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Abstract. We prove the existence of propagating front solutions for the Swift-
Hohenberg equation (SH). Using the center manifold theorem we reduce the
problem to a two dimensional system of ordinary differential equations. They
describe stationary solutions and front solutions of the partial differential equation
(SH). We identify the well-known "amplitude equation" as the lowest order
approximation to the equation of motion on the center manifold.

1. Introduction

In this paper, we reconsider the existence problem for fronts in the Swift-
Hohenberg equation, which was studied in [CE1, CE2]. This equation is of the form

dtu(x91) = (α - (1 + d2

x)
2)u(x, t) - u3(x, t). (1.1)

It is known that for small positive α this equation has stationary solutions (i.e.,
time-independent solutions) which are periodic with period ω, for | ω | close to 1.
If we define ε > 0 by

(ω2 - I) 2 + ε2 = α,

then these solutions are of the form

2
u(x) = S(x) % ε cos(ωx).

/3
Furthermore, in [CE1], front solutions for Eq. (1.1) were defined as solutions of
the form

u{x,t)=W(x,x-ct) (1.2)

with the boundary conditions at infinity

lim W(x9y) = S(x)9 lim W(x,y) = 0.
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These solutions look like a fixed envelope advancing in the laboratory frame and
leaving a periodic pattern (looking like the stationary solution) behind.

The aim of the present paper is to give a conceptually simpler proof of the
existence of these stationary solutions and front solutions, using the techniques of
reduction to a (2-dimensional) center manifold. Early references dealing with the
relation between center manifolds and amplitude equations are [CM1, CM2]. The
use of the center manifold theorem is complicated by the fact that one is perturbing
around a state in which all directions are "center" directions. (For another applica-
tion in such a situation see [LW].) Thus, we need to use the fact that after perturba-
tion, some directions are "more central" than others. (In this respect they are similar
to the "r-hyperbolic" manifolds of [HPS].) This requires us to use some care in
treating the conditions which govern the applicability of the center manifold
theorem. Since none of the published versions of this theorem seemed to be
applicable to our problem, a detailed rederivation of the center manifold theorem
is included in Appendix A.

In order to describe informally the nature of the center manifold and the
relevant dynamics in it, we use a Fourier decomposition. We write

neZ

and a corresponding decomposition of W(x9 y),

nεZ

Then the boundary conditions for the Wn are

lim WH(y) = Sn9 l im»;(jι) = 0.
y->-oo y~*oo

To simplify the discussion, assume ω = 1. We are interested in small, positive
α, and we assume

= ε2α
0,

Here, α0 and c0 are fixed constants, and ε > 0 is a small parameter. It is well-known
that in this parameter range, a multiscale analysis is adequate. The principal con-
tribution to W comes from n = + 1, and we reparametrize Wx as

= εW1(εξ).

Then U approximately satisfies the "amplitude equation,"

41/" + c0U' + a0U- 3U\U\2 = 0. (1.3)

The two components, U and U\ of this ordinary differental equation form essential-
ly the two coordinates of the center manifold. They define a two-dimensional
(complex) dynamical system in the center manifold, whose fixed points correspond
to the stationary solutions of (1.1) and whose saddle connections between these
fixed points and the zero solution correspond to the front solutions. It should be
noted that the dynamical system obtained in the center manifold depends on the
speed c which is imposed on the front. It should also be noted that the original
Eq. (1.1) is translation invariant. This will imply a symmetry of the induced flow
on the center manifold, namely covariance under multiplication by a phase.
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In Sect. 2, we reduce the problem to the center manifold and perform the
necessary perturbative calculations, while the proof of a version of the center
manifold theorem is relegated to Appendix A. I9 Sect. 3, we study the flow on the
center manifold itself, transforming it to a more useful form. In Sect. 4, we show
the existence of a saddle connection. It is interesting to note already at this point
that the symmetries of the problem do not guarantee the existence of stationary
solutions. All that follows is that Eq. (1.1) either has stationary periodic solutions
or quasistationary convective solutions, that is, solutions of the form

u(x91) = f(x - ct\

with / a periodic function. On the other hand, this dichotomy shows beautifully
how the convective instabilities can occur as a consequence of translation in-
variance. For completeness, we give in Appendix B a direct argument for the
existence of stationary rather than convective solutions, cf. [CE1].

The main result of our analysis is

Theorem 1.1. For c% > 16α0 > 0, and for ε sufficiently small, there is an interval of
frequencies ω, of size Θ(έ*\ v > 1, centered atω=l, for which (1.1) has front solutions
of frequency ω, of the form (1.2). The amplitudes of these solutions are close to
solutions of (13).

Remark. Our results could also be derived for other forms of the non-linearity in
(1.1) (e.g. u5). However, the dependence of various quantities on ε would change.

2. Reduction to a Center Manifold

For fixed ω, and in a frame moving with speed c the differential equation for Wn

takes the form

(α + cdξ - (1 +(-iωn + dξ)
2)2)Wn(ξ) = £ Wp(ξ)Wq(ζ)Wr(ξ). (2.1)

p+q+r=n

We can write this fourth order equation as a system of four first order equations,
and we then view ξ as the "dynamical variable." We shall label the variables as
follows:

\ n , ; = 0,...,3, neZ.

