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Abstract. Two dimensional quantum Yang-Mills theory is studied from three
points of view: (i) by standard physical methods; (ii) by relating it to the large k
limit of three dimensional Chern-Simons theory and two dimensional conformal
field theory; (iii) by relating its weak coupling limit to the theory of Reidemeister-
Ray-Singer torsion. The results obtained from the three points of view agree and
give formulas for the volumes of the moduli spaces of representations of
fundamental groups of two dimensional surfaces.

1. Introduction

Let Σ be a compact two dimensional manifold. Pick a compact gauge group G. Let
E be a G bundle over Σ, with a connection A and curvature F = dA = A A A. F is a
two form with values in the adjoint bundle, which we will denote as ad(£).

Let Jί be the moduli space of flat connections on E, up to gauge transforma-
tion. If Σ is orientable, Jί has a natural symplectic structure ω [1,2] and thus a
natural volume form

where n = dimt/#/2. Even if Σ is not orientable, a natural measure on Jί can be
defined using the theory of Reidemeister torsion (or Ray-Singer analytic torsion
[3]); this measure agrees with θ in the orientable case, as we will verify in Sect. 4.2.
The volume Vol(^) of Jί, obtained by integrating this measure, will be our main
interest in this paper.

If Σ is orientable, this volume is a rational number for the following reason. The
symplectic structure ω has integral periods and represents the first Chern class of a
certain natural line bundle over Jί. Hence θ represents a rational class (the
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denominator coming from the explicit n\ in (1.1)). No such rationality of Vol(^#)
can be expected in the unorientable case.

In the orientable case, a formula for No\(Jί) can be obtained by picking a
complex structure J on Σ, so that Jt can be identified (by a theorem of Narasimhan
and Seshadri [4]) with the moduli space M3 of stable holomorphic Gc bundles on
Σ (of topological type determined by E). Moreover, the line bundle ££ can then be
identified as a holomorphic line bundle over M3. Verlinde [5] extracted from
physical arguments in conformal field theory a formula, which we will recall in
Sect. 3, for the dimension of H°(Jίj, ££m\ (A rigorous proof of the Verlinde
formula as a statement about the number of conformal blocks in conformal field
theory can be found in [6], and the relation of this with H°(Jίj, J?®k) is sketched in
[7], along with a sketch of a short proof of the Verlinde formula. A direct algebra-
geometric proof of Verlinde's formula has not yet been given.) By the Riemann-
Roch formula, the volume of Jί is

j (1.2)
fc-oo

and so can be extracted from Verlinde's formula. For instance, as we will see in
Sect. 3, for G = Sl/(2), and Σ a Riemann surface of genus g, one finds Vol(^)
= 2 (Iπ2)1 ~9 ζ(2g — 2), where ζ(s) is the Riemann zeta function. Rationality of this
number follows from Euler's well known evaluation of the zeta function at positive
even integers [9]. Independently of the present work, Thaddeus [10] has recently
extracted this result and many other topological consequences of Verlinde's
formula.

As we will see in Sect. 3, in connection with Eq. (3.18) for the volume of twisted
moduli spaces, the rationality of the Hurwitz zeta function (closely related to
Dirichlet ^functions) at special values can also be seen as a consequence of
Verlinde's formula.

Verlinde's formula is based on fairly sophisticated physics or mathematics. The
main purpose of this paper is to present a computation of Vol(c#) based on much
more elementary arguments. This computation does not contain all the informa-
tion present in Verlinde's formula, but at least in the semiclassical limit of large fc,
it renders transparent the most mysterious part of Verlinde's results, which is the
"diagonalization of the fusion rules."

This "elementary" computation of Vol(^#) also has the virtue that it extends to
the case that Σ is unorientable. For instance, for G = SU(2) and Σ the connected
sum of an orientable surface of genus g with the protective plane RP2, the volume
of Jl is an elementary multiple of ζ(2g — 1) (as we will see in Sect. 4.6). In contrast to
the values of the zeta function at positive even integers, the values of ζ(s) at positive
odd integers are little understood; there is no reason to expect the multiple of
ζ(2g — 1) that arises here to be rational. Of course, we do not expect any rationality
when Σ is unorientable.

Certain generalizations are also natural. One involves deleting n points
Pl9...,Pn from Σ and considering the moduli space of flat connections on
Σ — {Pu..., Pn} with prescribed monodromies around the Pt. We will compute the
volumes of these more general moduli spaces. Another generalization (which turns
out to be related) involves computing intersection numbers of certain algebraic
cycles on M. It will not be pursued here.

This paper is organized as follows. In Sect. 2, we introduce the quantum gauge
theories on which the analysis will focus, and describe a physical version of the
computation of Vol(^) and some of its generalizations. In Sect. 3, we review the
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Verlinde formulas. In Sect. 4, we carry out a mathematically precise version of the
calculation of Vol(^), using the interpretation as Reidemeister torsion. This
computation proceeds by imitating the steps in Sect. 2. The background material
to Sect. 4 (which we have, however, tried to make self-contained) can be found in
[11-13]. This paper is written in such a way that it can be understood while
omitting certain parts of Sect. 2 or most of Sect. 4.

Two dimensional quantum Yang-Mills theory, which is our basic tool in
Sect. 2, has previously been analyzed by Fine [14] using a fairly explicit analysis of
the continuum path integral. His results agree with ours at least in genus zero
(where he obtains explicit formulas). I understand that results similar to part of
Sect. 2 were also obtained some years ago in unpublished work by W. Nahm and
K. Uhlenbeck.

2. The Quantum Theories

We will be studying certain quantum gauge theories, with compact gauge group G,
on a two dimensional manifold Σ. To define these theories, we must pick an
invariant quadratic form on the Lie algebra (3. If G is simple (an assumption whose
role is only to simplify the notation in what follows), this quadratic form is unique
up to normalization. Though the normalization will not be important in this
section, we will find a certain choice useful in Sect. 3. The Lie algebra ^ of G
coincides with that of the universal cover G of G. A quadratic form (,) on ^
determines a characteristic class α e H\BG\ R), which can be represented in de
Rham theory by the four form

^(F,F), (2.1)

where F is the curvature of a connection on the universal bundle over BG. We pick
(,) so that (2.1) is the fundamental integer-valued characteristic class of G bundles
(i.e., α generates the image oϊH\BG,Z) in H4(BG,ΊR)). For G = SU{N), one has
(a,b)= — Trαfc, where Tr is the trace in the N dimensional representation.
Motivated by this example, we denote (,) as Tr for any G ί .

The Yang-Mills action or Lagrangian on a Riemannian manifold Σ of any
dimension n is the functional of connections defined by

I(Λ) = - 4J2 ί dμgίkgjl TrFyFw, (2.2)ί

where gfj is the metric of Σ, μ is the Riemannian measure, and e is a real constant,
the gauge coupling constant. It has long been known [15] that for Σ of dimension
two, the quantum field theory associated with this action is exactly soluble and
indeed trivial locally. At a fundamental level, the reason for this is that in two
dimensions, the Yang-Mills action depends only on the measure μ determined by
the metric g. In particular, (2.2) is invariant under the group of area preserving
diffeomorphisms of Σ. This is such a large group that the quantum theory
associated with (2.2), which we might characterize as an area preserving quantum
field theory, has a flavor similar to topological field theory.

1 We consider the Lie algebra of a compact group to consist of anti-hermitian matrices, so the
quadratic form (a,b)= —Ύvab is positive definite
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To exhibit the fact that in two dimensions, (2.2) really only depends on the
choice of a measure, note that if Σ is oriented, a metric determines a volume form ε,
and we can define an ad (E)-valued zero form / by F = εf For Σ unorientable, ε does
not exist as a two form, but still exists as a two form with values in the orientation
bundle σ (which is a real line bundle with structure group Z2) I n that case we can
still write F = εf with / an ad(E)-valued section of σ. The action can then be written

2e2
 Σ

making explicit the fact that it depends only on a choice of measure, and not on a
metric.

The only invariant of a measure on a Riemann surface Σ is the total area,

ρ=$dμ. (2.4)
Σ

Note that I(A) is invariant under e2^te2, μ-^μ/t for any real number t. (The
relation F = εf shows that under such a scaling, one has f-+tf)

The quantity of prime interest in this paper will be the partition function

ZjΣ\e , ρ)=— J L)Jx e . .̂Z.DJ

Here DA denotes the Feynman path integral over the space of connections
(divided by the volume of the gauge group, as we will discuss later). In the simple
two dimensional theory under consideration here, this integral can be defined
rigorously by a lattice regularization [15] that we will recall in Sect. 2.3. Because of
.the scaling law noted in the last paragraph, ZΣ in fact is a function only of the
invariant combination e2ρ, so we will denote it as ZΣ(e2ρ) or simply as Z(e2ρ) if Z1 is
understood.

Comparison of Different Regularizations. We will now make a technical discursion.
The quantum field theory just introduced is superrenormalizable according to the
standard criteria, and in perturbation theory one encounters no infinities involving
the gauge fields. However, the one loop amplitude in an external gravitational field
has quadratic and logarithmic divergences that (in an arbitrary regularization
scheme) can be renormalized by adding to the Lagrangian multiples of J dμ and

J dμR, respectively. (R is the curvature scalar.) Thus, we should more properly
Σ

begin with a Lagrangian containing counterterms depending on the metric and
topology of Σ:

I(A,g) = I(A) + u J dμ + v^dμ^. (2.6)

(The two counterterms are of course the volume and Euler characteristic oϊΣ.) As
is standard in such superrenormalizable theories, the partition functions ZΣ(e2ρ)
and Zj(e2ρ) computed in two different regularizations will differ by terms that can
be interpreted as corrections to u and v:

) = Z£e2ρ) exp (Au J dμ + Δυ f dμ £-), (2.7)
\ Σ Σ iTl)
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with Au and Av being constants (independent of Σ but perhaps depending on e). (In
other words, what is regarded in one regularization as the partition function at
u = v = 0 is interpreted in the other regularization as the partition function at some
nonzero values of u and v.) If the scaling symmetry under e2-+te2, ρ^ρ/t is
maintained in each regularization (as we will ensure), then

Au = e2u0, Av = v0, (2.8)

with u0, v0 being independent of e2.
In practice, we will make careful comparisons of different regularizations only

in the limit e-»0 (and similar topologically invariant situations). Equation (2.8)
shows that the ambiguity in the definition of u will not affect such comparisons. On
the other hand, the ambiguity in the definition of v corresponds to a one parameter
ambiguity

Δ*Σ) (2.9)

in the definition of the partition function in the limit e = 0. Such factors will appear
in this paper when we compare calculations based on a lattice regularization to
calculations of a more precise type.

2.Ϊ. Some Related Theories

Much of the interest of the two dimensional Yang-Mills theory that we have
introduced above derives from certain alternative interpretations that it possesses.
First of all, let φ be an ad(£) valued zero form (or in the unorientable case, an ad(£)
valued section of σ), and consider the action functional

Γ(A,φ)=-jSΣdμTτφ2-iSJτφF, (2.10)

for a theory in which the dynamical variables are φ and A. The partition function is

2ei^F. (2.11)

Performing first the Gaussian integral over φ, using

+ 00 Λ V ^ 2 lΎv

we find that (2.11) reduces to (2.5), so

ZΣ(e2ρ) = ZΣ(e2ρ). (2.13)

The advantage of this formulation is that it is relatively straightforward to take
the limit e->0 of (2.10). In fact at e = 0, the action is

I"(A,φ)=-ί$ΣΎτφF, (2.14)

and the partition function is

ZΣ(0)=SDφDAeiίΎΐ*F. (2.15)

This theory is topologically invariant; the measure dμ no longer enters. Indeed
(2.15) is a slightly nonlinear variant of the quantum field theory that was
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introduced many years ago by Schwarz [16] in connection with Ray-Singer
analytic torsion. We will explain how the analytic torsion enters in Sect. 2.2.

If one's interest is to study the partition function ZΣ(0) of the topological field
theory (2.14), one might think that one should tackle this directly instead of the
generalization ZΣ(e2ρ). However, we will see that considering the generalization
makes obvious a certain "diagonalization" (which is related to Verlinde's
diagonalization of the fusion rules) which drastically simplifies the computation.

To complete the story, there is one more closely related theory that should be
considered. This is the three dimensional Chern-Simons theory. Let B be a
connection on a G bundle E on an oriented three manifold X. Suppose for
simplicity that E is trivial. Picking a trivialization, identify B as an ad(E) valued
one form. The Chern-Simons action is then

^ iTrlBAdB+lBABAB), (2.16)
4π x \ 3 /

where k is a positive integer, the level. The Feynman path integral is

Zx(k)=$DB'exp\£- SτrίBΛdB+^BΛBΛB] . (2.17)

Now take X = SxxΣ9 where S1 is the circle O ^ ί ^ l (with ί = 0 and t=\
identified), and Σ is an oriented surface. Let w: S1 x Σ-+Σ be the projection. For
connections of the special form

B = w*(φ)dt + w*(A), (2.18)

where φ and A are ad(E) valued zero and one forms on Σ, the Chern-Simons action
is

^ (2.19)

and so coincides with the topological action (2.14), apart from a factor of k/2π. This
factor can be absorbed in the definition of φ at the cost of multiplying the partition
function by a factor of the type (2.9), for some value of Δv. A factor of this type will
appear because two theories (such as (2.14) and (2.19)) that are equivalent
classically will differ quantum mechanically only by a renormalization effect. For
the topologically invariant theories (2.14) and (2.19), the Δv term is the only
relevant renormalization.

In general, we are not entitled in quantum theory to arbitrarily restrict to
connections of the form (2.18); we wish to evaluate the Feynman integral (2.17)
over all connections. However, for large k, the integral for Zx(k) is dominated by
stationary phase, expanding around flat connections. If the center of G is trivial, an
irreducible flat connection on X = S1 x Σ is the pullback of a flat connection on Σ 2.
More generally, if the center of G is a finite set with # Z(G) elements, then the
moduli space Jίx of irreducible flat connections on X consists of φZ(G) copies of
the moduli space Ji of irreducible flat connections on Σ; the factor of # Z(G) arises
because, given an irreducible flat connection in the Σ directions, one can form a flat
connection on X by taking the holonomy around S1 to be any element of the

The reducible flat connections can be seen to make subdominant contributions for large k
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center of G. In the semi-classical evaluation of the Chern-Simons partition
function for large k, each of the φZ(G) copies of Jί make the same contribution.
The Chern-Simons partition function for large k is hence #Z(G) times the
partition function of the two dimensional theory (2.19). As (2.19) differs from (2.14)
only by a rescaling of φ, which brings the renormalization effect indicated at the
end of the last paragraph, the relation between the large k behavior of the Chern-
Simons partition Zx(k) and the partition function ZΣ(0) of (2.14) is

Zx(k) ~ # Z(G) eΔv'X(Σ) ZΣ(0), (2.20)

where Δv may depend on k but not on Σ. With an explicit choice (such as zeta
function regularization) for defining the determinants that appear in evaluating
the left- and right-hand sides of (2.20), an a priori computation of Λv can be given.
We will not do so in this paper.

2.2. Extracting the Torsion

We now wish to explain the relation of the partition function (2.15) with
Reidemeister-Ray-Singer torsion.

