensions needs additional information about the action
of the modular group on sub-algebras. Such information is not known to me.
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Using the information about the two dimensional situation one is able to construct
for every element of the Lorentz group unitary operators inducing on the translations
the correct automorphisms. But we do not know whether or not we can choose
a family which also forms a representation of the Lorentz group. The main question
however remains the problem of the locality of the action in higher dimensions.

II. Some General Results

In this section we will derive some general results which are interesting by them-
selves and which will be used in the following sections. We assume that M is a
von Neumann-algebra acting on a Hilbert-space J f and that ΩeJtf is cyclic and
separating for M. The modular operator and the modular conjugation associated
with the pair {Jί,Ω} will be denoted by A and J, respectively. First we show

ILL Lemma. Lei {Jί,3tf,Ω,A,J} be as described above. Assume, moreover,
is a continuous unitary one parametric group with

(i) ad U(t)Jt = U(t)JίU*(ή =
(ii) U(t)Ω = ΩVt.

(iii) U(t) has an analytic extension into the upper t-halfplane.

Then U(t) is entire analytic.
If, moreover, U(t) has a positive generator then U(t) = 1.

Proof. From the assumptions one knows that U(t) commutes with A as well as
with J, [6] Theorem 3.2.18. We will make use of the latter fact. For φ, φeJf we have

(φ, U(t)φ) = (φ,JU(t)Jφ) = (Jφ, U(- t)Jφ). (1)

Now the left-hand side has an analytic extension into the upper halfplane and the
right-hand side has an extension into the lower halfplane. Since both sides coincide
on the real points, (φ, U(t)φ) extends to an entire analytic function. Since this holds
for arbitrary φ,φeJ^, it follows that U(t) itself is entire analytic.

If U(t) has a positive generator, which must have the eigenvalue zero, then
(φ, U(t)φ) is bounded on the upper halfplane and (Jφ, U( — t)Jφ) is bounded on
the lower halfplane. Since a bounded entire analytic function is constant one
obtains (φ, U(t)φ) = (φ, φ), which implies U(t) = 1 . •

From this result we learn that a von Neumann-algebra M, with cyclic and
separating vector Ω, cannot have an invariance group for which ωΩ is an invariant
state and for which the canonical group-representation fulfills the spectrum
condition. This is not true if we only require ad U(t)Jt c Jt for t > 0. An example
is the "wedge algebra" in the theory of local observables. Here one has to take
the translation along the lightcone coordinate appearing in the definition of the
wedge and as Hilbert-space that of the vacuum sector. Before starting these investi-
gations we show

Π.2. Lemma. Let {Jί,J^,Ω,A,J} be as described before. Assume UeB(Jf) is
unitary, such that UJίU* cz Jί and UΩ = Ω, then one has with S — JA112 the relation

US = SU. (2)
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Proof. For AeM it follows that both vectors AΩ and UAΩ = UAU*Ω belong
to the domain of S and one obtains

SUAΩ=SUAU*Ω= UA*U*Ω= UA*Ω= USAΩ.

Assume now {AnΩ} converges in the graph topology of S. This means the sequence
{AnΩ,A*Ω} converges in Jf ®Jf to a vector {φ,φ*}, and one has Sφ = φ*.
Multiplying this with U we see that also {UAnΩ9 UA*Ω} converges to {Uφ, Uφ*}.
This shows UDS a Ds and it follows

SUφ = lim SUAnΩ= lim UA*Ω= Uφ* = USφ. •

n n

As a consequence of this lemma we show next:

II.3. Lemma. Let {Jί,3^,Ω, U,Δ,J} be as in Lemma 11.2. Then the operator

ΔιtUΔ-ιt (3)

has an analytic extension into the strip,

which is continuous on the boundary fulfilling the estimate

\\ΔιzUΔ-ιz\\^l.

Proof. If φ,φ£D{Δ)rλD{Δ~1) then (φ,ΔιzUΔ~ιzφ} is defined on the closed strip
and analytic in the interior. Moreover, it is bounded by || Δ1/2φ \\ \\Δ~ 1/2φ \\. Putting

now z = t — , we obtain

= (φ,ΔnJUJΔ-ιtφ). (4)

Since, now, a bounded function, analytic in a strip, takes its maximum value of
its modulus on the boundary we obtain

\\φ\\.

