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Abstract. We study the problem of reconstructing a unitary matrix from the
knowledge of the moduli of its matrix elements, first in the case of a symmetric
matrix, which could be the S matrix for n coupled channels, second in the case of
a non-symmetric matrix like the Cabibbo-Kobayashi-Maskawa matrix for n
generations of quarks and leptons. In the symmetric case we find conditions under
which the problem has 2("2~3n)/2 solutions differing in a non-trivial way, but also
situations where one has continuous ambiguities.

In the non-symmetric case we show that for n > 3 there may be continuous
ambiguities, of which we give an exhaustic list for n = 4. We give indications that
there is also a set of moduli for which one has 2("2~3π)/2 discrete solutions, but no
rigorous proof.

I. Introduction

A problem which sometimes arises in physics is that of reconstructing the phases
of a unitary matrix from the knowledge of the moduli of its matrix elements. One
such case is that of the S matrix for n coupled 2-body channels at a given energy
and angular momentum. The problem is to find the phases of the various
amplitudes when the moduli of all matrix elements, from any initial state to any
final state, are known, for instance from experimental measurements. Such a
problem has already been studied by one of us (G.M.) with others [1] for the case
of a 4 x 4 matrix, where it has been discovered that the solution may be non-unique
and exhibit 4-fold non-trivial ambiguities.

A related problem is that of the reconstruction of a spin zero elastic scattering
amplitude from the knowledge of its modulus (i.e. the square root of the differential
cross-section) at one given energy and all angles. Here one deals with an infinite
matrix, but its elements are continuous, so that the problem is, in fact, simpler and,
though it has not been solved completely, a lot of results have been obtained [2]
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and one can make the conjecture [3] that there is at most a 2-fold non-trivial
ambiguity - the so-called Crichton [4] ambiguity.

In the two previous cases, one deals with unitary symmetric matrices. There
is however one problem where the matrix is not necessarily symmetric, which is
that of the reconstruction of the Cabibbo-Kobayashi-Maskawa matrix [5] which
enters in the coupling of quarks to W ± bosons, thus controlling charge current
weak interactions. Naturally the KJVI. matrix could be symmetric by "accident"
[6]. In the 2 x 2 case (Cabbibo or "GIM" case [7]) the possible phases can be
completely removed by a redefinition of the quark fields. In the 3 x 3 case, which
occurs if one has 3 and only 3 generations of quarks and leptons and which is
physically the most likely, both from cosmological considerations, and from the
LEP experiments counting the number of light neutrinos [8], there remains one
phase, after all trivial ambiguities have been removed, and this phase, once a given
convention has been made on the K.M. matrix, can be obtained uniquely from
the knowledge of the moduli of the K.M. matrix [9].

This is a rather remarkable fact, for it means that, by measuring moduli of
decay amplitudes of all possible quarks, which is possible in principle if higher
order corrections and hadronisation corrections are made, one can obtain this
unique phase and, from it, one can calculate CP violating effects in K0, Λ0, B0

decays. At the present time, the moduli are not sufficiently well known to lead to
serious constraints on the phase, but there is no limit to the progress of experimental
techniques, and the situation might change. Then one could make a consistency
test between charge current decay parameters and the parameters of CP violation
(ε and ε' for the K0 — K0 system).

There remains the case of more than 3 generations of quarks and leptons, for
instance 4 generations.

Though cosmology constraints forbid the existence of more than 3 species of
light neutrinos and though LEP experiments exclude neutrinos with a mass inferior
to 42 GeV/c2 [8], nothing [10] forbids the existence of a fourth family of particles
with a neutrino of a mass larger than 45 GeV/c2. One may argue that it is not
very likely. However we notice that upper limits on neutrino masses deteriorate
very quickly as one goes from one family to the next, and that the top quark is
certainly much heavier than expected a few years ago, with a present experimental
lower limit of 90GeV/c2 [11].

Anyway we do not even have to find physical excuses for studying the problem
of the reconstruction of a n x n unitary matrix from the knowledge of its moduli.
It is a well-defined, highly non-trivial mathematical problem, which may have
different, unforeseen, physical applications.

For a unitary n x n matrix U = {Ujk}> we want to find out to what extent the
knowledge of the moduli \Ujk\ determines U. This is the problem of multiplicity,
to which partial answers will be given in this paper. We are not concerned here
with the consistency problem, which amounts to obtaining necessary and sufficient
conditions on the set of numbers \Ujk\ for this set to represent the moduli of a
unitary matrix. Among these conditions are the trivial constraints:

and a set of complicated inequalities [12, 13] which will play no role here.
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To begin with, one notices that there are always "trivial ambiguities," i.e.
obvious changes of the phase of the Ujks which do not affect the unitarity property:

1/-+17*, (1.2)

Vjk -> eί(*J+βk) Ujk (α,., βj arbitrary). (1.3)

The problem clearly makes sense only after the continuous trivial ambiguities
(1.3) have been removed, e.g. by setting to zero the phases of the elements in the
first row and the first column of U. In other words, any element U of the unitary
group U(n) can be written in a unique way as:

17= ef\ \U e*>. (1.4)

with U^j = \ U l j \ , Uji = lί/μ I (7 = 1, . . . , n), and the problem amounts to determining
U from the moduli. In this way, the number of relevant, free (real) parameters of
U is reduced from n2 to n2 — (2/7— l) = (n— I)2. But this is just the number of
independent moduli: Eq. (I.I) contains only (2n — 1) independent constraints which
fix, say, the moduli of the last row and the last column in terms of the other ones.