First we briefly recall the Fadde'ev-Popov-BRST gauge fixing of the gauge
theory with Lagrangian (2.14). Let G be the group of maps of Σ to G. The path
integral over the space of all connections is divergent because of gauge invariances,
and one wishes, formally, to render it finite by dividing by the volume of G.
Formally one would like to integrate over the space si of all connections and then
divide by the volume of G. These two operations are each ill-defined, and one
considers instead the better-defined procedure of integrating over the quotient
si/G. There is a subtlety (usually neglected) that we have to take into account here.
Let DA denote the formal path integral measure over si, let π: si-+si/G be the
projection, and let μ be Haar measure on G. Formally, the quotient measure DA'
on si/G is the measure such that DA = π*(DA') μ. In a finite dimensional analog of
this situation (such as we will frequently encounter in Sect. 4), one has

(2.21)

provided that G acts freely on si, at least generically. In the present case, this is true
only if the center of the gauge group G is trivial. Indeed, the gauge transformations
that leave invariant a generic connection are precisely the constant maps of Σ to
the center of G. Let ΦZ(G) denote the number of elements in that center. The
general formula that replaces (2.21) is

The Fadde'ev-Popov procedure constructs J DA' e~^, and as what we want is the
left-hand side of (2.22), we will have to divide by hand by a factor of #Z(G). [In
most physical applications, this factor can be neglected since it cancels out when
one computes correlation functions. We have assumed G semi-simple, so that
#Z(G) is finite. In general, this factor would be replaced by the volume of the
center of G, computed with an appropriate measure.]
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The Fadde'ev-Popov-BRST procedure for constructing the quotient measure
on si/6 involves introducing the standard ghost field c, which is an anticommut-
ing zero form with values in ad(£), and BRST transformation laws

One also requires an antighost multiplet. This is conveniently chosen to consist of
an anticommuting zero form c and a commuting zero form w with values in ad(£),
with

δc = iw, (5w = 0. (2.24)

The gauge fixing term is / G F = — δV with a suitable V. Even though no metric
appears in the classical action (2.14), natural choices of V depend on a choice of
metric on Σ.

Actually, there is a topological obstruction (coming from the topology of 6) to
finding any suitable global choice of V. We make appropriate local choices, each
suitable for computing the path integral over a certain region in the space of fields
modulo gauge transformations, and patch together the results (after verifying
independence of the local choices). In a neighborhood of any connection A{0),
writing A=A{0) + B, and letting D\0) be the covariant derivative at the connection
A{0), a convenient local choice is

(2.25)

This gives

JG F = J dμ Tr (+ iwDfΨ - cD^Wc). (2.26)

The Euler-Lagrange equation obtained by varying this action with respect to w is

0=D[ O ) F, (2.27)

and this is the gauge condition placed on the quantum theory if it is gauge fixed
with this choice of V.

Allowing for the factor explained in (2.22), the partition function (2.15) is now

ZΣ(0) = - v A ^ ί DADφDcDcDw

xexpίi \ΊτφF-i\ dμwD^B1 - J dμΎrD^cD^λ. (2.28)

The Orientable Case. We will now try to clarify the origin of the integration
measure. In doing so, we first assume that Σ is orientable. The space si of
connections on Σ has in that case a natural symplectic structure. Indeed, a tangent
vector to si (at some base connection A(0)) is an ad (E)-valued one form. Given two
such one forms α and β, one defines the skew pairing

< M > = ^ 2 f T r « Λ 0 , (2.29)

which defines a symplectic structure on si. Formally, si, as a symplectic manifold,
acquires a measure.
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By contrast, the space S of ad(E) valued zero forms does not have a natural
measure. Any measure on Σ (such as the Riemannian measure of the metric that
was used in the definition of V) determines a metric on ad(£), say

^ (2.30)

A metric formally determines a Riemannian measure on ad(£) fnamely Udfi9

V
where the fi are an orthonormal basis of S\ Given a metric on Σ (actually a

conformal structure is enough), we can also define a metric on $ί\

1
(α,β) = —=• f TrαΛ * p . (2.31)

4π Σ

The metric (2.31) and symplectic structure (2.29) are compatible in the sense that
together they define a Kahler structure.

In (2.28), c, c, φ9 and w are all zero forms with values in ad(£), but φ and w are
bosonic while c, c are fermionic. Though there is no natural measure separately on
the space of bosonic or fermionic sections of ad(£), the ambiguity cancels formally
when one has equal numbers of bosons and fermions. (Under a change of metric in
(2.30), the Riemannian measure on S changes by a Jacobian factor which appears
in the numerator for bosons, and in the denominator for fermions.) In practice,
therefore, we can consider the measure in the integration over c9 c9 φ, and w to be
determined by any metric on ad(£), as long as we treat all these fields alike. We will
ensure this by using the zeta function definition of determinants [3].

To evaluate (2.28), we perform the integral first over φ and w. Using again (2.12),
we get

ZΣ(0) = * f DADcDcQxp ( - [ dμTrl)jO)3ΛΛ Π δ(F(x))δ(D(0) * B(x)).
# Z ( G ) \ Σ J xeΣ

(2.32)

The equations

0 = F = D(O)*B (2.33)

are local equations which cut out the moduli space Jί of flat connections, inside
the space si of all connections. At this point we may as well suppose that the base
connection A{0) is flat, so that 5 = 0 is a solution of (2.33). Temporarily let us
suppose (unrealistically) that it is an isolated solution. Equation (2.33) is a
nonlinear equation for B (as F has a quadratic term). The linearization of this
equation is an elliptic equation QB = 0, where Q:Ω1(ad(E))
->Ω2(ad(£))0(2°(ad(E)) is the operator

β = D 0 * D * . (2.34)

The general principle in performing the integral over A in (2.32) is that if H: Rn->Rn

is a smooth map with an isolated nondegenerate zero at the origin, and H' is the
linear operator obtained by linearizing H near xt = 0, then

(2.35)
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On the other hand, the integral over c and c in (2.32) is Gaussian, and gives the
determinant of the corresponding elliptic operator, which is the Laplacian
Ao = *D*D (acting on zero forms; Aq will denote the Laplacian *D*D + D*D*
acting on q forms). Hence, if B = 0 were an isolated solution of (2.33), the result of
the path integral would be

(2.36)

The particular combination of determinants of elliptic operators appearing in
(2.36) is the analytic torsion of the flat connection A(0) [3]. The role of analytic
torsion in quantum field theory was first explained by Schwarz [16]. A
computation just like the present one also arises (for the same reason) in three
dimensional gravity with zero cosmological constant [17].

One can readily show that |detβ| = ]/det^odet^2.
3 Hence, the contribution of

an isolated flat connection Ai0) would be γdetA0/detA2 (# Z(G)) ~1. It is also true
that on an orientable manifold, Ao and A2 have the same spectrum, and thus the
same determinants (as the * operator gives a natural identification between them).
So actually, on an orientable manifold, an isolated irreducible flat connection
would just contribute 1/#Z(G). This is a special case of the statement that "on an
even dimensional orientable manifold, the analytic torsion is trivial."

Now we must consider the more realistic case in which the solution B = 0 to
(2.33) is not isolated. (We will, however, assume that Ao has no kernel, and this
means that we are restricted to genus ^ 2.) In this case, the solutions to (2.33) are a
vector space which can be identified with TJί, the tangent space to the moduli
space of flat connections. We write

ί21(ad(E)) = TJt@Ω\, (2.37)

where Ω[ is the orthocomplement to TJί. The symplectic form (2.29) restricts to
symplectic forms, and hence measures, on both TJί and Ω{. The induced
symplectic form on TJl is the one associated with the natural symplectic form ω
on Jΐ9 which enters in the formula (1.1) for the natural volume form on Jt. A priori,
the measure on M defined by the path integral is not simply this elementary,
natural measure, but receives a correction factor from the rest of the path integral.
Repeating the derivation of (2.36), the correction factor is

where now Q± = Q\Ωι±. By the facts cited in the last paragraph, this correction factor
is just 1/#Z(G) for Σ orientable.

Thus, the "triviality" of torsion in this situation means simply that the measure
on Jt determined by the torsion - or by the quantum field theory (2.14) - reduces
to the elementary measure defined by the symplectic structure, divided by the
elementary factor # Z(G). The reason that this fact is useful is that the torsion - or
the quantum field theory - can be studied by powerful methods, which are not
directly available for the symplectic volume, despite its elementary definition.

3 First, ldet6|=]/detQ<2*. (Here Q* is the operator D 0 * D *: Ω°φΩ2-^Ω1.) But QQ* = A0®A2,

so |detβ| = ]/det(2<2*=]/detJ0 detzl2
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The Unorientable Case. Let us now consider the case of Σ unorientable. One then
does not have a symplectic structure (2.29) on the space of connections. It is
therefore less obvious why the quantum field theory associated with the
Lagrangian (2.14) works. I will not attempt a full explanation, but just state some
facts. Though there is no symplectic structure on j / , once a metric is picked on Σ, a
metric on s/ can be defined by the formula (2.31). This induces a metric, and hence
a measure, on the fiber of TJί at an arbitrary point A(0); hence, it induces a
measure τ 0 on M. This measure is not "natural" but depends on the conformal
structure used in (2.31). The correction factor w from the path integral is still given
by (2.38) and is not simply 1/#Z(G) in the unorientable case. The measure on Jt
determined by the quantum field theory (2.14) is τ = wτ0. The proof of topological
invariance of analytic torsion [3] means that τ is independent of the metric on Σ. A
quantum field theorist would formulate this argument as an expression of the fact
that the dependence of the gauge fixed Lagrangian [the exponent in (2.28)] on the
metric on I1 is a BRST commutator. The tools involved in formulating the
argument this way are similar to those that enter in establishing the topological
invariance of three dimensional quantum Chern-Simons theory. (See e.g. the last
section of [30].)

2.3. Combinatorial Treatment

We will now explain how a combinatorial approach (originally introduced by
Migdal [15] for the case Z = R 2 ) can be used to compute the partition function
ZΣ(e2ρ). We may as well set e2 = \.

In general, to make sense of the Feynman path integral over some function
space if, it is sometimes convenient to make an approximation to iV of some
finite dimension n. One then tries to prove that the limit as n->oo exists and is
independent of whatever arbitrary choices may have been made in constructing
the finite dimensional approximation. In Yang-Mills theory, a finite dimensional
approximation can be made via "lattice gauge theory" [18]. One "triangulates" Σ,
or more generally one covers it by polygons, not necessarily triangles (Fig. 1). One
restricts the bundle E to the finite set Sf consisting of the vertices of the polygons.
(Of course, this is a drastic step in which the topology of E is lost, and the
subsequent computation therefore gives the Yang-Mills partition function
summed over all topological types of G bundle on Σ.) In lattice gauge theory, the
interiors of the polygons are usually called plaquettes. A lattice gauge transfor-
mation is a map from £f to G, that is, an assignment of a group element gx e G to
every x e £f. One then introduces a lattice version of a connection in which one
considers parallel transport only along the edges of the polygons. To every edge γ,
with endpoints x and y, one assigns a G element Uγ9 regarded as the operator of
parallel transport from x to y. Uy should be thought of as a map Ex^Ey, and under
a gauge transformation it transforms as

Uy^gyUyg;1. (2.39)

One then tries to define a suitable lattice version of the Yang-Mills action. In any
dimension, it is possible to approximate Yang-Mills theory in this way, and in
dimensions ^ 4 it is believed (and in some instances proved) that in the limit as the
triangulation becomes finer, the desired continuum theory can be recovered. What
is special about dimension two is that it is possible [15] to formulate the lattice
theory in such a way that the partition function is invariant under subdivision of
the lattice. This is what we now wish to explain.
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(b) U1

Fig. la-c. Covering a surface Σ by polygons (a). Uγ is an edge with endpoints x and y. A plaquette
(b) with connection elements U1,...,Un associated with the edges and holonomy °ll= Uu ..., Un.
Subdivision of one of the plaquettes (c)

The integrand in the Feynman path integral is of the general form exp ( — J JδfV

where ££ is some local functional. If Σ is given as a union of smaller pieces - in the
case at hand these will be the plaquettes wf - then we have

(2.40)

Thus, the integrand in the path integral is a product of local factors, one for each wt.
This is a feature that we wish to preserve.

Since the continuum limit of the two dimensional theory requires a choice of
measure (but not metric), it is natural to introduce a lattice version of the measure.
We assign an area ρf to each wt , in such a way that £ Qi = Q, the total area of Σ.

A given plaquette w, of area ρw, is bounded by edges xί9x29 ...,xn (Fig. lb). A
lattice connection assigns to these edges group elements Uί9 U2,..., [/„. The only
gauge invariant quantity that can be made from these is the holonomy

<=uίu2...un
(2.41)

More exactly, the conjugacy class of the holonomy is gauge invariant. The local
factor associated with a plaquette must be a class function of the holonomy. Such a
class function must be a linear combination of the group characters, which are a
basis for the class functions. For every isomorphism class α of irreducible
representations of G, let χα(^) be the corresponding character (the trace of % in the
α representation). MigdaΓs considerations suggest the local factors

ρw) = Σ dim α exp( - Qwc2(*)/2), (2.42)
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where the sum runs over all isomorphism classes of representations, dimα is the
dimension of the representation α, and c2(α) is the quadratic Casimir operator of
the group G, associated with the quadratic form on ^ introduced earlier.

This formula obviously requires some explanation. First of all, let us consider
the behavior as ρ-+0. One has

X dimα χ«(*) = 5(Φ-1), (2.43)
α

where δ{% — \) is the delta function supported at % = 1. This behavior is desirable
because, if the lattice theory is to have a continuum limit, the holonomy around a
loop of area ρ should approach 1 as ρ->0. In particular, (2.43) explains the factor of
dimα in (2.42), which will play a pivotal role as we will see.

The main justification for (2.42), however, is that it leads to a theory invariant
under subdivision. Let us now explain this point. Once one has picked a covering
X of Σ by polygons, one can define the corresponding lattice approximation to the
path integral:

z*.*(β)=ϊndu7nn%Qd. (2.44)
y i

Here dUγ denotes Haar measure on G, normalized so that the volume of G is 1.
(Note: in Sect. 4, a different normalization of the Haar measure will be used in
connection with a more precise computation.) In (2.44), γ runs over all edges and i
runs over all plaquettes. We now wish to show that with the particular choice (2.42)
for the local factors Γ, the partition function (2.44) is in fact independent of X.

To prove this, one must establish invariance under subdivision. So consider a
case in which one of the polygons in X is subdivided to get a finer covering X'. For
definiteness we consider (Fig. lc) the case in which a square is subdivided into two
triangles. Let ρ0, ρ', and ρ" be the area of the square and of the two triangles (so
ρ' + ρ" = ρo) The factor associated with the square is

Γ= Σ dimα UUχU2U2UA) exp(-ρoc2(α)/2). (2.45)
α

When the square is subdivided into two triangles, one introduces an extra edge
with an extra group variable V. The product of the factors associated with the two
triangles is

ΓT = Σ dimα dim j5 χJU1 U2V)χβ(V~1U3U4) exp(-ρ'c2(α)/2-ρ"c2{β)β).

(2.46)

To prove that ZΣ,x = ZΣfX,, it suffices to prove that

jdVΓ'Γ" = Γ, (2.47)

since this means that integrating over the extra variable V that appears in the
definition of ZΣtX. will give back the integral representation of ZΣX. But (2.47) is a
consequence of the formula

J dVχΛ(AV)χβ(V- 'B) = V ^ X«(AB) ( 2 4 8 )

(which is related to the orthonormality of the characters and their realization as
functions on the group manifold; see [19, Chap. II, Theorem (4.5)]).
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Fig. 2. An orientable surface of genus g can be built by gluing together the sides of a 4g-sided
polygon, shown here for g = 3

Notice that in the verification of (2.46), it is essential that the dependence on ρ is
exponential. However, the quadratic Casimir c2(α) could have been replaced by
any other function of α. The use of the quadratic Casimir is appropriate because
the continuum theory (2.3) that we are trying to reproduce has a Lagrangian
density Tr/ 2 that is quadratic in / In principle one could consider a continuum
Lagrangian with Tr/ 2 replaced by TrP(/), for any function P(f); this would
correspond to replacing c2(α) by a more complicated function. To show that c2(α) is
the correct function that goes with the quadratic function in (2.3) is a standard
computation (which we will not review here) using canonical quantization to
construct the Hamiltonian, from which the ρ dependence of the continuum theory
can be computed.

First Computations. One of the advantages of the discrete formulation, with
invariance under subdivision, is that it makes it clear that the partition function
ZΣ(ρ) is computable. In fact, by considering a very fine lattice we would expect to
get a result converging to the continuum theory, but invariance under subdivision
means that one may in fact do the computation on an arbitrarily crude lattice.