Since φ and φ are running through a dense set of vectors it follows that ΔιzUΔ~ιz

has an extension as a bounded operator valued function with norm not exceeding

1. •
II.4. Remarks.
(i) Since U is unitary one has U*Jί'U a Jί' because of the equation U*A'UA =
U*A'UAU*U = U*UAU*AfU = AU*AfU.
(ii) If one has in addition U*Ω= Ω we obtain from Lemma II. 1 the equation

FU* = U*F.

According to Lemma II.2 the expression

ΔιtU*Δ~ιt

has an analytic continuation into the strip S(0, \) and fulfills the estimate

| | 4 / z i r M - / z | | ^ l for zeS(0,|).



CPT-Theorem in the Theory of Local Observables 319

Next we assume that we have a continuous unitary group U(a) which fulfills
spectrum condition and which leaves the cyclic and separating vector Ω invariant.
Moreover, we shall assume that the semi-group adU(a), a^O maps the algebra
Jt into itself. Remark that Jt is not invariant under the whole group if we assume
that U(a) is not trivial (see Lemma II. 1).

For the following investigation we shall replace the variable a by eξ, which has
the advantage that a>0 is replaced by ξeR and the upper half-plane 3 m α > 0
by the strip 0 < 3m ξ < π. The boundary of this strip at 3m φ = π corresponds to
the values a < 0. Now we show

II.5. Proposition. Let {Jt, Jf, Ω, Δ, J) fulfill the assumptions described above.
Assume U(a), aεRisa continuous unitary group, U(a)e^(J^), fulfilling the properties

(i) ad U{a)Jt ^Jt for a^O.
(ii) U(a)Ω=Ω.

(iii) The generator of U(a) is positive, then

1. The expression

ΔιtU(eξ)Δ-ιt=:V{t,ξ) (5)

has an analytic extension into the tube T and is continuous on the closure, where T
is defined as follows:

7={(z,0;(3mz,3m0ef?}, (6)

where B is the interior of the quadrangle, whose corners are given by the point

{(0,0),(-± _π),(-l0),(0,π)}. (6a)

2. The operator V(z, ζ) is bounded

II K(z,011^1, for (z,ζ)eT.

3. vίt — , ξ - ι π \ has the value

v(t--,ξ-iπ) = ΔιtJU{ - eξ)JΔ ~ ". (7)

Proof. If φ,φeD(Δ)nD(Δ~1) then we consider the function

(ψ,Δ>zU(έ)Δ-ιzφ)=:F(z,ζ)

which is analytic and bounded in

(z,06S(-£,O)xS(O,π).

But, by the spectrum condition, for z real || U(eζ) || is bounded by 1. For ζ = ξ real
we know from Lemma II.3 that \\ΔιzU{ζ)Δ-ιz\\ ^ 1 for zeS(- | ,0). This implies
I F(z9 01 ^ || ψ || \\φ || if either z or ζ is real. Hence we obtain by analytic completion
the estimate

F(z,ζ)ί\\ψ\\ \\φ\\

for 3m z, 3m ζ in the triangle with the corners {(0,0),(-^,0),(0,π)}. From the
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proof of Lemma II.3 we know

Since J is an anti-unitary operator and since U(eξ) has an analytic extension into
the strip S(0,π) we see that JU(eζ)J is anti-analytic in that strip, which means that
JU(eζ)J is analytic in S(— π,0). This can also be seen by direct calculation:

Fit - -,ξ\ = (Jψ, ΔιtU(eξ)Δ-ιtJφ) = (Jφ, ΔιtU(- eξ)Δ'nJφ)

which has in ξ an analytic continuation into S(— π,0) with the estimate

Flt--,ζ)\ύ\\Φ\\\\φ\\

Since we have chosen φ and φ in D(Δ)(ΛD(Δ~Y) the function has an analytic
extension into S(0,±) x S(-π,0) or F(z,ζ) into S(-^,0) x 5(-π,0). But this
function is bounded by || φ\\ \\φ || on the boundaries of the degenerated tubes
S( — Ϊ , 0 ) x {0}u{--|} x S(-π,0), and hence on the tube which has as basis the
triangle defined by the points {(0,0),(-±, -π),(-±,0)}. Together with the result
of Lemma II.3 we find that F(z, ζ) is analytic in the tube T defined in Eq. (6) and
(6a) and bounded in this domain by

\F(z,ζ)\^\\φ\\ \\φ\\.