The system of Eq. (2.1) takes then the form

where the matrix Mn is of the form

(0 1 0

M.=

K

0 0 0 1

A B C Ό

(2.2)
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A=-(l-μ2)2 + «,
B = 4iμ(l-μ2) + c,
C = 6μ2-2,
D = 4iμ,

and μ = ωn. The non-linear part is given by the vector

(2.3)

where

F — — V www — — V Y y Y
n ί^^ p q r / i po qo "O

p+q+r=n p+q+r=n

2.1. The Linear Operator. The calculations involving Mn can be done easily by
observing that the characteristic polynomial of Mn is

pn(λ) = λ4- Dλ3 - Cλ2 -Bλ-A. (2.4)

We begin by studying the spectrum of Mn for small values of α and c by performing
perturbation theory in α and c. When α and c are zero, the characteristic polynomial
factors as pn(λ) = (λ — i(μ + l))2(λ — ί(μ — I))2 and the spectrum of Mn consists of
the double eigenvalues i(μ ± 1) with eigenvectors

and a nilpotent part

1

i(μ±l)

, - i ( μ ± l ) : /

0

1

2i(μ±l)
-3(μ±l) 2

-v±

— V

The action of Mn is described by

Thus, we see that for α = 0, c = 0, the linear part of the problem has purely imaginary
spectrum.

We shall now study how this spectrum evolves as the parameters are varied.
We shall see that for n = ±1 the spectrum will leave the imaginary axis by an
amount which is an order of magnitude smaller than for the other values of n.

We consider the case of small α and c. In order to make perturbative statements
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we set

α = ε 2α 0, c = εc0.

For simplicity, we set ω = 1; see below for a generalization to ω Φ 1. It is useful
to define

The characteristic polynomial may now be written as

pn(λ) = (λ- i(μ + l)) 2 μ - i(μ - I))2 - coελ - α 0ε 2, (2.5)

where μ = nω = n.lϊ εμ is small, we may write λ = i(μ ± 1) + δ9 and solve approxi-
mately for <5, and one finds the asymptotic formulae

+ _{ε{-co±Δ)β + Θ(ε2) w h e n n = - l

* * \i(μ + 1) ± ε 1 / 2 i 3 /Vc 0(μ+l)/2 + Θ(ε) whenn # - 1

_ (ε(-co±Δ)β + Θ(ε2) whenw=l
μt± \i(μ - 1) ± ε 1 / 2 i 3 / \ / c 0 ( μ - l ) / 2 + (P(ε) when n Φ 1,

for the eigenvalues. If, on the other hand, εμ > c for some small constant c, then
one shows easily that there exists some small positive constant rγ such that
I Re λμt± I > r x. We assume now ε > 0,α0 > 0 and c\ > 16α0. Then A is real. (The
other case for c0 corresponds to fronts which are slower than the minimal speed
for which the amplitude equation has positive solutions.) We see that for ω = 1,

R e λ t l i ± = ε ( - c0 ± Δ)β + Θ(ε2),

R e λ ; l t ± = ε ( - c0 ± Δ)β + 0(ε2).

For all other choices of neZ and of the sign se{ + , — }, we have

This means that λlίt± and ^ + 1 > ± are "more central" than all other eigenvalues.
Note that if ω2 — 1 = ωoε, the preceding observations remain valid.

00

2.2. The Function Space. Let So denote the direct sum (J) C 4. If Xe$0> we
π = 0

denote by Xnj, n ^ OJ = 0,..., 3, the components of X in the natural decomposition
00

of 0 C 4. We denote δ the subspace of So in which XojJ = 0,..., 3 are real.
n = 0

There will be a one-to-one map /y,j;eR from the space of real, sufficiently
differentiable functions of form

W(xiy)=Yje-inωxWn(y\
neZ

into S. It is defined by

i \ Z = y (2-6)

Note that W_n{y)=Wn(y\ so that the Iy(W)njGC for n > 0 , and the Iy(W)OjeR
uniquely determine W.
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We make δ0 into a Hubert space by defining the inner product

and setting Hι

c{δQ)

2.3. The Nonlinearity. We consider the nonlinearity F:δo^δθ9 whose com-
ponents are given in (2.3). The following estimate shows that F is well-behaved.

Lemma 2.1. // / > 1/2, then F is a continuously differ entiable (and hence analytic)
function from Hι

c(S'0) -> Hι

c(S'0).

This is a standard result in Sobolev space theory. It follows from the fact that
Hι

c is a Banach algebra and an easy calculation, which we do not reproduce. Thus
we have the

Corollary 2.2. // / > 1/2, then there exists a constant cFl > 0, such that

2.4. The Flow on the Center Manifold. We begin the reduction of our system of
equations to the center-manifold by studying in more detail the eigenvectors and
eigenvalues of the linearized piece which correspond to the "center" directions of
the equations. By the center directions, we mean the subspace of δ corresponding
to the eigenvalues whose real part are of order Θ(ε).

We first note that the submatrices Mn of the linearized operator leave a four-
dimensional subspace of δ invariant. We refer to this subspace as the "nth sector."
We note further than the center directions are confined to the first sector.

Given the matrix M l 5 we will use the fact, noted in Appendix C, that if φ is
the eigenvector corresponding to eigenvalue λ, and if M j , is the adjoint of Mx,
with φ the adjoint eigenvector corresponding to the eigenvalue X, then
(φ, φ} = p\{λ\ the derivative of the characteristic function of Mx. The adjoint is
calculated with respect to the usual inner product, namely, (φ9φ} =ΣΨiΦi, and

i

we normalize the eigenvectors so that the first component of φ and the last
component of φ are 1.

Because of the definition of the subspace δ on which we work, there are only
two center directions, corresponding to the eigenvalues λ + xt±. We will henceforth
refer to these eigenvalues as λ+ when there is no possibility of confusion, and to
their corresponding eigenvectors and adjoint eigenvectors as φ+ and φ + .

