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Abstract. Strongly compled gravity theories with Virasoro central charges equal to
7,13, and 19 are shown to enjoy striking properties: at these values, the subset of
chiral operators with real Virasoro-weights, acting on a subspace #,;, is shown
to be closed by fusion and braiding, and to leave this subspace invariant.
Moreover, the representation of the Virasoro algebra becomes unitary when it is
restricted to .. Strongly coupled 2D gravity with C,,,, =7, 13, or 19 may thus
be naturally truncated obtaining a consistent conformal theory (this result is
similar to the truncation that occurs for C=1—6(p—p’)?/pp’ with p and p’ integers,
where only a finite number of primary fields remains, as is well known in rational
theories). The proof of this unitary truncation theorem, already summarized in a
recent letter, is fully described here.

1. Introduction

This article is the third of a series [1-3] devoted to the solution of 2D gravity and
minimal models by means of quantum groups. The present approach is a direct
outcome of the algebraic approach to 2D critical systems which Neveu and 1 [4-6]
introduced long ago. Its distinctive feature is that it directly deals with chiral
operators that transform irreducibly under the action of the underlying quantum
group, while in the more widespread type of approach [7], one works with Green
functions and the link with quantum group is made at the level of group invariants
and ¢g—Clebsch Gordan or g—6-j symbols. Thus, in [7], one does not clearly see how
the quantum group acts on the theory. Moreover, these approaches exclusively
deal with rational theories at C < 1. This is inappropriate for the strongly coupled
gravity which we have in mind in the present paper. The special values C,,,,=7,13,

* Unité Propre de Recherche du Centre National de la Recherche Scientifique, associée 4 'Ecole
Normale Supérieure et a I'Université de Paris-Sud



302 J.-L. Gervais

and 19 were first put forward in [6] where closure under braiding was found to
hold at these values for a particular operator with real Virasoro weights. This
result was extended to Wj-gravity in a recent paper [2] where contact between the
argument of [6] and the quantum group structure of 2D gravity [1] was also
made. Finally the following unitary truncation theorem was found to hold:

In Liouville theory, with Virasoro central charges 7, 13, and 19,
the subset o4, of chiral operators with real Virasoro-weights,
acting on a subspace #y., is closed by fusion and braiding,
and only gives states that belong to #,y,s. The representation
of the Virasoro algebra restricted to H#,y, is unitary.

The present article provides the complete derivation of this theorem, sum-
marized in a recent letter [3], which shows that 2D gravity may be formulated for
the above values by only retaining operators with real Virasoro-weights. This
leads to completely consistent conformal theories.

In the quantum solution of the Liouville dynamics the basic chiral conformal
family of 2D gravity and minimal models appears naturally (see Appendix A for
some details). Its relation with quantum groups was studied in [1] (much more
about this below). For a given coupling constant y, this conformal family involves
two possible quantum modifications given by:

T T
hi = Z’))—(l _4y—_tl/ 1_8'}) = E(CLiou_13il/(CLiou_ZS)(CLiou—l))’ (11)

where the last identity follows from the fact that the central charge of the Liouville
theory is Cy;,, =1+ 3/y. We use the same conventions and notations® as in [1].
They are summarized in Appendix A for completeness. Although it comes out
from the quantization of the Liouville theory, the conformal family we are
considering has an intrinsic meaning. It is characterized by the existence of two
quantum-deformation parameters, which we shall denote by h and A. They are
related by

hh=n*, h+h=n(C—13)/6, (1.2)

where C is the central extension of the Virasoro algebra. In Liouville theory,
h=h_,h=h,, and C=Cy,,,. Choosing C < 1 one may as well describe the minimal
models, however. All quantities related to 4 are distinguished by hatted symbols.
In the weak coupling regime y<1/8, h and £ are real. Their role is asymmetrical.
For y—0, h~2ny, while h blows up. Thus k/2x describes quantum modifications to
the chiral operators that are perturbative, while / corresponds to non-perturbative
effects. In the strong coupling regime, on the contrary, (1/8 <y < o), h=h*, and
both h and i must be treated on the same footing, as we shall do following [1-3].
There are four basic fields: ,(0), Y,(0), P1(0), P,(0). The fields y; (respectively ;)
involve the quantum modification h (respectively /). Since these fields are chiral, we
may work on the unit circle z=¢"0< ¢ <2n. They are solutions of a quantum
Schrédinger equation which comes out of the Liouville dynamics, and is
equivalent to the Ward identities that reflect the decoupling of Virasoro null
vectors. See Appendix A for some pedagogical details. By operator-product

expansion, the above basic fields generate a family of operators ¢ (o),

! Except that the letter w is everywhere replaced by @
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—~J<m<J, —J<m<J, of the type (2J+1,2J +1) in the BPZ classification.
Their conformal weights are given by Kac’s formula:

R 1 1 R
AK“(J,J;C):=%—ﬁ((J+J+1)]/C—1—(J—J)]/C—ZS2, (1.3)

(that is, pUD(0) x (do)*x=-7:0 is conformally invariant). A central role is played by

the zero-mode p, (qQuasi momentum) of the underlying pair of equivalent free fields
(see Appendix A). It is convenient to define the rescaled variables

2 . f2m . h N
@:=ip, 7; w:=ip, T; w=w;; w w;; (1.4)

so that for any function f
WD f (@)= f (@ +2m + 20n/h) ). (1.5)

The operators ¥ thus live in Hilbert spaces? of the form

+ o

Hw)= @ F@o+n+hn/h). (1.6)

@ is to be determined, and % (w) is the Fock space of states with quasi momentum
@. The SL(2, C)-invariant vacuum corresponds to @, =1+ z/h [1], but this choice
is not appropriate here.

The above p family is closed by fusion and braiding. However, the fusion
coefficients and R-matrix are functions of w, and according to (1.5) do not
commute with the y fields. Thus the structure is unusual and its connection with
the standard quantum group not very transparent. This was overcome in [1, 8] by
changing basis to a new set of chiral operators noted £ 7k(o) with —J <M <J,
—J<MZJ. The change of basis was determined so that all @ dependence
disappear from the R-matrix and from the fusion coefficients. For the ¢ fields the
quantum group structure is transparent. In particular, it was found that, for £{; 9
=¢(P, the R-matrix coincides with the standard R-matrix of the quantum group
SL(2),. Hence we may call the family of ¢ fields the universal conformal family. We
shall see that the (so-called quantum) mathematical deformation of the underlying
group is dictated by the non-commutativity of the conformal field operators due to
physical quantum effects, i.e. by the uncertainty principle of quantum mechanics, if
the fields &{P(6)—J <M <J span a representation of spin J of SL(2),. The
properties of the universal family are thus completely determined by the quantum
group structure (more about this later on) and this is instrumental in the proof of
the unitary decoupling theorem which is our present aim. The whole discussion is
carried out assuming that g is not a root of unity, so that the representations of the
quantum algebra are trivial deformations of the g=1 case.

Natural as they may be, group theoretically, the £ operators are not always the
most useful operators to use, nevertheless. Indeed the y fields, contrary to the &
fields, have well-defined shift properties of the associated quasi momentum @.
Thus the former are more useful to discuss properties pertaining to the Hilbert
space in which conformal theories are defined. Thus we shall use each basis in its

turn.

2 Mathematically they are not really Hilbert spaces since their metrics are not positive definite
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The plan of the article is as follows. At first (Sect. 2) we complete the analysis of
[1] without specializing the value of C. After developing some useful machinery
about g-deformed special functions, we re-express the entries of the matrix that
relates ¢ fields and v fields in terms of g-hypergeometric functions and determine
its inverse. The connection is next made between the short-distance operator-
product expansion of the universal family and the co-product associated with the
quantum group structure unravelled in [1]. The fusion coefficients are thereby
shown to coincide with the associated 3-j symbols. In Sect. 3, the mathematical
properties of the special choices C=7, 13, and 19 are established. The two
quantum modifications are then such that h+h=sm, s integer, and we show that,
as a result, the Clebsch-Gordan coefficients, and braiding matrices, are respec-
tively related by very simple formulae. In addition, the physical Hilbert space #,;,,,
is introduced so that the change of basis between p and ¢ fields and between ¢ and
& fields are suitably connected. The structure so obtained allows us next to prove
the unitary truncation theorem, for the fields with negative weights (Sect. 4), and
for the complete set of physical fields (Sect. 5). In the latter discussion, operators
with negative spins are needed. This case is handled by continuation from the case
of positive spins, making use of the connection made in Sect. 2 with g-deformed
special functions. A useful symmetry between spins J and —J —1 is put forward.
Some concluding remarks are made in Sect. 6.

2. More on the General Properties of the & Fields

At first we consider the fields £ separately — it goes without saying that each part
of the following discussion has its “hatted” counterpart. For any positive integer
2J, introduce group-theoretic state-vectors noted |J, M), with —J <M <J, and
operators J ., J, such that

where, following [1-3], we started to use the notation | x|, defined by

Lx |:=sin(hx)/sinh. 2.2)
These operators satisfy the SL(2), commutation relations,
s Jel=2Js, i, J-1=12]5]. (2.3)

First recall two basic results of [1].

Theorem (2.1). For 2J a positive integer let

&o)= T Uofwdo), 4
27\ . . J-M J+M
J, m c= ihm/2 iht(w + m)
M @) (J+M>e 2.¢ ((J—M+m—t)/2> <J+M+m+t)/2>

(2.5)

P\ |PJ! o
<Q)'“LQJ!LP—QJ!’ L= 11 Lr], 26)
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where the variable t takes all values such that the entries of the binomial coefficients
are non-negative integers. 1) For n>a >0’ >0, these operators obey the exchange
algebra

HOE=_ ¥ GIREEHE, @)
(I Nae = (I, MIQLIT, M'DR(IJ, NY®IJ, N')), (28)
. 0 (1 _eZih)neihn(n— 1)/2 . .
R =e(—21h.13®13) <1 + ZI LnJ! e—lth3(J+)n®ezth3(J_)n> . (29)
2) For 0<o <o’ <m, the ¢ fields obey the exchange algebra
RGN~ ¥ TS0, 210
I ne = KJI, MI®LT, M')R(J, NY®|J, N'), (2.11)
_ ihis , 0 (l_e—Zih ne—ihn(n—l)/2 . . i .,
R=e(2 hJ ®J)<1+n;1 L)n-l! e hJ3(J_) ®eh J3(J+)
(2.12)
3) The two exchange formulae are related by the inverse relation
oD DR T DR =01, Sur (2.13)

Proof. Based on the braiding properties of the v fields it is spelled out in [1]. The
normalization constants of this article are chosen to be x;=1 and a,=a,e®. []

Theorem (2.2). For C> 1, and to leading order? in the short distance singularity at
0—0’, the product of ¢ fields behaves as

—2hJJ'

&) o)~ (1 —e™ ) = A, M5 T, M) &), (2.14)

( 2J )( 2y )
J+M)\J +M T = M) (2.15)

2J+2J'
J+J+M+M
Proof. See [1] with x,=1. [

We now come to new results about the £ family. First, in order to continue to
negative J (see [3]) we relate the coefficients of (2.4) to g-deformed (so-called basic)
hypergeometric functions. For this purpose we need to introduce g-Gamma
Sunctions [9, 10] which are such that

where

A, M, M) =

I'a+1)=lall(@¢), TO)=1. (2.16)
Proposition (2.3). If Imh <0, the solution of (2.16) is
ih — 2 . - © 1 —e ~ 2k
F(a)=e’ aa—1)/ (2i Smh)l a ”131 (W) . (2.17)

3 If C <1 this term is no more leading, but still there. It corresponds to adding the spins J; and J,
to obtain the maximum spin J, +J,. The theorem still holds
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Proof. Easily verified explicitly. The result may be understood as follows. Choose
an arbitrary integer A, and write, for a integer,