Consider for simplicity the case that Σ is an orientable surface of genus g. We
can cover Σ with a single 4g-sided polygon (Fig. 2). This corresponds to the well-
known description of the fundamental group of such a surface with 2g generators
β»> bp i9j=l...g and one relation axb^al1bϊ1a2b2a21b21 ...agbgag

1b~1 = l.
Denoting the holonomies around the generating cycles as Ut and Vp the Yang-
Mills partition function for a surface Σ with this combinatorial description is

ZΣ(ρ) = Σ dimα ,V, ... UgVgUg

1 V~ι).(2.49)

The integrals over the t/f and FJ can be done one at a time using (2.48) and the
related formula

(2.50)

Every time one integrates over a [/t or Vj one gets a factor of 1/dimα from (2.48) or
(2.50). At the end one is left with χα(l) = dimα. Altogether one gets finally

!Σ; (2.51)

for the Yang-Mills partition function on an orientable surface of genus g.
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(a) (b)
Fig. 3a, b. A surface Σ "cut" on a circle C, dividing Σ into pieces ΣL and ΣR (a). A cell decomposition
of C - which can be taken to have just one zero-cell and one one-cell - can be extended to a
covering of Σ by polygons. A more general case (b) in which Σ is divided into ΣL and ΣR by cutting
on several circles C l s ...,Cn

Physical Hilbert Space and Axioms of Quantum Field Theory. It is useful, however,
to rederive this formula from a slightly different point of view. Consider a surface Σ
"cut" along a circle C to divide it into pieces ΣL and ΣR, with areas ρL and ρR

(Fig. 3). To introduce lattice gauge theory in a way compatible with this cutting, we
first make a cell decomposition of C - we may as well take the simplest one with a
single vertex or zero-cell and a single edge or one-cell - and then extend this to
coverings of ΣL and ΣR by polygons. If we do cover C with a single one-cell, then in
lattice gauge theory for this covering, there is precisely one group element U
attached to C (more generally the holonomy * around C will play the role of U).
Other group variables ULt γ and URt δ are associated with edges that lie on ΣL or ΣR.

It is convenient to carry out the integration over the gauge variables by
integrating first over the ULtγ and URδ and only at the end over U. The integral
over URδ, for fixed U, defines a function of U that we will call ψR(U),

ψR(U)=μuRιό
(2.52)

The product on the right runs over the plaquettes making up ΣR. Because of the
reality of the weight factors in the lattice path integral, and the fact that the
individual characters obey χΛ(A) = χa(A~1), ψR(U) obeys

ΨR\U) = ΨR\U )' (2.J3)

Similarly, the path integral on ΣL defines a function ψL:

(2.54)

We denote the right-hand side of (2.54) as xpL(U~ι) rather than ψL(U) because of
the reversal of orientation in regarding C as the boundary of ΣL rather than ΣR. Of
course, ψL also obeys (2.53). In addition, gauge invariance implies that ψL and ψR

are class functions,

To compute the partition function Zj(ρ), we must now perform the final integral
over U, to get

(2.56))= \dUψL(U)ψR(U).
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It is natural now to introduce the Hubert space Jf consisting of class functions on
G with inner product

(f,g)=idUf(U)g(U). (2.57)

ψL and ψR are vectors in Jίf, and the partition function is

(ΨL,ΨR) . (2.58)

There is also a very useful alternative way to formulate this. According to
standard results in representation theory, the characters χJJJ) form an ortho-
normal basis of Jf,

) = £«.,; and 1 = Σ lz«) (Z«l (2-59)
α

As a result,

(V>L> VK) = Σ (ΨL> Xσ) (Xσ> ΨR) (2.60)
(T

The factors on the right-hand side have convenient path integral representations,
in which one integrates over all variables on ΣL or ΣR including the boundary
values. For instance,

ύ xJΪΰ). (2.61)

More generally, consider a Riemann surface Σ of area ρ with a boundary
consisting of circles Cl9..., Cπ, and let Ul9..., £/„ be the holonomies about these
circles. For every labeling of the circles by representations α l 5 ...,απ, one defines a
partition function Z^ρ; α1 ?..., α j by modifying the original definition of the lattice
path integral to include a factor of χβf(E7j) for each i:

; α 1 ? . . . , αM) = J Π dUγ Π * , ft
y i i=ί

By arguments along the lines that we have already given, it is possible to formulate
a general cutting law (which amounts to the axioms of what one might call "area-
preserving quantum field theory" in a sense analogous to axiomatizations of
conformal and topological field theory in [7] and [20]). If a surface Σ is cut into
pieces Σμ, μ = 1,..., /c, of areas ρμ, by cutting on circles Ci9 i = 1,..., n (Fig. 4), then
the partition function of Σ can be computed as follows. Pick orientations of the Ct

and label them by representations a(. (Q with opposite orientation is then labeled
by ô .) The partition function of Σμ with the induced labeling of its boundary will be
called ZΣ^ρμ\ {α}). The partition function of Σ is then

ΣY\Σμ(Qμ;{«}) (2-63)

The proof is a repetition of the reasoning that led to the special case (2.58).

Relation to Canonical Quantization. The structure that we have found - associating
a Hubert space J^ with every circle C, with the factorization law (2.63) - is precisely
the structure that is predicted by formal canonical quantization of the Lagrangian
(2.3). Indeed, standard considerations of canonical quantization predict that Jf
should be the Hubert space of class functions that we have just found.

In Yang-Mills theory in d dimensions, the physical Hubert space associated
with a d— 1 manifold Y (endowed with a G bundle E) is always L2(s//6\ where Λ/
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Fig. 4. A more general cutting of a surface Σ on circles C(; the path integral can be evaluated by
assigning a representation αf to each Cu evaluating the path integrals over the components of Σ,
and summing over the αf

is the space of connections on E and 6 = Maps(l^ G). In one dimension, as the only
gauge invariant of a connection is the conjugacy class of the monodromy, s^jG is
the space of conjugacy classes in G, and therefore L2(^/6) is the Hubert space of
class functions that we have found above. As we have already noted, the ρ
dependence in our formulas is derived in the canonical formalism by showing that
the Hamiltonian - as an operator on L2(s//6) - is a multiple of the quadratic
Casimir operator.

Moreover, since the Lagrangian (2.3) is invariant under the group of area-
preserving diffeormorphisms, and since every diffeomorphism of C arises as the
restriction of an area-preserving diffeomorphism of a neighborhood of C, the
formal reasoning predicts that the group diff C of diffeomorphisms of C should act
on Jf. It is indeed easy to describe the action of diffC. An orientation-preserving
diffeomorphism leaves unchanged the holonomy U around C and acts therefore as
the identity on any function ψ(U). On the other hand, an orientation-reversing
diffeomorphism maps U to U~1 and so maps ψ(U) to ψ(U~1). On the basis of Jf7

given by the characters χa(U), the action of an orientation-reversing diffeomor-
phism is

χa{U)-*χa{U-ι) = χ,{U), (2.64)

where α is the representation dual or complex conjugate to α.

2.4 More Calculations

In this subsection, we will redo the calculation of ZΣ(ρ) for Σ an orientable surface
of genus g> 1. Then we will consider some additional cases.

An orientable surface of genus g > 1 can be decomposed into 2g — 2 three holed
spheres by cutting, as in Fig. 5a, on 3g — 3 circles. To compute its partition function
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(a)

X'

(c)

(d)

Fig. 5a-d. An orientable surface of genus g > 1 can be decomposed into 2g—2 three holed spheres
by cutting on 3g —3 circles a. A three holed sphere can be conveniently covered with a single
polygon 6; an unwrapped version of this is in c. An orientable surface of genus g with n holes can be
made by gluing together 2g-2 + n three holed spheres, as illustrated for g = 2 and n = l in d

using (2.63), the main point is to understand the partition function Z3(ρ; α, β, y) of a
three holed sphere of area ρ0 and boundary components labeled by representa-
tions α, β, and y. To do this, we pick a convenient covering of the three holed
sphere by a single polygon, as sketched in Fig. 5b, c. Denoting the holonomies
around the three holes as U, V, and W, and the gauge variables in the interior of the
three holed sphere as X, Y, the definition (2.62) of the partition function of a surface
with labeled boundary reduces in this case to

(2.65)x f dXdYdUdVdWχσ(χ-'UXVY-1 WY) • χa(U)χβ(V)χγ(W).

Using (2.50) to do the integrals over X and Y, and then using the orthonormality
(2.59) of the characters to integrate over U, V, and W, we get

0-QC2{ot)l2

Z3(ρ;cc,β,y) =
dimα

• δ,*.β,v (2.66)

Here δaβy is one for a=β = y and zero otherwise.
Now we can compute the partition function for an orientable surface of genus g.

Cutting as in Fig. 5a, we then label the 3g — 3 circles Ct by representations αf, and
perform the product and sum in (2.63). Because of the δatβt7 in (2.66), a nonzero
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Fig. 6. The connected sum of a surface of genus one and a Klein bottle can be made by gluing
together two three holed spheres along their boundary circles but an orientation-reversing
diffeomorphism of one of the boundary circles, which is crudely sketched here on the right, is made
before the gluing

contribution only arises when all αf are equal. Each of the 2g —2 three holed
spheres gives a factor of 1/dimα. So we get again

We also will need the corresponding formula for the partition function of a
surface of genus g with n holes labeled by representations α l 5..., an. Such a surface
can be made by gluing together 2g — 2 + n three holed spheres, as in Fig. 5d. The
partition function vanishes unless the αf are all equal, because of the δatβtym (2.66),
while if they are equal one gets n extra factors of l/(dimα) compared to the previous
computation. So the partition function in this case is

Z9{Q- α t,....aj-g.,....,. (2-68)

Unorientable Surfaces. We now want to consider unorientable surfaces. First we
consider the easy case of a connected sum of an orientable surface of genus g with s
copies of the Klein bottle. Such a surface Σg% s can be built as a union of 2g — 2 + 2s
three holed spheres, glued together along their boundary components, but one
makes orientation-reversing diffeomorphisms of s of the boundary components
prior to the gluing (Fig. 6). According to (2.64), an orientation-reversing dif-
feomorphism of the boundary changes the label from α to ά. Because of the δaβ y in
the amplitude for a three holed sphere, this actually means that, when we use the
formula (2.63) to evaluate the partition function of Σ9tS9 a nonzero contribution
arises only for representations such that α = α, that is, representations that are
isomorphic to their complex conjugates. Once one restricts to such a representa-
tion, the contribution to the partition function of Σg s is the same as it would be for
an orientable surface of the same Euler characteristic, and so the partition function
is

( 2 6 9 )

We now want to consider connected sums with copies of RP2. In so doing we
will need the following formula from the theory of compact groups:

SdUχa(U2)=fa, (2.70)

where /α = l if there is a symmetric invariant bilinear form α(g)α->(C, fa= — 1 if
there is an antisymmetric invariant bilinear form α <g) α -> C, and fa = 0 if there is no
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(b)

Fig. 7a, b. A copy of RP2 with one hole can be built by gluing together the lines labeled Y in a.
Cutting along the line labeled as X, this can be unwrapped to give b

invariant bilinear form α®α->(C (see [19, Chap. II, Proposition (6.8)]). In
particular, fa = 0 unless α = α, and if α = α then f2 = 1.

A connected sum with copies of RP2 cannot be built by gluing together three
holed spheres, so we will have to do some work. Let Σ' be a copy oϊRP2 with a ball
removed. Thus, the boundary of Σ' consists of a single circle; let U denote the
holonomy about this circle. Label the boundary of I" by a representation α, and let
ρ' be the area of Σ'. We want to compute the partition function Z'(ρ'; α) for this
situation. Σ' can be covered with one polygon as shown in Fig. 7. This involves
introducing internal integration variables which are labeled as X and Y in the
figure. The general definition (2.62) of the partition function of a surface with
labeled boundary gives in this case

•'; α) = Σ dimjS e-
β>C2(β)/2J dXdYdUχβ{UXY2χ-1) χα(l/). (2.71)

Using (2.50) to integrate over X and then integrating over Y with (2.70) and
integrating over U using the orthonormality of the characters, we get

Z'(ρ' α) = fa e " ρ'C2(α)/2. (2.72)

Now let Σ9tStr be the connected sum of a surface of genus g with s copies of the
Klein bottle and r copies of the projective plane. Such a surface can be built by
gluing together 2g — 2 + 2s + r three holed spheres and r one holed RP2's. The
evaluation of (2.63) gives for the partition function

7 . (2.73)

(This is written for r > 0. If r = 0 and 5 > 0, the sum must be restricted to α such that
α = α.) Since / α

3 = / α for all α, this formula is compatible with the fact that the
connected sum of three copies oϊRP2 is the same as the connected sum of RP2 and
a Klein bottle.

Twisted External States. We will now discuss the analog in Yang-Mills theory of
permitting "punctures" in rational conformal field theory. We consider a surface Σ
with boundary consisting of a circle C (the generalization to the case in which the
boundary has several components will be immediate). Let Θ be some conjugacy
class in G. We want to calculate the Yang-Mills path integral over all connections
on Σ for which the holonomy around C is in the conjugacy class Θ. We shall denote
the partition function integrated over connections with this property as ZΣ(ρ; Θ).
This partition function can be computed as follows. If U denotes the holonomy of
the connection around C, then according to our above discussion, the path integral
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on Σ, as a function of U, defines a vector ψ(U). Previously, picking a representation
α of G, we paired ψ with χa(U) to define

ZΣ(ρ;oL) = (χa(U)MU)). (2.74)

Now we simply want to replace the wave function χa(U) by a state \Θ) with delta
function support on the conjugacy class Θ, and define

ZΣ(ρ;Θ) = (Θ9ψ). (2.75)

Using the orthonormality of the characters, we have

Actually, the notion of a "delta function supported on the conjugacy class 0 " is
somewhat imprecise, since the normalization of such a delta function depends on
the choice of a measure on the space of conjugacy classes. We have made a
particular choice in (2.76); another choice would change |0) to /(<9)|<9), where / is
some class function. (In Sect. 4, we will discuss more critically the appropriate
measure on the space of class functions.)

We thus have

ZΣ(ρ;Θ)=ΣZΣ(ρ;oc) χa(Θ). (2.77)
α

More generally, if Σ has n boundary components, and we integrate over
connections whose holonomy around the ith boundary component is in a
conjugacy class Θb then the corresponding partition function is

ZΣ(ρ;Θu...,Θn)= £ ZΣ(ρ; α l5 ..^αJ χ J Θ J ... χan(Θn). (2.78)

But the right-hand side of (2.78) has been evaluated in (2.68). So in fact we get

Z ϊ ( ρ ; θu ..., Θtt)= ? e - ^ ( d i m α ) U + n Πi X«m• (2.79)

If the \Θi) are transformed as indicated at the end of the last paragraph, this
formula will transform as

ZΣ(ρ; ^ . . . . . β J - Z Λ ρ ; θu...,θj Π /(©;) (2-80)
i = l

for some class function /
One can easily generalize (2.79) to the case of an unorientable surface, but we

will forgo this.

Synthesis. We have noted in Sect. 2.1 that two dimensional Yang-Mills theory is
closely related to the large k limit of three dimensional Chern-Simons theory and
thus to the large k limit of two dimensional current algebra. The reader familiar
with the latter subject will notice that many facts familiar in rational conformal
field theory (and explained, for the most part, in [5]) have much simpler echos in
the above discussion. The fact that the Hubert space Jf associated with every circle
has one basis vector for every irreducible representation of G is the large k limit of
what happens in the conformal field theory problem where (at level k) only a
certain finite list of representations is permitted. The fact that the amplitude for a
three holed sphere is "diagonal" [(2.66) vanishes unless α = β = y] is the large k limit
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Fig. 8. A closed immersed loop drawn on a two sphere, which has been projected to the plane. The
loop is labeled by a representation α. The plane is divided in regions Dλ of area ρλ. Each region Dt is
labeled by a representation β{. The loop is divided by its self-crossings into segments Lσ. In the
course of the computation these acquire labels εσ

of Verlinde's diagonalization of the fusion rules. And indeed the formulas that we
obtained for the Yang-Mills partition function are closely related to Verlinde's
formulas, as we will see presently.

2.5 Comparison to IRF Models

This subsection will be devoted to a matter that is somewhat removed from our
main subject. We want to briefly indicate the relation of two dimensional Yang-
Mills theory to IRF models of statistical mechanics [21].