Hence the operator F(z, ζ) is an analytic operator in the tube T and fulfills the
estimate

Finally one has FI t --,ξ - iπ J = (φ,ΔιtJU(- eξ)Je~ιtφ) which implies

v(t--9ξ-ιπ) = Διtjυ{- eξ)JΔ-n.

This proves the proposition. •

11.6. Addendum.
(a) Assume for {Jί, tf, Ω, Δ, J} the same situation as before and let U(a) be again
a unitary group fulfilling spectrum condition which leaves the vector Ω invariant.
Instead of looking at the situation investigated above we consider

aάυ(a)Jί'aJΐ' for α^O.

In this case we know from the Remark II.4 that FU(a) = U(a)F for a ̂  0 holds
and, moreover, that the operator

W(t,ξ) = ΔιtU{-eξ)Δ-ιt (5a)

has in t an analytic extension into the strip S(0, \).
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The considerations of Lemma II.3 and of Proposition II.5 also have their trans-
scription and one obtains

1. W(t, ξ) has an analytic extension into the tube — T.
2. For (z9ζ)e-T one has that W(z,ζ) is bounded

3. Wl t + -,ξ + ιn ) has the form

wit + -, ξ + in ) = ΔιtJU(eξ)JΔ-ιt. (7a)

(b) However, if we assume

3idU(a)J/czJΐ for α^O

then SU(a) = U(a)S for a ^ 0 holds. If we introduce the operator

V(t, ζ) = Διt U( - eξ)Δ ~ιt (5a)

then the analytic extension of t does not change, but in ξ we have an analytic
extension into the tube S(— π,0). All other considerations are similar as in the
case of the operator K(ί, ξ). Hence we obtain

1. V(t,ξ) has an analytic extension into the tube f, where f is obtained from T
by replacing ζ by — ζ.
2. For (z,ζ)ef the operator V(z,ζ) is bounded

3. vl t + -, ξ - in 1 has the form

vlt + -, { - in J = ̂ /ίJL/(+ eξ)JΔ~ιt. (7b)

Next we want to apply the results obtained in Proposition II.5 and Addendum II.6
in order to compute special matrix elements. But first we introduce some notations:

Π.7. Definition. Let {Jt,Jf,Ω9Δ,J} be as before and let AeM and BeJί' then we
define:

F+(ί, ξ) = (β, BΔιt U(eξ)Δ ~ ιtAΩ)

and

F'(t9 ξ) = (Ω9 AΔιtU{-eξ)Δ-ιtBΩ).

From the result of Proposition II.5 we know that F+(t,ξ) has a bounded
analytic extension into the tube T and by Addendum II.6 we know that F~ has
an extension into the tube — T.

Next we show

II.8. Proposition. The two functions F+(t,ξ) and F~(t,ξ)9 which are holomorphic in
the tubes T and — T respectively, are different representations of one analytic function
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H(z, ξ), which is holomorphic in the domain

:π}. (8)

Here H(z, ζ) is bounded. One has

IH(z,01 ^ max{||i4fl|| | |£*fl| |, ||yl*β|| | |Bβ||}.

This latter statement implies that H(z, Q is constant along the direction given by the
strip (8) i.e.

-,C + wτj for weC. (9)

Proof. Since the modular automorphism maps Jί into itself one has that

for (r,ξ)eR2, which implies that adΔιtU(eξ)Δ~ιtA commutes with B. This implies
that F+(t, ξ) = F'{t9 ξ) for (ί, ξ)eR2. Using the edge of the wedge theorem [7], [8]
we see that both functions coincide and have, by the tube-theorem, an analytic
extension into the convex hull of Γ u - T. F+ is bounded by ||B*Λ|| | | i4β| | and
F~ is bounded by | | i4*β| | \\BΩ\\. This implies H is bounded by the maximum of
the two estimates. From Proposition II.5 we know

F + (t - -, ξ - in J = (f2, BΔ"JU(- eξ)JAΩ)

and from Addendum II.6 we obtain

+ -,ξ + ιπ\ = (Ω, AΔιtJU(eξ)JBΩ).

Since JJtJ = Ji' it follows that

which implies

This implies that the common function H(z, ζ) is a periodic function

Using again the edge of the wedge theorem we see that H(z, ζ) is analytic in the tube
described in (8). Since H(z, ζ) is also bounded in this domain by max {|| B*Ω || || AΩ \\,
|| A*Ω || || BΩ \\} it must be constant in the direction of periodicity. This proves the
theorem. •

Next we want to apply the result of Proposition II.8 in order to obtain the
main result of this section. For this we make use of the assumption that Ω is cyclic
and separating for Jί.