A+a-1 A

Ia)=la—1]!= T] L#J/ [l Luta—1],
n=1 p=1

or equivalently

A+a-—-1

A
F(a)=eiha(a—1)/2(2i sinh)l—a l—[ (1 _e—Zthl)/ l—I (1 _e—2ih(u+a—1)).
n=1 p=1
Taking A— oo gives (2.17) which, being convergent for Imh <0, is the correct
interpolation. []
We shall also need the following
Theorem (2.4). The function

T
is given by
_ b Ox|n/h)
SX)=Snk @,0m/h)’ (219)
where ©, denotes the standard Jacobi Theta function [11].
Proof. Making use of (2.17) one gets
ey O (1=2c0s(hx)e Moy g L O4(])
Seo=ex] 11 (1—¢ 22 =snh ¢ ©,0p

(2.20)

with x =nv/h, 1= —h/n. Equation (2.19) follows from the Jacobi transformation
from the period 1= —h/n to t=—1/z. [

It is interesting to note that since hh=n2, i =h/n. Thus the Jacobi transforma-
tion exchanges the two quantum modifications 4 and /4 up to a sign, and one has
sintx h <1 —2¢*#h cos(2mx) + e‘“"i‘)

ey (221)

S(x)= n  sinh 4=o

We shall often use the fact that, for N integer,
S(x+N)=(—1)"S(x). (2.22)
Next, as in [3], it is convenient to define basic or g-hypergeometric functions as*

ey 2 lallb) . _T(a+v)
F(a,b;c;z):= v;{) ey z%;  laly:i= @
The relationship with the definition commonly used in mathematics [10, 12, 13] is
displayed in Appendix B. Next we have the

(2.23)

4 Since all the standard functions we shall use are g-deformed, the index g is omitted
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Theorem (2.5). Equation (2.5) is equivalent to

o) = ( 2J >eih(m/2+(u1+m)(.l+1—-0)) <2CJ +1a) F(a, b; c; e~ 2@+ m)

J+M (2.24)

a=M-J, b=-m—-J, c=1+M-m, for M>m, (2.25)
-M-J, b=m—-J, c=1—-M+m, for M<m. (2.26)

Proof. Take M >m for instance. Continue temporarily Eq. (2.5) to non-integer J by
replacing factorials by I" functions. Letting t= —2v+J — M +m, one gets

|J, @)p = ( i )e’hw M +m)(@+m)+m)2] M@+ M+1)I(1—a)
’ J+M vsoI'l—a—v)I(1—b—v)I(c+v)
2.27)

Next, it is an easy consequence of Eq. (2.22) that, in general,
Il —x)/I1—x—v)=(—1)"T'(x+v)/T'(x). (2.28)

Equation (2.27) is transformed into the desired expression (2.24) by means of (2.28)
taken with x=a and with x=b. [

Next the inversion of the transformation (2.4, 5) is determined by the

Theorem (2.6). If Eq. (2.4) holds, the vy fields are given by the formulae

W= 3 o0 oi, (229)

where the coefficients (J,w|™ are such that
(J, @y = (= 1) MM, @) "/ CY (), (2.30)

lw—J+mlyy 4

o+ 2m] (231)

. 2J
Y rp) s = (— 1V ~™(Di qin h)27 pitd
C(w):=(—1)'""(2isinh)*’ e (J—m)
Proof. First, it is an easy algebra to check that the theorem holds for J =1/2, using
the explicit expressions:

'Z,W):t 1/2 __ elh(wi 1)/2 |_ w)i}g —lhwlz’, (232)
that follow from (2.5). Next, one establishes a recurrence relation in J by using the

leading-order fusion relations (we omit the divergent factors which are the same
throughout the proof)

W) we o)~ vl P OIN(1/2, — s J, —m; @), (2.33)
£i2(0) 8512 0") ~ MJ, M;1/2, A) &1 1Y Po). (2.34)

The explicit expression of N(1/2, —a;J, —m;w) is derived in [1]. Assume the
theorem holds up to spin J. Then

wf,{)(o)w“/z’(o )= Z (_ 1)1 +M eih(.l +M)€5\.2)(0.)

12,@)-% |J,m—20)-",
A2 (—1)1/2+4 1h(1/2+A)| A 2.
X A=§1/2 éA (O')( ) C(I/Z)(w) C(J (127 20 ) ( 35)
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Choose, for instance, « =1/2. From the expression (2.5) of |J, @)}y, one may verify
that

_ _ J+m+1] _
A, M3 1/2, A2, )= Y20, o — 1)-m = L EmE T 172
M+§'=R ( 12, A1/2, @)= 4], m—1)"} 27 +1] |J+1/2, @)k 236
Since
CURy=—Qisinh)e™?|w], N(1/2,—1/2;J, —m;@)=w—J+m]/|w],
2.37)

and making use of (2.33, 34), one sees that the theorem holds for spin J+1/2
provided

g2 LI £m+ 1]

U+1/2) ()= — CY) (g7 — i i
Ce, M ih(m) CY (w—1)(2isinh 27+ 1]

lm—J+m], (2.38)

and formula (2.31) follows. [J
Corollary (2.7). The coefficients |J, w)yy satisfy the relation

J L . ~
L= 1)/ =M =MV, @)l @ +2p) 25 = 6, ,C (). (2.39)

Proof. Substitute (2.29) into (2.4). [

Theorem (2.1) indicates that the braiding properties of the £ fields are given by
the universal R-matrix of SL(2),, and are thus completely determined group
theoretically. This is also true for the short-distance operator-product expansion,
as the following shows.

Theorem (2.8). The short-distance operator-product expansion of the & fields is of

the form: Jity

ENOEN)= T {(dlo—a)ymanmac
-

=|J1=J2|

x gy (i M3 J o, My|J 1, J 550, My + M,) (&7, + m,(0)+descendants)} , (2.40)

where d(c—oc)=1—e ", (J,M,;J,,M,|J1,J,;J,M{+M,) denotes the
Clebsch-Gordan coefficients of SL(2), (see Appendix C), gj,;, are
numerical constants, and A(J):= —hJ(J +1)/n—J is the Virasoro-weight of (o).

Proof. This was already proven in [1] (see Theorem (2.2)) to leading order in the
singularity. Indeed, comparing the explicit expression given in [1] (Egs. (2.14, 15))
with Eq. (C.3), one sees that

MI M3 Moy)=(J 1, M35, MolJ ,J 5 T +J 3 M+ M), (2.41)

On the other hand, A(J{+J,)—A(J,)— 4(J,)= —2hJ \J,/n. The complete proof
works in the same way as in [1]. One proceeds by recursion in J ;. First one derives
(2.40) in the case of J,=1/2 for arbitrary J,. For this, one performs the same
calculations as in Appendix D of [1] except that both terms V2% 1/2) are retained.
Next, assuming that (2.40) holds up to J,, one multiplies both sides of this relation
by &1/?(¢,) and lets o, — 0 first and g—¢’ last. This gives a recurrence relation
between the fusion coefficients for spins J,, J, and those for spins J, +1/2, J,
which is used, together with the explicit form of the Clebsch-Gordan coefficients
(see Appendix C) to derive (2.40) for spins J, +1/2, J, and this establishes the
recursion. We shall not go into more details of this lengthy discussion. []

In the following g7, ;, is omitted since it plays no role in the discussions.
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Theorem (2.9). Define the quantum group action on the & fields by
To& =M, I IR=YIFMIJEM+1] &, (242)

Then the operator-product E5p(0) E§2X(a”) also gives a representation of the quantum
group algebra (2.3) with generators

J,:=J ., ®eMite @), Ji=J;01+1QJ;, (2.43)
where the tensor product is defined so that
(A®B) (&§(0) E52(0") : = (AL (0)) (BE0)) s (2.44)

and where each term in the expansion over J transforms according to a representation
of spin J.

Proof. This is obvious for J; since the M;’s add up. For J,, compute
I (E5A0) &R0 =™ Y LI FM LT £ M +11(E5rs 1(0) E52(6")
+ e—ihMl/LJz FM, [, =M, +1](E50(0) 521 4(0). (2.45)

Substitute (2.40) in both sides, and make use of the following recurrence relations
for g-C.G. coefficients (see Appendix C):

VIJFM FM,|[JEM £ M, +1[(J, M50, MylJ 1, 530, My + M)
=eithl/|_J1 FM | JEM + (I, M 2150, My, Jy I, M +M,+1)

+e‘”‘M‘l/|_J2$M2_|[_JziM2+1J(J1,M1;J2,M2—_}-1|J1,J2;J,M1+M2i1).
(2.46)

One gets
J L (E5(0) E52N0)
Ji+J2
= Y {dlo—a) N0 | JEM, FM, ||+ M, + M, +1]

J=|J1—Jz|

X(J 1, M35 MolJ 1, J 550, My + M)(ESD, 4, +1(0) +descendants)},  (2.47)

and the result follows by inspection. []

Equation (2.43) coincides with the definition of the co-product of SL(2), [14].
One thus see that, in conformal theories, the physical origin of the co-product is the
operator-product expansion. )

Next we come to properties of the general fields 53(4’, » fields, with both J and J
non-vanishing. The hatted quantities, which now appear together with the
unhatted ones, are noted | x J: =sinhx/sinh, |J, @3, A(J,, M,;J,, M,), and so on.
First the fusion to leading order is given by the

Theorem (2.10). To leading order in the singularity at c—d’, the O.P.E. of the fields

'fy‘?’ is g 31)( )2 3;)( )~ (d( PUT2 Iidasd +J2,01473)
T (g s o)~ (d(c — ¢ sJ2, H s
My, M, Mz, M>
X ;L(Jl’ Mla Jl, Ml: ']2’ M23 J2a Mz)f%iiﬁ;{htiz}h(o), (248)

p(Jl’JZ’ jle; J’ J):=AKac(Ja j’ C)—AKac(‘]lf‘TI; C)—AKac(JZ, j2’ C)a (249)
j'(Jla Mla jla Mla J2’ MZ, j29 MZ) : =ein[Ml}Z_sz‘+M‘JZ_MZJI]
xl(JlaMl;Jz’MZ)I(jlaMl;jZaMZ)' (250)
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Proof. Proceed by recursion from the relation (omitting the divergent factors)
Ei(0) &0 ~ " =M Do)

derived in [1]. First compute A(1/2, o, 0, 0; J, M, J, M), a= +1/2, from the
associativity of the fusion between operators. Consider £{!/?X(¢)£§p(0") E(c”). Let
o— ¢’ first followed by 60— ¢”. It must lead to the same result as ¢’ —¢” first followed
by 6—¢". This gives

A(1/2,,0,0; J, M, J, M)= ™ ~MI2) 3(1/2 o; J, M).
Similarly

2(0,0,1/2,8; J, M, J, M)= ™ ~MID (12 &; J, M).
Next impose the same associativity condition on the product

o) i () BT )

One obtains
'1(-]1+1/2,M1+°"j1,M19J2,M2aj29M2)=A(J1’M1’j1’M1§Jz,Mz’jz,Mz)

,1(1/2,(1,0,0;.]1+J2,M1+M2,f1+f2,]\711 +M2)
2'(1/2:aa090;J19M1’j1,M1) ’

and using the above relation

/‘I‘(Jl+1/2’M1+a’jlaM1;JZ’M2>j25Mz)zl(Jl,Mlaijl;Jz’Mz,jZ:Mz)
A(1/2,05 1 +J 5, M+ M)
A(1/2,050,, M) .

in(aJ2— M2/2)

xe

This together with the similar hatted recurrence leads to (2.50). []

Next the complete quantum group action on the ¢ family is given by the
following generalisation of Theorem (2.9):