This connection arises when one considers "Wilson lines." We pick an
immersed circle C on a surface Σ of area ρ (we will only consider the case that the
singularities of C are all simple crossings) and associate with it a representation α.
Given a connection A on Σ, we form the holonomy V=P exp <j> A of the connection

c
A around C and take its character in the α representation to get a functional of A:

WcJA) = χa(V). (2.81)

More generally, we consider several circles Cb labeled by representations αί? and
define the corresponding functionals WCua.(A) = χa.(V^ with V{ the holonomy
around Ct. Then we wish to calculate the path integral with an insertion of these
factors

ZΣ(ρ; CbOLt)= $DAexp(-I(A))γ\ WCuΛt(A). (2.82)

Physically, the WCa(A) are called Wilson line functionals, and the ratio Z^ρ;
is called the expectation value of the product of Wilson lines. Such expectation
values in two dimensional gauge theories have been computed from several points
of view [15, 22-24]. (L. Gross has suggested, in connection with [24], that this
problem is related to quantum groups, and this may be connected to the discussion
here.) We will formulate this in a way that exhibits the relation to IRF models -
which also appear, after a much more difficult analysis, in computing Wilson line
expectation values in three dimensional Chern-Simons theory [25]. For conve-
nience, we will consider first the case that Σ has genus zero.

As indicated in Fig. 8, the loops Q are divided by their self-intersections into
segments Lσ that are topologically one-cells. (We will not consider the case in
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which one of the Ct does not intersect itself or the others, in which event this
assertion is not true. The required generalization is not difficult, however.) Σ is
divided by the loops into regions Dλ of areas ρλ. By our general discussion, in
formulating lattice gauge theory, we can use any division of Σ into polygons as the
starting point; we shall take the division in which the Lσ are the edges and the Dλ

are the plaquettes. Consequently, we introduce a group-valued integration
variable Uσ for each edge. In the simplicial version of the path integral, we must
label each Dλ by a representation βλ. The local factor associated to Dλ is

Γ(Dλ) = Σ d i m ^ <T"*2(*A>/2 . χ

βλ

where ̂ A is the holonomy of the lattice connection around the boundary of Dλ. The
lattice version of the path integral is

ZΣ(ρ; Q, αf) = Σ ί Π dUy Π Γ(Dλ) Π WCuJW, (2.84)
{βλ) y λ i

where of course the holonomies Vt around the Cf are computed using the lattice
connection.

We want to show that after performing the integration over the JJV (2.84)
reduces to a lattice statistical mechanics expression (of a type familiar in IRF
models) in which the statistical variables are the βλ9 associated with the Dλ, and
certain discrete variables εσ associated with the edges Lσ, which will appear
presently. The Boltzmann weights in this statistical model will be a product of local
weights associated with the crossings in Fig. 8. To extract such a picture, we notice
first that each Uy appears in three places in the integrand in (2.84). It appears in
WCuaι - where Cx is the circle containing Ly - and in Γ(Dλ) and Γ(Dλ), where Dλ and
Όλ, are the two regions bordered by L r The part of the integral that contains Uσ is
therefore

f dUσχaι(XU)χβλ(YU)χβλ,(ZU) (2.85)

for some X, Y, and Z. If write Ra(U)\. for the matrix representating U in the α
representation, then we have

γ;jtuyV9 (2.86)

and after using this three times, we see that to compute the integral (2.85) it is
enough to know

I dURaι(Uyt.RtΛ(UyrRtΛ.(Ui. • (2-87)

To make a general statement about (2.87), consider for every three representations
α, α', a" of G the finite dimensional vector space JΊ?ata>ta>' = (α® α'(χ)α")G. Let dα,α,α"
be its dimension. A vector εe^fαα%α- can be represented by an invariant tensor
εltl'tl", where ί, i\ and i" run over bases of α, α', and α" respectively. It is possible to
pick a basis εμ(α,αr,a") of f̂α>α>α" such that

«α,α',α"
ί dURx(U%RAUyrRAUfk. = "°"Σ Φ, < «")y*ε>, at, x")iΎk,. (2.88)

Henceforth, for each trio of representations α,α',α", we fix a basis with this
property.

We can integrate over all of the Uys in (2.84) by using (2.88) once for each y. At
the end of this, of course, each edge Ly is labeled by an appropriate εy [which ranges
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h

(a)

P4

(b)

Fig. 9a, b. The configuration near a particular vertex P is sketched in a. The data present is that
which is required to single out an IRF configuration, often drawn as in b

over a finite set consisting of a basis of the appropriate J f chosen to obey (2.88)]. At
this point the variables over which we must sum are discrete variables: the βλ and εy

by which the plaquettes and edges in Fig. 8 are labeled, and the indices ί,j, k which
have proliferated in equations such as (2.88).

The summation over these indices can be carried out in a convenient way. The
point is that the indices in (2.88) appear in a "factorized" form. One factor, εμ9

contains indices that "live" at one end of the edge Ly, and the other factor, εμ, has
indices that "live" at the other end. Thus, each index is naturally associated with a
particular end of an edge or in other words with a particular vertex P. Thus, the
problem of summing over the indices is a local problem that must be solved for
each vertex. This problem depends only on the labeling of the regions Dλ and edges
Ly adjoining P.

Every vertex Pρ (Fig. 9) is at a crossing of two circles, which are labeled by
representations α̂ . The four edges Ly that meet at Pρ are each labeled by an εγ. The
four plaquettes Dλ with corners at Pρ are labeled by representations βλ. After
summing the product of the four ε's over all their indices, we get a local factor
which we will call Gρ(α, ; βλ; εy). (It is essentially the definition of the Wigner-Racah
classical 67 symbol, but we will not pause to spell this out.)

After integrating over the Uys and summing over the indices in the fashion
described above, (2.84) reduces to a lattice statistical mechanics formula

Σ Π
εγ λ

fa; βλ; εy) (2.89)

that is obviously reminiscent of IRF models.
The generalization of (2.89) to Wilson lines on a surface of higher genus is

straightforward. The only difference is that the Wilson lines divide the surface into
regions Dλ that are not necessarily discs but more generally (in the orientable case,
for simplicity) surfaces of genus gλ with nλ holes. In this case, according to (2.68), we
need only replace the factors of dim(^Λ) in (2.89) with ( d i m ^ ) ) 2 " 2 ^ - ^ .

The elementary considerations that we have explained do not immediately shed
much light on integrable IRF models [which have additional features, notably the
spectral parameter, that are missing in (2.89)], but perhaps these considerations
are a useful starting point for further attempts to derive IRF models from gauge
theories.
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3. Use of Verlinde's Formula

Let us now return to the situation considered in the introduction. We recall that Jί
is the moduli space of flat G bundles on a surface Σ. Once a complex structure is
picked on Σ, Jί can be regarded as the moduli space of holomorphic bundles on Σ.
Over Jί is a holomorphic line bundle S£, whose first Chern class is represented in
de Rham cohomology by the symplectic structure ω of Jί. That symplectic
structure is given by the formula

4π2
 Σ

This formula means that if a, b are ad (E)-valued one forms representing tangent
vectors to Jί, then

(3.2)

Verlinde [5] gave a formula for the dimension of the space of conformal blocks
in conformal field theory, and this can be interpreted as a formula for the
dimension oiH°{Jί, 5£%k\ In this section we will use the Verlinde formula to get
results which we will compare both with the Yang-Mills theory studied in the last
section and with the treatment via Reidemeister torsion that will occupy Sect. 4.
We will be rather brief and refer to [5] for more detail. Though Verlinde's formula
is completely general, we will for simplicity focus on the cases G = SU(2) and
G = SO(3). For related discussions, see [10, 26].

Verlinde's formula is

„ 1

Here α runs over representations of G which are highest weights of integrable
representations of the loop group JS?G at level fc, SΛβ is a matrix that arises in the
theory of loop groups 4, and "0" denotes the trivial representation. For instance, in
the case of G = SU(2\ the integrable representations are the representations of
dimension 1, 2,..., k +1. We use the letter s9 0 ̂  s ̂  fe, to refer to the representation
of dimension 5 + 1. One has

(3.4)

and hence

/^_j_?V-i k 1

A/. πG+iϊί^ ( 3 '5 )

Since our goal is to obtain a formula for the volume of Jί, we need to extract a term
proportional to / c

d i mc^ = /c

3sf-3 for fc-»oo. A term that grows as fast as this arises
only because l/sin(π(/ + l)/(fe + 2)) is of order k for large k and fixed; or fixed k —j.

4 If χa(τ) is the character of the J?G representation at level k with highest weight α, then S is defined

by the formula χ α ( - l/τ)= £ Saβχβ(τ)
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The two regions ofj<4 k and k— j<ζ k make equal contributions in (3.5). Assuming
j<k, we get

1 (3.6)
sin(π(/-

so including both contributions, (3.5) becomes

This reduces to

ptf-3 oo 1 p0"~3

-ϊ), 0.8)

with £(s) the Riemann zeta function.
According to the Riemann-Roch formula, the left-hand side of (3.7) is (provided

the higher cohomology vanishes, which is true on general grounds at least for large
enough k)

) = (ekc^ Ίά{Jί\ M}, (3.9)

where Tά(Jί) denotes the Todd class. For large k, (3.9) gives

(3.10)

Now [as cx(JSf) is represented by the symplectic form ω in de Rham cohomology],
<c1(j5f)3^"3,e^>/(3g-3)! coincides with the volume Vol(^#) that we aim to
compute. Thus, (3.10) and (3.8) combine to give

ϊorG = SU(2).

In Sect. 4, we will recover this result from the point of view of Reidemeister
torsion. For the moment, let us compare it to our results in Sect. 2. There, we found
that the partition function of Yang-Mills theory in genus g (at e2ρ = 0) is

Z = «2g-2). (3.12)

According to Sect. 2, the relation between the volume and Z is to be

Yόl(Jt) = Z'2 eΛ«2-2β)

9 (3.13)

where 2, which is the order of the center of SU(2), is the number of gauge
symmetries of a generic SU(2) flat connection, and Δv is a constant, explained in
Eq. (2.7), that depends on the renormalization convention used in defining Z. We
see that (3.11) and (3.12) are in accord with this relation, with eAv = ]/2π2~. (The
value of Δv is of limited significance. By rescaling the Haar measures and local
factors used in Sect. 2.3, whose normalization depended on an arbitrarily chosen
constant, we could have obtained a different theory, still invariant under
subdivision, but leading to a different Δv.)
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Now we want to generalize this to the case of a Riemann surface Σ of genus g
with marked points xl9..., xs. We pick rational numbers Qi between 0 and 1 and let

iθi 0 \

be corresponding conjugacy classes in SU(2). We let JV{Θ) be the moduli space of
flat connections on Σ — {xf} such that the monodromy around xt is in the
conjugacy class Θt. Then the formula (3.1) still makes sense and defines a
symplectic structure ω on Mm. However, the periods of ω are no longer integers,
but are multiples of ί/m, where m is the least common denominator of the rational
numbers 0f. The latter statement can be proved by exhibiting a line bundle ££%m

(which has a natural topological construction [27]) whose first Chern class is
represented in de Rham cohomology by mω. (We call this line bundle Jg®m though
it is in fact no longer the mth tensor power of a line bundle &.) The existence of «Sf<8>m

implies that

[ω]e#2L#,-Zj. (3.15)

(This can also be proved by considering a suitable m-fold covering of Σ, as we will
do in Sect. 4.7.)

Verlinde's considerations give a formula for dimiί o (^ Θ } , if ®
fc), where k is any

integral multiple of m (so that a line bundle JS?®* = (JS? ®m)®k'm exists). The formula
is

ά\mH°{Jtm,<em)= Y - * Π Sr. ,, (3.16)
j=0 &0,j i — 1

where θ—rjk. We wish to extract the large k behavior of this formula. It is
convenient to assume first that none of the θt is 0 or 1 and thus no rf is 0 or k. [The
cases that 0f = O or 1 are special since the corresponding conjugacy classes are in
the center of SU(2). If some θt = 09 then the monodromy about xt is trivial and xt

can be forgotten. The case that some θt = 1 will be considered later.] With this
restriction, the dimension of Mm is 3g — 3 + 5, and we wish to extract the term in
(3.16) proportional to k3g~3+s in the limit of large k with fixed θ—rjk. Repeating
the derivation of (3.11), we find that in this limit,

s

n3g-3+s Qo Π sinίπnθf)

άim.H°(Ji ,J£®k)~2 Y —̂̂  (3-17)

Repeating the use of the Riemann-Roch formula, we learn that the volume of Jίm

is
s

1 ^ Π sin(πn0f)

n Σ
Let us compare this to the formula (2.79) for the Yang-Mills partition function.

Setting ρ = 0, and recalling that the character of the n dimensional representation
oΐSU(2)is
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the Yang-Mills partition function is
s

M Π sin(πn0()/sin(π0()

Z*{0})= Σ ί = 1

 w 2 9 - 2 + , (3-20)

The relation between the two is supposed to be

Vol(^rw) = 2 ZI({β}).e<
2-2 -^». Π / W , (3-21)

for some function /(#), where we have included the usual factor of 2 coming from
the center of SU(2)9 as well as the normalization ambiguities cited in (2.7) and
(2.80). (The latter reflect the fact that no attempt was made in Sect. 2 to pick a
particularly felicitous normalization; this will be remedied in Sect. 4.) (3.21) is easy
to verify.

Now let us briefly discuss the number theoretic implications of Eq. (3.18).
Because of (3.15), Vol(*/#{(9}) must be a rational number, whose denominator must
divide mr r!, where r = άimJi{Θ)/2. Let us identify this rational number, following
[9, Chap. 12]. The Hurwitz zeta function is defined for Rez>l by

f(*.«) = Σ r - U , (3-22)
w = o (n + a)

and is then continued holomorphically throughout the complex z plane, except for
a pole at z — 1. The periodic zeta function is defined by

) = Σ - Ί 5 - - (3-23)

A formula of Hurwitz (Theorem 12.6 in [9]) asserts that for 0 < a ̂  1 and Rez > 1,

^ i 2 i2 (3.24)

These functions are closely related to Dirichlet L-functions. Let us now, for
illustrative purposes, consider (3.18) for a surface of genus g with one puncture. We
set a = θ/2, z = 2g —1, and by comparing (3.18) and (3.24), we find

Vol(Jtm) = v ' ζ(2 - 2g, θ/2). (3.25)
1 Γ(2g-1)

Thus, the known facts about the volume of JK{Θ) amount to the statement that for
positive integer g and rational θ between 0 and 1, ζ(2 — 2g, θ/2) is a rational number,
with an explicit bound on the denominator. This is in accord with the explicit
evaluation of ί(z,α) for negative integral z (Theorem 12.12 of [9]). The more
general case of (3.18) with more than one puncture can be treated similarly,
expanding the product of sines on the right-hand side of (3.18) as a sum of sines or
cosines and expressing the volume as a sum of values of ζ(z, a).

3.1. Corresponding Formulas for SO(3)

While there is only one topological type of an SU(2) bundle on a two dimensional
closed surface Σ, there are two topological types of SO(3) bundles, corresponding
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to w2 = 0 and w2 4=0, respectively. The moduli space Jί of flat SO(3) bundles on Σ
thus has two components, which we will call Jί' and Jί'\ corresponding to flat
connections on bundles of these two types. Jf' and Jί" are both symplectic
manifolds, with symplectic structures deduced from (3.1). We recall from the
beginning of Sect. 2 that we use the same quadratic form Tr on the SU(2) and SO(3)
Lie algebras, which are in fact naturally isomorphic. The formula (3.1) thus makes
sense for 50(3), though it defines a symplectic structure whose periods are in
general half integral. That symplectic structure gives a definition of volume forms
on both components of Jί.