In deriving the reduced equations on the center manifold we follow the method
of Kirchgassner[K] and Mielke[M]. We introduce the projection operators

In this definition c+ are normalization constants chosen so that
c±(φ±,φ+y = 1. Note further that < ι ^ τ , φ ± > = 0, since λ+ φλ_ when α0

ε is sufficiently small.
We now rewrite the variable X in our differential equation as X =

where w = PX, and w1 = PλX. Note that w is always contained in the first sector.
The new equations are:

PF(w + w1), (2.7)
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dξw
λ = Mw1 + P x F(w + w1). (2.8)

The center manifold theorem (see Appendix A) implies that there exists an
invariant manifold of the form (w,/z(w)), with Z i a ^ 1 map from P ^ o to P 1 ^ o

defined a neighborhood of the origin of size 0(ε3 / 4 + y), for any γ > 0, provided ε is
sufficiently small. Since we are interested in solutions of size Θ(ε) this is a sufficiently
large neighborhood for our purpose. If we substitute h(w) for w 1 in (2.8), we obtain,
from the invariance under the flow, the equation

h'(w)'dξw = Mh(w) + P 1 F(w + h(w)).

We now substitute for dξw from (2.7) and obtain

h'(w)Mw - Mh(w) = - h'(w)PF(w + h(w)) + P 1 F(w + Λ(w)).

If we now assume that h(w)« 0(wm) near the origin, then the left-hand side of this
equation is Θ(wm), while the right-hand is Θ{wm+2) + 0(w3). (This uses the fact that
F(w)« Θ(w3).) Hence, we may choose h(w)«(P(w3) near the origin. Thus, if we
ignore terms of order Θ(w4) and higher we obtain approximate equations of motion
in the center manifold, just by setting w 1 = 0 in (2.7).

We now introduce coordinates x+ on the center manifold. We write
w = x+φ+ +*_(/>_ and recall that X = w + wλ, so that when w 1 = 0,x+ + x _ =
Xl0. In order to calculate the form of the nonlinear term in the x variables, we
note that

= c+\φ+ >£1(w) + c_|0_>E1(w).

The last of these equalities came from the explicit formulae for φ± and F(w).
Rewriting (2.7) in terms of the x% using this information we obtain

x+ =λ+x+-3c + (x+ + x _ ) | x + + x _ | 2 ,

x_ =λ_x_ — 3c_(x+ + x - ) | x + + x _ | 2 .

3. Identification with the Amplitude Equation

We now work out an expansion for these quantities in powers of ε. Note that we
are assuming throughout cl > 16α0, so that A is real. For our purposes it is only
necessary to use expansions up to order Θ(ε). In Sect. 2.1, we already computed λ+:

Using the remark made earlier we have c± = l/(ψ±,φ±} = l/p\(λ±). Using the
expression (2.4) for Pι{λ\ and the asymptotic formula for λ+ from above, we find
that

/ (3.1)
εΔ

We now change coordinates in (2.9). We choose
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Neglecting terms of higher order, this leads to

c0 A
χ = x + + x _ = -ε — χ + ε-η,

o o

. • . A c0 6 2η = χ+-χ-=ε-χ-ε—η + -—χ\χ2\
8 8 εΔ

We next rescale the "time:" Define

χ(t) = εu(εt\ η(ή = εv(εt).

Then

and the equations take the form

Co , A

8 8

ύ u Ό + u \ u

8 8 A
Our next transformation is

coq 8p

A A

Then the equations take the form

. (3.2)

Clearly, the system (3.2) is equivalent to (1.3).

4. Stationary Solutions and Fronts

The vector field described by (3.2) is very well studied in the literature, see for
example [AW]. We need here a discussion of a slightly perturbed system in the
complex domain. Although Eq. (3.2) could be viewed as a real equation, the
correction terms of higher order will force the solution to acquire imaginary
components even if the initial data at x = — oo are real. This phenomenon
describes in fact the corrections of the positions of the nodes of the solution when
the amplitudes change. Equation (3.2) has a fixed point at p = q = 0, and a circle
of fixed points at p = 0,\q\ = (αo/3)1 / 2. (We assume always α o >0.) We need to
know what happens to these fixed points when we perturb slightly Eq. (3.2). It
will be seen that the fixed point at 0 is hyperbolic and that the circle of fixed points
is normally hyperbolic. This will imply that under a small perturbation, the fixed
point at zero persists, and the circle remains an invariant circle. However, no
abstract argument guarantees that it remains a circle of fixed points. We will
provide a separate argument in Appendix B, which shows that the invariant circle
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is made up of fixed points. We stress again that the other alternative is physically
not uninteresting and has been observed in other, realistic examples, cf. [CE2]. It
corresponds to convective instabilities.

4.1. Stationary or Convective Solutions. We now study (3.2) as an equation in C 2.
Writing out the equations for the real and imaginary parts of p and q, we see that
the linearization of the vector field at the origin has two double eigenvalues,

° —v ° -, (which both have real part less than zero), and the linearization
8

at q = y/ctoβ has eigenvalues 0, - c o / 4 , and ° —v ° -. Note that here
o

we have one unstable direction, one neutral direction, corresponding to motion
along the circle of fixed points, and two stable directions. Thus, the circle is
normally hyperbolic cf. [HPS].

We now study what happens to the fixed point and the circle as we perturb
the vector field. Let Xo denote the vector field in (3.2), and let Xε be the Ή1 small
perturbation of Xo obtained by changing the parameters to ε > 0. Then we have:

Lemma 4.1.
XI: Xε is covariant under the transformation q^eίφq and p->eιφp, and

X2: Xε has a fixed point which approaches q = yjoc0β, p = 0 as ε approaches zero.

Proof. The covariance is obvious from the translation invariance of (1.1). We show
in Appendix B that Xε satisfies X2.

Remark. Note that if Xε has a non-zero fixed point, then by XI, it has a whole
circle of fixed points.