Theorem (2.11). For the general &) ) fields, the natural quantum group action is

Ern=VUIFMITEM+1JERD, o T8N =MELD, (251a)
=Y UFMIITEM+1]E8D |, TE0=MEL%. (2.51b)
These operators satisfy the SL(2), x SL(2), commutation relations
. J1=12J5), [T, 1=125), [J,J.]=0. (252
The associated co-product is
J, =Ji®eth3¥in.7+e—ih13iin.7®Ji ,
ji =ji ®eim;¢w+e—ihisiin1®ji

Proof. We shall skip details, since they become cumbersome. It is elementary to
check that (2.51a, b) satisfies (2.52). Moreover it is straightforward to check that
the co-product is indeed consistent with the leading-order fusion-coefficient (2.50)
using the recurrence realisation for C.G. coefficients (2.46). [

A

(2.53)
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Theorem (2.12). General Operator-Product Expansion. The general fusion-
coefficients of the &) ) fields are given by

. R Jy+J2 N N
S OBER)~ 5 (do—o)r D
x @mMM1I2=Mal1+ M1J2 = M2l 1)

X(J,My;J,, MZIJ)tjl’ Ml; fZa MZTﬁ(f%;QM: (0 +.20). (2.54)
Proof. A straightforward extension of the proof of Theorem (2.8). [

We need general braiding properties of &4 i}’l(o) and &§> ﬁ})z(a’). They are given
by the

Theorem (2.13). For n>0> 0" >0, one has:
Ji,J J2,7, — N2, Na; Ny, N (J J) 1, 1),
SROGERE= S BN SRR, @59

where

Nz,N sN1, N1 p— N2Ny
'%Ml Iél M, Mz (Jl’Jz)Mle (‘Ili 2 Mle

x 2N+ M)+ Ta(Ni+ M) = Ji(V2 + M) = TiN2+ M) () 56)

Proof. Consider, for 6>0,>0" >0/,

&) Ef o) B0 S
First, letting 6 — o, and ¢’ — ", and working to leading order, gives (once again we
omit the divergent factors)

oimIM 1Ty = M1t +MaT2 = MaJ2) 5%,?&) (0) 5%2,?&) ().
1, My 2, M2

Second, exchanging first the operators, one gets for the same product

Na>N NN 2mi[M1J2—M2J1 +N1J2—NaoJ
Z ) (JI’JZ)MZM;Z (JI,JZ)MZM} e [M1J2—M2J, 1J2—N2J4]
N1,N2,N1,N2
—21[i(]1j1+J2<72) iﬂ[Nljl—N1]1+N2]2—ﬁ2]2] (Jz,‘:fz) 4 (Jln?l)
X e e SN0 ey (o).

Equating the two expressions establishes the theorem. []

3. Mathematical Properties at the Special Values

From now we derive the properties which only hold if
h+h=sn, s=0,+1, or, equivalently, C=1+6(s+2), (3.1)

=3(s—i)/4—5?), =%(s+i)/4—s*)=h*. (3.2

Our aim in this section is to show that, for these values, hatted and unhatted
quantum-group quantities are very simply related. The simplest [2, 3] is the

Theorem (3.1). If (3.1) holds, and for any positive integer N and arbitrary real
number o, one has

(IN]y =e~ =D N ). (3.3)
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Proof. Compute
eihN__e—ihN eiNn(s—i /4 —s2)/2 e—iNn(s—il/4-s2)/2
[N]= ot _g—ih = pims—iVA=S)2 _ p—in(s—iV/4=s7)2
Nn)4 —s2/2 _(_ l)Nse—Nn /4 —s2/2

enl/4—s2/2_(_1)se—1r]/4—s2/2 . (34)

— pisn(N =12 e

The second term is real and positive. Thus the phase of [ N] is —sn(N —1)/2. Since
[N] is the complex conjugate of |N| the relation follows. []

Corollary (3.2). The following relations hold (general q-hypergeometric functions
are defined in Appendix B)

'I:NAlze—ian(N—l)/ZLNJ!’ '[ajvzLaJve—isnv(v+2N—3)/2, (3.5)

A, ..., 4 Ay ...,A4 .
F 1s sUpr+1 z) = F 1 ’ r+1.Ze—lsn[Eaj—ij—l] . 3.6
r+1tr bla---abr ’ r+14r bl’---’br ; ( )

Proof. A straightforward algebra from (3.3). [
Next we relate the Clebsch-Gordan coefficients by the

Theorem (3.3). If (3.1) holds the hatted and unhatted Clebsch-Gordan coefficients
are related by

(Jl,MﬁJz,MzTJng;J,Mj=(J1, —MyJy —My|J 4,050, — M)
x(__1)5((J1—M1)(12+M2)+(11 +12—J)(J1+M1+12—M2))(_1)Jx+Jz—J' (37)
Proof. Take expression (C.3) of Appendix C for the hatted C.G. coefficients:
(J1>M1§J2,M2TJ1,J2;J’M1+M25=eiﬁ(11+12_1)(11+12+1+1)/2

= 1 Wi+ —=IN =T+ + I =, +J]!
/120 +1 - A
VL +J\/ i+, 4T +1]!

x Y11 =M+ M T, =M T+ M) T — M, — M, T+ M, + M, ]!
Ji+Ja—J _iilll(-’+-]1+-’2+1)(_1)#

x eih(M2J 1= M112) 5 {e

IﬂI![Jl +J,—=J—u]!

un=0

1
X = s = = ~¢. (3.8

One relates this expression to unhatted quantities piece by piece, using (3.1, 3, 5),
and recalling that the 2J’s and 2M’s are integers, as well as J; + M. First, write

\/[2J+I]T_JTMI—MZJ!T_J+M1+M2JA!
Wy +J,+J+1]!

2+ 1 J—M;—M,'|[J+M,+M,]!
WJi+J,+J+1]! '

— eismpl

One finds
?4 =%[(J1 +J2)2_(M1+M2)2]_%(J1 +J,= NI +J,—J—1). (3.9
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Second, let
where, according to Eq. (3.5),

Q,=—3(J +I, =N, +J,—JT—1). (3.10)
Third, write

VI, —J,+ 1, —M T+ M, ]!
Wi—M,—p]![J—J,+ M, +u]!

=eisn(uz—u[(J—Jl—J2)+2M1)]+¢3} l/l-Jl _J2+JJ I_Jl _MIJ!LJI +M1J'
My~ LT Tyt Myl

obtaining
Q3 =3(M3—JH)+i(J,+J,—N(A—4M,+T—J,—J,). (3.11)
Fourth, in a similar way,
V1=J1+ L+ I+ M1, — M, ]!
o+ My—u]J—J—M,+u]!

_ gisntr-ut0- 5112+ oq VL= 1 4 T2+ I+ Mo 'L, — M, !
Lo+ My —p]![J—J =M, +p]! ’

with
Qa=tM2-J)+3J +J,— N1 +4M,+J—J,—J,). (3.12)

Fifth consider
1 eiSN(ﬂz_ll(Jl +J2—J)+¢s)

T AT, =T =]l Ll T+ T, =T =]

obtaining

(p5=%(J1+J2—J)(J1+J2—J—1). (3.13)
Sixth let

eiix(Mle ~MyJ3) _ pisnge ,— ik(M2J1—M1J3)
where

§06=M2J1—M1J2. (3.14)

Next consider the sum over u. The y-dependent term of the phase factor is
exp{[isn] [3u> —u[(2J =27, —2J )+ 2M —2M,]—u(J , +J, —J)]}

=exp{[isn] [24° + p(u+ 1) —p[2(M = J ) =2(M, + J )] — p(J  + T, + T +1)]}
The first three terms in the second expression are even numbers, so that the

u-dependent terms simply gives (—1)*VU1*J2*7+1) The summation over u
becomes

Ji+da—J {e—iilu(J+J1 +J2+ 1)(_ (- 1)s,4(1, +Ja+J+1)

S= LalT 1+, —T—a]!

n=0

1 }
X 5
Wy=My—pl'L T =T+ M +p)lJ,+ My —p ! =T =M+ p!
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Since h+h=sn,

e—iim(J+Jl +J2+ 1)(_ 1)su(.h+12+.l+1)=eihu(J+Jl +J2+1) .

One compensates for this change of sign by letting v=J,+J,—J —u:

Ji+Ja—J eihv(J+J,+J2+1)(_1)v
S=eih(J1+J2—J)(J1+J2+J+1)(_1)J,+JZ—J Z
I +J,—=J—v]!

v=

1
% LJ_JZ_M1+VJ!I_J1+M1"VJ!I_J'_JI+M2+V_I!I_J2_M2_VJ!}.

The sum coincides with the similar expression for the unhatted case if one replaces
M, and M, by their opposite. Finally the factor in front combines with the first
term on the right-hand side of the starting point (3.8) leading to:

ei(h+i:/2)(J1 Tl =N HI+T+1) _ i1+ T2 =T 1+ T2 4T +1)/2 Gisner ,
1= +I =N+, +T+1)/2. (3.15)
Altogether one finds:
’(Jl’ M,; 7, MzTJl’J2; J, M5=(J1, —My;Jy —MylJy, Js J, —M)(— 1)321%’

3.16
and the result is derived by collecting Egs. (3.9-15). [ (16

Closure under fusion of the physical family is ensured by the following
Corollary (3.4). If (3.1) holds, the C.G. coefficients satisfy the orthogonality relation
2 (Jv —My;J,, _MzTJsz;j, —Mj(J1,M1;J2,M2|J1;J2;J,M)

M, M>
X (_1)5{(11 +M)J2— M)+ (1 +T2=J)(J1— My +12+M2)}=(_ 1)11*’12—-’5]:,‘ (317)

Proof. This is an easy consequence of the last theorem combined with the
orthogonality properties of the C.G. coefficients. The latter are discussed in
Appendix C. []

Finally the braiding properties are related by the

Theorem (3.5). If (3.1) holds, the hatted and unhatted R-matrices are related by the
relation

7 IN2N: -M;—M i J1—My)(J2+M3)—Ji(J2+N3)+Ni(J>,—N
(J1>J2 leldz_(JZ’Jl)—Nzl—le st U2 2)=J1(J2+N2)+Ni(J2 2)}. (318)

Proof. Write formulae (2.8, 9) explicitly for the hatted braiding matrix:
(Jlﬂ JzAﬁzmz =0(M;+M,—N, ‘—1\]2)‘3_2iilMdh(1 - e2iil)n
eiiti(n:l)/Z PP l/I_Jl +M1J:!:LJ1 —NIJ:!T:JZ—MZ_I!T:JZ +N2_:|! . (319)
Ln]! Wi =M U+ N T+ Mo T, = N !
where n=M,—N;=N,—M,. Making use of (3.1, 3, 5) repeatedly, one gets
U1 J Wik, = € A5(M y + My — N, — )2

e—ihn(n— 1)/2
% (1 __e—2ih)n eihn(Ml—Mz)

n]!
LJy+M, 1T, =N 1T, =M, || J,+ N, |!
Wy =M L+ N LT+ My LT, =N,y |V
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where, (using M;+M,=N,;+N,),
A=(J;—M)(J,+M;3)—J(J,+Ny)+Ny(J,—Ny).
On the other hand, formulae (2.11, 12) give

(T, T )M, =0(M{+M,— N, — N,)e* MM

e—ihm(m— 1)/2
X (1 _e—zih)m eihm(M;-—Ml)

Lm]|!

Wi =M NI+ N T+ M, |1 I, =N, |!
LI +M 1T =N 1T, =M, 1T, + N, |V

where m=M 2 —N,=N,—M - Comparmg the above expressions and using the
property (J1, J )M, = (T2, J )N, one arrives at the desired relation. [

Finally, we shall need a relationship between |J, @) and its hatted counterpart
7, @M. This will not hold for arbitrary values of @, but only for the special ones
that occur in the physical Hilbert space introduced in [2, 3, 6]:

Definition (3.6). The physical Hilbert space is defined by

H onys @ @ F(@,,,), (3.20)

r=0n=-o

where % (w, ,) is the Fock space with quasi momentum

wr’n5w6+n<1—%)s<2L_s +n> <1—%>. (3.21)

The importance of this choice for our coming discussion is coming from the

Proposition (3.7). In #,,, w and @ are related by (N is an arbitrary integer)
ho, ,—hw, ,=n(r+n2—s)), (3.22)
1@, ,+ N]=(=1)y ¥ "= V|qg, —N]. (3.23)
Proof. Simple calculations [2, 3] using (1.2), (1.4), and (3.21). O

In the unitary truncation theorem, one will show that one may consistently
restrict the operator algebra to /.. This is satisfactory since one has the

Theorem (3.8). In the space H, the Virasoro-highest-weights are real and
positive, and the representation of the Virasoro algebra is unitary.