II.9. Theorem. Let Ji be a von Neumann-algebra acting on a Hilbert-space J f and
assume ΩeJi is cyclic and separating for Jί. Denote the modular operator and
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modular conjugation of the pair {Jί,Ω} by Δ9J. Let U(a\ aeR be a continuous
unitary one parametric group with a positive generator leaving the vector Ω invariant.

(A) Assume in addition

ad V{a)M c^M for a ̂  0

then we have for (t, a)eR2

(a)
ΔnU(a)Δ-n=U(e-2πta) (10)

and

(b)

JU(a)J=U(-a). (11)

(B) // we assume instead

ad Ό{a)Jί aJί for a^O

then we have for (t,a)eR2:

(a)
ΔιtU(a)Δ-ιt=U(e2πta) (10a)

and

(b)
JU(a)J=U(-a). (lla)

Proof
(A) For AeJί and BeJί' and with V(t, ξ) = ΔnU(eξ)Δ'tt we have by Proposition
II.8 the equation

(Ω, BV(t, ξ)AΩ) = (Ω,BV(t + s,ξ + 2πs)A)

for arbitrary seC. Since Ω is cyclic and separating and since the operators in
question are bounded we conclude

V(t,ξ)=V(t + s,ξ

Choosing 5 = — t we obtain

ΔιtU(eξ)Δ-ιt=U{e-2πteξ)

and inserting ^ = αwe have

Δ"U(a)Δ-« = U(e~2πta) for a ̂  0.

Since both sides of this equation are boundary values of analytic operator valued
functions in the upper half-plane we obtain Eq. (10) by analytic continuation.

For the statement (b) we make use of Eq. (4) which reads

JU(eξ)J = Δ1/2U(eξ)Δ-112 = v( -~,ξ\

But by the invariance property of V we obtain

V " %2' V F ( 0 > ξ + ιn) = u(elπeξ) = u{~ eξ)



324 H. J. Borchers

or JU(a)J =U(—a) for a ̂  0. Taking the adjoint of this equation we obtain Eq. (11).
(B) For proving these statements we start from part (b) of Addendum II.6 which
indicates that there is a similar result as Proposition II.8 with the difference that
we obtain invariance of the form

H(z,ζ) = Hl z + -,ζ-πw] for weC.

From this we obtain for the operator V(t, ξ) = ΔιtU(— eξ)Δ~ιt the relation

V(t9ξ)=V(t + s,ξ-2πs).

Repeating the same steps as in the proof of (A) we obtain the statements of (B).

III. Two-Dimensional Theories

In this section we assume again that we have a von Neumann-algebra Jt acting
on a Hilbert-space J f such that there is a vector ί2e^f, which is cyclic and
separating for Jί. A and J will denote again the modular conjugation of the pair
{Jί,Ω}. But now we assume that we have a continuous representation U(a\ aeR2

of the vector group of R2. Furthermore, we assume

(a) U(a)Ω=Ω.
(b) The Spectrum of U(a) is contained in the forward light cone V+ := {aeR2; a0 ^

(c) Let W be the set

W:

then we assume

2,άυ(a)JίaJί for aeW.

Now we introduce the lightcone coordinates

ao-\-aι _ ao — aι _ +

a = , a = or ao = a +a , a1=a — a .

Since U(a) fulfills the spectrum condition it follows that U(a+) and U(a~) both
have positive generators and, moreover, we have

3idU(a+)Jΐ^ Jί for α + ^ 0 and

didU{a-)Jia Jί for a' ^0 .

Therefore, we apply Theorem II.9 and obtain

IΠ.1. Theorem. With the assumptions described in the beginning of this section and
with

^ /cosh2π ί -sinh2πΛ

\-sinh2πt cosh2πί /
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and

U(Λ(t)) = Δ", (13)

then {U(A), U(a)} induce a representation of the two-dimensional Poίncare-group
which fulfills the spectrum condition and which has Ω as invariant vector. Furthermore,
one has

JU(a)J=U(-a). (14)

Proof From Theorem II.9 we know AnU(a+)A~lt = U(e~2πta+) and AltU(a-)A~lt =
U(e2πta~). This together gives AΛυ(a)A~n = U(Λ{t)a)9 where Λ(t) is given by Eq. (12).
This means U(Λ) induces the correct outer automorphism on the translation group.
This implies that the above system gives a representation of the Poincare-group.
The statement of Eq. (14) has been proved in Theorem II.9. •

Remark. In the investigations of Bisognano and Wichmann [1,2] appears also a
relation between the Lorentz-boosts and the modular group σt, which differs by
a sign. This is due to the fact that the modular automorphism is often defined by
the equation σt(A) = adA~ιtA, while we are working with ad Aιt.