4.2. Front Solutions. The circle of fixed points with | g | > 0 corresponds to
stationary solutions, and any two of these solutions differ only by a phase (which
corresponds to translation in x for the original Eq. (1.3)). The point p = q = 0
corresponds to the zero solution of Eq. (1.3). For the unperturbed system, (3.2), a
phase space analysis (see [AW]) shows that for every q on the circle \q\2 = αo/3,
there is a saddle connection, tangent to the unstable direction at that point, which
connects it to the point p = q = 0. The connections for different "initial points" q
are again relation by a phase, and if q2 = αo/3, they are real. We now show that
these front solutions persist when we perturb the Eq. (3.2).

Lemma 4.2. Under the conclusions of Lemma 4.1, Xε has a hyperbolic fixed point
at p = 0, q = 0, and a circle of fixed points near \q\2 = αo/3. Furthermore, Xε has a
family of front solutions (related to one another via q -> eiφq and p -• eiφp) which are
saddle connections between the circle of fixed points and the origin.

Proof. We begin by considering a neighborhood of the circle \q\2 — aoβ in C 2.
Note that this circle is a normally hyperbolic, invariant set for (3.2). From the
theory of such sets (see [HPS], for example), we know that Xε will have a normally
hyperbolic, invariant circle nearby. Furthermore this will be the only invariant set
in a neighborhood of the circle, |g | 2 = α0/3, so the fixed point obtained in X2
above must lie on this circle. But then by the remark following X2, the whole
circle must consist of fixed points. For ε sufficiently small, the fixed points will
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have one unstable, one neutral, and two stable directions, and on a sufficiently
small neighborhood of this (circle of) fixed points, the flow will be topologically
conjugate to the flow of Xo. Let the conjugating homeomorphism be hίε.

Let #Ό be the front solution of Xo which connects q = y/oco/3 with the origin.
If one considers any compact segment of # o , excluding the points q = ^/α^/3, and
the origin, then Xo is non-singular in a neighborhood and hence is topologically
conjugate to Xε via a homeomorphism /ι2,ε, provided ε and the neighborhood are
sufficiently small (see e.g. [A, Sect. 32]). We can choose the segment of ^ 0 such
that the domains of Λ1>ε and /z2,ε intersect, and (by a choice of origin) we can insure
that /ii,ε(^o)= h2,ε(^o) o n the intersection of the domains. (Note that if hγtfAjFQ)
and h2,ε(^Ό) agree at a single point they agree at all points since hiz, ί = 1,2 map
trajectories of Xo to trajectories of Xc.) Finally, we note that since the origin is an
attractive fixed point for Xε, we can choose the segment of 3F§ around which we
construct hlz to be such that ft2,c(^o) intersects the basin of attraction of the
origin. We then define a trajectory J% as follows:

i) J% is the image of 1FO under hiε; i = 1,2 on the domain of these homeomorphisms.
ii) Once J*ε intersects the basin of attraction of the origin, we extend it via the

flow associated with Xε.

Note that J% is asymptotic to the circle of fixed points as ί-> — oo. As ί-> oo,
it is asymptotic to the origin. Thus, J% is a front solution for Xε and once we have
one front, the covariance of the equations under q -» eiφq and p -• eiφp allows us
to construct a whole family of such trajectories. Note, however, that the solution
starting at p = 0, q > 0, q real is not necessarily real any longer. The phases of p
and q one observes now describe the displacement of nodes in (1.3) which is caused
by the constriction of the amplitude, while the covariance of the whole vector field
describes the overall translation invariance of the problem. We have thus shown
the following

Theorem 4.3. Given c%> 16α o >0, there is an ε o > 0 such that for all ε in (0,ε0)
Eq. (1.1) has stationary solutions and front solutions of frequency ω= 1, and of the
form (1.2). The amplitudes of these solutions are close to saddle connections for
Eq. (3.2).

Note that all our considerations above still apply if we replace ω = 1, with any
ω for which \ω2 — 11 < εv, for some v > 1. Thus we have the

Corollary 4.4. Given c% > 16α0 > 0, there is an ε0 > 0 such that for all ε in (0, ε0)
Eq.(l.l) has stationary solutions and front solutions of frequency ω, for all
\ω2 — l | < ε v , where v > l . The amplitudes of these solutions are close to saddle
connections for Eq. (3.2).

This completes the proof of Theorem 1.1.

Appendix A. The Center Manifold Theorem

The theorem we present below is well-known. (See for e.g. [MM], where a proof
similar to the one below is presented.) However, we will nevertheless give a complete
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proof because we need to know in detail how the various constants in the theorem
depend on ε, and that does not seem to be available in the literature.

We consider a differential equation on the Banach space S, and we assume
that $ = Sc 0 Ss 0 Su, which we refer to respectively as the center, the stable, and
the unstable subspaces. Let (zc, z\ zu) be coordinates for these subspaces. We write
the differential equation in the form:

df = Aczc + fc(zc,zs,z«),
at

df = Aszs + fs(zc,zs,zu),
dt

f A
at

Any combination of the indices c, s, u, will refer to the direct sum of the correspond-
ing subspaces, and the corresponding norm will be the maximum. For example,
f ^ ^ θ ί 5 with the norm | | z c ©z s | | c s = maxd|z c | | c, | |z s | | s ). Define B\ to be the
ball of radius r, centered at the origin in Sc, with Bu

r and Bs

r analogously defined.
We also need Bc

r

s = Bc

r®Bs

r and similar combinations. Denote by PC,PS and Pu

the projections onto the components of S.
We make the following hypotheses.

HI: The linear operators As and Au define continuous semigroups on Ss and Su,
for t ̂  0, and t ̂  0, respectively. Furthermore, we assume that there exist posi-
tive constants λs,λu, and D, such that supmax(eλst\\eAst\\s,e

λut\\e~Aut\\u)SD'

H2: The linear operator Ac defines a flow on Sc, with \eAHzc\c^a(\ + |ί | f c) | |z c | | c

for all ίeR.
H3: The functions fc, and fs, and fu are Lipschitz functions from $ to Sc, $s, and

Su, respectively. The Lipschitz constants of these three functions on the ball
of radius r about the origin in $ will be denoted by /c(r), /s(r), and lu(f). By
this we mean, e.g.,

\\Γ(z)-f%z)\\sίls(r)\\z-z\\csu,

for all z,zeBc

r

su. We require that all three functions (ls etc.) vanish as r->0.