Proof. As recalled in Appendix A, the Fock space % (w) corresponds to the highest
weight
(Po)* _ h n\* h ,

An easy computation [2] shows that

s+2 1 r n 2
Aw, )= ) +§< 2(2—s)+§ 2(2—5)) , (3.24)
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which is indeed real and positive. Since C > 1 the corresponding representations of
the Virasoro algebra are unitary. []

Finally in #,,,,, |J, )} and |J, @)} are related by the
Theorem (3.9). Introduce the operator
ko= — o —ho) il —h2 (3.25)
In #,,s one has
KJ+MTJ lﬁjﬁ=(—— 1)s(J+M)(J+M— 1/2+J+M

x @i +M—=m) gisn(=J2+m|2) 5~ im(i:é;—hw)l J, @ —2m)",. (3.26)

Proof. Start from expression (2.5) for [J, @)¥:

T am = "2 ) ihm)2 x° iht(e +m) : J—-M A ( J+M >
IJ’W)M'_l/(HM)e 2e J=M+m—1)2) \J+M+m+1)2)°
(3.27)

t runs over values of the form t =2u+ J — M + m, with u integer. Thus, according to
Egs. (3.1, 22),

eiﬁt(&; +m) _ giht(@—m) gisnme ih(J — M +m) (hw — hw) .

Next one has, according to Eq. (3.2),

( J—M ><A J+M >
J=M+m—1)/2) \(J+M+m+t)2

— ST+ M2 —m2 ~12)]2 J—-M J+M >
(—=M+m—0)/2) \(J+M+m+1t)2

Collecting the t-dependent terms of the last two relations gives
eisn(tz/z +mt) _ eisn(J—M +m)(J—M+3m)/2

The dependence in ¢ disappears. One does find the same sum as in |J, @ — 2m)}y; up
to a factor. Applying (3.1) repeatedly completes the derivation. []

4. The Physical Fields with Negative Weights

At this point we have the mathematical machinery at our disposal. Our next task is
to derive the unitary decoupling for the fields () which take the general form

J
W)= ¥ I MPERD (o), 4.1)

where the £{p’s are +1 factors to be determined below. For pedagogical reasons,
we shall build them up, step by step, using the fusion to leading order. The
decoupling theorem will be fully checked later on. In the expansion (4.1) the
coefficients do not depend upon w apart from the x’ =™ factor. We shall show later
on that

J
X(z)f(wr, n) € C_D J g(wr,n + 2m) s (42)

m= -
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so that, for any integer N,
XDKN =(—1)2IN Ny D | 4.3
Previous computations [2] show that
1PM0)= - 1E00) + BN, (44
which is of the form (4.1). The field ¥ may be determined from the
Theorem (4.1). If (4.3) holds, if to leading order in the singularity at c—0c’,
x2(0) Y (0") ~(d(o— ") T2y T Y g), 4.5)
and if y1/®(c) is given by (4.4); then one has for any non-negative integer 2J,

J
R VI G e s AN (@6)

Proof. Introduce
AE,M)=(1/2, +1/2; T, M|1/2,1; T +1/2, M +1/2),

and the corresponding 1%(J, M). Assume that ¥ is of the form (4.1). The fusion to
leading order gives (omitting the divergent factor as usual)

1/2 J N +1/2,0+1/2 20+1 25T (J) 2T +1/2,T+1/2
X(—/ )(U)X(—)(O'/)"g(J )£(J+1//2 —J- /1)2+K (—1)*7eY )5( /1/2 J+/1/)2

+ Mlil 1 M 1PI=M (=], — MYA*(J, M)
AP YUy — M )~ M+ D52 (o).
It follows from Corollary (3.4) that
17U, = M)A (J, M)+ (= 19" I~ (J, M= 1)A*(J, M +1)=(— 1)V ™.
One verifies that y) is also of the form (4.1) if &} obey the relations:
el 1 =g (— 1PV D =

The solution is indeed

(J)_( l)s(J M)y(J-M- 1)/2 D (47)
Equation (4.6) is very simple since the coefficients do not explicitly depend upon J:
1P(0)= é(JJ,’—J)J“’ Ké(JJlJf, Crr (1P Jz) TP S a4 i 13) —y+3t.... (48)

The set of ¥ fields is closed under operator-product expansion as shown by the

Theorem (4.2). If Eq. (4.3) holds, the operator-product expansion of the y\? fields is
given by

299(0) ¢ (0" ~ J‘ijz (— 1)U+ T2 = DU 2= T = D2+ U +12=0) U2 =T 1+)

J=|J1—J;|
X (= 1)1 +9 3t (g — g )P I D(G) 4 ). (49)
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Proof. 1t follows from Theorem (2.12) that

J1+J2 .
X(;Il)(o)x(‘—IZ)(o-/)N Z { ) Z ((d(o-_o-’))P(Jl,Jl,Jz,Jz;J,J)K.h +J2—-J
Mi,M, (J,J

=|J1=J2]

X (— 1)SN(J1, M,;J,, M2|-7)(J1> M,;J,, Mz”)(é%}}le, —Ml—M2(6)+ ))} s

where

N=2J1(J2”'M2)+%(J1_M1)(J1_M1“1)+%(J2“M2)(J2_M2_1)
+J M), — M)+, +J,— NI, —M,;+J,+M,).

This may be rewritten as
=3J-M)(J-M-D)+(+J,— N +J,—T—-1)3
+(J+J,—NJ,—J;+J) (mod2), 4.10)

where terms are arranged so that the integer-character of N is explicit. N (mod 2)
only depends upon M and the summation for fixed M coincides with that of
Corollary (3.14). Only fields with J=J appear on the rlght-hand side. The first
term of (4.10) reproduces &$¢ so that the summation over M gives back the physical
field y and (4.9) follows. [

Next the braiding properties of the ' fields are particularly simple:

Theorem (4.3). If Eq.(4.3) holds, the exchange properties of the ) fields are given
by

X(_J 1)(0) X(f 2)(0") =g 2nie2+ )12 X(_J 2)(0’) X(f x)(o-) ,
where ¢ is the sign of o—o'.

Proof. Choose ¢=1 for instance. Theorem (2.13) and Eq. (4.3) give

X(jl)(o-)x(‘_lz)(o-')z ZM Kll*Ml(g%ll)é(h ) (O’)KJZ M28(12)€%22',_2) (0-)
1, M2

KJx+Jz—M1—M28%11)8%22)(_1)2511(-’2—M2)
Mi,M3;N{,N2;P{,P>
AN N Pty 62 ) 0). (@11)
Next apply Theorem (3.5) and make use of the identity

J J. 2sJ1(J2—M J1+J J1+M)(J2—M
85”11)8%,,22)(—1) sJ1(J2 2) — gl 11+ 2)2( l)s( 1 V2 2)’

which comes out in the derivation of Theorem (4.2). One finds altogether

x‘f‘)(a)x‘fl’(o')=e‘4””"2 gJitI2=Ni— NZG(J:-:I{I?
M, M2;Ny,N3; Py, P2

Xeiﬂ?[(Nl—Px)Jz—(Nz—Pz)Jxl(Jl JZ)IQI'IZIX'I (JZ l)yPMz
1M2 4 20

X elsn[N1(12 N3)— J1(J2+N2)]£(J2 ,J2) (o./)é("l 1) (O')

The sum over M, and M, reduces to the inverse relation (2.13) of Theorem (2.1),
and only P,=N,; and P,=N, contribute as required by the closure. Pulling
k’1~Nito the right of £§272) to reconstruct y*) on the right-hand side, one gets the
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overall phase factor in the remaining summation over N; and N,. It is given by

8g‘1:§§)e58ﬂ212(11 ~N1) gisnIN1(J2 = N2) = J1(J2 + N2)] =8§\}’;)8§§,’22)e_2m'“',2 ,

which completes the proof. []

The last part of this section is concerned with the fact that the physical family
may be consistently restricted to 5. This is seen by going back to the y-fields,
making use of the

Theorem (4.4). The fields 'Y defined by (4.6) are equivalently given by

. 2 J . pa i
X(_J)(O.) — ( _ 1)412 e ~isnd Z , Cf'{)(m)ezm[hw hw +(h h)/2]w£i. i)m X (4'12)

Proof. Equation (4.9) of [1] gives
&r 2 mlo)= ) (=), o)yl D) - hw L alo),  (413)
—JSm<J;—JSmsJ

which is to be substituted into (4.6). Making use of Theorem (3.9) one gets, on the
other hand,

ZKJ—M(__1)s(J—M)(J—M—1)/2|J’w)m’l“]’ lﬁ’)‘:ﬁxM
M
=y eih(J—-M+m)(__1)J—Me—is1r(.l2+rh/2) eim(iué—hm)u’ W)K}an"‘zm):ﬁ
M

—ism(J2 + im[(hw — ha) + k] ~(J
=e isn(J +m/2)e;m((w ) ]Csn)(w)é

(4.14)

m, >

where the last equality is a consequence of Corollary (2.7). Substituting into (4.6)
completes the proof. []

Corollary (4.5). Equations (4.2, 3) hold, namely, for any integer N,

J

X(-{)'gb—(wr,n) € (‘D ,97(’(17,_' n+ Zm); X(;,)KN = ( - 1)SZJNX(:-’)KN .
m=-J

Proof. Easy consequence of Theorem (4.4) together with the shift properties of the
wp-fields:

ws;l’,, ‘—,-)m‘g(mr, n) € g(lﬂr’” - Zm) s (41 5)
that follow from (1.5). [

Finally collecting the results of the section we arrive at the

Theorem (4.6). Unitary Truncation Theorem for the xY Fields. For
C=1+6(s+2),s=0, +1, and when it acts on #,y,; the set o, . of operators 0,
with positive integer 2J, is closed by fusion and braiding, and only gives states that
belong to # ..

Proof. Closure by fusion and braiding was derived above (Theorems (4.1, 2))
assuming that (4.3) holds, which is confirmed by Corollary (4.5). The fact that #,,,
is left invariant by the y' fields is an immediate consequence of Corollary
4.5). O
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Proposition (4.7). The set of operators yY)(c) has Virasoro weights

A7(J):= Ay, I, J; C) = —9—'6‘—11(J+1), (4.16)

which are real and negative.