If one is dealing with a theory of local observables then it has been shown by
Borchers [3] that the spectrum is located in a Lorentz invariant set. At first sight
it seems as if the above results do not use any locality conditon. That this is not
true will be shown by the next investigation.

III.2. Lemma. With the assumptions described in the beginning of this section and
with

a\ M'a = U(a)J('U(-a) (15)

one has with the notations (12) and (13)

(ϋ)
U(Λ)Jί'aU*(Λ) = Jΐ'Λa9

(iii) JMJ = Jί'_a and JM'J = JJί_αJ.

Proof. The first statement is trivial. Since U(Λ) is up to some scaling of the
parameters identical with the modular group, we have ad Ό(A)Jί = Jt and
ad U(Λ)Jί' = JΓ. Hence we obtain by definition (15) and Theorem III.l,

U{Λ)J(aU*(Λ) = U(Λ)U(a)JΐU*(a)U*(Λ) = U(Λa)U(Λ)J(U*(Λ)U*{Λa)

= U(Λa)JΐU*(Λa) = JtΛa.

The arguments for JΓa and for the statement (iii) are analogous. •

Double cones are usually characterized by two points a,b such that b — aeV+.
But since we are working with two-dimensional theories one can characterize them
by two points which are spacelike to each other. To this end one uses the right
wedge WR and the left wedge WL. We say b is right of a if bea + WR. Let b be
right of α, then we put

Da.b = {a+WR}n{b+WL}. (16)

With these notations we obtain
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III.3. Proposition. With the assumptions and notations of the last lemma and with
the definition (16) introduce

Jί(Da,b) = JίanJί'b (17)

and let Jί be the C*-algebra generated by all the J^(Dab). Then the system
{Jί{D\Jί, U(Λ,a)R2}, where U(Λ,a) is the representation of the Poincare-group
acting on R2, defines a covariant local net, having J as CPΎ-operator.

Proof From Lemma III.2 we know the co-variance of the systems {Jί^ and
{Jί'a}. Hence we have co-variance of the intersections. Since J interchanges {Jί^
with {Jί'a} in particular JJίaJ = Jt'_a. Therefore, J maps Jί(Dab) onto Jr(D_b _α).
It remains to show the locality. If Dab and Dcd are spacelike to each other then
either Dcd is right of Dab or vice versa. Let us assume Dcd is right of Dab then
^(Da,b)c ^t'b a n c * ^(Dcd)c= ^c Since c is right of b we have Jίc a Jίb and hence
the algebras commute. The other case can be proved in the same manner. •

Having the local net formed by the von Neumann-algebras Jί(J>^b) we can
construct Jί(WR) and Jr{WL) as the von Neumann-algebra generated by all the
Jί{Dab) with Daba WR or Daba WL, respectively. One would like to compare
these algebras with Jί or Jί', respectively. By construction we know that Jί\wR)
is a sub-algebra of Jί and Ji{yV^ is a sub-algebra of Jt\

A comparison, however, only makes sense if the algebras are big enough. As
criterium we will use the requirement that JΓΩ is dense in J f. First we show

III.4. Lemma. Let {Jf{Dab\ Jί, U(a), R2} be a translation covariant local net and
U(a) a representation of the translation group fulfilling the spectrum condition acting
on a Hilbert-space with vacuum vector. Then J^iWjJΩ and J^(WL)Ω are both dense
in JTΩ.

Proof. Let b be in the interior of WR. Then JV(WR + b) a Jί{WR) and there exists
a neighbourhood U such that J^{WR) = [j Ό{a)Jr(WR + b)U*(a). But this implies

aeU

by a theorem of Borchers [4] that JΓΩ = J^iW^Ω because Jί is the algebra
generated by all Ό{a)Jr(WR + b)U*(a). The same argument also holds for WL.
After these preparations we obtain:

III.5. Theorem. Let Jί be a von Neumann-algebra such that {Jί, U(a)9Ω,J^,Δ,J}
fulfills the assumptions and conditions described in the beginning of this section. Let
{jr(Da,b),jr,U(Λ,a)J,R2} be the covariant local net derived from {Jί,Ό{ά)}
described in Proposition III.3. If we assume that JίΩ is dense in ffl then we have
Jr(WR) = Jί and jV(WL) = Jί'. In particular does this imply that the local net

\ Λ^l/(Λ,α),J,R2} fulfills the duality condition.