Theorem A.I. Assume that there exists a constant σ > 1, and positive constants β
and r such that the inequalities CΓ-C5' below hold. Then there exists a Lipschitz
function h defined on some neighborhood, Uc, of the origin in Sc and mapping Uc to
SS®SU. Furthermore, /i(0) = 0 and the graph of h is left invariant by (A.I). If the
non-linearity (fcJsJu) in (A.I) is %m+\l ^m< oo, if S has the <#m+1 extension
property, and if C6' below holds, then the function h is (€m, and the mth derivative
is Lipschitz, possibly on a smaller neighborhood Uc.

Remark. A Banach space S has the %>m extension property if there exists a function
χe^m(S,R) such that χ(z) = l if | |z | | < 1/2, and χ(z) = 0 if | |z | | > 1. If £ is finite
dimensional, or a Hubert space then it has the ̂ m extension property for all
m= 1,2,..., oo.
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Remark. One could assume that the vector field fc's'u in Theorem A.I was only
Cm, with Lipschitz mth derivative.

Proof of Theorem A.I. We begin by describing the construction of the center-stable
manifold. The construction is very similar to that of [CEl], modified only to take
account of the presence of the "center" directions (cf. [M]). We look for an invariant
manifold, Wcs

9 which is the graph of a function h: Scs -• Su. To simplify notation,
we denote points in Scs by ξ, and let their projections onto S\ and Ss be denoted
by ξ€ and ξs respectively. Let Ψh

t be the projection onto βcs of the flow on the
graph of h.

Then formally, Ψh

t satisfies

Ψh

t = e

Acst + J d τ e A C S ( t - τ ) f c

h

s o ψh

τ. (A.2)
o

Here, ACS = AC@A\ and

ns(ξ)=\

In order for Wcs to remain invariant under the flow φt we must have

from which it follows that

ft= -]dτe-AUτfu

hoψh

τ. (A.3)
o

We note that the calculations leading to (A.2) and (A.3) are formal ones - for
instance, the flow φt will in general not be defined for all initial conditions in a
neighborhood of the origin. We will prove that the calculations make sense by
first showing that given h, (A.2) has a solution which we then substitute into the
right-hand side of (A.3). We then consider the right-hand side of (A.3) as defining
a transformation of the function h, which we then prove has a fixed point. That
fixed point defines our center-stable manifold.

We begin by defining the spaces in which h and Ψh will be shown to lie. The
space for h is given by

If h and h are elements of Hσ9 we define the Lipschitz metric

II ς He*

We next define the space in which the map Ψh is going to live. Due to the
bad control over the center direction, we will allow for a small exponential
divergence, (cf. Mielke[M].) Fix β>0 (small). We require that β<min(λs,λu).
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Define

Kσ>β = {φ:R+ x£cs-+£cs\φ0(ξ) = ξ9 forall

M0) = 0, forall ί^O,

|| ψt(ξ) - ψt(ξ) \\cs ̂  σe?* || ξ - ξ\\cs, for all ξ, ξe$cs}.

We also define the Lipschitz norm

and the induced Lipschitz metric on

Remark. Hσ and Kσβ are complete metric spaces with respect to dH and dκ.
The construction of center manifolds makes the use of a cutoff necessary. We

do not assume that / itself has a restricted domain, but work instead with an
explicit cutoff function χ. This has the advantage of making the bounds on Lipschitz
constants more explicit. We choose a smooth function χ o :R-»R, satisfying
0 ^ χ o = l> X o M = l when | x | ^ l / 2 , χ o ( x ) = 0 when | x | > ί . We assume for
defϊniteness that the derivative satisfies |χ'0(z)| ̂  3. Let z = (z\ z\ z"). We then define

For r a positive real number, we define the functions

gu(z) = f»(zyχ(z/r).

Then g\ g\ and gu are all Lipschitz functions, and they have Lipschitz constants
on all of $ which are bounded by

/, = 4max(/s(r),/c(r),/M(r)).

Note that the functions gs'c'u defined above are not smooth. In fact, there exist
Banach spaces on which there exists no smooth function χ(z), such that χ(z) = 0
if || z || > 1, and χ(z) = 1 if || z || < 1/2. If we wish to prove the existence of smooth
center manifolds, we must assume that S has the %>m extension property, which
guarantees that there exists a # m function χ:<ί->R, which has these properties. We
then redefine the functions gs'c'u = fs'c'u(z)χ(z/r), and set /̂  = 2cχmax(/s(r), /c(r), lu(r))9

where cχ is the Lipschitz constant of χ.
Define

(A.4)
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where gh(ξ) = g(ξ, h(ξ)). We are going to show, under conditions which will appear
as the estimates go on, that &h has a unique fixedj>oint in Kσβ.

