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Abstract. We study the large-time behaviors of solutions of viscous conservation
laws whose inviscid part is a nonstrictly hyperbolic system. The initial data
considered here is a perturbation of a constant state. It is shown that the solutions
converge to single-mode diffusion waves in directions of strictly hyperbolic fields,
and to multiple-mode diffusion waves in directions of nonstrictly hyperbolic fields.
The multiple-mode diffusion waves, which are the new elements here, are the self-
similar solutions of the viscous conservation laws projected to the nonstrictly
hyperbolic fields, with the nonlinear fluxes replaced by their quadratic parts. The
convergence rate to these diffusion waves is 0(t~3/4'+ίf2p+σ) in If, 1 :gp^ oo, with
σ > 0 being arbitrarily small.

1. Introduction

We are interested in the large-time behaviors of solutions of the viscous
conservation laws

ut+f(u)x = uxx, ueRn, —oo<x<oo,ί>0, (1.1)

whose inviscid part is a nonstrictly hyperbolic system. Physical models of the
nonstrictly hyperbolic systems include, for instance, three-phase flows in oil
reservoir [10]. The initial data considered here is a perturbation of a constant
state. Without loss of generality, we may assume this constant state to be the zero
state

u(x,0) = uo(x),uo{x)-+0, as |x|->oo. (1.2)

The viscous term uxx considered here is an idealized situation. The real physics has
a more general viscous term (B(u)ux)x, where B is an nxn matrix. Kawashima
showed that the nondiagonal part of (B(u)ux)x decays faster than the diagonal
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part in the L2 sense [5]. Therefore, the idealized model (1.1) can still capture the
essential large-time phenomena.

When the inviscid part of (1.1) is strictly hyperbolic, the following results have
been shown. At the large time, the solutions of (1.1) and (1.2) decay in Lp, for all
l < p ^ o o , because the viscous terms dominate the nonlinear terms if the
perturbation is small (see [4] and [9] and the references therein). The solutions do
not decay in L1 because of the conservation of masses of (1.1) :

$u(x,t)dx = const.

In the L1 behaviors of the solutions of (1.1) and (1.2), the hyperbolic terms play an
important role. The strict hyperbolicity causes the systems to decouple at the large
time. As a consequence, the L1 asymptote of (1.1) and (1.2) consists of so-called
diffusion waves in each characteristic direction [1]. These diffusion waves carry the
invariant masses of the solutions and are the self-similar solutions of the Burgers
equations. The rate of convergence to these diffusion waves is O(t~1/4 + σ) in L1 with
σ>0 being arbitrarily small [1]. The optimal rate occurs when σ = 0 [2].
Independently, Kawashima also showed an L2 result for more general hyperbolic-
parabolic systems [5]. The above L1 result is consistent with the inviscid result of
Liu [7], where the rate of convergence to the iV-waves is O(t ~1/4) in L1. However, it
is not known whether this is the optimal rate.

In this paper, we investigate the cases when the inviscid part of (1.1) is
nonstrictly hyperbolic. Two different situations can arise - the nonresonant and
resonant - depending on whether f'(0) is diagonalizable or not. In the latter case,
Liu and Xin [8] recently showed that the L1 norms of the solutions of Temple's
equation [11] (an example of the resonant case) tend to oo as t —• oo. There, the non-
trivial Jordan form of /'(0) is responsible for this resonancy. Thus, the linear
resonancy is the dominant phenomenon.

Here, we study the formal case, the nonresonant case. We further assume that
/"(0) exists. A physical model belonging to this case is the complex Burgers
equation near the umbilical point, which models the three-phase flow of an oil
reservoir [10]. In this nonresonant case, the large-time behaviors of the solutions
are more like those of the strictly hyperbolic viscous systems; specifically, the
solutions do not blow up in L1 and their L1 asymptotic behaviors are nonlinear.
The difference is that, in the current situation, the fields having the same
characteristic speeds do not decouple at the large time. As a result, multiple-mode
diffusion waves form in these directions. These multiple-mode diffusion waves
share two important properties of the diffusion waves of the strictly hyperbolic
viscous systems, namely, carrying constant masses and decaying as heat kernels.