Proof. Since JίΩ is dense in tf we have, by Lemma III.4, that also Jί{WR)Ω is
dense in ̂ f. J^(WR) is by construction contained in Jί. Jί(yVR) is invariant under
ad U(Λ). By the form U(Λ(ή) = Δι\ where A is the modular operator of Jί, we
know that Jί{WR) is invariant under the modular automorphisms of Jί. This
implies by a theorem of Rigotti [21], which is based on a result of Rieffel and Van
Daele [20], that Jr(WR) and Jί coincide. With the same arguments we obtain
Jί{WL)=-Jί'. So we have duality for wedges and, since J^(Daib) coincides with
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the Bisognano-Wichmann-net, one has duality also for this net [1] provided Ω
is cyclic for

Remark. In this section we assumed that the algebra M is invariant under the
action of the semi-group {adU(a), aeW). If, instead, one takes an algebra M
invariant under the semi-group {ad U(a), aeV+} then the modular group acts as
dilatation, because the scaling for both lightcone coordinates is the same. This
dilatation exists only as an automorphism on the translations and not as local
transformations on the algebras Jt(O). If however, the commutant of Jί(V+)
coincides with Jt(V~) then the modular transformations also act local on the
algebras. This latter case appears in the theory of free massless fields.

IV. The CPT-Theorem in the Theory of Local Observables
in Two Dimensions

Up to now we started with only one von Neumann-algebra, which had several
properties listed in Sect. III. Out came a representation of the Poincare-group and
a CPT-operator; and eventually a local structure with the amazing result that the
representation of the Poincare-group is an extension of the given representation
of the translation group.

Next we start with a net of local observables {Jt(O\J(, U{ά)R2,Ω,Jί), i.e.
to every double cone D f l f cczR2 we have a von Neumann-algebra Jt(Dab) on
Jf fulfilling isotony and covariance under translations. In addition, we assume
U(c)Jΐ(Dab)U*(c) — ̂ (Da+Cyb+C% where U(a) is a continuous representation of the
translation group fulfilling spectrum condition and which has Ω as an invariant
vector. Furthermore, we assume that this net fulfills the locality condition, that
means, if Dab and Dcd are spacelike to each other, then Jί(Dab) and Jί(DcJ) are
commuting von Neumann-algebras. Jί is the von Neumann-algebra generated by
all Jf(Datb) and we assume that Ω is a cyclic vector for J(.

Let now Jί(WR) or Jf(WL) respectively, be the smallest von Neumann-algebra
containing all M{Dab) with Dab c WR or Dab a WL respectively.

Using Lemma III.4 we see that Ω is a cyclic and separating vector for Jί{WR)
and also for Jί(WL). Starting with Jί{WR) we are in a situation described in Sect. Ill,
i.e. with these methods we obtain a modular operator ΔR9 a modular conjugation
JR, and, using the construction described in Sect. Ill, a Bisognano-Wichmann-net
J^R(Dab) fulfilling the duality condition. Since Jf{WL) commutes with Jί(WR) one
has i f ^ J c / u f P J so that the originally given net Jί(Dab) is contained in
the Bisognano-Wichmann-net jVR(Dab\

For this construction we had a choice. Instead of starting with the vonNeumann-
algebra Jί{WR) we could have started with Ji(WL). In this case we obtain a second
set {ΔL, JL, ̂ VL(^atb)}' Here ^L(Dab) is again a Bisognano-Wichmann-net fulfilling
duality. Each of the two nets contain the original net M(Όab\

Looking at examples in the standard Minkowski-space one might expect that
there are some examples giving rise to two different Bisognano-Wichmann-nets.
Take, for instance, a Poincare-co variant Wightman field theory with a finite number
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of components, but which is no longer covariant when dropping some of them.
If one starts with the covariant field then, by the construction of Bisognano and
Wichmann, who used Jost's CPT-theorem [14], one obtains a local net M(O) such
that M{WRΊ = Jt{Wj). But if we drop some of the components one loses Lorentz-
covariance and in this case the identity of Jί(W(R))' and Jf(WL) is doubtful.