We consider φeKσβ9 and heHσ, and we fίxξ, ξeS>cs. Applying the definitions,
we find

Now let

Because of the global Lipschitz estimates on gcs, one has

S ig II whφt(ξ) -

| | h ( φ τ ( ζ ) ) - h(φτ(ξ))L ύ σ V τ | | ξ - ξ\\cs.
 [ ' }

If we now project onto the center direction and integrate over τ, we get

Uξ) lie ̂  (φ + tk) + aσ2lj dτ(l +(t- τf)eΛ || ξ - ξ\\cs,

and hence

(A.7)

Similarly, we find

\\Ps<gh(φ)t(ζ) — Ps<gh(φ)t(ξ)\\s<^DI e ~ λ s t + σ 2 l g \ d τ e ~ λ s { t ~ τ ) + β τ ]\\ξ — ξ\\cs. ( A . 8 )
\ o /

Assume now

Cl: - v ^ , 1 + _ σ 2 / < σ

βk \ β V

This implies

|| Pc%(φ)t(ξ) - Pc%(Φ)t(ξ) lie ^ < ^ II« - l ί l c (A.9)

Similarly, if we assume

C2: D+ D σ2lg<σ9

then we see that

We have now shown that C1-C2 imply (A.9) and (A.10), which in turn imply
that <Sh maps Kσβ into itself.

We next show that &h is a contraction. Assume φ and φ are in ^ σ ^ , and ξeScs.
By the definition of Kσ β, we have

ύ σdκ(Φ, $Y\\ξ \Leβτ.
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Substituting this into gcs, and using the global Lipschitz estimate on g we find,

We now integrate over τ as above. Noting that the inhomogeneous term drops
out, and using the general assumption β > 0, we find

Uξ) - Pc%(Ψ)t(ξ) lie S ~~<ylg- II ξ \Leβ'dκ(Φ, Φ),
a(k[+ί)

βk

\\p#kiψ),(ξ) - Ps^πiΦUξ) II. s j^rβ

σl9- ιι £ \\cSe
βtdκ(Φ, Φ\

Thus, we see that if
α(fc! + l) , (

σlg<\, (A.12)

then ^A is a contraction on Kσ/,. Note that (A. 11) is implied by Cl and (A. 12) is
implied by C2. Thus, we have shown the

Lemma A.2. IfheHσ,ifσ>l, and if C1-C2 hold, then ^h has a unique fixed point
Ψh in Kβtf.

Next consider the transformation

= - I dτe-A"τgu

h° Ψ\. (A. 13)
o

We want to show that #" maps if, into itself and is a contraction. Let ξ, ξeSes

and let heHσ. By Lemma A.2, we know that Ψh is in Xσ β. Therefore, we get, as
in (A.6)

Integrating now as in (A.7), we find

provided

C3: λu

Thus, ίF maps Ha to itself, provided

C4: —^

We next find conditions which make 3F a contraction. Let ξeScs and let ft, ftei/σ

We begin by bounding Pc( ¥**(£)- !Pf(ξ)), which we rewrite as
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(This is the usual technique of recovering the "lost derivative" after application of
the contraction mapping principle.) We then write

Using the Lipschitz estimates

|| *( Ψh

τ(ξ)) - h( Ψh

τ(ξ)) L ^ dH(k h)σeβτ \\ ξ \\a9

|| Ψh

τ(ξ) - Ψn

τ(ξ) \\cs ̂  dκ( Ψ\ < F V τ II ξ L ,

this may be bounded by

IIA° ΨhM) ~ QCH°
 Ψ"M)He ^ (dH(h, h) + dκ(Ψ\ Ψ~h))lgσ|| ξL^\

If we integrate, this leads to the bound

\ lie ύ ?η^r-(dH(K h) + dκ{ Ψ\ Ψ"))lgσeβt \\ ζ \\cs.

The s-component is bounded similarly by

^ H ( K h) + dκ( Ψ\ Ψ*))l§σe» \\ ξ \\a.II. ύ j

Combining the two bounds, we get

dκ( Ψ\ Ψ'h) ̂  (^~fi + -2-Vσ(dH(h, h) + dκ( Ψ\
P AS + P/

Assume now

C5:
βk+1

Then (A. 14) implies

dκ{Ψ\Ψ~h)ύLhdH{h,h\

where, by C5,

This implies that

|| h( ψ*(ξ)) - h( ψ*(ξ)) \\a = || h( ψ*(ξ)) - h( ψ*(ξ)) + h( Ψ%ξ)) - h{ Ψ*(ζ)) \\cs

Zσ\\ Ψh

t(ξ)~ * r f ( i ) l l e + II ψf(ξ)\\csdH(h,h)

Since g" is Lipschitz, we find that !F is a contraction if

C6: _?^_iσ<i.
λu-ββ

Thus, we have shown
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Lemma A.3. // C1-C6 hold, then SF is a contraction on Hσ and has a unique fixed
point in Hσ.

Remark. From the calculations leading up to (A.2) and (A.3), we see that the graph
of the fixed point, A, gives a center-stable manifold for (A.I).

This fixed point gives us a center-stable manifold. We now restrict the dif-
ferential equation to this manifold and consider the evolution of the reduced form
of (A.I) for t ^ 0, or equivalently we replace t by —t. With this change the equations
take the form

df=-Aczc-fc(zc,z\h(zc,zs)),
dt

dzs

= - Aszs - f\z\ z\ h(z\ z*)\ (A.16)
dt

To emphasize the similarity with the previous situation, define Au = — A\
]\z\z*)= - f\z\z\h(z\?)) and fc{z\zs)= -f\z\z\h(zc,zs)) so that (A.16)
becomes

fA
dt

?f = Auzs + fu(zc,zs). (A. 17)
at

Thus, restricted to the center-stable manifold, (and with t replaced by -1) the
equation has a "center" part and an "unstable" part, but no "stable" part.

Note that Au defines a continuous semigroup for t ^ 0, with sup eλst || e~*ut \\ =
~ ^°

sup eλst || eAH || ^ D, while the Lipschitz constants for fc and /", are

ζ(r) = (1 + σ)/c(r), ϊu(r) = (1 + σ)/s(r),

by the bounds on A. Thus, if conditions analogous to C1-C6 with lg replaced by
(1 + σ)lg and s exchanged with u hold, then (A. 17) will have a center-stable manifold.
This manifold has no "stable" directions, and will give a center manifold for the
original equation. For completeness, we state the conditions, and simplify them
somewhat. Let λ = min(/ls, λu). Then we require

C2':

C3': λ>β>0,

C4': ° i g { l + σ)<l/:
λ-β

C5' .a(kl + ί) _D_

βk+ί λ + β
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These conditions are stronger than C1-C6 since lg has been replaced by lg(l + σ).
(Note that C4' implies C6.) The proof of Theorem A.I in the Lipschitz case is
complete.