Therefore, one could expect that the problem has at most a finite number of
solutions U. This is exactly what happens for n = 2 and 3 (it is well known that
the solution is unique, up to the change (1.2) when n = 3). For n ̂  4 however, this
is not necessarily true.

In Sect. II below, it is shown that, for any n and for symmetric matrices (U — Uτ\
the number of solutions is finite provided that U is not too different from the unit
matrix (in some precise sense). Moreover, these solutions may be obtained by
iterating a contraction mapping. For n ̂  4 (and general matrices 17), a continuous
set of solutions appear for certain configurations of the moduli. This means that
the unitary group U(ri) with n ̂  4 cannot be fully parametrized (even locally) by
the set of (n — I)2 independent moduli and (In — 1) trivial phases (the α/s, and /?/s
of Eq. (1.4)). In the case n = 4, the ambiguous configurations, for which one
non-trivial phase remains free, are exhaustively described in Sect. III. Some
comments and further prospects are given in Sect. IV.

II. The Symmetric Case

In this section, U is assumed to be a symmetric, nxn matrix (with n ̂  4): Ujk = Ukj.
To avoid inessential complications, we shall also assume that none of the moduli
\Ujk\ vanish. The trivial ambiguities (1.3) are then restricted to:

Ujk-*ei("J+(Xk}Ujk. (II. 1)

They can be removed e.g. by fixing the phase of the diagonal elements. This
means that the number of relevant parameters is now reduced from n(n + l)/2 to
n(n + l)/2 — n = n(n — l)/2, which again coincides with the number of independent
moduli. More precisely we shall impose:

Ujj>0(j=l9...,n). (11.2)
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Clearly, this reduces the ambiguities (II. 1) to the discrete ones,

Ujk-+eiπ(a'+nk}Ujk (rij = 0 or 1), (II.3)

which in turn we remove by setting:

Ulk = i\Ulk\<?*»< with ~\<^^\ (k = 2,...,n) (II.4)

(such a choice is appropriate to the following treatment).
In order to investigate the reconstruction problem, it is convenient to introduce

the usual "T matrix," defined by:

t / = l + 2 i T . (II.5)

The unitary condition U+U = 1 is then equivalent to the couple of matrix
equations:

-(T- T+)=T+ T+ TT+, (II.6)
i

The following lemma (which is true irrespective of the symmetry property
T=TT) will allow us to ignore condition (II.7) in our actual reconstruction
procedure.

Lemma 1. Denote by || T|| the operator norm of T. Then, if

Eq. (1 1. 6) implies Eq. (1 1. 7) (and thus the unίtarίty of U).

Proof. Let us define:

Δ=T+T-TT+ = Δ+.

Then

Δ = (T+ -T)T+T(T-T+} = -i(T+T2-T2T+) = -i(ΔT+TΔ), (11.9)

where Eq. (II.6) has been used in the second equality.
Taking the adjoint of Eq. (II.9), we also have:

. (11.10)

By adding Eqs. (II.9) and (11.10), and using again Eq. (II.6), we obtain:

2Δ = Δ(T+T+ TT+) + (T+ T+ TT+)Δ.

Hence, from the well-known properties of the operator norm:

This means that either || Γ|| ̂  — or Δ = 0. q.e.d.
/2
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Remark. The bound 1/^/2 in Eq. (II.8) is the best possible one (in any dimension
n). This is most easily seen as follows. Consider T matrices of the form:

^ 1 / a σ - l l 0
T=—\ [ —

2i\ 0 I 0

where σ stands for the Pauli matrices and a = b -f ic is a complex 3 - vector with
b2 + c2 = 1. One then checks that Eq. (II.6) is always fulfilled, whereas Eq. (II.7)
is true if and only if b x c = 0. On the other hand, the norm of T is readily computed:

I TII = —r

Clearly, ||T|| can be made arbitrarily close to l/x/2 by letting |b|->0 (and
maintaining b x c Φ 0).

Let us now write the matrix elements of T as:

Tjk = tjke
ίδ* (tjk = tkj,δjk = δkj), (11.11)

where the tjk's and the δjks are chosen according to the following prescriptions.
For j = k:

δjj = ̂  C/ = !,...,*). (11.12)

Then Ujj =1-2 tjj9 so that Eqs. (I.I) and (II.2) imply:

0<tjj<±. (11.13)

ί l k > 0 (because of Eq. (II.4))

tjk positive or negative for 7, k Φ 1 .

