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Abstract. In the present paper we deal with the problem of existence and
uniqueness of the conditional reduced density matrix (c.r.d.m.) corresponding to a
locally normal state of a boson system. The c.r.d.m. was introduced in [3] (Part I
of the present series of papers). In order to characterize the class of states
possessing a c.r.d.m. we will introduce the family of conditional states of a locally
normal state, and we will discuss the relation between the conditional states, the
c.r.d.m. and the conditional distribution of the position distribution of the state.

1. Introduction

In [2, 3] we introduced the position distribution Q,, and the conditional reduced
density matrix k,, (c.r.d.m.) of a locally normal state w of a boson system. It was
shown that Q, and k, determine the whole state. In the present paper we will
characterize a class of states which possess a c.r.d.m. For that reason we first will
introduce the notion of conditional states w% of a state w that describe the
behaviour of the system inside a bounded region 4 having fixed a configuration ¢
outside this area. It is shown that the position distribution of the conditional state
% is just the conditional distribution Q,(-|,M)(¢) of the position
distribution Q,,.

Further, we will see that the c.r.d.m. exists if for each 4 € B the family (w%) of
conditional states exists and if Q,, is X,-point process. Moreover, we will prove that
the c.r.d.m. is a.e.-uniquely determined.

We use the notations and notions given in Part I [3]. We refer to this part by
adding I, e.g. 1.2.1 means Sect. 2.1 in [3].

As in the previous papers we consider exclusively locally normal states of
bosons without spin. The phase space G is assumed to be Polish endowed with a
locally finite diffuse measure v, and the local algebras consist of all bounded linear
operators on the Fock space over the bounded regions of the Fock space G.
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2. The Results

The idea to describe the infinite system by its behaviour in bounded areas led in
quantum statistical mechanics to the introductions of the notion of quasilocal
algebras. If one restricts measurements to a bounded region one “forgets” all
information about the behaviour outside this set. In analogy to the concept of
conditional distributions in probability theory (especially in the classical theory of
Gibbs measures) we want to introduce now the conditional states w% of a locally
normal state w that describe the behaviour of the system in 4 € B having fixed a
configuration ¢ € M 4. (outside of A). For basic notations used below cf 1.2-1.7.

First, we need a measurability condition for families of states. With respect to
further considerations (in Sect. 3) the definition will be slightly more general than
needed in this section.

2.1. Definition. Let o be a *-subalgebra of #(.#) and ft a o-subalgebra of M. A
family (£9),¢ » Of positive linear functionals on / is called fN-measurable if for all
Aesf, AZ0 the mapping ¢ £?(A4) from M into [0, 0) is a M-measurable
function.

2.2. Definition. Let Q be a point process, and let (£9),cp and (£9),.p be two
fM-measurable families of positive linear functionals on . We say that
(EDpem=(EDpem Q-aus. if for all Ae L E9(A)=EY(A) for Q-a.a. ¢.

Now, for arbitrary 4eB we set

AEIR-L:= U Alw, 19]1:= U AiIR. (2.1)
A'eB AeB
AnA'=0

Observe that
4mll = Acgﬁﬁlgﬁ ("1: A'-‘mt) .

2.3. Definition. Let w be a locally normal state on ./, and let 4e®B. A
a-i-measurable family (,%), 5 of states on .o is called the family of conditional
states of @ on A if for all Ae 4o/ and Ye Mt

D(A0y)= [ Qu(dg) 107(4). (22)

The left side of (2.2) is always well-defined, and we have the following useful
relation:

24. Lemma. Let A, A'€B, AnA'=0, A€ ./, Ye ,M. Then AOy€ 4,4, and
we have

A0y =S(YNM 4,04 A0, ). 2.3)

2.5. Remark. ;40Y is a combination of the local observable 4 (from ,s/) with a
position measurement outside 4 (Y € , M, A'nA=0). So (2.2) allows an interpre-
tation of ,w? as the conditional state in 4 having fixed the configuration ¢ outside.

2.6. Proposition. Let @ be a locally normal state, Ae€B and assume the family
(10%)pem of conditional states exists. Then we have the following:

() (10%)pem is Q,-a.s. uniquely determined.