We will use the Verlinde formula to determine the volumes of both Jί' and Jί".
For Jί' this is easy. The natural transformation from an SU(2) bundle E to the
adjoint bundle ad(£) gives a map from Jί to Jί'. This map is locally an
isomorphism; globally it is an unramified cover of degree 22g. This factor arises
because if η is a flat complex line bundle of order 2, then the flat SU(2) bundle
E' = E®r\ has ad(£') = acK£); there are 22g choices of η. We thus have

Yol(jrf) = 2-2βYo\(JΪ) = 21-2g

Ί I' ± £ n-{2d~2). (3.26)
yZ7l ) n=i

To determine the volume of Jί" is less trivial. To this end, we return to our
study of S (7(2), and consider the previously neglected case that one of the 0's is 1, so
that the corresponding r is fc, and the monodromy around the corresponding
puncture is the central element —1 of SU(2). In fact, let us consider the case in
which there is just one puncture x, with this monodromy. Let Jl{ — \) be the
corresponding moduli space. Jί{ — \) has dimension 3g —3 (just like Jί) so its
volume is to be computed by extracting the coefficient of k3g ~ 3 in the asymptotic
behavior of (3.16). Since SySOί = ( — if for j = k (as one sees from the explicit
formula for S), the steps leading to (3.11) are readily repeated, with the result

VolMf(-l))=2 - 4 — Γ Σ (- i r 1 »- ( 2 ' - 2 ) . (3-27)

A flat SU(2) connection A on Σ — {*}, with monodromy —1 about x,
determines a flat SO(3) connection A' on an SO(3) bundle with w2 + 0 (simply
because the monodromy — 1 is undetectable at the SO(3) level). This gives a natural
map Ji( — l)->^V", which is an isomorphism locally and which globally is a cover
of order 22g [again, because twisting by a flat line bundle of order two is
undetectable at the SO(3) level]. Hence we have

1 oo

l)) 2 1 " 2 g X ( l ) M + 1 - ( 2 * - 2
- X ( - l ) r c

(2TΓ ) « = l

Adding (3.26) to (3.28), the combined volume of the SO(3) moduli space is

Vol(Λ0 = Vol(./r) + Vol(./r)= ^ p T w i Σ 5 ^ . (3.29)

Since the dimensions of 50(3) representations are the odd integers 1,3,5,..., the
Yang-Mills formula (2.51) gives in this case

ZΣ= Σ "~ ( 2*~2 ). (3.30)
n = l , 3 , 5 , . . .

We see thus the expected relation

ZΣ'e
Av'i2g-2)

9 (3.31)
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with a suitable value of Δυ. No factor of 2 appears here, since the center of S0(3) is
trivial.

Notice that, although in Sect. 2 we never addressed the question of the
classification of G bundles on Σ, the computation carried out there automatically
gave the correct answer summed over all topological types of G bundles. Indeed
the sewing rules used in Sect. 2 would not be compatible with any restriction on the
topological type of the bundle.

Obviously we could go on to combine the above constructions and consider
SO(3) flat connections on surfaces with punctures. There are no essentially new
issues, so we will forgo this step.

4. Evaluation of the Torsion

4.1. Preliminaries

In this section, we will use the purely combinatorial definition of the Reidemeister
torsion of a flat connection to give a direct computation of the volumes of moduli
space of representations of fundamental groups of two dimensional surfaces. (The
combinatorial torsion is known [29,28] to be equivalent to the Ray-Singer
analytic torsion, which arose more naturally in Sect. 2. The equivalence is actually
elementary for orientable even dimensional manifolds since both are "trivial.") The
computation will proceed by imitating some of the steps in Sects. 2.3-4 in the
context of torsion. However, in contrast to that discussion, where an arbitrary
lattice regularization made it impossible to nail down the renormalization
constant Δυ of Eq. (2.9), here we will be precise with all of the constants. Hence, we
must at the outset state a few conventions.

We will restrict ourselves to compact, semi-simple, connected (but not
necessarily simply connected) gauge groups G. In what follows, (α, b\ which we will
denote for convenience as —Ύrab, denotes an arbitrary invariant quadratic form
on the Lie algebra ^ of G, which is used consistently in defining all Haar measures,
volumes on chain groups, etc. In case G is simple, there is a particular choice,
described at the beginning of Sect. 2, that is convenient for comparing to formulas
of conformal field theory. For G = S U(N), this choice is (a, b) = — Tr ab, where Tr is
the trace in the N dimensional representation. For instance, for G = SU(2)9 if we
write an element of G as

U %
with αα + δfe = l, then the metric is

ds2 = 2(dada + dbdb). (4.2)

This is twice the usual metric on the SU(2) manifold. We emphasize, though, that
the formulas of this section are valid with any invariant metric on ̂ , as long as it is
consistently used throughout.

An invariant metric on ^ determines a left and right invariant measure on G,
namely the Riemannian volume element μ. We will refer to this measure as Haar
measure on G. (In Sect. 2.3, where we carried out a less precise calculation, we
simply normalized Haar measure so that the volume of G was one.) Computing the
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Fig. 10. A cell decomposition determined by a covering of Σ by polygons

volume of the Sl/(2) manifold with the metric (4.2), we find Vol(Sl/(2)) = 25 / 2π2,
23 / 2 times larger that the usual expression because of the 2 in (4.2). The volume of
SO(3)ishalfthisor23/2π2.

We also will be interested in the maximal torus T and in the moduli space L of
conjugacy classes in G; we recall that for compact, connected G, the latter is
L= T/W, with W the Weyl group. The metric on ̂  restricts to a metric on the Lie
algebra βΓ oiΎ. The latter determines a Riemannian measure on T, which we will
call the Haar measure v0. Since (away from the singularities in the Weyl action,
which occur on a set of positive codimension), L is locally modeled on T, the Haar
measure on T determines a measure on L which we will also call v0. (Of course, the
volume of L in the v0 measure is less than the v0 volume of T by a factor of # W, the
order of the Weyl group.)

There is a second important measure on L which arises as follows. The
association of a group element with its conjugacy class gives a natural map u: G
-*L. We set v = u^(μ). The precise comparison between v and v0 will be important
later.

We will take advantage of the following simplifications. First of all, since we
consider volumes to be positive by definition, and since we will always be
multiplying rather than adding torsions, we do not need to worry about the overall
sign of the torsion. Thus, like much of the literature, our description of the torsion
will be valid only up to sign. Also, as our goal is only to compute volumes,
exceptional sets of positive codimension will not contribute, and will frequently be
discarded. (Among other things, it is for this reason that we need not be concerned
about singularities of Jt)

The computation that we will carry out is fairly short and elementary. The
length of this section comes from the attempt to be self-contained in explaining the
combinatorial torsion and from the fact that we work out several cases in detail.
Further background about combinatorial torsion can be found in [11-13].

4.2. Definition of the Torsion

To begin with, consider a particular flat connection i o n a G bundle E over a
surface Σ. Let ad(£) denote the corresponding adjoint bundle. If A is irreducible,
then H0(Σ, ad{E))=H2{Σ, ad(£)) = 0, and H^Σ, ad(E))=T*J?\A is the cotangent
space to Ji at A. This will play an important role, so we want to recall the
combinatorial definition of the homology of Σ with values in ad(£). We consider a
cell decomposition X of Σ of the same type that we used in lattice gauge theory in
Sect. 2.3, consisting of a covering of Σ by polygons (Fig. 10). The polygons are two-
cells, and their edges and vertices are one-cells and zero-cells. If the cell
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Fig. 11. Subdivision of an w-gon by adding one-cells yt (indicated with dotted lines)

decomposition is fine enough, the flat connection A is trivial on any given cell, and
then for each cell w we define a vector space Vw consisting of parallel sections of
ad(E) over w. (It will be convenient later to allow less fine cell decompositions in
which some one or two cell w may be large enough that A\w is not trivial; then one
defines Vw to consist of parallel sections over the interior of w. The definition of the
boundary operator d that we are about to give then needs a slight refinement.)
Metrics on the Fw's are defined by saying that the inner product of parallel sections
s and s' is the constant — Ύτss'.

Given a real vector space A, we let det^4 denote the top exterior power of A. By a
measure on A we mean a nonzero linear functional on detA A metric on A
determines (up to a sign, which as noted above we will not keep track of) such a
measure, namely the functional that maps ^ Λ x 2

 Λ xw to 1, where the x( are an
orthonormal basis of A. So the metrics on the Vw endow those vector spaces with
measures.

For q = 0,1,2, let Cq = ® Fw, where w runs over all g-cells. If the boundary of w
w

is a union of q — 1-cells yi9 then one defines a map d: Fw-» 0 Vy. by ds = φ s\y.. This

gives a chain complex C ,

O^C2^Ucί^->C0^0. (4.3)

The homology of this chain complex is H#(Σ, ad(£)).
It is instructive to recall the proof that up to canonical isomorphism,

His(Σ9 ad(E)) is independent of the choice of cell decomposition. The main step is to
verify invariance under subdivision. As a typical example, let w be a two-cell (which
we take to be an n-gon) which is to be subdivided by adding an extra vertex p
(Fig. 11). In the refined cell decomposition X, w is the union of n two-cells
wu...,wn;n one-cells yί9...9yΆ have been added. The refined cell decomposition X
gives a new chain complex C .

A natural injective chain map i :Cq^>Cq is defined as follows. Any cell W in X is
subdivided into a union of cells Vj in X (for W Φ w, there is just one v): one maps
Vw C C. to φ Vv. C C. by ί(s) = φ s\Vj. As this map is injective, we get a short exact

sequence of chain complexes,

O->C.^C.-+C.-+0, (4.4)

where Ci is the quotient C#/C#. The associated long exact sequence of homology,

0 (4.5)
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shows that H^C) is canonically isomorphic to H^(C) - as we wished to prove -
provided H*(C) = 0.

To compute H^(C% we note that E can be parallelized over w (or at least its
interior) and hence will play no role in the computation. We may as well take the
coefficient group to be R, and in that case, for any cell y9 we let [y] denote the basis
of the one dimensional vector space Vy corresponding to the section 1. The
quotient C. = Cm /C. comes from cells added as a result of the subdivision of X.
So CO has one generator [p], C\ has n generators [y j , ••.,[)>„], and C2 has n
generators [wj, ...,[wj with one relation

0. (4.6)

The boundary operator is

5[wJ = [y< + i]-[yJ
l j

(where we identify Qyί+π] = [yj). It is easily seen that this complex is acyclic, as we
wished to show.

Now we wish to introduce the torsion, which is defined, in an appropriate sense,
for any chain complex of vector spaces with measures. We will follow [13]. Let

F. :0^Fn^Fn_1^...^F1^Fo^0 (4.8)

be a chain complex of finite dimensional vector spaces, with volumes
<xk e (detF fe)~1. (This can also be relaxed slightly, if one has only the products of the
αfc that appear later rather than individual αfc's.) We first consider the case that F% is
acyclic. If k} = dim im d:Fj->Fj-ί9 pick Sj e A kjFj such that dSj + 0. The expression

u= (x) (dsj+ί Λs/- 1 ) Je <g) (detF,)("1)J (4.9)

is independent of the choices of the sj9 so we can define the torsion as

τ{F.) = u ® α [ - 1 ) k . (4.10)

More generally, any chain complex F% can be split (unnaturally) as Fm =Fί
where Fi is acyclic and F# has zero differential. (Hence F'ή^Hn(F%) are the
homology groups of F#.) Now letting kj = dim imd:F/

j^F'j_ί and picking
Sjβ ΛkjF'k. such that δs^ φO, we define

u= 0 (dsj+1 ASjr^je <g) (detFjΓ1)J' (4.11)
7=0 7=0

and

τ(F ) = M (g) (α,Γ1 ) J 'e (g) (detF;) ("1 ) J + 1 = (g) (dettf/F))*"1^1. (4.12)
7 = 0 7 = 0 7 = 0

n

Thus τ lies in the dual of the one dimensional vector space (x) (det#f(F. )) ( - 1 ) i

which is usually called det H^F.). i==0

In particular, going back to the chain complex C% that computes H^(Σ, ad(F)),
we can define the torsion τ(C ), which is a vector in
(detH0(Σ,ad(E))y1®detHί(Σ9ad(E))®(detH2(Σ9ad(E)))-1. For an irreducible
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flat connection, H0(Σ9 SLd(E)) = H2(Σ, ad(£)) = 0, so τ(C#) is defined as a vector in
detH^Σ, ad(£)).

We want to verify first that τ(C#) depends only on the connection A and is
independent of the choice of cell decomposition X. The main step is to show
invariance under subdivision, so we return to the short exact sequence (4.4), which
in more detail is a commuting diagram

0 0 0

c2

I I I
o—>c2—>C2—>c

I i I
0 >Ct >Ct *d >0 (4.13)

J J i
0 >C0 > £ 0 >C0 >0

I i I
0 0 0

whose columns are the chain complexes C#, Cm, and C%. Each chain group here has
a volume. The rows are acyclic, and it is obvious from the definitions that the
torsion of each row is 1. A general proposition proved by linear algebra
(Proposition (21) of [12]) then asserts that the alternating product of the torsions
of the columns is also 1, that is,

l . (4.14)

To obtain the desired result τ(C ) = τ(C ) showing the invariance of the torsion
under subdivision, we thus need to know that τ(Ci) = l. This can be routinely
verified from the explicit description of C" in (4.7).

We will describe the fact that the rows in (4.13) have torsion 1 by saying that the
exact sequence (4.4) is volume-exact. Equation (4.14) is then the assertion that in an
exact sequence of complexes which is also volume-exact, the alternating product of
the torsions is one.

Consider now the moduli space Jί of flat G-valued connections on Σ. The
association to a connection A of the corresponding H^Σ, ad(£)) defines a vector
bundle over Jί which is none other than the cotangent bundle T*Jί. The torsion
τ(A) is a section of det(Γ*^), or in other words a differential form of top degree on
Jί. Actually, since we have not paid attention to signs, it is really only the absolute
value of τ that is well-defined; this is properly regarded as a measure on Jί. In any
case, we have achieved our goal of giving a topological construction of a measure
on Jί> without assuming orientability of Σ.

We define the volume of Jί to be
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where άimJί is the (real) dimension of Jί. The reason for the power of 2π is to
agree, as we will see shortly, with the normalization that is natural from the
symplectic point of view and was used in Sect. 3.

Comparison to the Symplectic Volume. We now wish, for Σ orientable, to compare
the measure on M given by the torsion to that which can be constructed using the
symplectic structure on Jt.

To begin with, we consider, algebraically, what we will call a symplectic
complex. This is a complex

0 - > C n - ^ C n _ 1 ^ . . . ^ C o - 0 (4.16)

with n = 2 mod4, and with non-degenerate pairings /l p,π- p : CP®CΠ_P-»]R (collec-
tively we will call them λ) which are skew-symmetric in the sense that λp>n_p(a, b)
= ( — l)pAM_p p{b, α), and are compatible with d in the sense that λpn-p(dx,b)

The compatibility of λ with d means that the λ's induce pairings

T&, (4.17)

which by linear algebra are seen to be nondegenerate. Pick a lift of HP{C) to Cp, and
let Cp be the image. If Cp denotes the kernel of λPf n _ p: Cp® C"n _P->R, then we get a
splitting Cm=CφξBGί, which is compatible with λ in the sense that for aeCpi

beC'ή- p, λPi n _ p(α, b) = 0. C'% is an acyclic chain complex, and C% is a complex with
zero boundary operator.

Given APjW_p:Cp®Cn_p->]R, there is an induced map detCp(χ)detC/ι_p->IR
which we will call deUp#π_p. It is an element of ( d e t C ^ d e t C ^ J r 1 . For p = n/2,
given an orientation of detCn/2, Λn/2,n/2edetC®f ^ a s a natural square root which
we call the Pfaffian, Pfaff Λn/2f n/2 It is a n element of (det Cn/2)~ι. (Actually, since we
are not keeping track of the overall sign of the torsion, we do not need the
canonical square root of deUn/2>w/2.) A system of measures 0Lps(άQtCp)~ι will be
called compatible with the λpn-p if αp(χ)απ_p = detAp π_p for all p, and αM/2

= Pfaff λ n / 2 , n / 2 .
We now claim that the torsion of a symplectic complex (C#, λ) computed using a

compatible set of measures is "trivial" in the sense that

τ(C)= n/2® (detXp,M_pΓ
 1)P®(PfaffXn/2,M/2r

 1 ) π /\ (4.18)
p = 0

In view of the splitting C # =Ciφ Cίί, it is enough to check the cases that C% is acyclic
or has zero boundary operator. If the boundary operator is zero, then (4.18) is the
definition of the torsion. If C is acyclic, then the claim is that τ(C ) = 1. Given that λ
can be regarded as an identification of C with the dual complex C =Hom(C#, R),
this is a special case of the relation between the torsion of a complex and that of the
dual complex. See for instance Proposition (14) of [12].