We still have to justify the statement that the operator J can be identified with
the CPT-operator. For these investigations we shall restrict ourselves to the case
where one starts from the wedge WR. We know that JR acts as a total reflection
on the algebras ^VR{Dab). In order to show that JR also acts as charge conjugation
we assume that the local rings are structured in such a way that we can write

a^) and that we have a compact gauge group G acting on M
j

by automorphism βy,γeG which map every Jί(Dah) onto itself. In particular we
assume that the following equation holds:

βyJttiD^) = Σ Cij(y)^j(Da,b\ (18)

where Cιj(y) is a finite dimensional representation of G. This formula means, in
detail, that to every Aiet^i(Da b) we can find A^Jij(Dab), not depending on γ, with

In this formula the local observables are those operators which are invariant under
the gauge transformations. Also the vacuum state is invariant under these trans-
formations. Since βγ is a local gauge it extends to Jί(WR) and to its commutant.
From this we see that βy commutes with the modular automorphisms and the
modular conjugation. Consequently also the local net ^R{Dab) has the same
structure as Jί(Dab). From these remarks we obtain for the conjugated quantities
JR(^R,i(Da,b)) = JR^R,i(Dab)JR the equation

βyJR(^R,i(Da,b)) = Σ Cij(yM^Rj(Da,b)). (19)
j

We learn from this equation that JR acts on the local net jVRj{Dab) also as
charge-conjugation. The best example is a field carrying a standard charge. Here
one has βγ(^Rti{Datb)) = eιφiγ4)jVRti(Dab) while the conjugation JR changes the face
factor into it's inverse. This means that the sign of the charge is reversed.

The case of the Fermi-fields can be treated as it has been done by Bisognano
and Wichmann [2] and we don't have to repeat it here. From this discussion we
see that JR also acts as a charge-conjugation so that, altogether, it can be viewed
as the CPT-operator.

In the case oϊJΐ(WR)' Φ Jΐ{WL) the operators JR and JL are inducing the same
automorphism on the translation group, which implies that JRJ~1 = JRJL

commutes with the translations, i.e. we have

[ JRJLi U(aU = VLJR, t/(α)] = 0. (20)

In the same manner Δι

R and A ~ιt induce the same automorphism on the translations,
which implies

= 0. (21)
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If we have the situation Jt(WJ φ Jί{WR) then Jί{WR)' and Jt{WL)' do not
commute with each other. This implies that the two nets {^κ(Dfltb)} and {oVL{Datb)}
are not relatively local to each other. Since we started from a local net {Jί(Dab)},
the two algebras M{WR) and J^(WL) commute which implies that

^RΦa,b)^^LΦcJ ϊoτDatb to the right of Dc4. (22)

But it is not true for the reverse order, i.e. if Da b is to the left of Dc d. If, again,
Jί{WR)' Φ M{WL) then {JTR(DaJb)U(a\ UR(Λ)} and {^L{DaJb\ U(a)9 UL(Λ)} are not
the only covariant local nets fulfilling duality, which one can construct from the
local net {J((Datb)9 U(a)}. We show

IV. 1. Theorem. Assume that we start from a local net {M{Dab\ U(a)} fulfilling the
assumptions described above. Assume in addition that Jt{WL)' φ Jί(WR\ then there
exist two sequences of different covariant local nets fulfilling duality
U(a)UR(Λ)} and {Λ^(Z)β „), U^U^A)} ieZ, such that

1)

°

where ^R(DO b) and ^L(DO b) are the two nets constructed before.

2)

3)
^i(W«)=>^k(Wκ)> ieZ.

Proof. The construction we will use has been introduced by V.F.R. Jones [13]
and by R. Longo [15] for the study of subfactors. Let W be the operator JRJL,
which is unitary. Moreover, one has W* = W~ι =JLJR. Define

^RΛWR) = ^R,L{WR) and

^KΛWR) = W^RΛWRW-'- (23)

Since JίR and JίL are constructed from a local net {Jΐ(D9tb)} one has

which implies 3) by the defining Eq. (23). Statement 1) is only a matter of definition.
Next we show 2). By definition of the modular conjugations we have