(i) For Q,-a.a. ¢ 40% is a normal state on ,/.
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We thus have that not only the local states ,w given by
10(A)=w(4) (A€ )

are normal ones (by definition) but also the conditional states provided they exist.
Observe that by

0%(A):= ,0°(JA) (Aes)) 2.4)
we may define an (equivalent) family of normal states on «/,, and (2.2) could be
written also in the form

@(0yJ 44)= [ Qu(do)i(4). (2.5)

In [2] we proved that the position distribution of a locally normal state is
locally a Z¢-point process. If the conditional states exist still more is true.

2.7. Proposition. Let w be a locally normal state on o/ such that for all A€B the
family (,%),cp of conditional states exists. Then Q,, is a Xi-point process.

The proof of the above statement is based on the observation that the position
distribution of the conditional state ,w? is just the conditional distribution of the
position distribution of w. Indeed, we have the following connection.

2.8. Proposition. Let w be a locally normal state on o such that for a set A€B the
family (,0%),ep of conditional states exists. Then for Q,-a.a. ¢ we have

10°007)=Qu(Y | +M)(@) (Ye,M). (2.6)

In Part I of this series we always assumed that Q, is a X',-point process. There
are some hints for the conjecture that all conditional states exist if @, is of the type
2. However, this could be shown only for normal states.

2.9. Proposition. Let w be a normal state on L (M) such that Q, is a X';-point
process. Then for all AeB the family (,0%),cp of conditional states of w on A
exists.

In I we introduce the c.r.d.m. and showed that it is a useful tool for the
characterization and for the description of the state. States possessing all
conditional states are just the states having a cr.d.m.

2.10. Theorem. Let w be a locally normal state on < such that Q,, is a X',-point
process. Then the c.r.d.m. of w exists if and only if for all A€ B the family (40°),c
of conditional states exists.

In Theorem 1.7.3 we gave sufficient conditions on a point process Q and a
function k ensuring the existence of a (unique) locally normal state w with position
distribution Q and c.r.d.m. k. From Theorem 2.10 we thus obtain that for the state
constructed from Q and k all conditional states exist, and we have the following
relation:

2.11. Proposition. Let w be a locally normal state on ¢ such that Q,, is a X',-point
process and the c.r.d.m. k exists. Then for all Ae®B and Q,-a.a. ¢

40%(J 44)= Tr(K3*4) (ded,), 27

1
'I&f(M 4)

where K% is the positive trace-class operator with kernel k(-, -, ¢ 4).
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From the proofs of the above statements we get also that the c.r.d.m. is a.e.-
uniquely determined (for normal states this was shown already in I — cf.
Theorem 1.6.4).

2.12. Proposition. Let o be a locally normal state on of such that the position
distribution Q,, is a X',-point process, and let k,k, be two c.r.d.m. of w. Then for
FxFx Qw'a'a' (¢1’ @2, (0) we have kl(¢1: @3 (P)= k2(¢la ?2, (P)

It seems to be obvious that a locally normal state is a normal one if (and only if )
0, 1s afinite point process. However, based on the above result we can show it only
for states possessing a c.r.d.m.

2.13. Proposition. Let w be a locally normal state such that Q, is a X',-point process
and the c.r.d.m. exists. Then  is a normal state if and only if Q,, is a finite point
process.

Summarizing, we can give the following characterization:

2.14. Proposition. Let w,,w, be locally normal states such that Q,,, and Q,, are
X'-point processes and the cr.d.m. k, ,k,, exist. The following statements are
equivalent:

(i) 0;=0,,

(i) Q,,=Q,, and k,, =k,, a..

3. Proofs
3.1. Proof of Lemma 2.4
Observethat Ae , 4 S 4,4, YE 4ME 4, M Thus AOy€ 4, 4. Forall Ve A,
peM we get
S(YNM 4,0 ,AOy ) ¥(9)
= @Zgl Xr M PV (9 — PN (A0 ¥ ) (90— B)
®

= MZM XYnM,.c(¢ + (PAC)(AOMAW¢+¢A¢)(¢A —@)

=Xy M Pa) A0y, ¥, ) (@ 0) = X3 (@) (AOp ¥, ) (P 4)
=0,4%(p). O (3.1)

3.2. Proof of Proposition 2.6

1°. Wefixan A€ o/, A=0. Sﬁppose there are given two versions (%), , j=1,2
of conditional states of w on «/,.
We thus get for all Ye 0t

§ Qaldo)oi(d)= [ Q.(dp)al(4). (3-2)

Since ML, IM and for each Ye , I there exists an increasing sequence
(Y,) S M* with li_g.lo Y,=Y (3.2) holds for all Ye ,IN.