Proof. Simple computations using Eq. (1.3). [

5. The Physical Fields with Positive Weights

There remains to study /,;,,, which is the part of physical family ./, made up
with fields of positive weights. As shown in [3], one has to combine unhatted fields
of spin —J — 1 with hatted fields of spin J, and operators with negative spins must
be discussed. First we have the

Theorem (5.1). In #,,,, there exist operators y\) with negative J which satisfy

WROUE)= TSI v o) (51)
=x1/2;m’
S(J)lm ~12(g) = S(J) m 12— )= [m+J+m] gihme
2m LWJ ’
J .
S(;’)lﬂ/lz—’}llﬂ(w)= I—_L+Tm—l elhE(l -m-w) _ S(IJ/)Z_,T; 1, — 1/2(—W); (52)
(J)(a.)w(l)(o. ) e Zzn.l.lew(J)(o, )w(J)(O.); (53)
VPP~ PP~ (— 127 D, (5:4)

Proof. Since C>1, #,, is a direct sum of trivial Verma modules. In each such
space, the states generated by powers of the Virasoro generators applied to the
highest-weight vector are linearly independent and form a basis. Thus, any matrix
element of a primary field may be computed from its matrix elements between
highest-weight states, by only making use of its transformation law under
conformal transformation. It follows that for positive J the fields y{ are uniquely
characterized, up to normalization, by their conformal weights
A(J)= —hJ(J +1)/n— hand their shift properties W f (@)= f(w+ 2m)y) recalled
in Appendix A (formula (A. 20)) For negative J, we define the ) operators by the
same two conditions. Then going back to [1], one sees that the starting point — that
is the fusion and braiding properties of p/2;, with ()’ — has a natural and well
defined continuation to negative J. Indeed, the discussion was solely based on the
following facts. First, the fields y{/?}, satisfy a quantum Schrodinger equation;
second, the fields ) are primary with conformal weight A(J); third, the total shift
of the product 4 25(c)y$(a") is 2m £+ 1. By definition, these properties hold true
for negative J. Moreover, the solution of the recursions that determine the
properties of the y fields (Appendix A of [1]) remains basically the same except for
trivial changes. Thus the exchange properties of y{/2}(s) and p(¢’) takes the
same form for negative and positive J. We shall skip details in order to avoid
another lengthy discussion. []

After this continuation is made the key question is: which values of m should
one consider? We shall see that, for negative J, there exists a consistent family of
fields yY’ with J+1<m< —J—1. This is first indicated by the
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Theorem (5.2). The S-matrix of Eq. (5.1, 2) satisfies

St =0 = SO AN -+ 20/ ASN(w), (55)
9@ ==y 2V mem—] (5.6)
m J+m 2J+1 -

Proof. Simple computations. []

Corollary (5.3). ForJ< —1,89)™8 satisfies Yang and Baxter’s equations with m and

am

m’ going from J+1 to —J—1, and it is consistent to restrict (5.1) to this interval.

Proof. Equation (5.5) has the form of a “gauge transformation” of the R-matrix that
preserves Yang and Baxter’s equations as is well known. []

Next the ¢ fields with negative J are defined by the

Definition (5.4). For any negative integer 2J < —2, the fields &), J+1<M
< —J—1, are given by

&)= ) IV, ©)iwi (o), (5.7)
J+1sm=-J-1
—2(J+1\ 7! —2J-2 —-J-1+M
m __( 4\J+m+1
I'J,of=(—1) < a—c > <_J—1+M>< c—1 )
X ehtmi2 +@ T mU +1-0) F(q b c; ¢~ 2ik@+m) (5.8a)
a=M—J, b=—m—J, c¢=14+M—-m, when M>m, (5.8b)

a=—M-J, b=m—-J, ¢c=1—-M+m, when M<m.
This definition is motivated by the

Theorem (5.5). Up to a factor that only depends on J, Egs. (5.8) are the continuation
of (2.24-26) to negative integer values of J.

Proof. The hypergeometric functions are identical. Concerning the binomial
coefficients in front of (2.24), write (say for M >m)

( 2J ><J+M>=‘/F(1+2J)F(1+J+M) 1
J+M)\M—-m) ~ ra+J—M) IM—m]|!'T(1+J +m)
_S(=J—m) ] S(M—J) r(M—J) I'(—J—m)

Vs(—2) | S—M=J) |/ T(=2)I[(-M—=J) [M—m]!"

According to Eq. (2.22), S(—J—m)=—8(—J—m—1) SO that
S(—J—m)oc(—1)"*™ and

SM—-J)/S(—M—-N)=SM+1-J)/S(—M—1-1J)
is independent of M. Thus
S(—=J—m);/ S(M—J)

/S(=2J) V S(=M—J)

=(_1)J+maJa
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where a; only depends on J. The binomial factor of (2.24) finally becomes

(— 1) —2(J+1)\ ! —2(J+1) —J—1+M
T\—J—1+m —J—1+M M—-m )’
and this established the theorem. [J

The & and &7’ operators are closely related. This is first apparent in the
Theorem (5.6). One has
|J, @) = Qisin(h)! * 2 AN@) —J -1, @) . (5.12)
Proof. An immediate consequence of the following identity due to Rodgers [10]
(see Appendix B)
F(a,b; c; e 2

I'u—(a+b—c—1)/2)
I'u+(a+b—c+1)/2)

together with Theorem (2.5). [

F(c—a,c—b;c;e 2", (5.13)

— (21 Sinh)c—a—b eihu(a+b—c)

This symmetry between J and —J—1 is also present at the purely group
theoretical level:

Proposition (5.7). The explicit formulae for the universal R-matrices (2.8, 9), and
(2.11,12), and for the q-C.G. coefficients (C.3) are invariant under the change
Jo—J—1.

Proof. The explicit expressions of the R-matrices follow from computing the matrix
elements of powers of J, obtaining products of terms of the type
Wi M| J+ M + 1] that are left invariant. Moreover, the ¢g-C.G. coefficients are
computed by solving equations (C.2) where the explicit dependence in J is only
through similar factors and which is thus invariant. They are thus themselves
unchanged if J is replaced by —J—1. [

With this proposition, together with Theorem (5.6), one sees that the only
important change in going from J to —J —1 is the factor A} in the transformation
from the vy fields to the ¢ fields. This explains why the S-matrix of Eq. (5.1, 2)
transforms as proven in Theorem (5.2). The above considerations put together lead
to the

Conjecture (5.8). For J>0, the fields &;7~V with —J<M <J, introduced by
Definition (5.4), span a representation of spin J of SL(2),, and enjoy the same fusion
and braiding properties as the fields .

Discussion. A mathematically rigourous proof is not available at present, although
the following consistency arguments are very convincing. The basic point is that,
since Eq. (2.1) are invariant by J— —J — 1, the operator-algebra of the &é-fields has
a consistent extension which is symmetric with respect to J= —1/2. Indeed, it
follows from Theorem (5.5) that, for J, >0,J,>0, —J, =M, <J,,and —J, =M,
<J,, the exchange and braiding properties of &4/~ with £{? are the
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continuation of those of &§7¥) with £{? and are thus given by the quantum-group R
matrix and C.G. coefficients. Then a consistent solution of the conformal algebra is
obtained by taking the exchange and braiding of £§; 7~ with £{;,72™ ! to be also
deduced by symmetry from the positive spin case. According to Proposition (5.7),
this means that they are also given by quantum-group R matrix and C.G.
coefficients. Due to (5.12), the coefficients |—J —1)j;, with J>0, —J<M<J,
satisfy a pseudo-orthogonality relation similar to (2.39). After inverting the
relation between &- and y-fields, one deduces that the y{ /™1 form a closed
algebra. It is related with the algebra of the p{-fields by transformations similar to
(5.5). By construction one arrives at a consistent solution of the conformal
bootstrap for any sign of J. The corresponding operator-algebra of two operators
with negative spins is not yet mathematically established, but we shall assume that
it holds in order to proceed. []

The symmetry between J and —J—1 motivates the

Definition (5.9). The set </, . is made up with the operators

phys

19(0):= i R C e Y L (JF (5.14)

with 2J a positive integer. The associated set of physical weights is given by the

Proposition (5.10). The set of operators x{(c) has Virasoro weights

25-C
6

A (J)i=Ag, (—T—1,J;C)=1+ JJ+1), (5.15)

which are real and positive.
Proof. Simple computations. []
Finally we arrive at the

Theorem (5.11). Unitary Truncation Theorem for the x% Fields. For
C=1+6(s+2),5=0, +1,and when it acts on H#,,; the set o . of operators y is
closed by fusion and braiding, and only gives states that belong to #,y.

Proof. Thanks to Theorems (5.7, 8), closure by fusion and braiding is verified by
computations identical to the ones performed for the .7, . family in Sect. 4.
(Theorems (4.2, 3)). Moreover, Theorem (5.6) shows that the proof of Theorem (4.4)
may be repeated for the y/’s obtaining a formula similar to (4.12). Up to the factor
A(w), they are thereby expressed as a linear combination of the operators
tpﬁ,,',_ml *D, similar to the expression of y”, in terms of y{>?,. Thus <7  leaves

H phys mvarlant O

Finally, one has the complete unitary truncation theorem:

Theorem (5.12). Truncation Theorem for the Fields with Real Virasoro-Weights.
For C=1+6(s+2), s=0, 21, and when it acts on H#,y; the set oy, : =
Uy Of operators ' is closed by fusion and braiding, and only gives states that
belong to H s

Proof. There only remains to check closure under fusion and braiding. The
previous argument based on the symmetry between J and —J —1 immediately
leads to the conclusion. [J
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Concluding Remarks

Let us turn, at last, to physics. First, the present discussion only considered each
chiral component separately. It is straightforward to combine the two chiralities in
order to achieve modular invariance [2]. Second, taking D free fields as worldsheet
matter [5, 6], one sees that one may construct consistent string emission vertices if
D=26—C,,,,=19, 13, 7. The mass squared of the emitted string-ground-state is
m? =2(4—1), where 4 is the conformal weight of the 2D-gravity-dressing operator
[5]. Since an infinite number of tachyons is unacceptable, this selects the
family with positive weights 4*. Bilal and I have already unravelled striking
properties of the associated Liouville strings [17] at space-time dimensions 7 and
13, as well as, of the Liouville superstrings at 3 and 5 dimensions. Remarkably, one
finds that the target-spaces which are selected by the consistency of the Liouville
dynamics, as we just discussed, have very special properties that do ensure the
consistency of the string dynamics. In particular, the above-mentioned Liouville
superstring theories are space-time supersymmetric. Another striking point is that
no tachyon remains, even for the bosonic Liouville-strings. Third, clearly, 27y, is
also selected if we consider the associated conformal theories by themselves, in
order to avoid correlation functions that grow at very large distance. In this
connection, and although bona fide target-spaces are suitable, one may “play the
game” of fractal gravity, since Egs. (4.6), (5.15) show that 4~ (J,C)+47(J,26—C)
=1, and since the set of values 7, 13, 19 is left invariant by C—26 — C. Comparing
with the string case, one sees that the <7,  describes the matter. The calculation of
the associated critical exponents is in progress. It is a challenge to derive these
models from the matrix-approach to 2D gravity.

From the technical side, the next step is the determination of the Green
functions. There is no problem for .27, since the Coulomb gas representation is
applicable [18]. For 7, , on the contrary, negative spins appear and the situation
is more involved. It is likely that the symmetry J— —J —1 put forward in Sect. 5
will be of help.

Appendix A

First recall some basic points about the weak coupling regime following [1-3, 15].
In the conformal gauge, the classical dynamics is governed by the action:

1 1/00\* 1[a®\*> ,,
Classically, it is a conformal theory such that exp(2®) is conformal with weights
(1,1). The canonical Poisson brackets (P.B.) give one P.B. realization of the

Virasoro algebra with Cy;,,=3/y for each chiral component. The chiral modes
may be separated very simply using the

Theorem (A.1). The function ®(o,71) satisfies the equation

’’d 0’9
W -61:—2 =2e2(b, (A.2)
if and only if
i —.
e %= ﬁ 2 2fj(x+)gj{x.), X4 =0Fit, (A.3)
J=1,
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where f; (respectively g;), which are functions of a single variable, are solutions of
the same Schrodinger equation

S+ T(x,)f;=0, (respectively —gj+T(x_)g;=0). (A.4)

The solutions are normalized such that their Wronskians f f,— f, f> and g2, — g.125
are equal to one.

Proof. 1) First, check that (A.3) is indeed a solution. Taking the Laplacian of the
logarithm of the right-hand side gives

*d  *d )

do? + ot? =40,0-0= —4/<i=1,2figi) ’

where 0, =(0/00 +i0/d7)/2. The numerator has been simplified by means of the
Wronskian condition. This is equivalent to (A.2).