We now show how one proves differentiability of the center stable manifold - the
smoothness of the center manifold then follows just as above, by restricting to the
center stable manifold, and reversing the time. Suppose that the non-linearity,
/c ' s '", in (A.I) is c€1, and that £ has the # 2 extension property. Then the cut-off
nonlinearity gc>s>u is also c€2. Define hiO)(x) = 0, and ψ?\x) = eAcstx. Define hin+1)(x) =
^{h{n)){x\ and φln+1)(x) = ^h(n)(φin))t(x). The contraction mapping theorem
guarantees that lim h(n)(x) = h(x). Furthermore, from the hypothesis H2, there

exists a constant au such that

\\e X\\cs = a l e II x lies'

If we now differentiate the formulas for h{n+ί) and φ^n+1\ we find that provided

4 < .

the expressions for \\Dxh
in+l){x)\\, and ||2>*Λ("+I)(x)|| are uniformly bounded,

independently of n. (The expressions for \\Dxψ<n+1)(x)\\, and \\DlΦln+ί)(x)\\ are
also uniformly bounded (in x), independently of n, but depending on t.) Once we
know that \\Dlh(n+1)(x)\\ is uniformly bounded, the Arzela-Ascoli theorem implies
that h(x)E^1, and this derivative is Lipschitz.

We now restrict to the center-stable manifold defined by this h, and consider
the (time-reversed) differential equation, (A. 17). The vector field in this equation
is Ή1, with Lipschitz first derivative, and if we repeat the above argument, we find
that if hn is the sequence of approximations to the center manifold of (A. 17), then
provided

the first derivatives of hn9 and the Lipschitz constant of Dxhn arejiniformly bounded,
independent of n. Just as above, this implies that h = lim hn will be ^ ^ with

n-*oo

Lipschitz first derivative.
I f/ c ' s ' "G^ m + 1 , and δ has the %m+ί extension property, we can show that fte#m,

with Lipschitz mth derivative by this same method. One requires only that lg satisfy

C6r: lg < const. β/c(m),

where the combinatorial factor c(m) grows like mk+1, with k the exponent in H2.
In fact, this condition can always be met if CΓ-C5' hold, by restricting the domain
of h to a sufficiently small neighborhood of the origin.

Remark. Once we know that h is differentiable, evaluating the derivative at the
origin gives Dxh(0) = 0, so we see that h is tangent to Scs at the origin.

A.I. Application to the S-H Equation. We now show how this applies to the
Swift-Hohenberg equation. We choose the center subspace to be the subspace
spanned by the eigenvectors corresponding to the eigenvalues λ+ίt±9 i.e., the two
eigenvalues whose real parts are Θ(ε). For convenience we denote them as λc

±. The
stable subspace will be the span of the eigenvectors corresponding to the remaining



Propagating Fronts and the Center Manifold Theorem 303

eigenvalues with negative real part while the unstable subspace is the span of the
remaining eigenvectors with positive real part. Note that the stable and unstable
subspaces will both intersect the n th sector of $ in a two dimensional subspace,
with the exception of the first sector. Denote the eigenvalues and eigenvectors in
the n th sector by λs_?9 φ

s£, and λuf, φ";n, respectively. We will also need the adjoint
eigenvectors ψsf, and ψu^9 as well.

We now rewrite (1.1) in the form (A.I). We have already bounded the non-linear
term F(X), in Corollary 2.2. In particular, we know that HFpOllj^ cFtI||AΊ|f.

We next consider the equations for x - the variables in the center subspace.
Let x = (x + ,x_) be the coordinates introduced in Sect. 2. Then we have with

and as in Sect. 2, P c = c + | φ + ><^ + | + c_|</>_><^_|. We will define

and

Then, using the facts
(i) |ReΛ,±I ^cε, for some c>0,

(ii) | | P c | | ^c/ε, for some c>0,
(iii) Corollary 2.2,
we have

Lemma A.4. There exist positive constants cί and c2 such that the Lipschitz constant

4(r) forfc *5 less t n a n or equal to (cxε + c2r
2/ε).

We now turn to the stable and unstable parts of the equations. For the stable
part we choose as a basis the eigenvectors {φs±n}n^0>

 s o that the operator As is
diagonalized and its diagonal elements are just the eigenvalues {λs£}. From the
asymptotic estimates on the eigenvalues in Sect. 2, we see immediately that As

satisfies HI, and we may choose the constant λs in that hypothesis to be c s χ/ε,
for some cs > 0.

The non-linear piece fs will be given by PsF(z)9 and we now compute the norm
00

of Ps. We note that P s = 0 PJ, where P* is a projection onto the eigenvectors
n = 0

φs±n in the nth sector. Thus, \}PsF(z)\\ι= f IIP Fφl l , . But,

n = 0

/ 3 \l/2

i ip;^) iii = Σ α + " Ί
\j=o

To compute {Ps

nF(z))nJ, we can represent P* explicitly, as was done for P c in Sect. 2,
as
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The constants cΛt± = l/(ψsf, φsf} are computed by noting (see Appendix C)
that cn± = p'n(λsf), where pn is the characteristic polynomial of Mn. Once again,
using the explicit expression for p'n, and our asymptotic estimates on the eigenvalues
λsf, one finds

Lemma A.5. There exist positive constants, c3, and c 4, such that the normalization

constants c* satisfy \c* | ^ mΆx(c3/Λs/ε, c4).