Of course, the absolute values of the ί^'s are fixed by the moduli of 17:

The unitarity condition (II.6) reads:
n

tjksinδjk= ^tjltklcos(δjl-δkl), l^j^k = n. (11.17)
1 = 1

Its diagonal part (j = k) is nothing but the set of consistency constraints (I.I),
allowing us to express each ί̂  in terms of the ίjk's with k Φj\
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For 7 Φk, Eq. (11.17) can be rewritten as (using Eq. (11.12)):

fyΛ1 ~ *jj ~ *kk} sin δjk = £' tβ tkl cos(δβ - δkl)9 l^j<k^n, (11.19)
/

where £' means that the terms with / =j and / = k are omitted in the sum.
i

This constitutes a set of n(n— l)/2 equations for the n(n — l)/2 independent
unknowns δjk, ready to be solved by iteration. Actually, we are going to show that,
given the tjks:

i) Eq. (11.19) have a unique solution in the prescribed range (11.14), provided
that the |£j7c|'s are properly restricted,

ii) this solution automatically fulfils the remaining unitarity condition (II.7),
viz:

(tjj ~ ***) *jk cos δjk = Σ' hi *w sin (δki ~ &jι)> l^j<k^n. (11.20)
i

The convergence of the iterative procedure aimed at solving Eq. (11.19) can be
controlled by using the contraction mapping principle. To this end, we introduce
the Banach space E of n(n — l)/2-component vectors:

« = {**}ι *;<**„ (11.21)

with the norm

, (11.22)
j,k

and define the mapping (5-x5' = F(δ) by:

sin δ'Jk = — — - — Σ' ίj, ίucos(^ - δu), |<5;,| ̂  (11.23)
υ'fcl1 ~tjj~tkk) I L

(notice that the right-hand side of these equations are well defined because of
Eq. (11.13)).

Clearly, F is a mapping of E into itself as long as

By strengthening this condition, one can enforce the mapping F to be a (strict)
contraction:

Lemma 2. Assume that

Σ'WM
sin μ = sup - < -. (II. 24)

\t\(l~t-tkk) 2

Then:

i) F maps the ball \\δ\\£ -intoB =

ii) F is a contraction mapping of the ball B into itself.
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Proof, i) results from trivial majorizations in Eq. (IL23).
To establish ii), consider δ, δεB and δ' = F(δ), δ' = F(δ).

From Eq. (11.23):

sin ^(δ'jk — δf

jk)cos j(δ'jk + δ'jk) = |(sin δ^ — sin δ'jk)

i tjk(l-tjj-i

We can now use:

ί = γ,

3 2

to derive:

sin^fe - δ'\ g sinμ. supάn^\(δ j t - δβ) - (δkl - δkl)\

^ sin μ sin ̂  sup \δfl - δβ \ + sup \δkl - δkl \
L i i

Hence:

If 2 sin μ < 1, this entails (since a/b ̂  sin α/'sin b for 0 ̂  α ̂  b < π):

and F is a contraction, q.e.d.

We are now in a position to apply the Banach-Cacciopoli theorem and to
deduce that, given a set {tjk} obeying condition (11.24), the Eqs. (11.19) have one

and only one solution <5° in the ball ||δ|| g- (the fixed point of F). Moreover,

6'
It remains to show that the solution δ° fulfils the extra unitarity conditions, Eqs.

(11.20). According to Lemma 1, this would be automatically the case, were the
property (II.8) implied by condition (11.24). Such an inference however is not true.

Actually, in order to derive Eq. (II.8), one would have to show that ||ί|| <—,
v 2

where ί is the matrix of moduli \tjk\ (this is because the information contained in
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Eq. (11.24) bears only on the moduli and because of ||T|| ^ ||ί||). But counter-
examples can be constructed. For instance in dimension n = 3, the set:

(which obeys Eq. (11.18)) is consistent with condition (11.24) ί sin μ — 1, but gives
\ \] j'

Therefore, we need some detour to establish the

Lemma 3. Let {tjk} be a set of numbers subjected to the conditions (II.15), (11.18)
and (11.24), and let {δ°k} be the solution of Eqs. (11.19) in B. Then Eqs. (11.20) are
satisfied by {δ®k}.

Proof. For Ae(0,1], we define:

tjk(λ) = λtjk (l^j<k^n),

so that Eqs. (11.15) and (11.18) still hold for the set (ί jk(A)}, and t j k ( l ) = tjkVj,k.
We next denote by sin μ(A) the right-hand side of Eq. (11.24), and by Fλ the mapping
defined in Eq. (11.23), {tjk(λ)} being substituted for {tjk} in both places. Then it is
readily deduced from Eq. (11.25) that sin μ(A) is an increasing function of A. Hence:

sinμ(A)<sinμ(l) = sinμ <^.

Therefore, according to Lemma2, Fλ is a contraction mapping B^B and the
equation δ = Fλ(δ) has a unique solution δ(λ)eB, with <5(1) = <5°.