The mapping ¢+ w?(A4) was assumed to be ,IN-measurable. This implies
w%(A)=w%(A) for Q -a.a. ¢. Since each operator from ,o/ may be expressed in a
unique way as a sum A, — A, +id;—iA, of four positive operators from ,o/ we
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get for all Ae o w{(4)=w4f(A) for Q,-a.a. ¢. This proves assertion (i) of
Proposition 2.6.

2°. 4% is a normal state on ,.« if and only if w9 defined by (2.4) is a normal state
on /. It is known that a state on 7, is normal if it achieves its norm already on
compact operators from o7, (cf. [1, Theorem 2.6.14]), i.e. we have to prove that for

Q.,-aa. ¢
sup{|w%(A4)|: Ae«L,, A compact, [A||=1}=1. (3.3)

Consequently, it suffices to show that there exists a sequence (4,),5, of
compact operators from o/, with || 4,]| =1 such that for Q -a.a. ¢ '}im w4(4,)=1.
— 00

Let (¥,)n>0 be an orthonormal base in .#, and denote by A, the (finite rank)
projector onto the span of {¥,...,¥,}, n=0. We have [4,]=1,

0<A4,5A4,,,=50y  foralln=0. Thus the limit lim w%(4,) exists for all ¢ and we

have noe
0= lim 0%(4,)<1. (3.4)

(A)nz0 converges to Oy, in the o-weak topology on &/, So ((J44,)0y)uz0
converges o-weakly in L(#) to Oy for all YeI. Since the local states are
continuous in the g-weak topology we get for each Ye 0,

Jlim (7 44,0y) =(0y) = Qu(Y). (3.5

Using Lebesgue’s dominated convergence theorem which can be applied
because of (3.4) we obtain for all Ye R+

QoY) = lim [ Q,(d) s0°(J 44n)= lim {0 (dg)wi(4,)
= [ Quldo) lim @f(4,)= [ Qu(de)-1.

Since (40°), . » Was assumed to be ,.IM-measurable we finally get that for Q ,-a.a. ¢
lim w%(A4,)=1. Thus, for Q -a.a. 0% is a normal state on &/, i.e. ,®? is a normal
n—o0

one on 4. []

3.3. Proof of Proposition 2.8

For all Y, e ; M, Y, e M we get from the definition of the conditional state

w(Oy,0y,)= YIZ 0,(dp) 40*(Oy,). (3.6)
On the other side, from Oy, Oy, = Oy, .y, We conclude
®(0y,0y,)=0(0y, y,)=Q,(Y1NY,). (3.7
(3.6) and (3.7) lead to the relation
sz Q.(do)xy, (@)= sz 0u(d9)40%(0y,)  (Yi€ M, Yy M), (3.8)

As in the first part of the proof of Proposition 2.6 one can see that the equality
in(3.8) holds for all Y, € ,.9M. Since ¢ = ,w?(Oy,)is 4M-measurable we get that for

all Ye
40°00y)=0,(Y |+ (p) (Qu-aa. ¢). O (39
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3.4. Proof of Proposition 2.7

Wefix a set 4 € B. From Proposition 2.6 we know that for Q ,-a.a. ¢ w9 [defined by
(2.4)] is a normal state on «/,. This implies that the position distribution of w9
(which we will denote by Q%) is a finite X¢-point process concentrated on M , (cf. [2,
Proposition 3.1]). The ,.9M-measurability of (,w?),., causes that for Q,-a.a. ¢
Q4=0%".