Our basic assumption is that the inviscid part of (1.1)

ut + f(u)x = 0 (1.3)

is nonstrictly hyperbolic at u = 0. This means that /'(0) has a complete set of real
right eigenvectors ru...,rn, and the associated eigenvalues λί9...9?,n are all real but
may coincide. We further assume that /'(0) is diagonalizable and /"(0) exists. For
simplicity of notation and without loss of generality, we may assume

γ — ... — λ r < λ r + χ < ... < λ n ,
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where the right eigenvectors ri = (δn,...,δin)
t and the left eigenvectors

h — (<>iu -> dm)- Below, we define the single-mode and the multiple-mode diffusion
waves for (1.1) and (1.2). They carry the invariant masses

For each strictly hyperbolic fields ί = r + 1 , . . . , n, the single-mode diffusion wave is
defined to be 0f(x, t)ri9 where θt is the self-similar solution of the Burgers equation

θf)x = θixx (1.5)

carrying the mass

\θi{x,t)dx = mi. (1.6)

Here, biii = li-{f"^))rbr^. θt has the following explicit expression [3]:

if

hi

I '
- o o ξ

In the directions of the nonstrictly hyperbolic fields (i.e., i = 1,..., r), the invariant
r r

mass vector m=^ m ^ is carried by the multiple-mode diffusion wave 0 = X etrb
1 i - l

which is defined to be the self-similar solution of the generalized Burgers equation
inKΓ

(1.8)

carrying the mass vector

Sθ(x9t)dx = m. (1.9)

Theorem 1. For smα// m e Kr, (1.8), (1.9) has a unique self-similar solution of the form

θ(x,ή=-^φ(—^), with φ(—co) = φf(—co) = 0. Furthermore, φ has the

yt \ yt )
property

(1.10)

where ψ and all its derivatives are uniformly bounded.

The main result of this paper is to show that the solution u(x, t) of (1.1) and (1.2)
converges to the above diffusion waves. The assumption on the initial data uo(x) is
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that u0 E Vβ for some β > 0, where

The solution u we are seeking is a weak solution in the class C((0, oo), llnU0).

Theorem 2. Consider the initial value problem (1.1) and (1.2). // we assume that
|| u01| Li is sufficiently small for some β>6, then there exists a unique solution u(x, t) of
(1.1), (1.2) in C((0,oo), L'nL"0). Moreover, u is indeed in C°°((0, oo) x R). Fur-
thermore, let the single-mode diffusion waves θίri,ί = r+l, ...,n, be defined by (1.5)

r

and (1.6) and the multiple-mode diffusion waves £ fyη be defined by (1.8) ami (1.9).
Γften 1

where /? = min{/?, 1/2} ami σ is an arbitrarily small constant.

The basic idea of the proof of this main theorem is slightly different from that
in [1, 6], namely, we perform L1 and L00 estimations instead of L2 estimations
performed in [1, 6]. This simplifies the proof. Another new element here is the
estimation of the convection of the transversal multiple-mode diffusion waves.
This was not considered in the construction of the "hyperbolic waves" introduced
by Liu [5]. The estimation here not only can treat the multiple-mode diffusion
waves, but also greatly simplifies Liu's estimation for the hyperbolic waves [5].
This estimation will be discussed in detail in the last section; the remainder of the
proof of this theorem will only be sketched in this paper.

2. The Multiple-Mode Diffusion Waves

In this section, we prove Theorem 1. Instead of considering Eq. (1.8) with a
uniform viscous term, we consider the following general viscous system:

Here, A® and Br are symmetric rxr matrices, and A? is positive definite. We
assume the following stability condition: All eigenvalues of Br with respect to A®
satisfy

α f > 0 , i=\,...,r. (2.2)

This assumption is satisfied for those symmetrizable hyperbolic-parabolic systems
considered by Kawashima [4, 5], which include many interesting physical models
such as the compressible Navier-Stokes equation.

Theorem 3. For small meRr,(2Λ) and(\. 9) have a unique self-similar solution of the form

θ(x,t)= —r φ\ — — - I, withφ{— co) = φ'{— oo) = 0. Furthermore, φ has the follow-
]/i \ ]/t )

ing property:

(2.3)

α = max{α l 5...,α r}, (2.4)

where ψ and all its derivatives are uniformly bounded.



Multiple-Mode Diffusion Waves 55

Proof. Substituting θ(x,t)=—Fώ\ — — I in (2.1), we obtain

lA V ]/i )
-ίA?(ξφy + iQ(φy=Bd>». (2.5)

Integrating this equation and using the assumption φ( — co) = φ'(— oo) = 0, we
obtain

Brφ'=-\ξA°rφ+\Q{φ). (2.6)

Let ψ(ξ) = eξ2f4Λφ(ξ), and let pf and qi9 i = 1,..., r be the right and left eigenvectors of
r

Br with respect to A*. Expanding φ = Σ ΨiPi a n c * using the fact that Q is a
ί = l

quadratic function, we find that ψt satisfies

Ψΐξ) If
I f )ψi(ξ) + e Q i ( ψ ) > i l , - . . , r , (2.7)

where β f = ^— q_iA®Q. Next, we write these equations in integral forms. With the
2α£

abbreviation i(l/α£ — 1/α) = juf, the function ψ satisfies the following integral
equation:

ψ(ξ)= Σ ( m ί

= T(ψ)(ξ). (2.8)

From (2.4) and the integrability of e~η2/4a over R, we see that Tis an operator from
Cb (all Rr-valued bounded continuous functions on R with the sup norm || || 00) to
itself and

Here, C is a constant bounding |^Q(φ)|/|t/;|2 from above. Thus, the existence and
the uniqueness of solution of (2.8) in Cb follow from the standard fixed-point
theorem for contraction mappings, which yields

2C]/aπ
provided

4C]/απ
(2.10)

The uniform boundedness of higher-order derivatives of ψ follows from (2.7).
Notice that the masses carried by the self-similar solution obtained above are

always invariant in time:

±(±Z^ (2.11)

and the derivative of the mapping

(2.12)
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at 0(0) = 0 is equivalent to

o
which is nonsingular. Thus, the inverse function theorem yields that, given meRr

sufficiently small, there exists a unique (the above) self-similar solution that carries
the mass m. •

Notice that the expression (2.3) implies that the multiple-mode diffusion waves
decay as heat kernels: for 1 ̂ p ^ o o , /^0,

(2.13)

(2.14)

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. First, we may replace

θι I —j=*— ) b y θt I /

1 — ) to avoid the singularity of the diffusion waves at

t = 0. This change does not affect the convergent rate, for

Y _

yt+i J \ yt
which follows from (2.13) and (2.14). Next, we let

= O(t~ι/2~3/2 + 1/2p),

yt+ί
(3.1)

The proof of Theorem 2 is composed of (i) a local existence and regularity theorem
for w, (ii) a local uniqueness theorem for w, and (iii) an a priori decay estimate for w.
(i) and (ii) are standard; see, for instance, [5, Theorem 2.9]. The a priori estimate we
are seeking is described as follows. For 0 < β ^ 1, for any arbitrarily small positive
number σ and for any fixed T > 0 , define

||w||Γ= sup (H-ίy-Ίlwί .ίJIL,
0<t^T

+ sup (l + ί ) 1 / 2 + ? " Ί | w ( ,ί)L-» (3-2)

where ^Ξmin{^, 1/2}.

Theorem 4 (A Priori Decay Estimate). Let w be defined by (3.1). //we C((0, T), L1

nL0 0), ί/ẑ π

IM|τgC (3.3)

/or some constant C independent of T, provided | |M0IIL^ ί<s sufficiently small and
independent of T.
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Once we have (i), (ii), and (iii), then Theorem 2 follows easily: the global
existence result follows from a bootstrap procedure using the local existence result
and the a priori decay estimation; the convergence rate estimation (1.11) in L1 and
L00 follows from (3.2) and (3.3). The estimation (1.11) in If for general /?, 1 ̂ pS oo
can be obtained from interpolation. So, our remaining work is to prove
Theorem 4.

n

Proof of Theorem 4. We expand w= £ w^. Then, from (1.1), (1.5), and (1.8), wt

satisfies the following equations:
wiί + λ{wix + Six + Ni(θ, w)x = wixx, (3.4)

where

if i^

if i

and

Notice that

N(a, b) = f(a + b)- /'(0) (a + b) - i(/"(0) α, a),

&u* = 'r(/"(°)'>> t)

= O(\a\\b\ + \af

(3.5)

(3.6)

for small a and b. Also notice that, from (1.4), (1.6), and (1.9), that the initial data
woi = Wi( -,0) has zero mass:

= 0, Vi=l,...,n. (3.7)

Equation (3.4) is equivalent to the following integral equation:

t

H\ (x,ί)= lgix-y,t)woly)dy- $jgi(x-y,t-s)Siy(y,s)dyds
o

gi{x,t)=

J J g i /x - y , t - s)Nί(θ(y, s), w(y, s))dyds,
0

1

(3.8)

The strategy is to estimate the right-hand side of (3.8) in terms of ||w||τ. It has been
shown [1, Lemma 3.1] that the first and the third terms on the right-hand side of
(3.8) have the following estimates: Let <5= ||M0||Lifl, O^jδ^l. Then

(3.9)

w\\2

τ). (3.10)\giy( ,t-s)*Niψ{ ,s)M-,s))ds
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Equation (3.10) is a consequence of (3.6). Equation (3.9) is due to (3.7) and the
following important lemma of Kawashima [5, Lemma 8.1].

Lemma 1. Suppose voeL\ for O^β^ί and §vo(x)dx = 0. Then

for 1 ̂  p ^ oo and I ̂  0.

The estimation of the second term on the right-hand side of (3.8), which we refer
as the "convection of the transversal diffusion waves," is not quite the same as
before [6, Sect. 7, or 2, p. 526]. We give a detailed analysis here.