Now, Eqs. (11.23) and (11.25) show that the function (0,1] x B-+B defined by
Fλ(δ) is analytic both in A and δ. Moreover, the derivative of 1 - Fλ is invertible
at any point Ae(0,1] (otherwise Fλ would not be a contraction there). The
"holomorphic" implicit function theorem then tells us that δ (λ) itself is analytic
on (0,1].

On the other hand, we have from Eq. (11.25):

tjk(λ)=Q0(λ\ l^fcgn,

so that || T(λ) || < for A small enough. According to Lemma 1, this means that
/2

Eqs. (11.20) (written for {tjk(λ)} and δ(λ)) are satisfied when λ is small enough.
Since both sides of Eq. (11.20) are analytic functions of A, these equations are
identically true for all Ae(0,1], in particular for λ = 1. q.e.d.

Knowing that a given set {tjk} (obeying the condition (11.24)) produces a unique
solution (5° and provides us with a unitary matrix 17, we can now come back to
our initial problem and count the number of its solutions for a given set of moduli
\Ujk\. Let us recall that the signs of certain off-diagonal elements tjk are still
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arbitrary:

tjk = ±^\ ujk\ for 2^j<k^n.

Choosing these signs in all possible ways, we obtain 2(n~1)(""2)/2 different
solutions δ. These solutions however are pairwise related by a trivial change of
phases. Actually, one observes that Eqs. (11.19) are invariant under the substitution.

tjk->-tjk 2^j<k^n

δjk -> — δjk 1 5^7 < k ̂  n

and that this substitution is nothing but a trivial change combining (1.2) and (II. 1)
and respecting our prescriptions (Π.2) and (Π.4):

Ujk -> ( - l)*ί + *ΐ t/ * (here, δ{ stands for the Kronecker symbol).

Consequently, the sign of a further tjk can be fixed (e.g. ί23 > 0), and there are only
^2<» -i)(«- 2)/2

 = 2n(n~ 3)/2 solutions differing in a non-trivial way.
Collecting our results, we can assert:

Theorem 1. Let the moduli \ Ujk \ of a symmetric, n x n matrix (n ̂  4) be given. Assume
that Eqs. (I.I) hold and that:

Σ \^ji\\Ukl\<^\Ujk\(\Ujj +|t/ttl), l£j<k£n. (11.26)
/ = l , . . . , / j

l*j,k

Then, up to trivial ambiguities (1.2) and (II. 1), there are 2"("~3)/2 unitary matrices
U having these \Ujk\'s as moduli. These matrices can be constructed as follows.

Define:

(11.27)

and choose εjk = +1 in all possible ways. For each choice, solve iteratively Eqs.
7t

(II.19), starting from any set { δ j k } with \δ(

jk\^-. The iteration sequence {<5j£ }
6

converges to a unique solution {δjk} I with\δjk\ <- ).
V 6/

Then:

^Ujj = \Ujjl, j = l,. . .,n,

U23 = i\U23\ei'23,

l/jfc = 2itjk e
lδjk for the remaining indices.

Finally, let us make more explicit the rough meaning of condition (11.26): the
off-diagonal moduli \UJk\ are required to be both not too large and not too different
from each other.
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III. The Continuous Ambiguities for 4 x 4 Matrices

So far, the reconstruction problem in the general (non-symmetric) case has resisted
all attempts to generalize the approach of the previous section. A reason for the
difficulty was discovered in Ref. [14]: when n ̂  4, a continuous set of solutions
appears for certain configurations of the moduli. Some of these ambiguous
configurations were displayed. We have now completed this work by searching
for all ambiguous configurations in the case n = 4, and we can report on the
outcome. Unfortunately, we were unable to set up a simple method for dealing
with this problem, which was solved by brute force calculations. There is no point
in reproducing here these long computations, and we shall merely summarize the
main steps.

We have found it convenient to follow two routes simultaneously. The first
one is based on a generalized Kobayashi-Maskawa (KM) parametrization of 4 x 4
unitary matrices U [15]. In the second one, we use the unitarity equations in
the form given by Lavoura [16]. Let us describe successively these two ap-
proaches.

In the KM representation, the 9 relevant parameters of U are 6
rotation angles θk and 3 phases <5, /?, y.

The explicit form we have chosen is:

' Cl

-SjC2

-S!S2C4

V-SlS2S4

SιC3

U22

1/32
1/42

SιS3C5

U23

1/33

t/43

S1S3S5\

C/24

t/34

C/44 /

where sk = sin θk, ck — cos θk and:

t/22 = cιc2C3 - S2s3c6e
iδ

9 (Πl.lb)

1732 = c1s2c3C4 + C2s3c4c6e
iδ + s3s4s6e

iβ, (IILlc)

U23 = clc2s3c5 + S2c3c5c6e
iδ + S2s5s6e

iy, (III. Id)

U33=c1s2s3c4cs-c2c3c4c5c6e
iό'-c3s4c5s6e

ift--c2c4s5s6e
iv + S4s5c6e

i(β+y~δ\

(Πl.le)

1/42 = C1s2c3s4+c2s3s4c6e
iδ -

U24 = 0^28385 + s2c3ssc6e
iΛ -

1/43 =^^2535405 - C2c3s4csc6e
iό + C3c4css6e

iβ - C2s4s5s6e
iy -

U34 = CιS2s3c4s5 - C2c3c4s5c6e
iδ - C3s4s5s6e

ίβ +C2c4c5s6

L/44 = 0^2535455 - C2c3s4ssc6e
ίδ + C3c4s5s6e

iβ +C2s4css6e
iγ -h C4c5c6e

i(β+y'δ}.