JiAάWL)'JL = JTL(WL) and JRJr

R{WR)ΊR = JίR{WR). Since we also have
<^R(WR) C J\rL{WL)' and JTL(WL) c JίR{WR) we obtain WJrR{WR)W~ι a JίR{WR).
By Eq. (23) we obtain the line of 2). But the same argument gives
WJ^L(WL)W c JVL(WL). Passing to the commutknts and using again Eq. (23) we
obtain the second line of 2). It remains to show that the ^R^D^) form a local
net. From JίR L{WR) = W^^W^W'1 we obtain, by passing to the commutant,
^RΛWL)=Wi^R,L(WL)W-'\ and hence ^ Λ ^ ^ Λ ^ " 1 . Since
one has WΩ = Ω it follows WιΩ = Ω. This implies that Ω is a cyclic and separating
vector for ^RfL(Datb\ since it is cyclic and separating for rfRtL(Da%b) and W* is
unitary. Finally, since W commutes with U(a\ all these local nets are transformed
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by the same representation of the translations. The representation of the Lorentz-
group is given by

U'RtL(Λ)=WiURtL(Λ)W-i.

Finally it remains to show that all these local nets are different. Assume first we
have ^ri

R(Dab) = Jrj

R(Dab\ iΦj for all double cones then we conclude
NR(WR) = Λfj

R(WR). Using the first line of 2) we obtain JTR(WR) = Jfι

R(WR). This
equation implies JL^^W^JL^ JRJV*R(WR)JR = Jϋ^^iW^JR. From this we
obtain

^l(wL) = JLJV°L(WJJL ^ jLjr°R(wR)jL = JR^°R(wR)jR = ^

This contradicts the assumption. If we assume J^ι

L(DaJ)) = oVι

L(Datb) i φj then a
similar argument leads to the same conclusion.

Next assume ^VR(Datb) = Λ̂ jr,Φα,&) f°Γ a ^ double cones. If we assume i ^j then
we have ^V{(WL)' = JVR{WR) c ••• <z JVR(WR). From this we obtain that the net
oWRφatb) fulfills duality and consequently also the net ^°R(Dab). This contradicts
the assumption. If we have i >j then we only have to interchange the right and
the left wedge in order to obtain the same conclusion. •

The original net Jt(Dah) is contained in ^R,L{Dab) but in general it will not

be contained in ^K j L(£a,b) f°Γ ί Φ 0.
Finally, we consider the case of starting from a Lorentz-covariant net {Jf(DOtb)9

U{a\ V(Λ)} fulfilling the standard assumptions. Then we obtain:

IV.2. Theorem. Let {Jί(Dab\ U(a)9 V{Λ)} be a (two-dimensional) Lorentz-covariant
local net and let {^l

R L(Dab)U(a)UR L(Λ)} be the derived covarίant nets (see Theorem
IV.2) then one has

(i) V(Λ) commutes with all URL(Λ'), ieZ and with all modular conjugations

(ii) {^^(Daj), U(a% V(Λ)} is again a covariant local net, i.e. one has

V(Λ)Λ-RL(Da,b)V- \A) = JTKD^ ΛbY (24)

(iii) The group XRL(Λ)= URtL(Λ)V*(Λ) defines local gauges for the algebras

RA^Λ i e. one has

ad X^WRJD^) = jVι

RJDatb) ieZ. (25)

Proof, (i) Since we have Jt(WR) = JΓR(WR) it follows that C(A) is an
invariance-group of JVR(WR). This implies by [6] Theorem 3.2.18, that V(A)
commutes with ΔR and JR. Since UR(Λ) is derived from ΔR it follows that V(Λ)
commutes with all UR(Λf). Replacing WR by WL we obtain by the same argument
that V(Λ) commutes with JL and UL(Λ'). But this implies that V(Λ) commutes with
W = JRJL. Since all other modular operators and modular conjugations are
obtained by transforming UR and UL or JR and JL respectively, by powers of W
we see that all of these operators commute with V(Λ).

(ii) From ad V(A)JίR(WR) = JίR(WR) one has ad V(A)JTR(WR)' = JΓR(WR)'.
Since V(A) induces the correct automorphism on the translation group it follows
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from the definition of J^R{Dah) that also V(Λ) transforms these algebras correctly,

i.e.

Replacing WR by WL we obtain the corresponding statement for ^VL(Datb). Finally,

since JfR L(Dab) is obtained by transforming *yVRtL{Datb) with Wι we obtain again

that V(Λ) transforms these algebras in the correct manner,

(iii) From the equation

L ( f l J ^ ( y l ) * = V(Λ)J^RL(Da,b)V*(Λ)

we obtain

which means that XRL(Λ) defines a group of local gauges for the algebras

^RΛDaΛ •
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