We now return to our problem of comparing the measure on Jί given by the
torsion to the measure determined by the symplectic structure. The symplectic
structure is equivalent to a nondegenerate skew map fl^Σ, ad(E))<8)iϊi(Σ, ad(£))
-•R, and we wish to see this map combinatorially.

For every cell decomposition I of I by polygons, there is a dual cell
decomposition X' with q cells replaced by2 — q cells (Fig. 12). X and X' correspond
to chain complexes C and C'#, each with metrics and measures on the chain
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X1

Fig. 12. A cell division X and its dual X'

groups. Invariance of the torsion under subdivision means that τ(C#) = τ(C'#). We
will study the complex Dm = Cm@Cm with the product measures; its torsion is

τ(D#) = τ(C ) τ(C) = τ(C )2 (4.19)

Natural pairings Cp®C2_p->]R can be defined essentially by counting intersec-
tions of cells. Let w and w' be a p-cell and a 2—p-cell in Cp and C2_p, respectively.
The corresponding spaces VwcCp and FW,CC2_P consist of parallel sections of
ad(E) over w and w', respectively. Given sections s and s' defining elements of Vw

and VW', we let

λ(s,s')= -Tr(ss')' Σ (±1) ? (4.20)
Pewnw'

where the sign associated with Pewnw'is the usual algebraic intersection number.
(We have defined X and X' so that wnw' contains at most one point.) By defining
λ(s',s) = (— l)pλ(s,s'), and defining λ to vanish on Cp(x)C2_p and on CP®C"2_P, we
extend the λ's to symplectic pairings Ap 2_p:Dp(χ)D2_p-»IR. These give D. the
structure of a symplectic complex, and moreover, the λ's are compatible with the
natural measures on D#. Hence we get

τ(D.) = detI0>2(8)(PfafrI1,1)-1. (4.21)

For an irreducible flat connection, H0(Σ, ad(£)) = #2(2;, ad(£)) = 0, so

τ(Λ) = (PfafiFlltl)-1. (4.22)

Now, in terms of the decomposition H^D*) ̂  H^C^φH^C^}), λίt x has a block
form,

where, as H^C^) and H^Ci) are both canonically isomorphic to H^Σ, ad(£)), ρ
can be regarded as a skew form A2!!^!, ad(£))-»]R.5 We have
PfaffI1)1=(Pfaffρ)2. As also τ(D#) = τ(C#)

2, we get

τ(C.) = (Pfaffρ)"x = Pfaff (ρ " x ) , (4.24)

Our argument here does not prove the skewness, but this is standard
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(b)

Fig. 13a, b. Cutting a surface Σ on a circle S to decompose it into pieces ΣL and ΣR, with
corresponding cell decompositions a. Decomposing an oriented surface Σ of genus g into 2g—2
three holed spheres b

where ρ ι : A2H1(Σ9 ad(£))->R is the inverse to ρ. (If ρ is given by a matrix ρtj in
some basis on Hl9 then ρ ~ ί is given in the dual basis on H1 by the inverse matrix.)

Now, Hι(Σ, ad(£)) is the tangent space to the moduli space Jί of flat
connections, and hence ρ" 1 :A2H1(Σ, ad(£))->R is a two form on Jt. If M has
dimension d i m ^ = 2r, then Pfaffρ"1 is the top form

Pfaffρ"^
rl

(4.25)

Actually, because we have defined ρ and ρ 1 by intersection of cycles, ρ 1 may be
described explicitly in the de Rham model by saying that to α, β e H 1(2'5 ad(E)), ρ ~*
assigns the value

Λβ). (4.26)

Comparing this to the definition of the symplectic form ω, which was

4π
(4.27)

we see ρ 1 = 4π2ω. Hence, with (4.24) and (4.25), we see that the torsion volume of
Jl as defined in (4.15) indeed agrees with the symplectic volume:

1
(2π>idΐm<y^ 7ί* (4.28)

Cutting Formula. In the quantum field theory computation of Sects. 2.3-4, one
important ingredient was the ability to compute by decomposing a surface into
elementary pieces. The analog of that here is a certain refinement of the Mayer-
Vietoris sequence. Consider cutting l o n a circle S to decompose it into pieces ΣL

and ΣR (Fig. 13a). We pick a cell decomposition of Σ by polygons which restricts to
cell decompositions of S, ΣL, ΣR, as in the figure. From this, one gets a short exact
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sequence of chain complexes,

.->C ί ->0. (4.29)

The long exact sequence of cohomology that follows from (4.29) implies that

detH^Σ, a d ( £ ) ) = d e t i ϊ ^ , ad(E))®detH,,(ΣR, a d ί E ^ d e t t f ^ S , ad(£)))~x.

(4.30)

Moreover, (4.29) is easily seen to be volume-exact, so the alternating product of the
torsions is 1 [as in (4.14)]. If we denote the torsion of the chain complex that
computes H*{W, ad(£)) as τ(W) (for W=Σ9 ΣL, ΣR, or S), then

τ(Σ) = τ(ΣL)®τ(ΣR)®τ(Sy1. (4.31)

Equation (4.30), which asserts that the left- and right-hand sides of (4.31) lie in the
same vector space, is necessary for (4.31) to make sense.

This can be repeated (Fig. 13b). If Σ is an orientable surface of genus g, and we
decompose Σ into 2g —2 three holed spheres Wl9...9 W2g-2 by cutting on 3g —3
circles Sl9..., S3g- 3, then a repetition of the type of argument that led to (4.31) gives

τ(Σ) = V τ(W9 V τ(Sj)-1. (4.32)

Thus to compute τ{Σ\ we need only understand the torsions of flat connections on
circles and three holed spheres.

We shall assume G is connected, which ensures that any G bundle E is trivial
over any of the St or Σj. The type of computation that we will perform below sums
over all possibilities for gluing along the Sf and therefore means that the volume
that we will compute will be the sum over all topological types of G bundles of the
volume of the moduli space of flat connections for that topological type.

43. The Torsion of the Three Holed Sphere

In this subsection, Σ is a sphere with three holes. G is a connected semi-simple
gauge group. Semi-simplicity means that the center Z(G) is a finite set; we set
Go = G/Z(G). Semisimplicity also ensures that the generic flat connection on the
three holed sphere is irreducible, with H^Σ, ad(£)) vanishing except in dimension
one. We let Jί denote the moduli space of irreducible flat connections on Σ. Then
H^Σ, ad(£))^ T*(J^). The torsion hence defines a measure on Jί which we will
call τ(Jί)\ we wish to study this.

It is useful to introduce the moduli space Jί of based irreducible flat
connections on Σ. Thus, one picks a base point P e Σ9 and considers the moduli
space Jί of flat connections on Σ, up to gauge transformations that equal the
identity at P. There is a natural projection ρ: Jί-*Jί. The fiber is a copy of the
adjoint group Go. One has then a short exact sequence of cotangent spaces:

0^T*Jf^T*Jϊ->T*Go-+0. (4.33)

This sequence appears naturally in the following way. Pick a cell decomposition
X oϊΣ, of the type considered in the previous subsection, with P as one of the zero-
cells. The choice of X determines a chain complex C#that computes H^(Σ, ad(£)).
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P

Fig. 14. A small cell decomposition of the three holed sphere

Let CPΦ be the subcomplex of this consisting only of the chain group VP in

dimension zero. It is a very short chain complex

0-»CpO = Fp-»0 (4.34)

with differential zero. CP has a natural embedding in Cm. Let Cibe the quotient, so
one has a short exact sequence of complexes,

0-CP #->C -+C;->0. (4.35)

The long exact homology sequence derived from (4.35) reduces to

O (4.36)

as all the other homology groups vanish. This sequence may be identified with
(4.33), as H^O^T^JT, HάCQ^TW, and H0(CP.)^T*G0.

With the usual measures on each chain group, the sequence (4.35) is volume-
exact, so

τ(C.) = τ(Q.τ(Cp#). (4.37)

Here we encounter a slight subtlety. As in the last section, τ(C#) and τ(Ci) lie in
d e t i / i j O ^ d e t T * ^ and detiί^C ^ d e t T * ^ , and so define measures on Jί
and Jf*. As for τ(CP ), however, it lies in (detifo(CP))~1^(detT*Go)~1, and so
transforms as the inverse of a measure on Go. In fact, as the boundary operator of
the very short complex CP% is zero, τ{Cpm)~x is the natural Haar measure μ on Go

determined by the metric on ^, as discussed in Sect. 4.1. Taking advantage of the
fibering Q\rf-*Jf, (4.37) can be rewritten in the form

τ ( O = ρ*(τ(C)) μ. (4.38)

[In this paper, we regard measures as sections of appropriate real line bundles, and
the product on the right-hand side of (4.38) is really a tensor product of such
sections.] Equation (4.38) can also be inverted to give

k (4 39)

where the volume of Go is computed with the measure μ.
We are thus reduced to computing τ(C'), and this is elementary. The three holed

sphere can be given a cell decomposition with one two cell w, three one cells xl9 x2,
and x3, and one zero cell P (Fig. 14). A irreducible flat connection can be described
in a fashion that is unique up to a unique gauge transformation that is 1 at P by
giving its holonomies Ul9 U2, and U3 around xl9 x2, and x3. They are arbitrary
except for one relation

U1U2U3 = 1. (4.40)
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As this equation can be uniquely solved for l/3 in terms of Uί and l/2, Jϊ is
isomorphic to GxG. We will see that τ(C') is the Haar measure on GxG.

To describe the chain complex and the boundary operator in this situation (and
similar situations that we will consider later) takes a little care, since ad(£) can be
parallelized only over the interiors of the cells. Given a cell u, one defines Vu to
consist of parallel sections of ad(E) over the interior of u. If t is such a section, dt is
computed by taking the limiting values of t as one approaches the interiors of the
various boundary cells. It might happen that some of the cells in the boundary of u
coincide (up to signs determined by the orientations); for instance, each end of the
one-cells xt of Fig. 14 consists of the same zero-cell P. In this case, one simply adds
the contributions at the various ends.

In the case at hand, the complex C that computes the tangent space to JV* is
particularly simple to describe. Ci contains nonzero chain groups in dimensions
two and one only (the zero dimensional chain group VP is precisely what is

3

eliminated in passing from C. to Ci). In detail, C2 = Vw, and C\ = 0 VXi. The
i= 1

boundary operator is as follows. For s a parallel section of ad(E) over w,

^ s L Θ s L θ s U . (4.41)

To compute the torsion of this complex, let E9 be the subcomplex whose only chain
group is VX2(BVX3 in dimension 1. Then H1(E)=T*(GxG). We have an exact
sequence

0-£ # ->C;^i i->0, (4.42)

where F9 is the complex

0-+Vw-+VXl->0-+0 (4.43)
(in dimensions 2 and 1) with boundary operator ds = s\Xι. With the natural
measures on E9 and F9, (4.42) is volume exact. Fm is acyclic, and its torsion is 1.
Hence τ(C ) = τ(JE#). However, E% has zero boundary operator, so its torsion is the
Haar measure on GxG. This establishes our claim that τ(Ci) is equal to that Haar
measure.

Having determined τj(C ), we can now in principle use (4.39) to determine τ(C#),
by pushing down from Λ to Jί. It is not convenient to do this, however, because in
contrast to Jϊ, Jί is awkward to describe explicitly. The following variant is more
useful.

Let L be the moduli space of conjugacy classes in G. Since we assume G compact
and connected, L= T/W with T the maximal torus and W the Weyl group.

The association to a flat connection A on the three holed sphere of the
conjugacy classes Θl9 <92, and Θ3 of the monodromy around the three holes gives a
natural map σ: Jf-*L xLxL. We will determine σ^(τ(C)). According to (4.39), this
is

As α runs over all irreducible representations of G, the characters χa(Θ) are in an
appropriate sense (a precise statement appears shortly) a basis of functions on L.
Hence, to understand the measure σ%(τ(C)) on L x L x L, it suffices to compute

wβl,™= ί °MQ)ήxJί0d ( 4 4 5 )
LXLXL ί = l
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for arbitrary αf. This is

^ ί τ ( C ) Π iβ°)*ϊJβϊ • (4-46)^...-,.-3 VoTr ί τ ( C ) Π

Recalling that the monodromies obey Uί U2 U3 = 1, and that τ(C') is Haar measure
on G x G, we get

± J dUJU^U^jV^Ui1C/Γ *), (4.47)

where dU denotes Haar measure on G. This can be evaluated using the integral

J dUχx(UA)χβ(U-ίB) = δΛ,0 ̂ ^ Vol(G) (4.48)

which for similar reasons played a key role in Sects. 2.3-4. [In Sect. 2.3, we defined
the Haar measure so that Vol(G) = l.] Using (4.48) twice and recalling that
χα(l) = dimα, Vol(G)/Vol(G0)= ΦZ(G), we get

1 Vol(G) #Z(G). (4.49)
αi,α2,«3 αi,α2,α3 ^ i m α

Actually, it is now easy to determine the measure σ^(τ(Q) that gives rise to
(4.49). Let μ be Haar measure on G, u: G-+L the natural projection (from a group
element to its conjugacy class), and v = uj^μ). The basic result on orthonormality of
characters asserts that

(4.50)
L

The measure σJτ(C)) that leads to the evaluation (4.49) of (4.45) is hence

1 3

Π X*(Θi) v i v 2V 3 , (4.51)Vol(G)2 t d i

where vf, i = 1... 3 is the measure v on the ith copy of L in L x L x L, and vίv2v3 is
hence the product measure on LxLxL.

4.4. The Torsion of a Circle

We now let Ά denote the moduli space of flat connections on a circle S. A
connection on S (any connection is flat) is determined up to gauge transformation
by the conjugacy class of the holonomy, which is arbitrary. Hence J is isomorphic
to the moduli space L= T/W of conjugacy classes.

Decompose the Lie algebra ^ of G as ^ = 2Γ@M, where 2Γ is the Lie algebra of
% and 01 is the orthocomplement. Tacts on 01 by restricting the adjoint action of G
on <S. An important function on T (the square of the denominator in the Weyl
character formula) is

l/) (4.52)
for UeT.

On L, as we noted in Sect. 4.1, there are two natural measures. The metric on ^
restricts to a metric on 9~, which determines a Haar measure v0 on Γ; and we use
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P

Fig. 15. A simple cell decomposition of the circle

the same name for the measure on L determined by the local isomorphism of L and
T. On the other hand, Haar measure on G pushes down (under the natural map
from a group element to its conjugacy class) to a measure v on L. A formula due to
Weyl asserts

^ ^ m ( 4 5 3 )

(see [19, Chap. IV, Formula (1.11)]).
A generic conjugacy class - and hence a generic connection on S - has a

stabilizer F isomorphic to T. H°(S, ad(E)) is the Lie algebra of this stabilizer and so
is isomorphic to 2Γ. H 1(S, ad(E)) is the tangent space to Ά ̂  T/W and can again be
identified with ST. The torsion τ of a connection A on S takes values (according to
the general discussion of torsion) in the real line

S, ad(£))(g)(detiίo(S, ad(£))Γ *. (4.54)

From what we have just said, this ratio is canonically trivial. However, it will be
more natural to write τ the way it naturally appears in (4.54), as a ratio of two
measures on 1. Indeed, we will see that

In fact, ad(£) has a decomposition ad(£) = ad(£)0©ad(E)1? where ad(£)0 is the
sub-bundle of ad(£) invariant under the stabilizer F of the flat connection, and
ad(E)ί is the orthocomplement. (Note that ad(£)0 is the trivial flat bundle ad(E)0

= S x ^ . ) If we compute the torsion of a connection on S by picking a cell
decomposition and studying the corresponding chain complex C#, then one has
Cφ=COm@Cί; where Co (which is the T invariant part) and C1# (which is the
orthocomplement) compute H^S, ad(E)0) and H*(S, a d ^ i ) , respectively. Hence

τ(S) = τo τ 1 , (4.56)

where τ 0 and τt are the torsions of ad(E)0 and ad(£) l5 respectively.
In fact, we can take a very simple cell decomposition of S (Fig. 15) with one

1-cell y and one 0-cell P. The corresponding chain complex D% that computes
H^(S, R) has a one dimensional chain group in dimension zero, a one dimensional
chain group in dimension one, and boundary operator zero (as dy = 0). Since
ad(£) 0 ^Sx5", the chain complex C o # that computes H#(S, ad(E)0) is
Co =D ®3~. In particular, the boundary operator of Co # is zero, the zero and one
dimensional chain groups VP and Vy are copies of 2Γ with its natural measure, and
so

τo = τ(Co ) = X (4.57)
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As for ad(E)ί9 it is acyclic, so the torsion will be a number or more exactly a
function on Ά. The chain complex Cx that computes H#(S, a d ^ ) ^ has one and
zero dimensional chain groups Vy and VP consisting of parallel sections of ad(E)ί

over the interior of y and over P, respectively. Vy and VP can each be identified with
J? with its natural measure. With appropriate parallelizations of £ over y and over
the interior of w, the boundary map d: Vy-> VP, if E is defined by a flat connection
with holonomy I/, is

ds = s~UsU~1. (4.58)

[To see this, first pick a basis S; for EP. There is a unique basis of parallel sections s
of £ over the interior of y which, as one approaches dy on the left, coincide with the
s{. As one approaches dy on the right, s[ will approach UsiU~1

9 U being the
holonomy. Allowing for the opposite orientations at the two ends to determine the
signs, one gets (4.58).] The torsion is hence

τ 1 = d e U l - l 7 ) = F(ί7). (4.59)

Combining (4.59), (4.56), and (4.53), we arrive at the claimed formula (4.55) for the
torsion of a connection on the circle.