From [6, Theorem 2.13] we conclude that for all ¢ € M ,. there exists a
measurable function g, ,: M—IR such that

AY)=[F,d0)gs(p) (YEM,). (3.10)

From Proposition 2.8 and (3.10) we finally get that forall 41 € B, Ye ;M and Q ,-a.a.
®?, *

0u(Y14:IM) (@) = 40%(0y) = 0%(0, ,y) = Q%(v,Y)
= 1 FaldP)g1,0.4(P)- (3.11)

Condition (3.11) is necessary and sufficient for Q,, to be a X:-point process [5,
Theorem 2.11]. [
3.5. Proof of Proposition 2.9

There exists an orthonormal sequence (¥"),5, from .# and a sequence (a,),> o,
o0
2,20, ¥ a,=1 such that
n=0

o(d)=Tr(ed) (AdeZ(A)),

where g is a density matrix given by
0= ..io (9", )P, (3.12)
and Q, can be written in the form
Q.(Y)= ] F(dg)D(p) (YeM)
with
Dig)= ¥ alP@)  (peM). 6.3

One easily shows that (if @, is of the type X’) the density D(¢) has the property
that

D(p+¢)>0 implies D(¢)>0 (F x F-a.a. (¢, })) (3.14)
and the conditional intensity measure 73  of Q,, is given by
D(¢+9)
5(Y)= [ F(dp)————. 3.15
mN= [ Fap) =] (315)
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For all A€B and all pe M we set
1 ©
162 (M )D( 4c) n=0

The right side of (3.16) is well-defined because for each Y e ./, yy ¥, €M,
(Lemma 1.2.7) and

L0%(A)= (P70 A0y P ) (A€ o). (3.16)

[ e

3, (¥5,0 00,104, 75,0= | FAODG+0.4)

=G0 (M )D(¢ 4). (3.17)

Since for @ ,-a.a. ¢ 0 <n§*(M ,) < oo from (3.16) and (3.17) we get that (,@?), is
a ,IM-measurable family of states.

Finally, for all A€ B, A€ ,o/, and Ye ;M we get using Lemma 1.2.5 and the
fact that Ye I,

i" Qw(d(p)Aw‘P(A)
= 1 Quldg)p (M. "(4)
= | Fldomg M )D(),0°(4)

= | F9) ¥ 0(¥}0u, A0, 75)

YAM 4¢

= J Fdo) | Fldo)rr(o) X 0¥5(@1)0x A0, ¥5(01)
= [Fdo)y(9.4) X a5, (04000, A0n ¥ (02)

= [FUr0) . (PTOAPY0)= T 2,(7",074F")

=w(40y). O

3.6. Proof of Theorem 2.10

1°. We first assume that for each 4 € the family (,?), of conditional states
exists. From Proposition 2.6 we have that for all 41€®B and Q-a.a. ¢ ,0° is a
normal state on ,.&/. Thus w9 defined by (2.4) is a normal state on o7 ,,. Now, we fix
aset 4 € B. Without loss of generality we may assume that w9 is a normal state for
all e M. Since (,0°),cy is assumed to be ,IM-measurable we have, of course,
o = w44 for all p € M. Denote by Q¥ the position distribution of w%. Q% is a finite
2 -point process on [M 4, M ,] [2, Proposition 3.1]. We will show that Q% is even a
2 -point process. Indeed, from Proposition 2.8 and Lemma 1.5.3(iii) we obtain for
all YeIR, and all pe M,

4(Y)=0%(0y) = 0% ' Y)=0Q,v 'Y | 1) (¢)
=(ngA(M )~ 'ng2(Y)
=g (M)~ ! IIV F (dP)K(P, ¢ 4c) 5 (3.18)

where « is a version of dC§°)/d(F x Q,,).
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For all A'eBnA4, YeM,, and pe M we get
Clg(d'x Y)= [Q4(d9) | Pdx)x(9—0.)
PR |
=mgEM) " T — [ V(@X" KOy, @4°)
n=1n! in
PR ZCI RS
© 1
— (P A° -1 n—1 n—1
(g (M o) ngl =1 Anj’_}v (dx"1)
PR AR ECREE M%)
=(mga(M )~} ; F {(d9) AI Wdx)k(P + 05, @ 4c)- (3.19)

Since Q,, is a X'-point process we have
k(P14 02 0)=K(@1, Q)K(@2, 0+ 9,)  (FXFxQ, -a.a.(¢1,929))
(cf. [4, Chap. 9] or also (6.10) in I). Thus we may continue (3.19)
CoyA' x Y)=(ngz(M ) [F AdP)K(D, @ 4)
X | WdXK(6. 0+0.1)
= ; Q%(d9) /{ Wdx)k(0,, O+ @ 4c)-