(Πl.lf)

In Eqs. (III.l), the trivial ambiguities (1.3) have been removed by setting to 0
the phases of Ulk(k = 1,..., 4) and to π the phases of 17/ιQ' = 2,3,4). In fact, a whole
set of non-equivalent 17's (modulo the changes (1.2) and (1.3)) is described exactly



Reconstruction of Unitary Matrix 533

once by letting the parameters vary in the range:

(notice that these phase fixing conventions differ from those of Eq. (1.4); the
parametrization chosen here is merely an extension of the usual KM
representation [5], which appears in the upper left 3 x 3 block of (III. la) when
04 = 05 = 06 = 0).

Given the set of moduli \Ujk\, we can now try to solve for the parameters θk,
δ, β, y. Again, we shall assume that \Ujk\ φ 0 Vj, /c, i.e. skck φ 0 for k = 1, . . . , 5 (when
some moduli vanish, one finds that apparent, continuous ambiguities are always
removable by further rephasings). The representation (I.I) turns out to be well
adapted to our purpose, because the equations to solve form an almost triangular
set. First of all, we are allowed to ignore the matrix elements of the last row and
the last column, since their seven moduli are fixed by the nine other ones through
Eq. (I.I) (this means that the information contained in Eqs. (III. If) is in fact
redundant for the reconstruction problem). Then the solution can proceed through
the following steps.

SI) Starting from the upper left corner of (7, we see that |C/n |, |t/21 |, \^i2\> l^3il
and |l/13 | successively fix 01 ? 02, 03, 04, and 05, in an unambiguous way. Then

| l/22 l determines δ as a well-defined function of c6 as long as 06 /-:

- It/,,1'

2cis2c2s3c3c6

if Θ6 = -, the phase δ simply disappears from (7, whereas β and y are univocally

fixed by|ί/32 | and |ί/23

52) Using the expression (III.3) in Eqs. (III.lc) and (III. Id), we find that, if no
"accident" occurs, β and y are respectively determined by \U32\ and |ί/23| as
algebraic functions of the still unknown parameter c6:

= /(c6),

= g(c6).

Up to this point, the procedure is simple, in the sense that the explicit forms
of/and g are not exceedingly heavy (in fact, each of these functions is double-valued,
because of square-rootings).

53) In the last step, one has to insert the expressions (III.3) and (IΠ.4) into the
right-hand side of Eq. (Ill.le), which provides us with a function /ι(c6), and to solve:

for c6.
This is the unpleasant part of the procedure: although the algebraic equation
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(III.5) can clearly be put in the form:

where F is a polynomial, the coefficients of F are very cumbersome (polynomial)
functions of the moduli. The degree of F is twelve, and it can be shown that the
squarings needed to go from Eq. (III. 5) to Eq. (III.6) introduce no spurious
solutions: they just account for the double valuedness appearing in step S2. This
means that Eqs. (III.3), (III.4) and (III.6) exactly solve our initial problem. Again,
if no "accident" occurs, Eq. (III.6) will fix the value(s) of <56.

Let us be more explicit about what is meant by "accidents." In step S2, it may
happen that β and/or y are not fixed by \U32\ and \U23\ (the functions / and/or g
do not exist). For instance, if it turns out that δ = π and c6 = C1s2c3/c2s3, we see
from Eq. (III.lc) that β remains free at this level. Then, one has to proceed further
in order to establish whether β and y are fixed by the other equations or not. In
the latter case, we shall say that an accident has occurred in step S2.

As for step S3, the occurrence of an accident there simply means that Eq. (III. 6)
reduces to an identity (all the coefficients of the polynomial F vanish), keeping c6

undetermined.
Clearly, we are left with the following alternative:
i) No accidents are encountered in steps S2 and S3. Then there are at most

12 solutions.
ii) An accident occurs in step S2 or in step S3. Then the set of solutions is

continuous.
The case i) corresponds to the "discrete ambiguities," which have been

investigated by Lavoura [17]. There it was shown that the number of solutions
is even (in the generic case). No upper bound on this number was derived, but the
configurations of the moduli studied numerically never produced more than 8
solutions, including complex conjugations.

Let us turn to case ii). By mere inspection of Eqs. (Ill.lc-e), it is straightforward
to analyse exhaustively how an accident can occur in step S2. The resulting
ambiguous configurations belong to the classes denoted by A) and B) in Theorem
2 below.

The task of analysing step S3 is much more difficult, and it is at this point that
we appeal to the second approach. Actually, instead of looking at the explicit form
of Eqs. (IΠ.5-6), we have found it a little more convenient to utilize the set of
unitarity equations given in ref. [16], which involve more directly the moduli.