2) Next, check that any solution of (A.2) may be put under the form (A.3). If
(A.2) holds, one deduces

0:TH =0; with T :=¢%%e . (A.5)

T®) are thus functions of a single variable. The equation involving 7*) may be
rewritten as

(=03 +T)e ?=0,
with solution
com Ly e wih T -0,
J=1,

where the g; are arbitrary functions of x_. Using Eq. (A.5) that involves T'™), one
finally derives the Schrodinger equation — g + T™)g;=0. Thus the theorem holds
with T=TM and T=T"). O

Equation (A.4) shows that the potentials of the two Schrodinger equations
coincide with the two chiral components of the stress-energy tensor. Thus these
equations are the classical equivalent of the Ward identities that ensure the
decoupling of Virasoro-null-vectors. From the canonical Poisson brackets (P.B.)
one finds two P.B. realizations of the Virasoro algebra such that the f; (respectively
g;) are primary fields with weights (— 1/2, 0) (respectively (0, — 1/2)). At the classical
level it is trivial to compute powers of e~ ®:

—No i N N! D N-—p

e =\2 pg'o p'(N——-p)' (f181)°(/282) (A-6)
which is primary with weight (— N/2, — N/2). e~ ® is thus built up from powers of
the solutions of the basic fields f; and g;. For positive N one has a finite number of
terms but the weights are negative. Operators with positive weights have N
negative so that (A.6) involves an infinite number of terms. Setting N = —2 gives
weights (1, 1) in agreement with the fact that the potential term of (A.1) is equal to
¢® which must be a marginal operator. It is natural that f;~? has weight one since
it is the classical equivalent of the screening operators.

Consider for instance the + chiral component. One may work at =0 without
loss of generality. The potential T(o) is periodic with period, say, 2z and we are
working on the unit circle. Any two independent solutions of the Schrodinger
equation are suitable. It seems natural at first sight to diagonalize the monodromy
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matrix, that is to choose two solutions noted y;, j=1, 2, that are periodic up to a
constant’. It is convenient to introduce

¢ {0):=In(y)/)/y —Ind;,

d; are suitable normalization constants. The fields ¢; are periodic up to additive
constants and have the expansion

¢fo)=a +pPo+i ¥ e ™ pP/n, j=1,2. (A7)
n*0
The canonical P.B. structure of the action (A.1) leads to the

Theorem (A.2). The chiral fields ¢;, are such that

{¢’1(0'1), ¢/1(0-2)}P.B. = {¢/2(0'1)s ¢/2(62)}P.B. = 2715/(0'1 —0,), (A.8)
{49, pP}p 5. =1, (A9)
T/y=($)>+ /)7 =82+ 3/}, (A.10)

Py’ =—pd. (A11)

Proof. Equation (A.10) is trivial to derive from the Schrodinger Eq. (A.4). It is the
associated Riccati equation. Equation (A.11) follows from the fact that the product
of the two eigenvalues of the monodromy matrix is equal to one, as a standard
Wronskian argument shows. For the P.B. relations see [4]. [

In the language of field theory, the ¢’s are two equivalent free fields such that
(A.10) takes the form of a U,-Sugawara stress-tensor with a linear term. The latter
is responsible for the classical Virasoro central charge Cy;,, = 3/y. Clearly the two
free fields play a symmetric role and one could as well build e ~® from different sets
of Schrodinger solutions. Such a possibility is at the origin of the quantum group
action as [1-3] show.

Let us now come to the quantum case. The basic point of the method is to
quantize the above classical structure in such a way that the conformal structure is
maintained. In particular, the quantum version of e ~® must be a primary field. This
is ensured by the following

Theorem (A.3). On the unit circle, z=¢'°, and for generic 7y, there exist two
equivalent free fields:

d{0)=qQ +pPo+i n;O e mropWin,  j=1,2, (A.12)

such that
[61(01), $1(0)]=[4(01), d(0,)]=2mid (0, —03), pi¥=—p@, (A.13)
N, +¢7/)/y =N, +¢4/1/7 . (A.14)

N (respectively N'® ) denote the normal orderings with respect to the modes of ¢,
(respectively of ¢, ).y is an arbitrary coupling constant.

Proof. See [4]. [T

Equation (A.14) defines the quantum Virasoro-generators. The corresponding
central charge is C=1+3/y. It is noted C instead of C,,,, since, clearly, the

5 We only deal with the generic case where the monodromy matrix is diagonalizable
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structure is intrinsically defined. The chiral family is built up [4] from the following
four solutions of an operator Schrodinger equation equivalent to the decoupling of
Virasoro null vectors

w,=d,NOW2ms) p I NO@EH2y) =12, (A15)
T
= S (C—13-)[C-2)(C-1), h=15(C—13+)/C— 25)(c—12A16)

where d; and d; ;are normalization constants. Since there are two possible quantum
modifications h and A, there are four solutions. By operator-product, y;, j=1,2,
and 1, j=1,2, generate two infinite families of chiral fields which are denoted 1p(’ ),
—J<m<J, and 9§, —J<m<T; respectively, with p/2, =vy,, p{{P=vy,, and

1p‘_”2/)2=¢1, PP =1, An easy computation shows that

e e A e e e

w0, PP, are of the type (1,2J) and (27, 1), respectively, in the BPZ classification.
For the zero-modes, it is simpler [1-3] to define the rescaled variables

I /2n I /2n ~ h N
._lpgl) ,h_’ __lpgl) T; W= —7;, U= ;[—‘ (A.]S)

From now on p{" is simply denoted by p,. At this point a pedagogical parenthesis
may be in order: the hatted and unhatted v fields have the same chirality. If we go
to =0 they are both functions of x .. There are two counterparts PpP(x_) and

PY(x _) with opposite chirality, which may be discussed in exactly the same way.
Returning to our main line we recall that the Hilbert space in which the operators
p and ¢ live, is a direct sum [1-3, 15] of Fock spaces % (w) spanned by the
harmonic excitations of highest-weight Virasoro states noted |m,0). They are
eigenstates of the quasi momentum @, and satisfy L@, 0)>=0,n>0;
(Lo— A(m))|w,0)> =0. The corresponding highest weights 4(w) may be rewritten as

®%)?  h > h ,

= =—|1+—-) ——w°. Al

Alw)= 8y + 2 47 + h an” (A.19)

The commutation relations (A.13) are to be supplemented by the zero-mode ones:
4, pP]=[¢®, pP] =i.

The fields  and 1 shift the quasi momentum p{’ = — p§?’ by a fixed amount. For an
arbitrary c-number function f one has

W f@)=f@+2my, PP f(w)=f(w+2mm/h)py. (A.20)
The fields 1 and 1 together with their products live in Hilbert spaces® of the form
+ o0
Hwo)= @ F(wo+n+in/h). (A.21)
n,fi=-—o0

w° is a constant which is arbitrary so far. The SL(2,C)-invariant vacuum
corresponds to @, =1+ n/h [1], but this choice is not appropriate for our purpose.

6 Mathematically they are not really Hilbert spaces since their metrics are not positive definite
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At the quantum level, one makes use of the above chiral conformal family, since
the quantum field equation is likely to imply that the quantum Schrédinger
equation holds for each chiral component. Associated with each quantum
modification one finds a quantum version of (A.3). Since (A.15) involves k and A
instead of 7y, these should be considered as defining the quantum operators
exp(—n®P) and exp(—#AP) with 17=l/ h/(2my) and f=]/ h/(2my). Indeed, they have
the same conformal weights as y{/? and P{/?, respectively, for each chiral
component. By short-distance operator-product expansion, one generates the
fields exp[ —(2Jn+2J#)®]. The basic point of introducing the two normal
orderings NY, j=1,2, was to obtain a conformal regularization of the metric
tensor operators such as e "' and e ~"®. In terms of the Liouville field @, it is rather
involved and field-dependent. Which # should one choose? For y going to zero, 5
has a finite limit while 74 blows up. Thus if one wants to keep a smooth classical
limit, only # should appear. This is possible with open boundary condition [5].
With closed boundary conditions, both #’s should be kept in order to couple
rational theories with gravity [15].

In any case, the quantum modifications are real only if C>25 or C < 1. Thus the
construction of the metric tensor operator just recalled fails for 1 < C <25, which is
the case considered here. The chiral families may be continued, however, and this is
taken to be the way to deal with 2D gravity in the strong coupling regime, if a
consistent truncation may be found as we show in the main body of the paper fully
generalising the partial results of [2, 6].

Appendix B

The purpose of the present section is to make connection between the conventions
used in the present series of articles, and the notations of the mathematical
literature concerning g-deformed special functions. The basic difference is that, in
quantum group discussions, one makes use of g-symbols of the type (2.2), that is
|a]=sin(ha)/sinh, that are symmetric in h— — h while g-deformed special functions
are formulated [10, 12, 13] in terms of g-factors of the type

(50i= T1 (1-30). ®.1)

The quantum parameter is temporarily noted g since it does not coincide with the
parameter g. Indeed an easy computation shows that

_TI'(a+v)
La_, v= I—v( a)
so that for unhatted quantities ¢ = e ~ 2%, This choice of sign, which is the same as in
Eq. (2.17),is such that the infinite product (y; 9),., is convergent for Imh < 0 which is
the case of interest (see (3.2)).

Concerning g-hypergeometric functions, it is convenient to write the standard
definition [10, 12, 13] under the form

~2iha —2iha

e Leese %, o2k 5 ).

sPr e 2iker o= 2iker s 2 .
—2ihay. ,—2ik —2ihas. ,—2ih

2 (e "™ e ), ..(e” "M a7 ), v

= — — — — — ——17Z .
vgo (e 21hc1;e Zth)v.”(e 21hcr;e Zth)v(e 2:h;e 21h)v (B3)

=(21 sin h)—veih[v(v -1)/2+ va](e— 2iha; e~ 2ih)v , (B2)
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We shall only need hypergeometric functions with s=r+ 1. The generalization of

(2.23) is
al""aar+1. — Laljv"'Lar+1Jv v
F( : ’Z)‘?Lcuv...Lc,JvaJ!z' 4

Its relation with (B.3) is

—2iha; —2iha, + 1
F(Gvo%er, ) e reenn € . —2ih. ih(Sa;—Ee;—1)
r+14r ’ =r+19r — 2ihcy — 2ihe ;€ 5 zZe s
C e P T

Cls ey
and, in particular, (B.5)
e—2iha e—2ihb , .
. pe — 4 . ,—2ih. ih(@a+b—c—
F(a,b;c;2)=,0, o2ihe 3 € ihy geih@atb—c=1) | (B.6)

The definition of ,, ; F, is symmetric in h contrary to ,, ,;¢,, where the quantum
parameter is identified with e~ 2*. This choice is made on account of the negative
sign of the imaginary part of k (see (3.2)) which ensures convergence if needed. In
most cases, we are dealing with finite series so that this point is not essential,
however, and the other sign could be used. This will be the case in Appendix C.