This proves that Cg3 <vx Q% and
(1) (1)
dCy), (x,0)= acg)
d(vx Q%) d(vxQ,)
From (3.20) we easily get that for all 41€B, peM,
dCye),
d(F 4 x Q%)

2°. Above we thus have shown that for all 4B and all pe M ¥ is a normal
X' -state on &/,. Applying Theorem 1.6.4 we obtain that there exists the (a.e.
uniquely determined) c.r.d.m. k% of w9 having the following properties:

For all Ye M, and integral operators A € &/, such that S ,(Y, A) e &/, we have

(i, ¢+94) (x€d, peMy). (3.20)

adn®?e
(G100= G @)=Ko10+0x)  (@1,026M). (321

0i(SA(Y; A)= ; QA1) [ F s(d@)k 4 % ki(@2, ¢1) (3.22)
and for F ; x Q%-a.a. (¢4, ¢,),
k3(@1, 91, 02) =K(P1, @2+ @ 40) - (3.23)
Now, for all 4B we put
ka(@1, 02, Q) =KG" (01, 02,0) (91,026 M, peM). (3:24)

We will show now that for all 4,4'eB A< A’ one has
ki(@1, 02, 0)=k (01,02, 0)  (FyxF 1 xQ,-a.a. (91,02 0).
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We fix A4,4'€B, ACA. Let Yie W, Yye, M, Y,e, M. Then
Y,nY,e M/, and for all integral operators Ae./] (C.o/4) we have
S(Y;nY,, A)e 4o/ (Proposition 1.3.4) and consequently we get using (3.22),

o(S(Y;nY,, A)Oy,)
= }j. Q,(dP)w(S (v (Y1NY)), A))
3
=1 Qude) [T Qalde)[Faldpo)ks t Kilo2 01)
3 va

(Y1nY>

= d F,(d s Ppre) o
1?‘.3 0.(do) UA'(Y.[nYz) 2(do K@, 04 )rIZ‘J,"“(MA')

x [ F (doy)k 4 j kGA@2 @1)
. ;[Y 0.(do) f F 1(do (@4, 0)

v (Y1NnY,

X IFA(d(pZ)kA: k(@2 01)
[ Qu(d)[F dpr)ky* ki (02 0.4)

YinY2nY3

[ Quldo)|F A(d§02)k14:"1 k(@2 9). (3.26)

YinY2nYs

I

On the other side, it is easy to check that
S(Y1nY,, A)=S(Y;, A)Oy, .
Consequently, we get (S(Y, A) € 4, Oy, vy, € 2N
O(S(Y,n Y, A)0y) = (S(Y;, A0y, y,)
= | Qu(dp)wi(Ssv4Y;, A))

Y1f\Y3

[ Quldo) | Q4(do) [F (dpo)ks % Ki(@2: 1)

YinYs

[ Qu(dp) | Fadpr)k % k5" (P2, 9 4)

YinY;nY3

[ Quldo)[F 4(dor)k, * k(@2 ). (3.27)

YinY2nY3

I

I

Since ,M/ N 4\ MM I generate M and the integral operators from o/, are
dense in this space we conclude from (3.26) and (3.27) the relation (3.25). Now, we

choose an increasing sequence (4,),>0, 4,€B such that li_)m A,=G. For all

©1, ¢, € M there exists an n, € N such that for all n>n, ¢,, 9, € M , . Thus, from
(3.25) we get that

kw((p 1 q’Zs (0) = "IHE) kA,.((p 1 (sz (P) (328)
exists for Fx FxQ,-a.a. (¢, ,,¢), and defines a measurable function from

M’ x M7 x M into C. Setting k (¢, ¢,, 9)=0 for ¢, e M\M’ or ¢, M\M' we
obtain a well-defined measurable function from M3 into C.

3°. We show that k,, is the c.r.d.m. of w, i.e. we must show that k,, has the properties
given in Definition 1.7.1.
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From (3.28), (3.23), (3.24), and (3.25) we obtain for all A1€®B and F, x Q-a.a.