Among the terms in Sh the terms θfik withj'Φ/c, j>r or k>r decay as e~as for
some constant α>0, because of (2.3) and λj + λk. This yields (see [1,
Proposition 2.2])

J gt( , t - s) * (θjθk)yds = 0(δ2). (3.11)
o T

The rest of the terms in Sb like θ2, or 0βk for j , fe^r, all have the same expression

5+1 "V ]/s~+ϊ

with λj φ λt and with some function φ which has the expression

& (3.12)

for some positive constant α and for some function ψ; ψ and all its derivatives are
uniformly bounded. Thus, we need to estimate the integral

, (3.13)
o l/+ /

with λ + λy. Let us denote this integral by ξ. We claim that

, (3.14)

with σ > 0 being arbitrarily small.
To prove this, we decompose ξ = η + ζ; η satisfies the hyperbolic equation

= 0, (3.15)

f/(x,oo) = 0, (3.16)

and C satisfies the parabolic equation:

£f + λ.ζχ = ζχ;c + ̂ χ χ ? (3.17)

C(x ? 0)=-^(x,0). (3.18)

The function η is similar to the hyperbolic wave introduced by Liu; however
Eq. (3.15) is much simple (thus simplifying the calculation) and η carries zero mass
because Eq. (3.15) is in conservation form. We shall prove that η has the following
pointwise estimate.
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Lemma 2. The solution η of (3.15) and (3.16) has the following estimate:

(3.19)

where

and y is some positive constant.

A consequence of this lemma is

l l ^ ( , ί ) l l L P = o ( ^ ) ( i + ί ) - / / 2 " 1 + 1 / 2 p . (3.20)

The function ζ, by (3.17) and (3.18), satisfies the following integral equation:

From (3.15), (3.16), and (3.19), we obtain J η(x, O)dx = 0 and η( , 0) eL\/2 _σ for any
σ > 0 being arbitrarily small. Thus, Lemma 1 implies

The second term on the right-hand side of (3.21) has the following estimate from
(3.20),

Sgiy(',t-s)*ηy(-,s)ds

ί/2

^ ί \\gtyjlί'9t-s)\\LP\\η('9s)\\Lids
0

ί

+ ί
1/2

+ 0{δ2) } (t-s
ί/2

^O(δ2){l + t)-1 + 1/2p. (3.23)

Hence, (3.21), (3.22), and (3.23) yield
/ 2 (3.24)

With (3.20) and (3.24), we complete the proof of claim (3.14) for ξ with / = 0. Higher-
order derivatives of ξ can be estimated in a similar way.

To complete the proof of the theorem, we obtain from (3.9), (3.10), and (3.14)
that

||w||Γ = O(δ) + O(^)||w||Γ + O( | |w | | 2 )^C(^ + 5 | |w | | Γ +| |w | | 2 ) , (3.25)

for some constant C>0 independent of T. Therefore, \\w\\τ is uniformly bounded if
δ is sufficiently small. This completes the proof of Theorem 4. •
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Our remaining work is to prove Lemma 2.

Proof of Lemma 2. Without loss of generality, we may assume A£ = 0, λj=l, and
α = 1 in (3.15) and (3.12). We integrate (3.15) along the characteristic line y = x from
5 = t to 5 = oo to obtain

η(x9t)= J 7τ-φ[ ϊ ids.
i 5+1 dxψ\ j/T^T )

Below, C and y represent some positive constants. For (x, t) in the region

e s + 1

for s^t. This implies

\η(x,t)\^Ce~yilxl+t\ for x ^ i ( ί + l) . (3.26)

Next, from the self-similarity of 0, we obtain

s+\

x + 5 + 1 δs \ ]/7+T /

This change is legitimate in the region x>\(t+\) and s^t, where x + 5+1 ΦO.
Hence, in this region,

/ λ 7 - 2 dφ ,
η(x,ή= ds

We break the last integral into j" + j , where s* = 2x— 1. Then, for x>\{t +1),
t s*

00 2\ώ\
f 7 ^ - L

1 - y J 5 ^ C e ~ y ( x + ί ) , (3.28)
s* (X + 5 + 1)

and

(x + ί+1) 2

- 3 / 2 . (3.29)

Then from (3.26), (3.27), (3.28), and (3.29) the lemma follows for the case of / = 0. The
higher-order derivatives of η can be estimated in the same way. •

Final Remark. The author recently learned that T.-P. Liu just obtained an optimal
LP estimate of the convergence rate to the single-mode diffusion waves. His result,
which is an improvement of work in [1, 5], is reported in T.-P. Liu, Interactions of
Nonlinear Hyperbolic Waves, Preprint, Courant Institute, New York University
(1990).
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