The continuation to negative J is based on an identity due to Rodgers [10],

e—2iha, e—2!hb' aih
201 —2ihc ;€ , X

e

(e—Zih(a+b—c)x; e—2ih)oo e—2ih(c—a), e—2ih(c—b) i dihatb—
= —57 2(/’1 ke ;e 1 ; Xe th(a c) ,
(x; e Zzh)w i

(B.8)

which is the deformation of a standard identity on hypergeometric functions. This
may be retransformed using (B.2) and (B.6) and the relation

e

F(a)=eiha(a— 1)/2(2i sinh)l —a(e—2ih; e-2ih)w/(e—2iha; e—2ih)ao , (Bg)

obtaining u—(a+b 02

e =20y _ (97 i e —a—b pikua+b—o L W —(@+D—C—

F(a,b;c;e )= (2i sinh) e Tut(@tb—rci)?)

x F(c—a,c—b;c; e 2", (B.10)
Similarly, the hatted hypergeometric functions are defined by
. (ay,...,a, lady--1a,+1],

, F,. ! +1;Z>E A{\ﬁzv, (B]1
! < by,...,b, ;Lbl_jv...Lb,JvaJ! )

and their relation with the standard g-hypergeometric functions is best written as

2iha 2ihay
I F al""’ar+1,z =10 e 'Al,---,e B o o2l zo—ihEa—Te,~1)
U ey eene TEIErA etk gZiher 7 7 )
(B.12)
The change of sign with respect to (B.5) is for convergence purposes, since the
imaginary part of / is positive.
For h+h=sm, one has
A,_ajv — LaJv e—isnv(v+2a—3)/2 . (B13)
Thus

Ay oo Cpyy, |\ _ Ao 8rt1,  _isn[Ta,—Sbi—1
r+1Fr( b rb 5 Z =r+1Fr b E) 5 z¢€ sz a i1 . (B14)
15+ Yp 15225
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Appendix C

In this section we recall for completeness some basic material concerning
g-Clebsch Gordan (g-C.G.) coefficients. We shall make frequent use of the
following identity

Pl) <P2> +in(P1Q>—P2Q)) (P1+P2>
et ihP102-P20y) , C.1
Q1+Q2=Q,%1>0,Qz>0<Q1 Q2 Q1 +Q2 ( )

which is straightforwardly proven by recursion.
The expression of the ¢g-C.G. coefficients (J4, M;J,, M,|J,J,; J, M) follows
from the

Theorem (C.1). The solution of the recurrence relation
VIIFMFMo )+ My Mo+ 111, M55, Mol 1,050, My + M)
=e"’M2[/LJ1¢M1JLJiM1+1_|(J1,M1ii;Jz,M2]J1,J2;J,M1+Mzil)

+e‘"‘M‘1/LJ2$M2_|LJ2iMz+1J(J1,M1;J2,M2i1|J1,J2;J,M1 +M, +1),
(C2)

is given by

i, My;J3,MolJy,J55d, M)=5M.M1 +M> et L= DUt T+ T+ D2

TP 2 T P A AT P ey
X“NHJ‘/ i+t 1!

X ]/|_JI—M1_|!|_J1+M1J!I_JZ—MZJ!I_J2+M2J!|_J—M1—M2_|!|_J+M1+M2J!
Ji+J2—J {e—ihu(1+11+lz+l)(_1)u

Lel'lJy+J, =T —pul!

X eih(Mle'—MlJz)
n=0

1
. (C3
"LJI—MI—M!LJ—JZ+M1+uJ!LJz+M2-uJ!LJ—Jl—Mmut} (C3)

Proof. It goes in strict parallel with the standard case of SU(2) [16]. One proceeds
by recursion [14]. First let

fM)=J, My J5J—M U4, 0550, J),

and choose the upper sign in (C.2). Its left-hand side vanishes. This gives the
recursion

—_ 1\ ik + [J,— M +J+ 1| J,+ M, —J—1]
JM)= =M= ”‘/ i+ M L M +1]

with solution

S(M )= f(J e D000 qy=se

]/ Lo+ —M 1T, +T,—J 1T, +M, |
20 L =J + T+ I =T+ M 1T, —M ]!
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Equation (C.1) leads to the relation

z LJ1+M1J'I.J2+J_M1_I' eih(Jl+Jz—J)(Jz—J1+J+1)+2ih(J+1)(M1—J1)
M, |_J1_M1J!LJ2—J+M1J!
_ LWy +J,+J+ 11T =+ —J + T, + T ]!
So that we may impose the condition Y (f(M,))*>=1. This gives
M;

f(J)=ehii+Iz=DUa=di+ I+ 12 [2J, '[2J+1]!
i ‘t. el i+ 4T+ 11T, =T+
an € partial resu

M3 JyJ =My, J55J,J)
=eih[(J+1)(M1—J1)+(J1+Jz—J)(Jz—Jl+J+1)/2](_1)11—M1
x‘/ 20+ 11T+, =TT+ T —M 1T+ M ]!
[+, + T+ 1N =T+ I =T+ T+ I NI, —T+ M T — M |
Next define

gM,My):=(J,My;J3,My|J 1, J 50, M+ M)

1T+ M, 1, + M, ]Il J—M]!
Wy =M 1T, =MoL+ M

Equation (C.2) with the plus sign leads to
g(My, My)=e"™M2g(M, +1,M,)+e”"Mig(M,,M,+1),
and, after iteration,

g(MlaMz)—_‘ Z oth[Mar =My =] <:’> g(M1+r,M2+n—r),

r=0
If we choose n=J — M, — M, the summation involves
gM+r,J—M;—1r)=f(M,+7)
WJo+ M +r 1Ty +J—M —r]!0]!
LJ,—M,—r]!|J,—J+M +r|1| 2] ]!

Since by definition [N + 1] !=|N+1] | N]! one has [1]!=[0]! and, by consistency,
[0]!=1. Collecting everything, one obtains a first expression

1 My5 5 MolJ 1, T35 J, M) =03, 0, 4 g, €022 F D710 DI+ 012

I_J1+J2_JJ!
xV12J+1
L Jl/L—Jl+J2+JJ!|_J1—J2+JJ!|_J1+J2+J+1J!

y I/I_JI—MIJ!LJZ—MZJ!LJ—MJ!|_.I+M_|!
[Ji+M 1T+ M, !

X J-M eihv(M+J+ 1)(_1)v
X(—l)"‘_M1 e'hM‘(M+l) {
o (W IJ-M—v]!
I_JI_MI_VJ!LJZ_J+M1+VJ! )

(C.4)
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Next we transform the result into a more symmetric expression. Apply (C.1) to
the term

[Jo+J—M,—v]! =< J—-M—v+J,+M, )
LIy =M, =y J,+J—J ]! Ji—J;—M—v+J,+M,/)’
This gives
[+ —M,—v]! _ ,— ik —J1+T2) 2+ M2)

=M, —v|\|J,+J—J !

XZeihu(J+Jz—M1—v)< J—M—v )( J,+M, )
1 Ji—=Jo—M—v+p) \J,+M,—p

Substitute into Eq. (C.4) and sum over v. One finally makes use of the identity

Z(_l)@ I-p+QJ' eihg(p—q—r+1)___eihr(p+1)|_p_I!Lp_q_l!(—1)r
e LeJ!lg+e]llr—el! lr]!lg+rlilp—q+r]! ’

which is a consequence of Eq. (C.1), and the result follows. []

Next we establish the connection between g-C.G. coefficients and orthogonal
polynomials. First we need the

Theorem (C.2). The Hahn polynomials defined by
e—2ihn e2ih(a+b+n+ 1) e—2ihx . .
Qn(x; a, b,N)Z=3¢2 < ;2ih(a+1) e—Zih’N ;e21h; e21h>, (CS)

or equivalently by

. - —na+b+n+l,—x v oxin
g’n(x,a,b,N)_3F2< 441, —N ;e , (C.6)
satisfy the orthogonality relations
Y P(x;a,b,N)P,(x;a,b,N)o(x)=(d,)*0p m> (C7
x=0,1,..., N
_ ,—ih@+b+2)x la+ 1], [N+1—x],
olx)=e IN+b+1],[x]! (€3
d. = gihn@+b+n+1)=N@+ D)2 Ln]!LN—n]!
" LN
la+b+N+n+1]!lb+n]!la]! (C9)
la+b+nl!lb+N|!la+n|la+b+2n+1]" ’
Proof. See e.g. [13]. O
The connection is established by the
Theorem (C.3). Equation (C.3) is equivalent to (M =M, + M,),
i My3 I3, Mol 3 330, M)=(— 1) V8 g ),
=J,—M,, =J—-M, N:=J,+J,—M
x 1 1 n 1TJ2 (C.10)

a:=M+J2_J1, b:=M+J1—J2.
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Proof. Using the obvious relations

Lm]!

Lm+v]l=m]llm+1]; [m—v|l=(=1) lm—1],’

one first rewrites (C.3) as

(JI’MI;JZ: MZIJI’JZ; J’M)zeih[12(12+1)—J1(J1+1)—J(J+ 1))/2

x /12 +1] [/L_Jl+J2+JJ!LJ1_J2+J_,!|_J1+J2+J+1_l!
Wa+d =M, ]!y /1T, + M ]I, — M, ]I + M]!

_1Yi1—M,
J,—J—M,]|! LJI—M,J!LJ2+M2J!LJ—MJ!( D
. —Ji+M,J,+ M+, M—J .
ihM (M + 1) F 1 Y1 1 ’ . Jih(M+J+1)
e 3 2< JoJ+ M +1,M,—J—J, ¢ ) (C11)

Next the desired hypergeometric function is obtained by making use of the general
relation” (s=y+d—a—B+n)

e, g2ihf o= 2ihn 2ih. 2ih 2inna (€
392 2ihy j2ims € € =e Zihy. 20
¥ e (e*"7; e*™),

2ih(d—a). ,2ih 2iha ,2ih(1 —s —2ihn

% (e ;€ e, e?M179 ¢ . p2ih. p2i
T TTAILSES AL 2 . _ — . —

(e2lh6; e21h)'l 3 e21h(1 +a—7y n)’ e21h(1 +a—d+n)° H H

2ih(y—a). ,2ih
0 e,

or equivalently

af,—n _.
F > > ; —ih(s—1)
’ 2< ns ° )

=Ly_aJnL5_aJn 3F2< (X,l—S,—n .eihﬂ>.

L7 191 1+oa—y—nl+oa—6—n" (C.12)

Choosing n=J—-M, a=M,—J,, f=J+M,+1, y=J,—J+M;+1, and
o=—J,—J+M, gives

F MI_JI’J1+M1+1’M_J.eih(J+M+1)>= i =J2—=Jln
2\, =+ M M~ =T [Jo—J+M+1],

Ji+J,—J+1], M, —J,1+J+M, —n .eih(J1+M1+1))
WJ,—J+M |, > *\U+M,+M,+J,—J M—J,—J, :

Finally substituting this last relation in Eq. (C.11) and comparing with the general
expression (C.6) of the Hahn polynomials, one completes the derivation. []

The above discussion essentially follows [14], where the transformation (C.12)
is not applied, however. This change of parameter in the Hahn polynomial is
instrumental for deriving the orthogonality properties of the C.-C.G. coefficients
which are expressed by the

7 The h=0 limit of this relation is in Ref. [12]
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Corollary (C.4). g-C.G. coefficients satisfy the relations

A; (Jl’Ml;JZaMZIJI"Iz;JaM)(JlaMl;J23M2|J13J2;J/3M)=5J,J" (C13)

Proof. Immediate consequence of the above two theorems. []

Appendix D

In this appendix we rederive some of the properties of the ) fields by only making
use of the y fields, in order to show the full equivalence of the two formulations.
The braiding properties follow from the

Theorem (D.1). Acting on ¥ (w, ,) with , , given by Eq. (3.21), the fields

J
$i= T al@i?n (D.1)
m=-J
satisfy the braiding equation
U0 pO(e') = e~ e") 1)) (D2)

(e is the sign of 6—0’), if a is given by

ag)= < 2J )(_1)(r+1)(.l—m)+2n1 il = smmn+(J =m) (i~ k2] (@, n—J+mly; 4y )
J—m Lwr,n+ 2mJ (D3)

Proof. It is a generalisation of the particular case worked out in [2, 6]. Recall some
more results of [1]. The fields v satisfy

W)= T SR P, (D4
p=x1/2;m'=—-J...J

where the non-vanishing S$)™# are

- —m ao+J+m] .
SO )= S 2= L7 T g,
J .
S(-_’)l"/lz—"lt 1/2(w) = I-L%‘TJ elh8(1 -m—m) =S(1"/)2—,'f;; 1, - 1/2(_ 117) , (DS)

with similar formulae for the hatted fields. The braiding of the y and ¢ fields is
trivial:

P@)Wo) =" (o) pio). (D-6)
The fusion to leading order is of the form

J0),,,(0J 0J),,,(JO 2(JJ —min), (JT
P WeR ~WE Wi ~ (— 1) Tyl (D.7)
(1/2)

The beginning of the derivation is to start from the ansatz (D.1), assume that a';7}
is given by (D.3), and make use the relations just recalled to derive that, in #(w, ,),

B B)=e 2 5 W, D3
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where

Z [0(1/2)(07,;) aw(wn + 1)§ -1/2 1/3'ST/;/'2"

+ a(_1/12/)2(w )a;ﬂ (@, - 1)§ 1/2- '}l/z 1 iﬁ m+1] lpfr{ .Dm(o' )w(11//22,_1/12/)2(o.) s (D.9a)
= % [agl//zz)(wn)a(l) 1@, 4 1)§— 1/2 2+ 151/2 m—1

+al (@) a @, - ) S1/3 VST Wi Dul0 )Wt Do) s (D.9b)

W= Z [a(ll/zz)(wn)af,{)(mn + 1)S 1 I/riST/;r}l “1z
+a2(@,)as (@, - )81 5202 S A W), -0 w2542, 5(6) ,(D.9c)
W,=3% [agl/éz)(wn)a(l)(wn + 1)S -1/2- 2t %ZST/lzlfn
m
2
+ a(—llrz/)z(wn)asr{)ﬁ- 1(@, - 1)S1/2 ST 11//2 m+1] V’g D0’ )1/)(11//22,'11//22)(0') . (D.9d)

Since it is the same throughout, the index r of @, , is not explicitly written any
more. For the braiding matrices, one makes use of the fact that, for any integer v,

, T , A o f A h PO
st (o) s, S5m0 (5402 ) =80,

to let their arguments e%ual to ,. The symbols S¥)"(w,), and S¢2*#(w,) have been
replaced by S™, and S}% in order to avoid clumsy notations as much as possible.
Since they involve y operators that do not appear in Eq. (D.2), W, and W, must
disappear. The determinant of the corresponding linear system with unknowns
a{Pw,)a)(w, ) and a®Z(w,)ay), {(w, ) should vanish. This gives

-1/2 +1—-1/2 112 m1/2
Som-yagmil-1/28-m-11/2gm

1/2 +1-1/2 —11/2Qqm1/2
1/2=m 1/2m 1/2-m 1/2m+1__S1/2 2 ST BSZmatarsty

~1/2m+19-1/2—-m D1/2m
or equivalently
lo,+J—m]|@,—J —m— 1J lw,—J+m]|w,+J+m+1]
-m]lJ+m+1] |J—m]||J+m+1] '

This equation is easily seen to follow from Theorem (3.1) and Proposition (3.7). The
vanishing of D, next gives the recurrence relation

iﬁnj)i’jj_l_)_ o= W2y +s2d+ 14 L@, +J+m+1j|_J+m+1J
aiy (@, ) [@,—J +m][J—m] (D.10)

Considering now the first two contributions (W;, and W,), one sees that the
theorem will be fulfilled if

(1/2)(wn)a(l)(wn + 1)S_ 1/2 1/3'ST/12/:'zn (1/12/)2(117»:) afrﬁ (@, - 1)S1/2 W2 Smr//zz m+1

—e gD, )ad (@), (D.11a)
(1/2)(wn)a(l) (A 1)S_ 1/2 2t ST we 1+ a(1/12/)2(wn)a(1)(wn 1)§1/'g 12s 1/12/%:
i PN CAT (D-110)

Combine Egs. (D.10) and (D.11a). After some computations one gets

I.wn+2m_, I_wn+']+m+ 1_'

g imsm D.12
Lwn+1+2m_| Lwn_J+mJ ( )

aﬁ;t’)(wn + 1) =- as;n,)(wn)
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This recursion has the solution
(@) =c(— 1) e ™ @, — T + Moy 41/ Tk 2m s (D.13)

where ¢ is still arbitrary. Determine it from the other recursion relation, which is
satisfied if:

D) =Dy H e G2 ] )T +m+1],
so that we find
J—m
The normalization is fixed by letting ¢{”=1, and Eq. (D.3) follows. []

2J T —m)(i—
cs;l’)=< (_l)(r+l)(J—m)el(J m)(h h)/2.

-Next, the fusion properties to leading order of the fields ¢*/? with ¢ are given
by the

Theorem (D.2). In & (w, ,)and to leading order, the fusion of the fields ¢ is given
by

dLD(6)pD(0) ~(d(o — ') TETD e T U+ U gy 4 (D.14)
Proof. Recall the relevant fusion properties to leading order, from App. E of [1]:
P22l D) ()20~ 2am]
x N(1/2,0; J,m; m)N(1/2, —a; J, —m; @)l 1204 0D
lmwFJ+m]
@]

(omitting the ¢ and ¢’ dependence as usual). Substitute the ansatz (D.1) into the
left-hand side of (D.14) and make use of the last equalities. This gives

N(1/2, +1/2; J,m; w)= , (D15

B GO ~ ) y JL
-1
172 7) TH1/2,0+1/2 J T+1/2,7+1/2
+a¥ (@) aw,_ )T T+ Y S @)l I,
m= —
where

e [T — T +m?
() = a2 @, P, 1) (— 1y~ LTI o] !

lo,+J +m+1]2
@, '

+ agllz/)z(wn)as;{zl— l(wn— 1)(_ 1)s(J+m+ D

Using the recurrence relation (D.10) one finds

@, —J+m]
L J+m+1]
Finally, from the above expression of a/((w,) one verifies that
a@,)=e " al} {[P(@,),
a @, as(@, ) =€ " a7 i@,

Thus (D.3) follows. []

as (@)= —ag(®, )| 2] +1] (— 1) =m) ginn=9)2_
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Corollary (D.3). In #(w, ) the fields ¢Y and yP are related by
LD =dDPD | dO) == smI2 I sin )X ith—h+rm (D.16)
Proof. Consider first Eq. (4.4):
182 0) =852 1 (0) + k€L E (o).

The expression x*/? in terms of y fields was the starting point of [2]. Recalling
Eq. (3.25), that is k= —e"®™ ~#? ¢! =h/2 one does find, after some computations,

1812(0)=d"? [a{/ (@, ) ()5 27, + al (@) p Ui,

dA/D =i ginh ' i+rmiz (D.17)
a(11//22)(w") =(— 1)n+ 1 e—insn/ZLwnJ’ a(_{/lz/)z(wn) =(— 1)r+n einsn/2LwnJei(il—h)/2 ,
(D.18)

which proves the theorem for J=1/2. Next, comparing (D.14) with (4.5), one sees
that the theorem will be verified by recursion if the d“”s satisfy

AU 1D = g0 g(1/2) g =isn

and formulae (D.16) follow. []

As an overall crosscheck, one may of course directly verify that (D.16) is
equivalent to (4.12) in ;. This appendix thus shows that one may equivalently
work with the y fields. However calculations become messy and this should be
avoided unless one is specifically interested into the shifts of the quasi momen-
tum .

References

1. Gervais, J.-L.: The quantum group structure of 2D gravity and minimal models. Commun.
Math. Phys. 130, 257-283 (1990)

2. Gervais, J.-L., Rostand, B.: Two dimensional gravity and its W, extensions: Strongly
coupled unitary theories. Nucl. Phys. B 346, 473-506 (1990)

3. Gervais, J.-L.: Critical dimensions for non-critical strings. Phys. Lett. B 243, 85-92 (1990)

4. Gervais,J.-L., Neveu, A.: New quantum treatment of Liouville field theory. Nucl. Phys. B 224,
329 (1983)

5. Gervais, J.-L., Neveu, A.: Novel triangle relation and absence of tachyon in Liouville string
field theory. Nucl. Phys. B 238, 125 (1984); Green functions and scattering amplitudes in
Liouville string-field theory (I). Nucl. Phys. B 238, 396 (1984)

6. Gervais, J.-L., Neveu, A.: Locality in strong coupling Liouville field theory and string models
for dimensions 7, 13, and 19. Phys. Lett. 151B, 271 (1985)

7. See, e.g., Moore, G., Reshetikhin, N.: A comment on quantum group symmetry in CFT. Nucl.
Phys. B 328, 557 (1988)

Alvarez-Gaumé, L., Gomez, C,, Sierra, G.: Hidden quantum group symmetry in rational
conformal field theories. Nucl. Phys. B319, 155 (1989); Quantum group interpretation of
some conformal field ‘theories. Phys. Lett. B 220, 142 (1989)

Felder, G., Frohlich, J., Keller, G.: Braid matrices and structure constants in minimal models.
Commun. Math. Phys. 124, 646 (1989)

Gomez, C., Sierra, G.: Quantum group meaning of the Coulomb gas. Preprint Jan. 1990
Todorov, I.: Quantum groups as symmetries of chiral conformal algebras. Lecture at the 8th
Summer Workshop on Mathematical physics Quantum groups, Clausthal-Zellerfeld July
1989, preprint Universités Paris XI and VI



338

8.
9.
10.

11.
12
13.
14.

15.

16.
17.

18.

J.-L. Gervais

Babelon, O.: Extended conformal algebra and Yang-Baxter equation. Phys. Lett. B 215, 523
(1988)

Jackson, F.H.: On g-definite integrals. Quart. J. Pure and Appl. Math. 41, 193 (1910); Certain
g-identities. Quart. J. Pure and Appl. Math. 12, 167 (1941)

Andrews, G.: g-series: Their development and application in analysis, number theory,
combinatorics, physics, and computer algebra. Conference Board of the Mathematical
Sciences, Regional Conference in Mathematics, # 66, A.M.S. ed.

Erdelyi, E., Magnus, W., Oberhettinger, F., Tricomi, F., Bateman project: Higher transcend-
ental functions, vol. IT

Slater, L.C.: Generalized hypergeometric functions. Cambridge: Cambridge University Press
1966

Askey, R., Wilson, J.: A set of orthogonal polynomials that generalize the Racah coefficients
or 6-j symbols. SIAM J. Math. Anal. 10, 1008 (1979)

For a review, see Kirillov, A., Reshetikhin, N.: Representations of the algebra U (sl(2)),
g-orthogonal polynomials and the invariant of links. In: Infinite dimensional Lie algebras and
groups. Marseille 1988 meeting, Kac, V. (ed.). Singapore: World Scientific

For reviews, see Gervais, J.-L.: Liouville Superstrings. In: Perspectives in string theory.
Proceedings of the Niels Bohr/Nordita Meeting (1987), Singapore: World Scientific; DST
workshop on particle physics-Superstring theory, Proceedings of the L.I.T. Kanpur meeting
(1987). Singapore: World Scientific

Gervais, J.-L.: Systematic approach to conformal theories. Nucl. Phys. B. (Proc. Supp.) 5B,
119-136, 119 (1988)

Bilal, A., Gervais, J.-L.: Conformal theories with non-linearly-extended Virasoro symmetries
and Liealgebra classification, Conference Proceedings. Infinite dimensional Lie algebras and
Lie groups. Kac, V. (ed.). Marseille 1988. Singapore: World-Scientific

Edmonds, A.: Angular momentum in quantum mechanics. Princeton, NJ: Princeton
University Press 1974

Bilal, A., Gervais, J.-L.: New critical dimensions for string theories. Nucl. Phys. B 284, 397
(1987); Modular invariance for closed strings at the new critical dimensions. Phys. Lett. B 187,
39 (1987); The five-dimensional open Liouville superstring. Nucl. Phys. B293, 1 (1987);
Liouville superstring and Ising model in three dimensions. Nucl. Phys. B295 [FS21], 277
(1988); for reviews, see [15]

Gervais, J.-L., Neveu, A.: Non-standard critical statistical models from Liouville theory. Nucl.
Phys. B257 [FS14], 59 (1985)

Communicated by K. Gawedzki