4.5. The Volume of Jί for Σ Orίentable

Now we can finally put the pieces together and compute the volume of the moduli
space Jl of flat connections on an orientable surface Σ.

We decompose Σ as a union of 2g — 2 three holed spheres WJ, joined along 3g — 3
circles Sr Let Jί{ and Άy be the moduli space of flat connections on Wt and Sr

Given a flat connection A on a G bundle E over Σ9 we write τ(Σ)9 τ(W^ or τ(Sy) for
the torsion of ad(£) restricted to the space in question. Each τ is a vector in an
appropriate real line. The generalized Mayer-Vietoris formula (4.32) asserts that

(4.60)
i y τ(bγ)

There is a natural map

Jl^XXJfi (4.61)

that mapsaflat connection^ on Σ to (A\Wι,..., A\W2g_2). This map is not surjective,
since if WtnWj contains a circle Sy9 then A\w. and A\w. are automatically
isomorphic when restricted to Sy - while [J Λ] would consist of flat connections on

i

the Wi chosen independently with no such restriction. Let Jί' be the subspace of
Y\ Jί{ consisting of gauge equivalence classes of families of flat connections A{i) on

the Wt such that A{i) and AU) are gauge equivalent on Wtc\ W y Obviously, the image
of M lies in Jί'.

The natural map Jt-*Jί' is surjective, a fact that can be seen as follows.
Given a family of flat connections A{i) on Wi9 defining a point in Jί\ proceed as
follows. Each circle Sy appears as a component of the boundary of two W's (or
appears twice in the boundary of one W). Let i(y) and i'(y) be the two values of/ for
which SyCdWt. By definition of Jί\ A{i{y)) and A{V{y)) are gauge equivalent when
restricted to Sr So let φy be a gauge equivalence between them:

Φy:Λ(i(y))\sγ = Ai'(y))\sγ ( 4 6 2 )
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Using the φy to glue together the bundles and connections on the various Wb we get
a flat connection A onΣ that maps to (A(1), ...,A(2g_2)) under the natural map
Jί-*Jf'\ this shows that that map is surjective.

However, the map Jί-+Jf' is not one to one. The reason is that the φy are not
unique. Let A be a flat connection on Σ. For each γ, let Fy be the group of gauge
transformations that leaves A\Sγ invariant. Fy is determined up to isomorphism by
the conjugacy class of the holonomy around Sy, and for generic A, each Fy is a copy
of the maximal torus T. Throwing away a set of measure zero, we henceforth
consider only A's for which this is true for each γ, and we write Ty for Fγ. The group
T = f]y Tγ acts on the fiber of Jt-*JΓ containing A as follows. Letting A{i) = A\Wi,
A can be considered to arise by gluing together the A{i) with some gluing data, as in
(4.62). Given an element \\ ty e T = \\ Tγ, and transforming the gluing data by

Φy^Φjty, (4.63)

we get a new set of gluing data that gives a family of flat connections parametrized
by the tr

The group T acts transitively on the fibers of M-+Jf\ since if φy\A\{im

^A\{V{y)) and $y:A\{i(y))^A\{i,{γ)) are two families of identifications of A\{iiγ)) and
A\{i,iy)), then $y

γφy are isomorphisms of A\iiiγ)) and thus elements of Tr However, in
general T does not act freely on the fibers. It may happen that for some ty, the
change of gluing data (4.63) does not affect the gauge equivalence class of the glued
connection. This will occur precisely if there exist automorphisms ut oί A\w. such
that the transformation (4.63) of the gluing data can be absorbed in the
automorphisms wf of the objects that are being glued. A family of automorphisms
u( of A\Wi will transform the ty in (4.63) by

ty-+uViy)tyur(γ]. (4.64)

If A\w. is irreducible, then its only automorphisms are constant gauge
transformations by elements of the center of G. Throwing away a set of measure
zero, we can henceforth assume that each A\w. is irreducible. This being so, the
automorphisms (ul9 ...,u2g-2) in (4.64) are all elements of the center Z(G). There
are # Z(G)2g " 2 ways to choose this number of elements of Z(G), but since the ratios
uϊ{y)uKy) ^ a t a P P e a r m (4.64) are all one if the w's are all equal, those ratios have
#Z(G)2f lΓ"3 possible values. The set of those values is a subgroup JΓ of T of order
#Z(G)2^"3, and in the T action on the fibers of Jί^Jί\ the stabilizer of a generic
point is precisely 2£.

Let Γ" = T'/ar. Ύ" acts freely on the fibers of Ji^JV\ so we have a fibration

(4.65)

JΓ.

Any measure on Jί, such as the torsion measure τ, can be factored as

τ = λ-π*(τ'), (4.66)

where λ is Haar measure on T" and τ' is some measure on Jf'. Integrating over the
fibers of π, and remembering from (4.15) that what we have called the volume of Ji
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is defined with a factor of (2π)~dimJί, we get
3

. (4.67)

Final Evaluation. There is a natural map υ\Jί '->Π^y that maps a family of
y

connections A(i) on Wi9 with compatible restrictions A\Sγ, to their restrictions
(Λ\Sl,..., ^ | S 3 g _ 3 ) . We can rewrite (4.67) as

Vol(T)39~3

It remains to determine v^τ' and compute the integral. This can be done as
follows, starting with the generalized Mayer-Vietoris formula,

(4.69)

We use (4.51) for τ(W^) (or rather its push-forward by i?) and (4.55) for τ(Sy). In the
denominator of (4.55) appears the Haar measure v0, which is naturally interpreted
as Haar measure on the group Tγ of automorphisms of A\s . The vOy actually
appear in the numerator in (4.69) [since they are in the denominator in (4.55)], and
their product v0> t... v0> 3g_ 3 is precisely the Haar measure λ on T" that appears in
(4.66). Hence, to compute τ', we just evaluate the Mayer-Vietoris product (4.69)
suppressing the vo's in (4.55).

Actually, what we will compute is the pushforward vjτ'), a measure on γ\ Άr
y

Apart from the vo's that we are now suppressing, the only explicit measures that
appear in (4.51) and (4.55) are factors of v. We recall that v is the measure on
L=T/W that comes by pushing down Haar measure on G. For γ = 1,..., 3g - 3, we
get two factors of the Haar measure vy in the numerator of the Mayer-Vietoris
formula (since each Sy is in the boundary of two W£9 and one in the denominator
(from the formula for τ(Sy)). Altogether, then, vj?) is f] vy times some factors
appearing in (4.51) and (4.55). Explicitly, y

(4.70)Π v Σ Π ή:\Θy)
y α i , . . . , α 2 g - 2 SγCdWi

Here we pick an orientation around each Sy, Θy is the holonomy of A around Sy

with this orientation, and χ(

a~\Θy) is equal to χa.(Θy) or χa.(Θy) depending on
whether the chosen orientation of Sy agrees with its induced orientation as a
component of dSr

Finally, we evaluate (4.68), using

ί dv χJiθ)χ^θ) = δΛtβ Vol(G) (4.71)

to perform the integral over the Άr We get simply

»Z(G)-(Vol(G))2^2 ^ 1
Vol(^)= ^ ^ Σ ( d i m α ) 2 g - 2 ? (4.72)

where α runs over all isomorphism classes of irreducible representations of G.
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For example, for G = SU(2\ #Z(G) = 2, Vol(St/(2)) = 2 5 / 2 π 2 with our defi-
nitions (as was explained in Sect. 4.1), d i m ^ = 6g—6, and the dimensions of the
irreducible representations are 1,2,3,..., so

For G = S0(3), #Z(G) = 1, Vol(SO(3)) = 2 3 / 2 π 2 , d i m ^ = 6g-6, and the dimen-
sions of irreducible representations are 1,3,5,..., so

1 1

These results agree, of course, with the earlier formulas (3.11) and (3.29) based on
the Verlinde formula (and they agree within the by now standard renormalization
factor with the quantum Yang-Mills theory calculation of Sects. 2.3-4).

4.6. Unorίentable Surfaces

We will now very briefly extend these considerations to compute the volumes of
moduli spaces of flat connections on unorientable Riemann surfaces.

First, we consider a surface Σ9fS which is the connected sum of a surface of genus
g with s Klein bottles. Such a surface can be constructed by gluing together
2g — 2 +2s three holed spheres along circles Sγ9 with orientation-reversing
diffeomorphisms of s of the circles prior to the gluing (recall Fig. 6). The
computation can hence be carried out using precisely the building blocks that we
have just considered. Only one novelty arises. An orientation-reversing dif-
feomorphism replaces a character χa(Θy) by the conjugate character χa(6>y) = χa(Θγ)
(α is the complex conjugate representation of α). The absence of a consistent
orientation of the surface means that at one or more points in the computation,
one will encounter not

(4.75)
L

but

(4.76)

((5αδ = l if α and α are isomorphic and zero otherwise). So repeating the earlier
steps, the volume of the moduli space of the connected sum of a surface of genus g
with s Klein bottles is

D1(G)) 2 *~ 2 + 2 S 1
K }) * (4.77)

The Projective Plane. Now we consider the more difficult case of a connected sum
with copies of RP2. This case cannot be reduced to gluing together three holed
spheres, so we actually must make a new computation of torsions. We let Σ' be RP2

with an open ball removed; dΣ'is a circle S. Φ and Ά will denote the moduli spaces
of flat connections on Σ'and on S.There is a natural map u: &-* 2, by restriction of
a flat connection to the boundary.
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P

Fig. 16. A simple cell decomposition of RP2 with a ball removed

In Fig. 16, we indicate a simple cell decomposition of I", with a two cell w, one
cells x and y (y appears twice in the picture; the two copies are identified to make
Σ'\ and a zero cell which is the base point P. The holonomies U and V of a flat
connection around y and x obey one relation

V=U2. (4.78)

Since V is thus determined by U, a flat connection on Σ' is determined up to gauge
transformation by the conjugacy class of U. Thus, the moduli space & of flat
connections on I", like the moduli space 2, of flat connections on S, is a copy of
L= T/W. However, the map u: 0>-*Ά is not the identity; it is the map U^>V= U2.
The stabilizer of a generic flat connection on Σ' is a copy of T, the maximal torus,
that commutes with U (and V).

The torsion of a flat connection on I" is a vector

As for the denominator, H0(Σ', ad(£)) is generically isomorphic to H0(S, ad(£)),
with both of them being the Lie algebra & of the stabilizer T. Since Ho + 0, the
torsion is not a measure on <P, but rather we can write

τ = - , (4.80)
vo

with τ a measure on ^ , and v0 the Haar measure on T.
As in discussing the three holed sphere, it is convenient to introduce the moduli

space Φ of based flat connections on Σf. There is a generic fibering r: Φ^>0> with
fiber G/T. The fiber is G/T because T is the stabilizer of a generic flat connection on
Σ'. Considering the natural projection s:G^>G/T, there is a measure μ' on G/T such
that

/* = W).Vo, (4.81)

where μ is Haar measure on G and v0 is Haar measure on T Then

G/T

As in the discussion of the three holed sphere, let C# be the complex, determined
by a cell decomposition of Σ\ that computes #*(!", ad(£)), let CP be the
subcomplex supported at the base point P e Σ\ and let Cί be the quotient complex:

0->Cp#->C#-»C;->0. (4.83)

Cm is acyclic except in dimension one, and HX(C^ ̂  T*P, so the torsion f=τ(C ) is a
measure on # . CP#is acyclic except in dimension zero, so its torsion takes values in
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Indeed, identifying ^ with the tangent space to G, the
torsion of C is just μ~ \ μ being Haar measure on G. The volume-exactness of the
exact sequence (4.83) implies that τ = τ μ" *. If as in (4.80) we write τ = τ/v0, and as
in (4.81) we write μ' = μ/v0, then we have

τ = ^ . (4.84)

Hence

Vol(G/ΓΓ j * W ~Vol(G)
(4.85)

So to compute w*(τ), we just need to determine τ.
If we use the cell decomposition of Fig. 16, the reduced complex C whose

torsion is τ has chain groups C2 = VW, C\ = Vx®Vy, and C"o = 0. Let F# be the
subcomplex of C whose boundary operator is zero and whose only nonzero chain
group is F± = Vr Let G be the quotient:

0-ϋ-»C;-G # -»0. (4.86)

It is easy to see that G is an acyclic complex with torsion one. From the volume-
exact sequence (4.86), it follows that τ = τ(Ci) = τ(ii). As Fm has zero boundary
operator, τ(Fφ) is just the natural measure on Fv But Fi^@^ T$, so τ is just Haar
measure on Φ^G.

Together with (4.85), this gives a description of w (̂τ), but not yet in a convenient
form. For any representation α of G, let

(4.87)

where we recall that Fis the holonomy around the boundary. From (4.85), this is

( 4 8 8 )

We have determined in the foregoing that ^ ^ G , that V= U2, and that τ is just
Haar measure on U. So

\TΛίrΓ\

(4.89)

The integral on the right also arose in Sect. 2.4, and is

SdUχa(U2)=fa.Vol(G), (4.90)

where /α is 1, —1, or 0 depending on whether the representation α admits a
symmetric invariant bilinear form, an antisymmetric invariant bilinear form, or no
invariant bilinear form at all. So

cα = Vol(T) /α. (4.91)

This evaluation of the integrals (4.87), together with the usual orthonormality of
the characters, gives a more convenient description of the measure u^,{τ):

yoiyi) v-i/•../id\ (4 92)
v ' Vol(G)

with Θ the conjugacy class of the holonomy V around the boundary of Σ'.
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Now, we can compute the volume of the moduli space JtgtStr of flat connections
on the connected sum ΣQtS%r of an orientable surface of genus g with s Klein bottles
and r copies of the protective plane. Repeating all of the previous steps, one finds
(forr>0)

Vol(G) f

s,r)= *Z(G) • ( 2

(

π ) U , , , r Σ ma£-,+u+, (4-93)

[For r = 0 and 5 > 0, the sum over α must be restricted to representations for which
α = α. This restriction is built into (4.93) for r > 0 as /α = 0 unless α = α.]

For example, let G = SU(2). For n = 1,2,3,..., the n dimensional representation
has /„ = ( — l ) w + 1 . The dimension oi Mgsr is 6g —g + 6s + 3r. For r odd, we get

-. (4.94)

One has

nΣ L

Ί ^ = ( l - 2 1 - s ) C ( s ) , (4.95)

with £(s) the Riemann zeta function, so the volume of Mg^r9 for odd r, is an
elementary multiple of a value of the zeta function at an odd positive integer. For
even r, (4.93) shows that as regards the volume of moduli space, r copies of RP2 are
equivalent to r/2 Klein bottles.

4.7. Twisted External States

We will now use the same methods to compute the volume of the moduli space of
flat connections on a punctured surface, with given monodromies around the
punctures.