(91, 9), .
' k@1, 91, @ 4) =k a(@1, 91, 9 4) =kG* (91, 91, 0)
=Koy 0.19= 122 (g,)
=KD Pa)= (1

what proves (i).
For AeB and pe M we set

K3¥(@01)=[F (A0 )ko(@1, 92, 04)¥(@2) (YEMy, 01€My). (3.29)
Since for Ae o/, A=S ({0}, A) we get from (3.22),
0%(4)=Q5({0}) [ F {dp )k 4 * k5(91, 0)
=045 ON [ F 4do )k s * k(@1 @ 1)
=0%({0}) Tr4(K%4). (3.30)

Since wY is a normal state K9 is a positive trace-class operator on .#,,.

Finally, we have to show that k,, fulfills (1.7.1). For all 4eB, Ye ,9 and all
integral operators A € &/, such that S(Y, A)e ,o we get (using (3.22) and the fact
that M e ;)

o(S(Y, A))=a(S(Y, A)0r)= [ Qu(d@)i(S4(v,Y; A))
= ] Qudoyg (M) [ 0%(dg1)[Fido)ka% k(020
= [ Qold) [ F slde1)ka % k5" (02, 1)
= [Quldo) [F A(dp )k s % ko(92, @)
4°. We still have to show the converse, and we assume now that the locally normal

state w possesses a c.r.d.m. Then we use (3.29) and (3.30) to define a family (%), ¢ »
of positive linear functionals on &/, i.e. we put

QUM =007 ' Y| £ IM) (@) (YeM,, peM)
and
0%(A)=04({0}) Tr(K%4) (Aest,), (3.31)

where K9 is defined by (3.29).
Since x(0, ¢)=1 and

QUY)=gEM )" £ F(d)x(d, 9) (3.32)
we get
QA O =Mz (M )" (3.33)
Further, it is easy to see that
%04 )= Q4({ 0} Tr(K50, ) =Q4({O}mg(M ) =1.
Thus, (0%9),cn is a 4 IM-measurable family of normal states on «/,, and by
10%(A)=0(0y, A0y ) (A€, peM),
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there is defined a ,.IM-measurable family of normal states on ,o/. We finally have
to show that these states are just the conditional states of w. Let Ae.</,, Ye ,IN,
AnA'=0, 4,4’ € B. From Lemma 2.4 we know that J ,AOy€ ,,. ./ and J ,AOy
=S(YNnM 4., A). Consequently, if 4 is an integral operator we get from the
definition of the c.r.d.m.,,

w(J 4AOy)
=(S(YNM 4, A))
Yn{{ . QdQ) [ F 4, 4(d01) [ F 4, 4(d02)k s(@1, 02)k (@2, @1, @)

=1 . 0ud0) [ F 4 1) [ F A0 2)k (91, @)k @2, 01, 0)

" . Qu(do) Tr(KGA)= [ . Q.o (M Q5({0}) Tr(K34)
= Q.,(dp)Q5*({0}) Tr(K§A)= { Qu(dp)ai(4)

= [2u(d0),0°J 44). O

3.7. Proof of Proposition 2.11

The proof follows immediately from the proof of Theorem 2.10 [from (3.31), (3.33),
and 24)]. O

3.8. Proof of Proposition 2.12

Let k,, k, be two c.r.d.m. of w. As in the proof of Theorem 2.10 [(3.26), (3.27)] one
easily shows that

ki(@1, 02, 0)=ky(@1,02,0) (FyxF, xQ,—aa (91,0, 0).

Since F is concentrated on MY = () M, this implies immediately that the c.r.d.m.
AeB

is a.e. uniquely determined. [

3.9. Proof of Proposition 2.13

If w is normal it follows from Proposition 1.6.1 that @, is a finite point process.
Now, let Q,, be a finite 2',-point process. It is easy to see that the c.r.d.m. k, of ©
fulfills the assumptions of Theorem 1.6.8. Consequently, there exists a normal
2" -state & such that Q,=Q, and k; =k, a.e. Since a normal state is also a locally
normal one we conclude from Proposition 2.12 that & = w [more precisely, w may
be extended in a unique way to a normal state on £(#)]. [

3.10. Proof of Proposition 2.14

The implication (i) = (ii) is a consequence of Proposition 2.12 and of the
uniqueness of the position distribution [2, Theorem 3.3]. The implication (ii) = (i)
follows from Remark 1.7.5, 5°.
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