For the sake of conciseness, the matrix of squared moduli is denoted by:

A B C D\

E F G H

I J K L

M N O Q

(III.7)

and the 9 independent elements are chosen again in the upper left 3 x 3 block.
The basic parameters to be determined by unitarity are:

9 = (<5ιι -δ12) -(<521 -δ22)9
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These 3 "plaquette phases" (which are invariant against rephasings (1.3)) play
the same role as our KM phases δ, β, γ. In ref. [16], it was shown that the unitarity
of U is equivalent to the set of trigonometric equations:

! cos φ + b2 cos ω -f ί?3 cos(ω — φ) = dί9

sφ + c2cosχ -hc3cos(χ — φ) = d29 (HI.9)

cos φ + fl2

 cos ω + flι cos % + fl4 cos (ω ~ X) + αs cos (φ — ω — χ) = d3 ,

provided that the subdeterminant ί/13 (724 — t/14 £/23 does not vanish. Moreover,
once a solution of these equations has been obtained with O ί g φ r g π , — π < ω, χ^π,
17 is univocally fixed (up to the trivial changes (1.2) and (1.3)). In Eq. (III.9), the
expressions of the coefficients in terms of the independent moduli are1:

a4= -2^/BCEGIJ, a5= -2^/ACFGIJ,

d3 = \-A-B-C-E-F-I-K + AF + BE + CI-GJ

+ AGJ - AGI - ACJ - BCI - CEI - CFI

+ (C + / + K)(A + B + E + F-AF- BE).

Now, following the previous approach, it is readily seen that if some
subdeterminant of order 2 vanishes in U, the only ambiguous configurations fall
in the class B) below. Therefore, with the purpose of uncovering all possible
ambiguities hidden in step S3, we can safely stick to Eqs. (III.9). Eliminating ω
and χ between them, one obtains for the remaining variable x = cos φ an equation
of the form:

π
ε= ±1
v= ±1

+ εvS1(x)Λ/JR2(x)r2(x)]-0, (III.ll)

where g3 (x), T± (x), K2 (x),... are polynomials, the degree of which is indicated by
the indices 3, 1, 2,... (and the coefficients of which are themselves polynomial
functions of the moduli). This equation is very similar (and completely equivalent)
to the explicit form of Eq. (III.6), but it is slightly more compact when fully detailed.
Through expansion of the products, it appears as a 12th degree algebraic equation.
The best strategy however consists of using the factorized form (III.ll). A new
continuous ambiguity (x free) will occur each time the moduli can be so adjusted
that one of the four factors identically vanishes. This may happen in various ways,
e.g. by identical vanishing of all four polynomials β3, T l9 Όγ and S l 5 or through
proportionality relations between (1 — x2), R2(x) and r2(x). All these possibilities
must be systematically explored, which is extremely long because there are many

1 Equations (ΠI.9-10) are the "master equations" of Lavoura, rewritten here in a slightly different
way
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ramifying cases and cumbersome functions of the moduli to deal with. Of course,
such an extensive calculation cannot be reproduced here, and we shall content
ourselves with quoting the (simple!) result: besides ambiguous configurations falling
again in classes A) and B), only one new type is discovered, namely the class C)
displayed below.

Our whole analysis can be summed up by the following theorem.

Theorem 2. Let the moduli of a unitary 4 x 4 matrix be given:

fa b c d\

e f g h

J k I

\m n p q

(III. 12)

(the 9 moduli in the upper left 3 x 3 block can be taken as the independent ones).
Then, up to trivial ambiguities (1.2) and (/.3), there are either

i) at most twelve unitary matrices U

or

ii) a continuous set of unitary matrices U
having these |l/ίfc|'s as moduli.

The case ii) is encountered if and only if U belongs to one of three classes A), B)
and C). Each class is obtained from the matrices described below (within the
parametrization (III.l)) by arbitrary permutations of rows, permutations of
columns and transpositions.

For A):

δ = π, 02 = 03, 0!=06; that is:

17 =
— S1S2C4

C C C 0ll
1 2 4

— S1s2c4e
1'

(III. 13)

/

t/33 1/34

ϊ/43 1/44

where the unspecified elements assume no particularly simple forms (they are just
obtained by using (III. 13) in Eqs. (IΠ.le — f)). One phase (say β) is free and |C/ 3 3 |
determines γ in terms of β.