Let Σ be a compact surface without boundary, and let Σ' = Σ — {PU ...9Pn} be
the surface obtained by deleting marked points Pl9 ...,PΠ. Let 0t be conjugacy
classes in G, and let Jί{Θ) be the moduli space of flat connections on Σ' with
holonomy about P f in the conjugacy class 0V A symplectic structure on Jί{Θ] is
defined much as in the unpunctured case. The tangent space to Jί{Θ) at an
irreducible flat connection is Hl{Σ\ ad(E)) {Hi is cohomology with compact
support). Given ad (£)-valued one forms a and b of compact support on Σ\ the
expression

1
ω(α, b) = —2 j Tr a A b (4.96)

4π Σ

defines the symplectic structure.
Suppose that the 0t are all conjugacy classes of finite order, say of order m. The

following device then gives a short cut to understanding the integrality properties
of (4.96) (which were stated in (3.15) and used in comparing to the Verlinde
formula) and will also give a short cut to understanding how to set up a
combinatorial computation of the torsion. Pick (noncanonically) an m-fold cyclic
cover Σ of Σ, with m-fold branching over the points Pt (in doing this one may
enlarge the list of P f to include additional punctures with monodromy one). Thus,
the cyclic group F = ΈjmΊL acts on Γ, and Σ = Σ/F. Let π: Σ-^Σ be the projection. A
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G bundle and connection E and A on Σ' = Σ — {Pl5 ..., Pn} pull back to bundles and
connectionπ*(£) and π*(A) on Σ — {Pl5_..., P j . (We will usually refer to the lifts of
the Pt to Σ as Pi9 but will call them Pf when more precision is needed.) If the
monodromy of A around each of the Pt is of order m, then π*(£) and π*(̂ 4) extend
naturally to a G bundle and flat connection E and A on Γ. This operation gives a
natural embedding i: Jί{&s-*Jl, where u? is the moduli space of flat connections
on Σ. F acts on Jί9 and Jί{Θ) is a component of the fixed point set. At the tangent
space level, this implies that

T //// — (ί* T J/λF (A Q7^

where F denotes the F invariant part. A symplectic structure on M is defined by the
usual formula

1
ώ = — 2 ί TrάA δ", (4.98)

4π ϊ

with ά, F being ad (E)-valued one forms on Σ. As one has

ω = l ί * ( ώ ) , (4.99)
m

the integrality of ω implies that mω is integral, as was claimed in (3.15).

Preliminaries About the Torsion. The main difficulty in computing the volume of
Ji{&) is to obtain a technical result comparing torsions of certain complexes
associated with Jί{Θγ We will therefore launch on a relatively long excursion with
this aim.

We want to use (4.97) to construct combinatorial models for computing TJί{Θ}.
If X is any sufficiently fine covering of Σ by polygons, then taking the inverse
images of the polygons in X, one gets an F-in variant covering X of Γby polygons.
From the cell decomposition X ofΓ, wê  construct in the standard way a chain
complex C that computes H^(Σ, ad(£)). Of course, for an irreducible flat
connection, H^Σ, ad(£)) is zero except in dimension one. Moreover, according to
(4.97), the F-in variant part of this is TJί{Θ). Hence, if C = C is the F-in variant
subcomplex of C , then Ή. γ{C%^ — TM{Θγ Computing the torsion of C will give a
definition of torsion for flat connections on Σ' with prescribed monodromy.

In carrying out this program, there are different kinds of cell decompositions X
to consider. Focussing on the behavior near a particular puncture P (Fig. 17), we
will consider two possibilities: (i) P is in the interior of one of the two-cells; (ii) P is
one of the vertices or zero-cells.

First we take X to be of type (i). P is contained in a two-cell w. w = π~ 1(w) is a
two-cell in Σ. By contrast, if v is a cell in Σ not containing a puncture, then π~ x(v)
= ty1u...uϋw is a disjoint union of m cells in Σ that are cyclically permuted by F.
We recall that the chain complex C is a direct sum of spaces V% of parallel sections
of ad(£) over x. Each of these is a copy of the Lie algebra (S. For every cell v in Σ not
containing a puncture, the F invariant part of VΌι 0 . . . © VVrn is a copy of 9 which
can be identified with the space of parallel sections of ad(E) over v; we call this Vv. If
there are no punctures at all, C = CF will thus be the standard complex computing

Things are more interesting if we consider V#, where Pew. We consider a flat
connection A on Σ whose monodromy around P is U. V^ is again a copy of 9
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Fig. 17. Cell decompositions (i) in which a given puncture P is in the interior of one of the two-cells,
and (ii) in which P is one of the vertices

consisting of parallel sections of £ over w. The generator of the cyclic group F acts
on V# by conjugation by U. So VW=V? is just the [/-invariant subspace of (S.

This can be stated more intrinsically: Vw consists of parallel sections of ad(£)
over w — P. In particular, if the monodromy around P is trivial, then P plays no role
and can be reinserted in Σ. (Thus, the extra punctures with trivial monodromy that
may have been introduced in constructed Σ can be harmlessly disposed of at this
point.) However, if the holonomy around P is in a generic conjugacy class, then Vw

is a copy of the Lie algebra 2Γ of the maximal torus T. Henceforth, we only consider
punctures with such generic monodromies.

The boundary operator of C#, deduced by restricting the boundary operator of
C to the F-invariant part, is precisely as in Sect. 4.2. If z is a g-cell whose boundary
is a union of q — 1 -cells yi9 and s e Vz is a parallel section of ad(£) over z (or z — P)
then δs = φs\y..

This completes the description* of the complex associated with a cell decompo-
sition of type (i). Now we consider the case of type (ii). We consider a cell
decomposition X' of Σ9 with P as one of the zero-cells. This lifts to a cell
decomposition X' of Σ, with P (the lift of P) as one of the zero cells. The reasoning is
then precisely as before except that now the exceptional cells are zero cells. The
complex Ci constructed from X' has for its F invariant part a complex Ci that may
be described as follows. To every cell z in X' other than P, we associate the space Vz

of parallel sections of ad (is) over z. To P, we associate the space VP consisting of the
[/-invariant part of the fiber of E over P.

The boundary operator of C'% is of course constructed by restricting the
boundary operator of Ci to the F-invariant subspace. In describing it explicitly,
there is only one subtlety. Over a neighborhood of P, ad(E) has a natural
decomposition ad (is) = ad(£)o0ad(F)1, where ad(E)0 is the monodromy invariant
part and ad(£)± is the orthocomplement. Now, let y be a one-cell in Σ one of whose
endpoints is P, as in Fig. 17b. In defining the boundary map d:Vy^>VP, one first
projects a parallel section 5 of ad(£) onto ad(E)0 and then considers the limiting
value at P, which is a well-defined element of VP. Other components of the
boundary map of Ci have the standard definition.

The standard invariance under subdivision gives a canonical isomorphism
between H#(CΦ) and #*(C£). Taking the F invariant parts, this restricts to a
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Fig. 18. Regarding X' as a subdivision of X. X' is created from X by cutting the two-cell w on new
one-cells yl9 ...,yM to make n two-cells wl9...,wn

canonical isomorphism between H^(C9) and H^Cί). It is instructive to see this
directly. We can obtain a cell decomposition of Σ of the type X\ with P as a zero-
cell, by subdividing a cell decomposition X in which P is in the interior of a two cell
(Fig. 18). With the choice in the figure, in creating X\ the two-cell w is subdivided
into n two-cells wl9 ...,wn by cutting on one-cells yl9 ...,yn. There is a natural
injective map i :C%^C^ of the corresponding complexes. [The definition is just like
that of the map called i in (4.4). In particular, if 5 is a parallel section of ad(E) over

w — P, then i(s)= 0 s|w..l We let K. be the quotient:

o->c#-Uc;-^κ#->o. (4.ioo)

The long exact homology sequence of (4.100) is the desired isomorphism of H^(C)
and fί^C), if Hs|l(K) = 0.

Since i is an isomorphism except on the cells that are subdivided or created in
going from X to X', K can be described locally, just in terms of the number n of new
one-cells and the monodromy U. In particular, K has a decomposition
K=K0@K±9 where Ko is the monodromy invariant part and K± is the
orthocomplement (using the metrics on the various cells). Ko is just the tensor
product with & of the complex defined in (4.6) and (4.7). In particular, it is acyclic
and has torsion 1. KL is more interesting. The nonzero chain groups are in

n

dimensions one and two. In dimension two, K12= φ Vw.9 where Vw. consists of
ί=i ι ι

parallel sections of ad(£)± over wf. Likewise, in dimension one, K±1= 0 Vy9

where Vy. consists of parallel sections of ad(E)± over yy For ste VWi, the boundary
operator is of course

ds^s^-s^eV^φV,,. (4.101)

(We identify yi+n with y{) This complex is acyclic (since in defining K± we have
removed the monodromy invariants), completing the proof of isomorphism of
Hm(Q and HJC).

Though Kom has torsion 1, this is not true for K± . In fact, the complex (4.58) that
computes the torsion of a connection on a circle is the same as the n = 1 case of K±;
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except that in (4.58) the dimensions are 0 and 1 instead of 1 and 2. The complex
Xj , with dimensions shifted, is actually the complex that we would get to compute
the torsion of a connection on a circle, provided that we had covered the circle with
n one-cells and n zero-cells, as opposed to the choice n = 1 that was used to derive
(4.58). The dimension-shifting by an odd amount replaces the torsion by its inverse,
so in contrast to (4.59), the torsion of Kl9 is

{ κ ) ( 4 1 0 2 )

The volume-exactness of (4.100) thus gives us the result

τ(Cί) = τ ( C . ) . - L , (4.103)

if there is only one puncture with non-trivial monodromy. In general, if there are
generic (regular) monodromies about several punctures P l 5 ...,PW, and Θ{ is the
conjugacy class of the monodromy about P/? then

= τ(C.) Π ^ . (4.104)

This is the technical result that we have been aiming for. The complexes C% and C#
both compute TJίm but their torsions differ. The rest of the discussion is
relatively routine.

Comparison with the Symplectίc Volume. We want to compare the volume forms on
Jί{Θ) that can be defined using the torsion with the symplectic volume form ωr/rl,
with r = dimJf{Θ)/2. The strategy of the computation will be the same as it was in
Sect. 4.2, where we considered the unpunctured case. We consider a cell division X
of Σ and a dual cell division X\ which determine chain complexes C# and Ci, in
such a way that D = Cm®C% has a natural structure of a symplectic complex. The
torsion of D% is then "trivial" and can be related to the symplectic volume. In the
unpunctured case, the formula so obtained is (4.28). We now reconsider this in the
punctured case.

In the punctured case, if the complex X is of type (i), with a given puncture P in
the interior of one of the two-cells, then to have a natural intersection pairing
between C. and Ci, we must take P to be a vertex in Ci, as shown in Fig. 19. In this
case, the symplectic pairing λ on D#= C%®Cm is defined precisely as in (4.20), and
exactly as in (4.22) we get

) = (PfafiFlltl)-1. (4.105)

Now, however, we have because of (4.104),

2 ^ (4-106)

S 0 . 1

A (4-107)

As |/τ(Du) is related to the symplectic volume by precisely the considerations of
Sect. 4.2, the analog of (4.28) is

W=(2rfL,9| J ^ . K Π Γ T ^ (4.108)
i = l
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Fig. 19. A complex of type (i) (solid lines) and its dual (dotted lines), which is of type (ii)

Fig. 20. A sphere of genus g with n punctures can be built by gluing together 2g—2 + n three holed
spheres and n once punctured discs. This is illustrated here for g = 2, n — \

With this equation in hand, our task is elementary. An orientable surfaςe Σ' of
genus g with n punctures can be built by gluing together 2g —2 + n tlίree holed
spheres Wt and n once punctured discs Dσ along 3g — 3 + 2n circles Sy (Fig. 20). As
we already know the torsion of the three holed sphere and the circle, we must
compute the torsion of a flat connection on the once-punctured disc. Then we can
repeat the standard analysis using the generalized Mayer-Vietoris formula. One
could also, of course, use similar methods to compute the volume of Jίm for Σ an
unoriented surface; this involves no ideas that we have not already introduced, and
will not be considered here.

The Torsion of the Punctured Disc. We now let D be a disc, and let D' = D — {P} be a
disc with one point P deleted. We now want to compute the torsion of a flat
connection on D' with given monodromy about P. We pick a conjugacy class Θ
and let Sfθ be the moduli space of flat connections on D' with monodromy about P
conjugate to Θ. Actually, any connection with this property is gauge equivalent to
a standard one, so 3)Θ consists of only one point. This one point corresponds to a
connection that is reducible. We will consider only the case of a generic conjugacy
class for which the stabilizer is a copy of the maximal torus T

In Fig. 21 we indicate a cell decomposition of D which is of type (i) in our above
terminology. There is a single two-cell w, with P in its interior. The boundary of D
has been divided into a certain number of one-cells and an equal number of zero-



Quantum Gauge Theories in Two Dimensions 207

Fig. 21. The cell decomposition used to compute the torsion of a connection on the punctured disc

cells. This decomposition determines a chain complex C whose torsion we will
compute. The homology of this complex is H0(C)^&~ (because F is the Lie
algebra of the stabilizer group), and Hl{C) = H2(C) = 0 (the vanishing of Hx is
related to the fact that any deformation of the flat connection preserving the
monodromy is gauge equivalent to zero). To verify these assertions and compute
the torsion, we use the decomposition Cm = C09®C1%, where Com is the mono-
dromy invariant part and C 1 # is the orthocomplement. It follows from this
decomposition that

τ(C.) = τ(C0.)®τ(C1Φ). (4.109)

We have C09^F% ®2Γ, where Fm is the standard complex that would compute the
real homology of the unpunctured disc. Hence H 0 ( c ) = ̂ ~> and the higher
homology vanishes. It is straightforward to compute that the torsion of C o # is
"trivial" in the sense that

τ ( C 0 # ) = - , (4.110)

where as usual v0 is the measure on & determined by its metric. This statement can
be interpreted as a reflection of the fact that the unpunctured disc is contractible to
a point.

As for C1#, this is again precisely the complex (4.58) that computes the torsion of
a connection on the circle [or rather, C 1 # is the generalization of (4.58) to a less
economical cell decomposition of the circle], so

τ(C1#) = F(<9). (4.111)

Combining the above results, therefore, the torsion of a flat connection on the
punctured disc is

τ(C#) = F(Θ) Vo1. (4.112)

The Volume of Jf{Θ}. We can now solve our problem. We consider an orientable
surface Σ with s marked points Pl9 ...,PS. We pick s generic (regular) conjugacy
classes θl9..., <9S, and let Jί{Θ} be the moduli space of flat connections on Σ with
monodromy about Pσ conjugate to Θσ, for σ = 1,..., s. As in Fig. 20, Σ can be made
by gluing together 2g — 2 + s three holed spheres Wi9 and s punctured discs Dσ9

along 3g—3 +2s circles Cr The generalized Mayer-Vietoris formula then asserts
that

τ(Σ)= <g) τ{Wt) <g)τ(Dσ) (X) τ ^ ) " 1 . (4.113)
i σ y

Since we have evaluated the various factors in (4.113), τ(Σ) can be computed and
integrated over M{&s using techniques that by now are familiar. One small novelty
is that the factors of Vol(T) no longer cancel out. This is because of the l/v0 in
(4.112) or more fundamentally because, since a flat connection on the punctured
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disc has T as a group of symmetries, there is no gluing ambiguity in gluing on a
punctured disc. Another small novelty is that one must remember the factors of
1/J/F in (4.108) in computing the volume of Jί{Θ]. One gets finally

\ #Z(G) Vol(G)2°-2+s

Σ( 2 π Γ ^ w . V o l ( 7 r Σ ( d i m α ) 2 g

(4.114)

For instance, for G = SU(2)9 # Z(G) = 2, dimJ^{Θ] = 6g - 6 + 2s, Vol(G) = 25 / 2π2,
and Vol(T) = 23/2π. Also, if α is the n dimensional representation and Θγ is the
conjugacy class

eiπθγ Q

0 e~i1

then χa(Θy) = sm(πnθγ)/sin(πθγ) and F(Θy) = 4sm2(πθγ). Putting the pieces to-
gether, we get

1 oo 1 s

=2Π Σ -3F2+7 Π sin(πnθ,.), (4.116)

in pleasant agreement with the expression (3.18) that we obtained previously by
comparing to the Verlinde formula.
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