Remark. Roughly speaking, one expects p'n(λsf) to be proportional to the distance
from λsf to the nearest eigenvalue - this is in accord with the explicit calculation
that gives Lemma A.5.

If we now allow P* to act on F(z), and use the fact that F(z)nJ = 0, if j φ 3, we
find that \(Ps

nF{z))nJ\ ^ c 5 ε " 1 / 2 | F ( z ) w 3 | , for some constant c5. Inserting this into
(A. 19), we have

Corollary A.6. There exists a positive constant c6 such that

This, when combined with Corollary 2.2, implies

Lemma A.7. There exists a positive constant ds such that the Lίpschitz constant for
fs, on the ball of radius r, is bounded by dsr

2ε~112.
By exactly analogous reasoning we find

Lemma A.8. There exists a positive constant du such that the Lipschitz constant for
fu

9 on the ball of radius r, is bounded by dur
2ε~1/2.

We now verify the hypotheses of Theorem A.I. We have rewritten (1.1) so that
H1-H3 hold, so we only need to verify the estimates CΓ-C6' on the Lipschitz
constants. This is easy from the above discussion. We have, uniformly in ε > 0, ε
small, the following bounds:

λ = Θ{ε-1/2l D = Θ{\), a = a1 = l, fc = 0.

We choose β = λ/2 and r = ε ( 3 / 4 ) + y for some y > 0 . This implies lg = Θ(ε) +
Θ(εiί/2) + 2γ), by Lemma A.4, Lemma A.7, and Lemma A.8. If we choose σ of order
1, say σ = 2, then there is an ε0 > 0 such that for all ε < ε0 the inequalities CΓ-C6'
hold, for m = 1, i.e., (A. 18) holds.

This means that Theorem A.I holds and hence we have:

Theorem A.9. Let y>0. Then for ε sufficiently small, (1.1) has a center manifold,
defined on a neighborhood of the origin of size 0(ε ( 3 / 4 ) + y). This center manifold isΉ1.

Appendix B. Stationary Solutions of the Swift-Hohenberg Equation

To make this paper self-consistent, we prove again the existence of stationary
solutions of (1.1) [cf. CE1]. Since such solutions correspond to stationary
points of the equation in the center manifold, this will prove hypothesis H2 of
Sect. 4.

From (1.2) and (2.1), we see that the Fourier coefficients, {W°n} of the stationary
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solution must satisfy:

(<x-(l-ω2n2)2)W°n= X W°pW°qW?.
p+q+r=n

If we now rescale so that W%->εW%, we obtain

(x-(l-ω2n2)2)W°n=ε2 £ W°pW°qW
Q

r. (B.I)
p+q+r=n

Define the Hubert spaces Hι

c(Z) = \xeCz\ £ (1 + n2)ι\xt\
2 < oo i. (Then

I neZ J
if°c(Z) =

Define the function F(α, x; ε) = (α — (1 — ω2n2)2)xn — ε2 £ xpx gxΓ. Then

is a continuously differentiable (and hence analytic) function from R x HQ{Z)

Furthermore, if we define δJ,0) = {1 if π = ± 1; 0 otherwise}, and α* = (1 — ω 2 ) 2 ,
thenF(α*,(5 ( O );0) = 0.

Let E4 = {subspace of H4

C(Z) with x 1 = x _ 1 = 0 ; x π = x_M}, and E° =Jsubspace
oϊH°c(Z) with xn = x.^, and x ^ R } , and define F:R x £ 4 x R - > £ ° by F(α, x; ε) =
F(α, (5(0) + x; ε). Then F(α , 0; 0) = 0 and

with

i if ft = + 1 ,

[ (α* — (1 — n 2 ω2 )2 )δxn otherwise.

From this we conclude that (D(α* 0 ) F ) is an invertible linear map from R x £ 4

to E° so by the implicit function theorem, for ε sufficiently small, there exists α(ε)
and x(ε), with F(α(ε), <5(0) + x(ε), ε) = 0. Thus, {(5(0) + x(ε)} are the Fourier
coefficients of a stationary solution of (1.1), and the conditions on E4 insure that
this solution is real.

Remark. This argument only implies that the stationary solution is in ^ 3 , but
standard "boot-strap" arguments allow one to immediately conclude that the
solution is in fact ^°°.

Remark. Note that these stationary solutions correspond to fixed points of the
vector field restricted to the center manifold. Furthermore, if one unravels the
various scalings and changes of coordinates, one finds that as ε -• 0, the stationary
solutions approach the fixed point p = 0, q = ^ / α o / 3 , of Sect. 4.

Remark. Due to the translation invariance of the Swift-Hohenberg equation we
obtain a whole family of stationary solutions by replacing <5(0) in the construction
above by δφ = {eiφ if n = 1; e~iφ if n = - 1 ; and 0 otherwise}.

Appendix C. Properties of the Tangent Matrix

We summarize here a few facts about matrices of the form (2.2). We formulate
them for the general n by n matrix which will occur for an nth order differential
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equation. We call the elements of the bottom row aθ9...,an-x and we define
an= — 1. Thus, the matrix is

The characteristic polynomial is

0

0

0

a0

1 is

1

0

0

ax

0 •••
1 ...

0 •••

a 2 ••• (

n

p(z)= Σ aμK
j=o

0

0

1

V

(C.I)

If ui9 i = 0,..., n — 1 denotes the components of an eigenvector with eigenvalue λ9

then

Ui = X\ (C2)

The components of the eigenvector of the adjoint, with eigenvalue λ are
n _

»«= 1, ajλ ( c 3 )

The inner product between these eigenvectors is

n— 1 n n

i = 0 j = i + l k = l
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