The configuration of moduli exhibits the "symmetric" pattern:

f a b c d\

b a d e

i j k I

J ί I k,

Five of them are independent (say, a, b, c, i and k).
For B):

(III. 14)

<5 = 0, Θ6 = 0, c1 = -; that is:
S2S3
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U =
— SSC

\ Sl *

"'I 1 3 1 3 5 1 3 5

S1C2 ~SιS2S3 C3C5/S2 C3S5/S2 flTT 1 5ΐ

hs2c4 C2c4/s3 s4s5e
l« -s4c5e

iΛ '

C2s4/s3 -c4s5e
ia c4c5e

ίΛ

 J

where Θ1 is still used for conciseness.
The phase α( = β -f 7) is free.
There are in general no pairs of equal moduli. However, they are constrained

by 5 relations:

af= be, ch = dg, in =jm, kq = /p,

= 1, (111.16)

(111.17)

so that four of them remain independent.
For C):

r -C l o -π
C3~—, ^5-^

s, 4

δ, β and γ are expressed in terms of the variable parameter Θ6 through:

cos δ =
2clc2s2c3c6

<?„ (r
COS (β — V) = -

c2 C2 C2

- v / S •! Sj

2 2 2 2 '

ι
where cos v =

and

(III. 18)

so that one phase remains free.
The configuration of moduli is characterized by two pairs of identical columns:

(III. 19)

The three moduli α, e, i, are independent.
Let us summarize the main result of this section. We have found all the cases

in which a unitary 4 x 4 matrix is not determined by its moduli, even by allowing
for trivial or discrete ambiguities. Taking into account the possible rearrangements
and the various "symmetries" of the matrices corresponding to Eqs. (III. 14), (III. 16)
and (III. 19), we see that the set of ambiguous configurations is made of 24 manifolds
in the 9 dimensional space of independent moduli. There are 9 manifolds of
dimension 5 (class A)), 9 of dimension 4 (class B)) and 6 of dimension 3 (class C)).
Although these ambiguous configurations are exceptional (of "measure zero"), it
is important to realize that the reconstruction of U becomes a very unstable
problem when the moduli turn out to lie in the vicinity of the above-mentioned
manifolds.
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It is also worth stressing the following points:
1. For non-symmetric matrices 17, requiring that the off-diagonal moduli be

small enough does not prevent the occurrence of continuous ambiguities.
Counter-examples are immediately found in class A), since fc, c, d and can be
chosen arbitrarily small in the matrix (III. 14).

2. Obviously, Theorem 2 still applies in the symmetric case U = Uτ: it suffices
(after changing the sign of the first column in (III.la) to set everywhere Θ2 = #3,
Θ4 = 05, β = y. If we take for instance, case (C), the symmetric matrix

7 a aeiφί beiφ2 beίφ'^

aeiφi a beίφ* beiφ

beίφ3 beίφ2 aeiφl a

with b =
is unitary if

So that, for given α, we have a one-parameter ambiguity depending on φ±.
However, the discrete ambiguities are reduced. This can be seen from Eq.

(III. 11), which now becomes a 6th degree equation, because ε = v, Tl = Ul and
R2 = r2. Therefore, outside the continuous ambiguities (which survive in classes
B) and C)), there are at most six distinct solutions when U = Uτ.

3. When the matrix of moduli is symmetric (without requiring U = Uτ\ the
class A) still contains ambiguous configurations with arbitrarily small off-diagonal
moduli. Of course, these ambiguities disappear when one sets β = y (i.e. in the fully
symmetric case), as they should according to Theorem 1.

IV. Discussion

In investigating the case of non-symmetric matrices we have now the surprise of
continuous ambiguities, which may exist even if the matrix is close to unity. We
have also found examples of continuous ambiguities for symmetric matrices, but
however not for matrices close to unity. On the other hand, under condition (11.24)
we find that 2(M("~3))/2 solutions exist for the symmetric case, and this fits with the
results of Ref. [16] where 4 solutions are found. It is tempting to believe that if a
unitary matrix is not too far from being symmetric, then under certain conditions,
like (11.24), the number of solutions might be the same as for the symmetric case.
This is supported by two results:

i) the semi-analytic calculations of Lavoura, for 4 x 4 matrices, who finds
precisely 4 solutions and no more in his examples.

ii) The approximate construction of Bjorken [18] for n x n matrices, which is
done under the condition that the moduli of the matrix have a structure a la
Wolfenstein.
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i) The Lavoura results.
Lavoura [16] gives himself the squares of the moduli of the matrix elements:

Λ95

.0005

.0006

He gets, for the phases in degrees:
v

.0484

.9460

.0040

.0016

.0001

.0024

.5000

.4975

.0015 \

.0027

.4955

.5003

/ o
0

0

V °

( °
0

0

V o
ί°

0

0

V °
/ o

0

0

l o

0

179.89

-74.73

73.54

0

179.59

- 103.22

-8.69

0

179.58

-32.74

-123.78

0

179.51

-42.71

-133.88

0

-25.04

-137.18

117.45

0

160.04

23.84

- 144.28

0

165.58

168.09

-20.18

0

- 160.69

-169.52

21.95

0 \

-173.86

138.04

- 147.55 j

>

0 \

-123.19

156.92

168.53 ,

0 \

- 122.72

167.15

159.16,

5

0 \

-123.21

156.83

168.61

(IV.2a)

(IV.2b)

(IV.2c)

(IV.2d)

These results, naturally, do not allow one to draw general conclusions, but
they are, nevertheless, very interesting.

ii) The Bjorken approximate construction
In order to construct the KM matrix approximately, Bjorken has invented an

iterative method in which unknown contributions can be neglected if the matrix
has a structure a la Wolfenstein [19], i.e. if

for j ^ i

for j ^ i

(IV.3)

In other words, matrix elements decrease very fast as one goes away from the
main diagonal of the matrix. This condition is not exactly satisfied by the Lavoura
example, in which |t/14| is larger than |t/34|.

Here we shall present the revised version, following a correction by one of us
(A.M.). Bjorken makes the following phase convention:

0 l/M + 1^0. (IV.4)
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Notice that this convention is not in agreement with the one made for the
symmetric case, so that if the KM matrix were symmetric, the solution obtained
by the Bjorken method would not look symmetric and a redefinition of the phases
of the lines and the columns would be needed to restore the symmetry.

Under the above assumption,

since

ι = ΣW = lt/«l 2 + ΣTO2, (IV 6)
ί i

where Σ' represents the summation over i, i Φj, i.e. over off-diagonal elements.
Then the exact unitarity condition becomes, for i <j

If the matrix element Ukl are known for \k — 1\ ^ p, the right-hand side of (IV. 7)
can be calculated for |z — j j ̂  p + 1. Then we have the problem of reconstructing
a triangle in the complex plane knowing one side (the right-hand side of (IV.7)),
and the length of the two other sides. This problem has two or zero solutions
depending on whether triangular inequalities are satisfied or not.

In the first step of the construction, one gets the elements of the two diagonals,
and Eq. (IV.7) reduces to

so that, with the phase convention chosen

If no obstacle is met in this iteration solution, i.e. if all triangular inequalities
are satisfied, one gets 2(w2~3π)/2 solutions, i.e. exactly the same number as in the
symmetric case if condition (11.24) is satisfied. In particular we get 4 solutions for
n = 4.

Now there are two problems.

i) Can we find sufficient conditions so that Bjorken's iterative construction is
never blocked by triangular inequalities?

ii) Are Bjorken's "approximate" solutions really approximate? Is there a
one-to-one correspondence between an approximate solution and a true solution?

To problem i) we can give an answer which, crudely speaking, is that we should
have on the one hand conditions analogous to (11.24) for the symmetric case and
on the other hand the antisymmetric part of the matrix should be "very small"
compared to the symmetric part.

First we must satisfy

This will be true if we have the sufficient condition

|i^l + | i/ul> Σ \Uik\\u Jk\9 (iv.ii)
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but we need also

\\ujί\-\uίj\\< Σ UΆU% (IV. 12)

and it is difficult to find a way to ensure this with a condition involving only the
moduli, except if one term is dominating in the right-hand side of (IV.I2). So a
sufficient condition will be

\\USi\ -\Uij\\< 2sup \Uik\\Ujk\- Σ \Uik\\Ujk\. (IV.13)
i><k><j i><k><j

For n = 4 the right-hand side of (IV.I3) is always positive or, exceptionally,
zero, because Σ is at most made of 2 terms (when i = 1 and / = 4 or i = 4 andj = 1).

For n ̂  5 one procedure to ensure the positivity of the right-hand side of (IV.I3)
is to take

instead of

which is the Wolfenstein-Bjorken case.
A strategy to construct examples of moduli leading to the 2("2~3/l)/2 approximate

solutions is to take a symmetric matrix of the squares of the moduli of the form
λαyβl'- ̂ αy^O.

Take ε sufficiently small to ensure that all right-hand sides of (I V.I 3) are strictly
positive, then take λ small enough so that inequalities (IV. 11) are satisfied. Then
one can add to the matrix of the squares of the moduli an antisymmetric matrix
μ A i j . For μ sufficiently small, inequalities (IV. 13) will be satisfied and also
inequalities (IV. 11) for which the antisymmetric part is a small perturbation.

In conclusion, one can invent scenarios in which the matrix of the moduli is
such that all 2(/j2~3π)/2 approximate solutions exist (here we do not count the
complex conjugation of U\).

The question whether there is a relationship between approximate and exact
solutions is very difficult. It would be tempting to use the Bjorken solution as the
starting point of an iterative scheme, the first step being to use the Bjorken solution
in Σ^%^ik^ without neglecting the "small" terms. Then, at the end of the first
step the phase convention would be destroyed and the matrix should be
"renormalized" before starting again. There is, unfortunately, no indication that
this scheme converges, as far as we can see at the present time.

One could ask under which conditions an iterative scheme

where

is not blocked by triangular constraints. Sufficient conditions, analogous to the
previous ones can be found:

\Uu\\Ujl + It/,,111/,,1 >Σ\Uik\\Ujk\ (IV.17)
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and

| |£/ ί ί | | l / ι / i | - | t/ ι / < / | l^ i lH-Σ / l^ ikl l c / jk l <2sup|C7 ί k | | t/ j k | . (IV. 18)

Again the set of matrices satisfying these conditions is not empty, but we do
not know if the iteration converges (modulo a redefinition of the phases at each
step), and we cannot use a Leray-Schauder argument to prove at least the existence
of solutions, because we lack "convexity" properties. This does not mean that the
problem cannot be solved, but that it is difficult!
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